
Vol.:(0123456789)

SN Computer Science (2023) 4:577
https://doi.org/10.1007/s42979-023-01971-2

SN Computer Science

ORIGINAL RESEARCH

Assessing the Impact of Migration from SOA to Microservices
Architecture

Vinay Raj1  · Hanumanthu Bhukya2

Received: 4 March 2023 / Accepted: 27 May 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Microservices has become a buzzword in IT and large enterprise firms such as Netflix, Twitter, Spotify and others have
started to design their applications by adopting this new architectural style. A few organizations have started migrating their
traditional monolithic and SOA-based applications to microservices in order to benefit from the features of new style. Soft-
ware architects, on the other hand, are in chaos whether to adopt this new style or not as they are unaware of the pros and
cons of microservices architecture. Also, the impact of the migration on SOA-based applications in terms of performance
and complexity is unknown, leading to dilemma on the migration process. In this paper, a study of the migration impact on
the existing SOA based applications to microservices is presented. For this study, change propagation probability and archi-
tectural stability metrics are used to examine the effect of migrating a SOA-based application to microservices architecture.
The proposed approach is illustrated on a case study application designed using SOA and then migrated to microservices. It
is observed from the results that though the impact of migration is high, migrating to microservices has significant benefits
and it is best suitable for large enterprise applications.

Keywords  Service oriented architecture · Microservices · Migration · Change propagation · Stability

Introduction

The monolithic approach to application design was the
beginning of the rapid evolution of distributed systems. The
application components of a monolithic code are tightly
connected and have a big codebase. The size and complex-
ity of the application are both constrained by monolithic
architecture. SOA has developed as a result of the growing
complexity of enterprise systems, business objectives, and

the necessity to create distributed applications [8]. Service
oriented architecture (SOA) has been widely used in design-
ing large enterprise applications in the last two decades. It
was developed mainly to address the deployment and scaling
problems with monolithic systems. All of the system’s com-
ponents are designed as services in the SOA design approach
to developing applications [18]. A service is a reusable piece
of software code that performs a range of business opera-
tions, which can be basic or complex depending on the needs
of the company. SOA is a method of integrating numerous
software components that use the Enterprise Service Bus
(ESB) as a communication channel [32]. The backbone of
SOA is the ESB, which aids in the provision of middleware
system functions. The ESB operates as a mediator between
the service requestor and the provider, providing a high-
performance and scalable platform. SOA gained popularity
as web services evolved, which is a common application of
SOA ideas [19]. Web services are internet-based services
that may be established, accessed, and found through the
use of communication protocols such as XML-based SOAP
and WSDL. HTTP and REST protocols are used by web
services to transport messages over the internet. The three
main components of the web services architecture are the

This article is part of the topical collection “Research Trends in
Communication and Network Technologies” guest edited by Anshul
Verma, Pradeepika Verma and Kiran Kumar Pattanaik.

 *	 Vinay Raj
	 vinayraj@nitt.edu

	 Hanumanthu Bhukya
	 bhcsekits@gmail.com

1	 Department of Computer Applications, National
Institute of Technology Tiruchirappalli, Tiruchirappalli,
Tamil Nadu 620015, India

2	 Department of Computer Science and Engineering
(Networks), Kakatiya Institute of Technology and Science,
Warangal, Telangana 506015, India

http://orcid.org/0000-0002-4739-5893
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01971-2&domain=pdf

	 SN Computer Science (2023) 4:577 577   Page 2 of 7

SN Computer Science

service provider, service consumer, and service registry. A
single web service may be utilised by several clients at the
same time and is simple to implement.

Despite its popularity for application development, SOA
has a few design and deployment issues [23]. Due of its
dependency on other services and tight connection to the
ESB, upgrading a single service necessitates the re-deploy-
ment of numerous components. Delivering many services
leads to a monolithic deployment strategy, which has an
influence on the company [9]. In addition, as the complex-
ity of continuously changing business requirements rises,
the application becomes complex and harder to manage as
the size of SOA services becomes monolithic. Since SOA
follows centralised control, scaling such monolithic appli-
cations is a bottleneck [30]. Overloaded services can be
expanded horizontally by creating numerous copies of the
same service, but the hardware cost rises. Moreover, web
services exchange messages using complicated and heavy-
weight protocols such as SOAP.

