
Vol.:(0123456789)

SN Computer Science (2023) 4:462
https://doi.org/10.1007/s42979-023-01880-4

SN Computer Science

ORIGINAL RESEARCH

Exploring Maximum Tree Depth and Random Undersampling
in Ensemble Trees to Optimize the Classification of Imbalanced Big
Data

John T. Hancock III1 · Taghi M. Khoshgoftaar1

Received: 22 December 2022 / Accepted: 8 May 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
We present findings from experiments in Medicare fraud detection, that are the result of research on two new, publicly
available datasets. In this research, we employ popular, open-source Machine Learning algorithms to identify fraudulent
healthcare providers in Medicare insurance claims data. As far as we know, we are the first to publish a study that includes
datasets compiled from the latest Medicare Part B and Medicare Part D data. The datasets became available in 2021, and
are the largest such datasets that we know of. We report details on two important findings. The first finding is that increased
maximum tree depth is associated with the best performance in terms of area under the receiver-operating characteristic
curve (AUC) for both datasets. The second finding, which is an important counterbalance to the first finding, is that one may
utilize random undersampling (RUS) to reduce the size of the training data and simultaneously achieve similar or better AUC
scores.To the best of our knowledge, our study is novel in reporting the importance of maximum tree depth for classifying
imbalanced Big Data. Moreover, this work is unique in demonstrating that one may employ RUS to mitigate the increased
resource consumption of higher maximum tree depth.

Keywords Bagging · Boosting · Class imbalance · Big data · Random undersampling

Introduction

The exploration of new data is fertile ground for the devel-
opment of contributions to an application domain. New
Medicare insurance claims data became publicly available in
2021. These data, which we use in our study, come from two
related sources. The first source is Medicare Physician &
Other Practitioners—by Provider and Service (Part B) [1].
The second source is Medicare Part D Prescribers—by Pro-
vider and Drug (Part D) [2] insurance claims data. The data-
sets we compile from the Part B and Part D data are highly

imbalanced Big Data. Our Part B dataset has approximately
68 million training instances with a minority-to-majority
class ratio of approximately 0.0019, and our Part D dataset
has approximately 173 million instances, with a minority-
to-majority class ratio of approximately 0.0039. With all the
facts available to us, we claim that this is the first study to
contain findings that cover the latest Part B and Part D data
in a single study on Medicare fraud detection as a supervised
Machine Learning task.

Medicare is the United States’ public health insurance
program. It provides health insurance for millions of Ameri-
cans aged 65 and over, as well as those with certain dis-
abilities. Medicare insurance fraud detection is a worthwhile
pursuit, because facts indicate that a large amount of money
could be recovered. Once recovered, it could be spent on
providing more extensive healthcare to Medicare beneficiar-
ies. The Centers for Medicare and Medicaid Services (CMS)
are the United States government departments responsible
for Medicare. In 2019, the CMS provided an estimate that
it made approximately $100 billion in improper payments
[3]. In the same year, the United States Department of Jus-
tice published a report stating it recovered approximately

This article is part of the topical collection “Recent Trends on AI for
HealthCare” guest edited by Lydia Bouzar-Benlabiod.

 * John T. Hancock III
 jhancoc4@fau.edu

 Taghi M. Khoshgoftaar
 khoshgof@fau.edu

1 Department of Electrical Engineering and Computer
Science, Florida Atlantic University, 777 Glades Road,
Boca Raton, FL 33431, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01880-4&domain=pdf
http://orcid.org/0000-0003-0699-3042

 SN Computer Science (2023) 4:462 462 Page 2 of 14

SN Computer Science

$3 billion prosecuting insurance fraud [4]. The CMS uses
the term improper payments to cover payments made due to
fraud and other errors. However, it is reasonable to assume
that, due to the amount of estimated improper payments,
more fraud could be detected. Therefore, Medicare fraud
detection is a fitting application domain for the field of
Machine Learning, since it is a suitable tool for process-
ing the Big Data repository of Medicare Insurance claims
information.