Microservices emerged as a new architectural solution
that employs cloud-based containers for deployment to
address these shortcomings in traditional systems [15]. It is a
design pattern in which each service is a tiny, loosely linked,
scalable, and reusable service that can be built and deployed
separately [28]. Each service should only do one task and
have its own database and deployment infrastructure.
Microservices exchange data using communication proto-
cols such as HTTP/REST and JSON. Microservices, unlike
SOA, may be implemented independently since there is no
centralised governance and no reliance on middleware tech-
nology. Scaling on-demand microservices is simple when
using cloud-based containers [14]. Microservices design fits
well with the DevOps philosophy since each work is split
down into little components and the SDLC is completed
separately [27]. DevOps and agile approaches necessitate
rapid application design and deployment to production.

To clearly understand the concepts of monolithic, SOA,
and microservices architectures, a diagram is presented in
Fig. 1. A monolithic system contains a single enormous unit
of code, and when it comes to SOA, the massive codebase
is partitioned into coarse-grained services. The services in
SOA are further partitioned to generate fine-grained services
in microservices.

Due of the multiple benefits of microservices architecture,
software architects are starting to transition their old systems
to this design [26]. Numerous companies, including Netflix,
Amazon, and Twitter, have begun to use this architecture
in new applications [24]. Because microservices have just
recently evolved, there is a great deal of interest in both busi-
ness and academics to investigate the tools, technologies,
and programming languages utilised in this design. How-
ever, some software architects are uncertain about whether
or not to adopt this new paradigm, as they are unfamiliar

with the benefits and drawbacks of adopting microservices
[26]. However, academic research into microservices is still
in its early stages, with relatively little work comparing and
evaluating microservices against SOA.

The remaining part of the paper is organized as follows.
The necessary background information is discussed in
“Background”, and the preliminaries are presented in “Pre-
liminaries”. The details of the chosen application, along with
the service graphs, are discussed in “Experimental study”.
Results and discussion are presented in “Results and discus-
sion”, and “Conclusion” concludes the paper.

Background

There are some technical variations between SOA and
microservices application design and implementation meth-
odologies. Microservices design is based on sharing as little
as possible, and share as much as possible is the idea of
SOA [29]. For communication between services, SOA relies
on heavyweight middleware and enterprise service bus, but
microservices depends solely on lightweight protocols. The
REST and HTTP protocols are used for the exchange of mes-
sages and JSON as a data interchange format in microser-
vices [11]. SOA uses WSDL and SOAP protocols for the
exchange of messages. Microservices use the concepts of
smart endpoints and dumb pipes, as well as the choreogra-
phy over orchestration technique [5]. There is also a neces-
sity to evaluate and study both the architectures with respect
to performance, scalability, and deployment, according to
various research [6, 12, 13]. The security of the applications
is also a crucial factor to consider while comparing [25].

In the literature, the comparison of SOA with micros-
ervices has been addressed from several viewpoints. The
authors of [7] presented the applicability of patterns pro-
posed for SOA to microservices architecture. Microservices
patterns are not new, and most patterns that are applicable
to SOA are also applicable to microservices. This cannot,
however, be called a comparison of the two architectures. In
[8, 9], the theoretical contrasts between the two approaches
in terms of characteristics are discussed. The distinctions are

Fig. 1   Understanding of monolithic, SOA and microservices architec-
tures

SN Computer Science (2023) 4:577 	 Page 3 of 7  577

SN Computer Science

discussed from both research and industry viewpoints. The
authors in [16, 17] have proposed techniques for estimat-
ing the effort required for migration from SOA to micros-
ervices architecture. Their studies signifies that migration
to microservices is inevitable. A study on the best practices
for migrating legacy applications to microservices has been
proposed in [22]. In [23], the author presents a similar com-
parison of distributed systems like client and server, SOA,
and microservices. There has been a greater focus on com-
paring SOA with microservices in terms of communication
protocols, message frameworks, and service discovery.

To the best of our knowledge, no analysis of the impact
of upgrading an SOA-based application to a microservices
design has been done. Hence, in this work, we use change
propagation probability (CPP) and architectural stability
metrics to assess the impact on the application while migrat-
ing it to the new style.

Preliminaries

Service Graph

We define the service graph as a formal model that reflects
any service-based application. We design a service graph
by examining the APIs to collect the inputs and outputs.
Because services are the core component of both SOA and
microservices designs, we utilize this service graph to com-
pare the two architectural styles. The service graph (SG) is
a formal graph that is used to visualise the interactions and
relationships between the services in an application. Figure 2
depicts the generalised form of a service-based application
as a service graph.

Definition 1  Let G(V, E) be an service graph with n
nodes, where each node represents a set of services in the
application, and the edges between the nodes indicate the

interactions or dependencies that each service has with other
services in the application.

Let V = { s1,s2,s3,...} represent the nodes of the service
graph where s1,s2,s3,... are services and E = {(s1,s2 ), ( s1,s3 ),
( s2,s4),....} represent the edges between the nodes which
indicates the dependency between the services. As stated in
Eq. (1), a service is a collection of coordinating and interact-
ing processes.

where Si is the logical service instance, Pk
i indicates kth pro-

cess implementing logical service functionality fi through
the programmatic interface Ii and Λ represents network com-
munication function between individual processes.

Change Propagation (CP)

The change in one component of the software architecture
impacts the other components in the system. Therefore, the
other components should also be updated and redeployed.
However, to evaluate the impact of changing one component
on other components of the architecture is given by change
propagation probability. Let S be the application designed
using architecture A which is to be migrated to form a new
application S′ of architecture B. We use this metric to find the
probability, whether a change in one service s1 of S requires
a change in service s2 while migrating the application from
S to S′.

Definition 2  The conditional probability for the change
propagation from service s1 to s2 in S is defined as [1]:

where S′ is the application obtained from S by migrating s1
to s′

1
 and s2 to s′

2
 . Here, s1 and s2 are the services of applica-

tion S of architecture A and s′
1
 and s′

2
 are the services of the

migrated application S′ designed with architecture B.

The service based architectures can be seen as a collection
of services si , i = 1, 2,… ,N . Every service si has a set of pro-
cesses Vi which provide the functionality for service si . Using
Bernoulli random variable, we find the usage coefficient value
�
ij
v for every process p ∈ Vi and every other service sj.

To estimate the change propagation probability CP(s1 ∶ s2 ),
for every pair of services si and sj , i ≠ j , we use the values
of random variable �ij

v .

(1)Si = ⟨P1
i,P2

i,P3
i,… ,Pn

i,Λ⟩

(2)CP(s1 ∶ s2) = P((s2 ≠ s�
2
) ∣ (s1 ≠ s�

1
) ∧ (S = S�))

(3)�
ij
v
=

{

1 the process p of si is required by sj
0 otherwise

Fig. 2   Service graph representation

	 SN Computer Science (2023) 4:577 577   Page 4 of 7

SN Computer Science

The CP is a matrix that contains the relation between all the
services of the application. As matrices cannot be compared,
we represent the values of the matrix as a scalar component
which represents the architecture’s potential to wrap its ser-
vices from other’s changes. We denote the scalar component
as change propagation coefficient (CPC), and it is given as:

Here N is the number of services in the architecture, and
the CPC indicates whether changes in one service of the
architecture propagates to other services or not. A low CPC
value of the architecture indicates a good sign in the design
of the application.

Architecture Stability

Stable software architecture has been a challenge for soft-
ware architects due to the changes in environmental fac-
tors [31]. The major concern is the factors that influence
architecture decisions, and stability of the architecture [10].
Stability is the capability of the application components to
stay unchanged and remain intact while adding new changes
or requirements [2]. Here, we consider the scenario of
migrating service oriented architecture based applications
to microservices, and as both the styles are service-based,
we measure the stability of the application using the metrics.
To measure the stability of the architectures, two metrics are
defined based on the metrics proposed in [3].