The contributions we make in this research on the
subject of classifying highly imbalanced Big Data for
Medicare fraud detection concern three key concepts:
maximum tree depth, Random Undersampling (RUS), and
Area Under the Receiver-Operating Characteristic Curve
(AUC) [5]. These contributions are an expansion of work
we published previously [6]. Maximum tree depth refers
to the longest allowable path from root to leaf node in a
decision tree. It is an adjustable parameter in the decision-
tree-based ensemble classifiers we use. The classifiers we
use are: CatBoost [7], XGBoost, [8], Random Forest [9],
and Extremely Randomized Trees (ET) [10]. RUS is a
technique to improve classification results when working
with data that has a low minority-to-majority class ratio.
Such data are known as imbalanced data. To perform RUS,
one chooses a minority-to-majority class ratio, and then
randomly discards instances of the majority class until the
remaining data have the desired class ratio. AUC is a metric
for measuring the performance of a classifier. It is calculated
by varying the classification decision threshold from zero
to one in small increments and plotting the false-positive
rate versus the true-positive rate that the classifier yields for
each value of the decision threshold. Once the points are
plotted, a curve is formed, and AUC is the area under this
curve. A perfect classifier yields an AUC score of 1.0, and a
classifier that assigns instances to classes randomly yields an
AUC score of approximately 0.5. These definitions of RUS,
maximum tree depth, and AUC are key to understanding the
contributions in this work.

This body of research makes two contributions to the
field of research in classifying imbalanced Big Data. The
first contribution of our research is to show that maximum
tree depth in decision tree-based ensemble classifiers is
a highly effective parameter to optimize AUC scores for
Medicare fraud detection. We show that optimizing this
parameter yields AUC scores over 0.98 in some cases. We
vary maximum tree depth in our experiments over a wide
range of values to show its substantial effect on experimental
outcomes. Moreover, for each experiment, we use one, and
only one, value for maximum tree depth.

The second contribution we make is to show that one may
apply RUS to the Part B and Part D data and build Machine
Learning models that yield AUC scores that are similar

to, or better than AUC scores of models built with the full
datasets. This is an important finding, because it allows for
faster execution of model training. Since the Part B and Part
D data are highly imbalanced, when we apply RUS to induce
larger class ratios in the model training data, we reduce the
size of the training data. Training the popular, open-source
Machine Learning algorithms we employ is faster with
smaller training data. This finding is a boon to researchers
working in the field, since it enables one to conduct more
experiments with the Part B and Part D data. The sections
that follow this introduction are: Related Work, Algorithms,
Methodology, Results, Statistical Analysis, and Conclusions.

Related Work

In this section, we provide background on research leading
up to our study, and make the case for the novelty of our
work. Ensemble decision tree-based Machine Learning
techniques, the effect of maximum tree depth, RUS, and
Big Data are the essential subjects of our study. Therefore,
related works pertain to these concepts. Many of the studies
were not conducted with datasets on the scale of the datasets
we use. Moreover, in our search for related work, we found
similar studies, but none that show the impact of maximum
tree depth and RUS on AUC scores to the extent that we
do, none use CatBoost for encoding categorical features,
and none contain results of experiments performed with the
latest Part B and Part D data.

In their 2018 study on data sampling and imbalanced big
data, Bauder et al. compare multiple sampling techniques
for Medicare fraud detection [11]. They compile a dataset by
combining the Part B, Part D, and one additional Medicare
dataset known as the “Medicare Durable Medical Equip-
ment, Devices & Supplies—by Referring Provider and
Service” (DMEPOS) dataset [12]. Because their study was
published in 2018, a smaller amount of Medicare claims
data were available than what we experiment with here.
Therefore, their combined dataset has fewer than 1 million
instances. They employ versions of Random Forest, Logistic
Regression [13], and Gradient Boosted Trees [14] for the
Apache Spark environment [15]. In their findings, Bauder
et al. report experimental outcomes for six data sampling
techniques: RUS, Random Oversampling (ROS), Synthetic
Minority Oversampling Technique (SMOTE), two adapta-
tions of borderline SMOTE [16], and Adaptive Synthetic
Sampling Approach for Imbalanced Learning (ADASYN).
Of the six techniques, Bauder et al. report that applying
RUS to the training data fed to their classifiers yields the
best performance. For these reasons, we use RUS as well.
On the other hand, Bauder et al. do not show the impact
of maximum tree depth on AUC scores for Medicare fraud

SN Computer Science (2023) 4:462 Page 3 of 14 462

SN Computer Science

Detection. In addition, they do not employ CatBoost encod-
ing as we do to handle categorical features.