Core Design Instability (CDI)

It is used to evaluate the change performed on the services
of the architectural core when it is migrated. IT is defined
as follows:

where

•	 n is the number of new services added after the migration
of an application S from architecture A to S′ in architec-
ture B.

•	 d is the number of services deleted from the application
S of A after migrating it to S′ of B.

•	 m is the number of services of the application S of A
before migrating it to the B.

(4)CP(s1 ∶ s2) =
1

∣ Vi ∣

∑

p∈Vi

�
ij
v

(5)CPC =

∑

j

∑

j≠i
CP(si ∶ sj)

N2 − N

(6)CDI =
n + d

m
,

Core Calls Instability (CCI)

It is used to evaluate the changes in the interactions between
services and it is computed as:

where

•	 c is the total number of new calls between services
belonging to the application S′ of B and not present in
the application S of A.

•	 p is the total number of calls between services of the
application S and not present in the application S′ after
migration to B.

•	 t is the total number of calls between the services of the
application S of architecture A.

Experimental Study

We use the vehicle management system (VMS) [4], a stand-
ard web-based tool for selecting, customizing, and purchas-
ing automobiles and parts via a front-end web page. The
application is used to assist clients in selecting, customiz-
ing, comparing vehicles, finding dealers, and requesting a
quote. The database stores all of the information about the
automobiles, their parts, and their costs, and the user inter-
face assists clients with the details. Customers can use the
inventory data to find the vehicle they want and the dealer
that sells it. Customers may also select the part and product
type for their car from the interface.

SOA Based Application

The SOA implementation of the VMS application has 8
services. Table 1 lists the details of the SOA services, and
Fig. 3 shows the service graph representation, which is
indicated as SG_SOA. We used TIBCO business works to
develop the SOA-based application and TIBCO administra-
tor to deploy it. An Oracle database is selected for data stor-
age, and TIBCO BW database palettes assist in connecting
to the database. The Representational State Transfer (REST)
protocol is used to communicate between the services over
HTTP. Each service is deployed on a single server as a
stand-alone archive.

Microservices Based Application

Microservices-based application is designed using the
extraction approach [21] proposed for extraction of
microservices application from a SOA-based application
to construct a service graph that helps in the identification

(7)CCI =
c + p

t
,

SN Computer Science (2023) 4:577 	 Page 5 of 7  577

SN Computer Science

of candidate microservices. The VMS application is built
with the spring boot framework and REST/JSON formats
for communication between services in the network, tak-
ing into consideration the microservices. In a service
register, the Eureka service is used to store all of the ser-
vices. MYSQL database is used to store the data, while
spring boot connector uses JPA connector to retrieve it.
Each microservice is deployed in the cloud using Docker
containers. The application’s docker image is created,
deployed to Docker Hub, and containers are built from
docker images. Table 1 contains the information of the
produced microservices, whereas Fig. 4 depicts the service
graph (SG_MSA).

Results and Discussion

Let SOA be represented as A and microservices architec-
ture as B. For the evaluation purpose, consider S and S′
as the applications designed with both SOA and micros-
ervices styles respectively. We define CPSOA and CPMSA
as the change propagation matrices of both SOA and
microservices architectures. Similarly, we define CPCSOA
and CPCMSA as change propagation coefficients for both
SOA and microservices architectures.

Table 1   Services of both the
applications

Notation in SG_
SOA

SOA services Microservices Notation
in SG_
MSA

S
1

Config service Config service ms
1

S
2

Part service Part service ms
2

S
3

Product service Product service ms
3

S
4

Compare service Compare service ms
4

S
5

Incentives and pricing service Incentives service ms
5

Pricing service ms
6

S
6

Dealer and Inventory service Dealer service ms
7

Dealer locator service ms
8

Inventory service ms
9

S
7

Lead service Get-A-quote service ms
10

Lead processor service ms
11

S
8

User interface client User interface client ms
12

Fig. 3   SG_SOA: Service graph representation of SOA based applica-
tion

Fig. 4   SG_MSA: Service graph representation of microservices
based web application

	 SN Computer Science (2023) 4:577 577   Page 6 of 7

SN Computer Science

Change Propagation Probability

From the service graph of the SOA application, the values of
CP for each pair of services is calculated using the Equations
(3) and (4). The values are presented in form of a matrix as
given below.

CPSOA =





s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 1 1 1 1 0 1
s2 1 0 0 1 1 1 0 1
s3 1 0 0 1 1 1 0 1
s4 1 1 1 0 0 0 0 1
s5 1 0.5 0.5 0 0 0 0 1
s6 1 0.33 0.33 0 0 0 0.66 1
s7 0 0 0 0 0 1 0 1
s8 1 1 1 1 1 1 1 0





The generated CP matrix is converted to a scalar compo-
nent using the change propagation coefficient (CPC). The
CPC value indicates the impact of change in one particular
service has on other services. As we have eight services in
the SOA application, the N value is eight.

Similarly, from the service graph of microservices applica-
tion given in Fig. 4, the CP values are calculated and pre-
sented as matrix given below.

CPMSA =





ms1 ms2 ms3 ms4 ms5 ms6 ms7 ms8 ms9 ms10 ms11 ms12

ms1 0 1 1 1 1 1 1 1 1 1 0 1
ms2 1 0 0 1 1 1 0 0 0 1 0 1
ms3 1 0 0 1 1 1 0 0 0 1 0 1
ms4 1 1 1 0 0 0 0 0 0 1 0 1
ms5 1 1 1 0 0 1 0 0 0 0 0 1
ms6 1 1 1 0 1 0 0 0 0 1 0 1
ms7 1 0 0 0 0 0 0 0 1 1 1 1
ms8 1 0 0 0 0 0 0 0 0 0 1 1
ms9 1 0 0 0 0 0 1 0 0 1 0 1
ms10 1 1 1 1 0 1 1 0 1 0 0 1
ms11 0 0 0 0 0 0 1 1 0 0 0 1
ms12 1 1 1 1 1 1 1 0 1 1 1 0





The change propagation coefficient of the microservices
application is also calculated using the CP matrix.

From the above CPC values of both the styles, microser-
vices based application exhibits low CPC value compared
to applications built using SOA concepts. As the CPC value
of microservices is low, it indicates a good sign of design,
and it is best suitable for large enterprise applications com-
pared to SOA based applications. This result of the chosen
case study helps the software architects to assess the impact
of migration. Though the other parameters such as effort

CPCSOA =
35.33

82 − 8
= 0.63.

CPCMSA =
72

122 − 12
= 0.54.

required for migration and complexity of the applications
are high for microservices [20], these metrics show that the
use of microservices in design makes the application stable
and maintainable.

Stability Evaluation

By considering the details of the services and service calls
from the service graphs of the chosen application, the values
of CDI and CCI are evaluated. From the services informa-
tion in Table 1, the value of CDI is calculated as:

Similarly, we calculate the value of CCI,

The metric values CDI and CCI indicate a measure of how
much the services of the application S of architecture A have
changed after migrating to application S′ of architecture B.
The threshold value chosen for both CDI and CCI is 0.15. If
the metric values are less than 0.15, then the architecture is
said to be stable and otherwise unstable. By observing the
calculated values, the metric values are greater than 0.15,
and hence, it indicates that the services in SOA applica-
tion have undergone a major change to form the services in
microservices application. Also, the impact of migration is
very high.

Conclusion

With the evolution of microservices architecture, there is
a paradigm shift in designing software applications. With
the advancement of new technologies and tools, every day
the IT world is witnessing many improvements and benefits
of using new things. Similarly, many IT giants are migrat-
ing their SOA applications to microservices architecture.
However, the impact of migration is not assessed, and some
architects are uncertain whether or not to migrate, as both
SOA and microservices have their own set of benefits and
drawbacks. Hence, in this work, we presented an assess-
ment of the impact of migrating SOA based applications to
microservices architecture. We observe that, to migrate an
SOA application, the system needs to change and be updated
drastically as the design and deployment environments are
quite different for both styles. The effort required for com-
plete migration and comparing both the architectures with
QoS attributes such as performance, maintenance, scalabil-
ity, etc., can be considered as future work.