“An ensemble random forest algorithm for insurance
big data analysis” by Lin et al. is a related study [17],
because it involves Random Forest, sampling techniques,
and classifying imbalanced data. In their study, the authors
propose a variation on the Random Forest algorithm for
predicting the likelihood that a consumer will purchase
life insurance. They compare the performance of models
built from training data with, and without SMOTE
applied to address class imbalance. However, in their
study, details on the class ratios induced by SMOTE are
not apparent. Their study appears to be more concerned
with the impact of their sampling technique on running
time. We find that RUS has a negligible impact on running
time, and therefore focus on its impact on classification
results. We did not find details on the features of Lin
et al.’s dataset, such as whether it has categorical features.
One useful feature of our study is that we document the
use of CatBoost encoding [7], a technique for handling
categorical features that is practical for large datasets. The
dataset Lin et al. work with has approximately 500,000
instances and 16 attributes. Our study involves two much
larger datasets. Moreover, we do not aim to propose a new
variation on Random Forest. We use a publicly available,
open-source version of Random Forest. For these reasons,
our study is set apart from the one done by Lin et al.

A second study which involves Random Forest and
Big Data is by Del Río et al. [18]. The dataset they use
has approximately 6 million instances and 41 attributes.
Therefore, it is on a smaller scale than what we work with
here. Their study also does not concern maximum tree depth.
Rather than experiment with maximum tree depth, Del Río
et al. use one maximum tree depth setting for all experiments.
Therefore, it is not a factor which can be analyzed for effect
as we do here. While Del Río et al. document that RUS
is applied to their data, it is only applied to induce a 1:1
class ratio. Here, we document the application of RUS to
induce five class ratios and show its effect on experimental
outcomes. Therefore, the key differences between our study
and Del Río et al.’s are our treatment of maximum tree
depth, and RUS level as experimental factors.

Herrera et al. [19] published a related work that explores
the impact of maximum tree depth with a classifier in
common with one that we use. This is another study where
Random Forest is employed to classify the so-called Big
Data. However, the dataset Herrera et al. conduct their
experiments with contains 581,012 training instances,
which is much smaller than the datasets we work with.
Furthermore, we note that Herrera et al. use only a single
dataset, whereas we present results covering two datasets.
The focus of Herrera et al.’s study is a novel implementation

of Random Forest for a high-performance computing
environment. Hence, their interest in maximum tree depth is
its impact on the running time of their implementation. Our
focus on maximum tree depth is its impact on AUC scores
for classifying Medicare insurance claims data.

In their 2017 study, Genuer et al. evaluate multiple
Random Forest variants’ performance to classify a dataset
with approximately 120 million instances [20]. They
compare the performance of five variants of Random Forest
classifiers in terms of prediction error. Subsampling is
an important term in their study, but it is not a technique
for addressing class imbalance. Genuer et al. present
subsampling as a technique that is a part of building
Random Forest models. We cover RUS, which is a sampling
technique for addressing class imbalance. Moreover, Genuer
et al.’s study concerns subsampling in conjunction with
variations on Random Forest, whereas we present results
from experiments combining RUS with Random Forest and
other classifiers as well.

Fauzan and Murfi perform experiments with XGBoost
and an insurance company’s customer data to forecast
whether the customer will file an insurance claim in [21].
The customer data comprise a dataset of approximately
1.5 million instances, with 57 attributes. As part of
hyperparameter tuning, Fauzan and Murfi vary maximum
tree depth between four and five. We take a more in-depth
look at maximum tree depth, and we look at a broader range
of maximum tree depths. In our experiments, maximum
tree depth takes the values from 6, 16, 24, 32, and 48.
Moreover, our experiments involve other learners, Random
Forest, CatBoost, and ET in addition to XGBoost. Similar
to Genuer et al., Fauzan and Murfi document experiments
with subsampling, but we do not find that they experiment
with RUS as a technique for addressing class imbalance in
Big Data.

In their research on the use of XGBoost to predict loan
default, Li et al. employ hyperparameter tuning to optimize
results [22]. While they document that they use a grid search
method to do hyperparameter tuning, they do not cover the
impact of maximum tree depth on classification results.
Furthermore, Li et al. use a dataset that has approximately
130,000 instances and 143 features. Therefore, their study
does not probe the impact of maximum tree depth on the
classification of Big Data in the manner that our study does.
One similarity between our study and Li et al. is the use of
RUS. Their dataset is imbalanced, with a 1:22 minority-to-
majority class ratio, and they write that they undersample
their data to induce a 1:4 class ratio. We experiment with a
wider range of class ratios and provide analysis of the effect
of RUS on the classification of two larger datasets.

In a study with data on a scale more characteristic of Big
Data, Wang et al. document the performance of a classifier

 SN Computer Science (2023) 4:462 462 Page 4 of 14

SN Computer Science

built from a combination of logistic regression and XGBoost
[23]. The dataset they use has approximately 50 million
instances. The aim of their study is to show the performance
of their proposed classifier in predicting the users’ activity in
e-commerce websites. While Wang et al.’s research involves
XGBoost and Big Data, it does not explore the effective-
ness of maximum tree depth or RUS in the classification
task. Another difference between the studies is that, for easy
repeatability, we use popular, open-source classifiers without
modification. These facts differentiate our studies.

In 2019, Johnson and Khoshgoftaar published a study
which involves data sampling and Medicare fraud detection
with deep learning classifiers [24]. However, their study
involves Medicare insurance fraud data which does not
include the additional data that became publicly available
in 2021 that we use here. Furthermore, Johnson and
Khoshgoftaar use a different technique for handling the
categorical attributes of the Medicare insurance claims
data. They aggregate the data by healthcare provider, and
replace some categorical data with descriptive statistics of
the numeric data in the records that they aggregate over.
Since the dataset they work with is aggregated, it is smaller
than the datasets we work with here. In their study, Johnson
and Khoshgoftaar experiment with a dataset that has
approximately 6 million instances. Another key difference
between the two studies is that we use decision tree-based
classifiers, whereas Johnson and Khoshgoftaar use deep
learning classifiers.

In our review of related work, we find opportunities to
make contributions. There are many studies that discuss
different components of our study, but none that reveal the
synergy they provide when taken together. We find studies
that claim to involve Big Data, but the data used are not on
the scale of the data we use. We find studies that mention
maximum tree depth, but do not systematically investigate
the impact of maximum tree depth on the classification of
imbalanced Big Data. To the best of our knowledge, this
study is novel, because it covers experiments performed on
two new, highly imbalanced Big Data datasets, with a unique
methodology to show the impact of RUS and maximum tree
depth on AUC scores.

Datasets

We use data provided by the CMS. CMS collected the Part
B and Part D data from 2013 to 2019, and published it in
2021. To the best of our knowledge, these datasets cover
the longest period of time used in any study on Machine
Learning for Medicare fraud detection. Moreover, the
attributes of the data are different from those used in
the previous studies. The Part B and Part D data are not
immediately suitable for supervised Machine Learning. For
example, the instances of the dataset must be labeled.

For both of the Part B and Part D datasets, we use
the same logic to label them. The data for the labels are
published by another department of the United States
Government, the Office of the Inspector General (OIG). The
publication is known as the List of Excluded Individuals
and Entities (LEIE) [25]. The LEIE is updated monthly. The
individuals and entities appearing in the LEIE are excluded
from government backed healthcare programs, including
Medicare. In the LEIE, the OIG provides categories of
exclusions along with identifying information. For the
application domain of Medicare fraud detection, we select
the records of the LEIE that contain the same exclusion
categories as documented by Herland et al. [26]. Table 1
is a copy of the table from Herland et al. that specifies
which exclusion rule codes we use to identify the records of
fraudulent providers.

The identifying information of healthcare providers in the
LEIE includes a National Provider Identifier (NPI). Records
of the Part B and Part D data also contain an NPI. Therefore,
we can match NPIs in the Part B and Part D data with the
LEIE data, and label instances of the Part B and Part D data
as fraudulent when there is a match, and the year value of the
Part B or Part D record falls within the period of time when
fraudulent claims may have been submitted. We define that
period of time as follows: fraudulent claims may have been
submitted any time before the start of the exclusion period
until the end of the exclusion period. However, the year is
the most specific time-related information we have in the
Part B and Part D data, whereas the year and month is the
most specific time-related information we have in the LEIE