CDI =
4 + 0

8
= 0.5

CCI =
32 + 0

38
= 0.84

SN Computer Science (2023) 4:577 	 Page 7 of 7  577

SN Computer Science

Funding  The authors did not receive support from any organization
for the submitted work.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Abdelmoez W, Shereshevsky M, Gunnalan R, Ammar HH, Yu Bo,
Bogazzi S, Korkmaz M, Mili A. Quantifying software architectures:
an analysis of change propagation probabilities. In: The 3rd ACS/
IEEE international conference on computer systems and applica-
tions. IEEE; 2005. p. 124.

	 2.	 Almousa H, Alenezi M. Measuring software architecture stability
evolution in object-oriented open source systems. J Eng Appl Sci.
2017;12(2):353–62.

	 3.	 Aversano L, Molfetta M, Tortorella M. Evaluating architecture sta-
bility of software projects. In: 2013 20th working conference on
reverse engineering (WCRE). IEEE; 2013. p. 417–24.

	 4.	 Bhallamudi P, Tilley S, Sinha A. Migrating a web-based application
to a service-based system-an experience report. In: 2009 11th IEEE
international symposium on web systems evolution. IEEE; 2009. p.
71–4.

	 5.	 Bogner J, Wagner S, Zimmermann A. Automatically measuring
the maintainability of service-and microservice-based systems: a
literature review. In: Proceedings of the 27th international work-
shop on software measurement and 12th international conference
on software process and product measurement; 2017. p. 107–15.

	 6.	 Bogner J, Wagner S, Zimmermann A. Using architectural modifi-
ability tactics to examine evolution qualities of service-and micros-
ervice-based systems. SICS Softw Intensive Cyber Phys Syst.
2019;34(2):141–9.

	 7.	 Bogner J, Zimmermann A, Wagner S. Analyzing the relevance of
SOA patterns for microservice-based systems. Zeus. 2018;9:9–16.

	 8.	 Cerny T, Donahoo MJ, Pechanec J. Disambiguation and comparison
of SOA, microservices and self-contained systems. In: Proceedings
of the international conference on research in adaptive and conver-
gent systems; 2017. p. 228–35.

	 9.	 Cerny T, Donahoo MJ, Trnka M. Contextual understanding of
microservice architecture: current and future directions. ACM
SIGAPP Appl Comput Rev. 2018;17(4):29–45.

	10.	 Figueiredo E, Cacho N, Sant’Anna C, Monteiro M, Kulesza U, Gar-
cia A, Soares S, Ferrari F, Khan S, Filho FC, et al. Evolving software
product lines with aspects. In: 2008 ACM/IEEE 30th international
conference on software engineering. IEEE; 2008. p. 261–70.

	11.	 Jamshidi P, Pahl C, Mendonça NC, Lewis J, Tilkov S. Micros-
ervices: the journey so far and challenges ahead. IEEE Softw.
2018;35(3):24–35.

	12.	 Pahl C, Jamshidi P, Zimmermann O. Architectural princi-
ples for cloud software. ACM Trans Internet Technol (TOIT).
2018;18(2):1–23.

	13.	 Rademacher F, Sachweh S, Zündorf A. Analysis of service-oriented
modeling approaches for viewpoint-specific model-driven develop-
ment of microservice architecture. 2018. arXiv preprint arXiv:​1804.​
09946.

	14.	 Raghavendran CV, Patil A, Satish GN, Shanmukhi M, Madhuravani
B. Challenges and opportunities in extending cloud with fog com-
puting. Int J Eng Technol. 2018;7(439):142–6.

	15.	 Raj V, Ravichandra S. Microservices: a perfect SOA based solution
for enterprise applications compared to web services. In: 2018 3rd
IEEE international conference on recent trends in electronics, infor-
mation and communication technology (RTEICT). IEEE; 2018. p.
1531–536.