Table 1 LEIE exclusion codes
and rules

Rule number Description

1128(a)(1) Conviction of program-related crimes
1128(a)(2) Conviction relating to patient abuse or neglect
1128(a)(3) Felony conviction relating to health care fraud
1128(b)(4) License revocation or suspension
1128(b)(7) Fraud, kickbacks and other prohibited activities
1128(c)(3)(g)(i) Conviction of two mandatory exclusion offenses 10 years
1128(c)(3)(g)(ii) Conviction of three mandatory exclusion offenses indefinite

SN Computer Science (2023) 4:462 Page 5 of 14 462

SN Computer Science

data. Therefore, we round the end of the exclusion period
to the nearest year listed in the LEIE. For example, if the
LEIE data contain a record stating that a provider’s exclu-
sion period ends in March 2017, then we label the provider’s
records as fraudulent if their year value is less than 2017.
However, if the exclusion period ends in July 2017, we label
the provider’s data as fraudulent if the year value is less than
2018. If the NPI of a provider in the Part B or Part D data
does not exist in the LEIE data, or the year of the record is
after the end of the period when fraudulent claims were pos-
sible, then we label the instance as not fraudulent.

Once a provider’s exclusion period is over, the provider
is removed from the LEIE. Therefore, one must obtain the
previous editions of the LEIE to completely label the Part B
or Part D data. These previous editions are available in the
Internet Archive.1

Although we use the same labeling process for both
datasets, they have characteristics that make them unique.
Records of the Part B dataset contain information on the
treatments and procedures that healthcare providers admin-
ister to their patients for 1 year. One important acronym for
understanding which treatment or procedure is specified in

the record is HCPCS, which stands for Healthcare Com-
mon Procedure Coding System. Every record has an HCPCS
code, which represents a specific treatment or procedure. We
use the HCPCS code as a categorical feature. All the fields
in the Part B data that we use as independent variables are
defined in Table 2. We have copied the definitions of the
features from the Part B Data Dictionary [27]. In addition,
we augment the definitions in the data dictionary with the
number of distinct values of the categorical features. CMS
provides the NPI, name, and address of the provider in the
Part B data. We discard this information, since these fields
are unique identifiers and may hinder a Machine Learning
model’s ability to generalize. When the labeling process is
complete, our Part B dataset contains 67,856,547 records,
with a minority-to-majority class ratio of approximately
0.0019.

The Part D data are similar to the Part B data. However,
instead of information on treatments and procedures, the
Part D data have information on medications that healthcare
providers prescribe for their patients. There is one record in
the Part D data for every combination of provider, year, and
medication. Medications are identified by brand name and
generic name. We use these as categorical features. Simi-
lar to the Part B data, the Part D data also contain NPIs,

Table 2 Features of the Part B dataset

Feature name Description

Rndrng_Prvdr_Crdntls The referring provider’s credentials [example: MD]; categorical, 23,672 distinct values
Rndrng_Prvdr_Gndr The referring provider’s gender; categorical, three distinct values
Rndrng_Prvdr_Ent_Cd Type of entity [individual or organization] reported in NPPES; categorical, 2 distinct values
Rndrng_Prvdr_Type Derived from the Medicare provider/supplier specialty code reported on all of the NPI’s Part B non-

institutional claims (DMEPOS and non-DMEPOS); categorical, 204 distinct values
Rndrng_Prvdr_Mdcr_Prtcptg_Ind Identifies whether the provider participates in Medicare and/or accepts assignment of Medicare allowed

amounts; categorical two distinct values
HCPCS_Cd HCPCS code used to identify the specific medical service furnished by the provider; categorical 7738

distinct values
HCPCS_Desc Description of the HCPCS code for the specific medical service furnished by the provider; categorical, 8252

distinct values
HCPCS_Drug_Ind Identifies whether the HCPCS code for the specific service furnished by the provider is a HCPCS listed on

the Medicare Part B Drug Average Sales Price (ASP) File; categorical, two distinct values
Place_Of_Srvc Identifies whether the place of service submitted on the claims is a facility (value of “F”) or non-facility

(value of “O”); categorical two distinct values
Tot_Benes Number of distinct Medicare beneficiaries receiving the service for each Rndrng_NPI, HCPCS_Cd, and