	16.	 Raj V, Ravichandra S. Enhanced service point approach for micros-
ervices based applications using machine learning techniques. In:
Advanced informatics for computing research: 5th international con-
ference, ICAICR 2021, Gurugram, India, December 18–19, 2021,
Revised Selected Papers. Springer; 2022. p. 78–90.

	17.	 Raj V, Ravichandra S. A novel effort estimation approach for migra-
tion of SOA applications to microservices. J Inf Syst Telecommun
(JIST). 2022;2(38):80.

	18.	 Raj V, Sadam R. Evaluation of SOA-based web services and micros-
ervices architecture using complexity metrics. SN Comput Sci.
2021;2(5):1–10.

	19.	 Raj V, Sadam R. Patterns for migration of SOA based applications
to microservices architecture. J Web Eng. 2021;25:1229–46.

	20.	 Raj V, Sadam R. Performance and complexity comparison of service
oriented architecture and microservices architecture. Int J Commun
Netw Distrib Syst. 2021;27(1):100–17.

	21.	 Raj V, Sadam R. A service graph based extraction of micros-
ervices from monolith services of SOA. Softw Pract Exp.
2021;51(3):489–502.

	22.	 Raj V, Reddy KS. Best practices and strategy for the migration of
service-oriented architecture-based applications to microservices
architecture. In: Proceedings of second international conference
on advances in computer engineering and communication systems:
ICACECS 2021. Springer; 2022. p. 439–49.

	23.	 Salah T, Zemerly MJ, Yeun CY, Al-Qutayri M, Al-Hammadi Y. The
evolution of distributed systems towards microservices architecture.
In: 2016 11th international conference for internet technology and
secured transactions (ICITST). IEEE; 2016. p. 318–25.

	24.	 Soldani J, Tamburri DA, Van Den Heuvel W-J. The pains and gains
of microservices: a systematic grey literature review. J Syst Softw.
2018;146:215–32.

	25.	 Sridevi M, Sunitha KVN. A hybrid framework for secure web appli-
cations. In: International conference on intelligent computing and
communication technologies. Springer; 2019. p. 140–51.

	26.	 Taibi D, Lenarduzzi V, Pahl C. Processes, motivations, and issues for
migrating to microservices architectures: an empirical investigation.
IEEE Cloud Comput. 2017;4(5):22–32.

	27.	 Taibi D, Lenarduzzi V, Pahl C, Janes A. Microservices in agile soft-
ware development: a workshop-based study into issues, advantages,
and disadvantages. In: Proceedings of the XP2017 scientific work-
shops; 2017. p. 1–5.

	28.	 Thönes J. Microservices. IEEE Softw. 2015;32(1):116–116.
	29.	 Wilde N, Gonen B, El-Sheikh E, Zimmermann A. Approaches to

the evolution of SOA systems. In: Emerging trends in the evolution
of service-oriented and enterprise architectures. Springer; 2016. p.
5–21.

	30.	 Xiao Z, Wijegunaratne I, Qiang X. Reflections on SOA and micros-
ervices. In: 2016 4th international conference on enterprise systems
(ES). IEEE; 2016. p. 60–7.

	31.	 Yau SS, Collofello JS. Design stability measures for software main-
tenance. IEEE Trans Softw Eng. 1985;9:849–56.

	32.	 Yin J, Chen H, Deng S, Zhaohui W, Calton P. A dependable
ESB framework for service integration. IEEE Internet Comput.
2009;13(2):26–34.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

http://arxiv.org/abs/1804.09946
http://arxiv.org/abs/1804.09946

	Assessing the Impact of Migration from SOA to Microservices Architecture
	Abstract
	Introduction
	Background
	Preliminaries
	Service Graph
	Change Propagation (CP)
	Architecture Stability
	Core Design Instability (CDI)
	Core Calls Instability (CCI)

	Experimental Study
	SOA Based Application
	Microservices Based Application

	Results and Discussion
	Change Propagation Probability
	Stability Evaluation

	Conclusion
	References