Place_Of_Srvc
Tot_Srvcs Number of services provided; note that the metrics used to count the number provided can vary from service

to service
Tot_Bene_Day_Srvcs Number of distinct Medicare beneficiary/per day services
Avg_Sbmtd_Chrg Average of the charges that the provider submitted for the service
Avg_Mdcr_Alowd_Amt Average of the Medicare allowed amount for the service
Avg_Mdcr_Pymt_Amt Average amount that Medicare paid after deductible and coinsurance amounts have been deducted for the

line item service
Avg_Mdcr_Stdzd_Amt Average amount that Medicare paid after beneficiary deductible and coinsurance amounts have been

deducted for the line item service and after standardization of the Medicare payment has been applied

1 http:// archi ve. org/ web.

http://archive.org/web

 SN Computer Science (2023) 4:462 462 Page 6 of 14

SN Computer Science

names, and addresses of providers, which we discard to aid
our models’ generalization. We list the fields in the Part D
data that we use as features in Table 3. The definitions of
the features are from the CMS Part D Data Dictionary [28].
Once we have completed labeling the Part D data, we have a
dataset with 173,677,665 records. The minority-to-majority
class ratio of the dataset is approximately 0.0039.

Algorithms

Our study concerns tree-based algorithms only. Moreover,
the focus of our study is on the impact of maximum tree
depth and RUS on the classifier’s ability to execute Medicare
fraud detection. We employ publicly available open-source
classifiers. This enables easily reproducible results, since
the software we use in our experiments is readily available.
As we stated in the introduction, the classifiers we use in
this study are: CatBoost, XGBoost, ET, and Random Forest.
All of these classifiers are implementations of ensemble
techniques that leverage collections of decision trees.

Of the four classifiers, Random Forest is the simplest. It
leverages a technique known as Bagging. Breiman coined
the term Bagging in a study published in 1996 [29]. One
may apply Bagging to both classification and regression
tasks. Since our study involves classification, we focus on
how bagging may be applied for classification. Bagging
relies on a sampling technique known as bootstrap sampling.
A bootstrap sample is a sample taken with replacement. To
apply Bagging, one trains an ensemble of the same classifi-
ers on different bootstrap samples of the training data. After
the classifiers are trained, one may use them for classifica-
tion. Bagging specifies that we treat the classifiers’ output
as votes for the classification outcome. The class assigned
to an instance is the class that the majority of the mem-
bers of the ensemble assign the instance to. Some informal
reasoning about the probability of a correct result explains
the appeal of Bagging. Suppose the probability of a correct

classification of one of the learners is greater than one half.
Then, as the size of the ensemble of learners increases, the
probability that more than half of the learners will agree on
the correct class of an instance will increase in proportion
with the size of the ensemble.

In 2001, Breiman published the seminal work on Random
Forest, a study where the Bagging technique is applied to
ensembles of decision trees [9]. Moreover, Random Forest
has an important feature that is separate from the Bagging
technique, and applies to the decision trees that constitute
a Random Forest ensemble. The feature has to do with the
decision tree split-finding process that is executed when the
decision trees are trained on the bootstrap samples. A split
in a decision tree is the value used in a node of a decision
tree to decide which edge to traverse out of the node. Split
finding is the process of finding the best value to compare
a feature of an instance to, to select the correct edge to
follow in the decision tree. Random Forest’s innovation to
split finding is in the initial selection of the feature to use
for comparison. Random Forest randomly samples from
a subset of the features in a dataset as a means to select
the feature for comparison. Recently, a Random Forest
implementation for Graphics Processing Units (GPUs)
became publicly available.2 We utilize this implementation
of Random Forest, since it has a much lower training time
relative to other Random Forest implementations.

ET is a classifier that is closely related to Random Forest.
Geurts et al. published the seminal work on ET in 2006 [10].
ET functions similarly to Random Forest, with one key
difference: splits in decision trees are selected randomly. In
the other three classifiers we use, splits in decision trees are
selected systematically. The motivation for random selection
of splits is that it can be faster than an optimization technique
for calculating the best value for a split. Our results show
that this technique of randomly selecting values to use for

Table 3 Features of the Part D dataset

Feature name Description

Prscrbr_Type Derived from the Medicare provider/supplier specialty code; categorical, 249 distinct values
Prscrbr_Type_Src Source of the Medicare provider/supplier specialty code; categorical, 2 distinct values
Brnd_Name Brand name (trademarked name) of the drug filled; categorical, 3907 distinct values
Gnrc_Name A term referring to the chemical ingredient of a drug rather than the trademarked brand name

under which the drug is sold; categorical, 2272 distinct values
Tot_Clms The number of Medicare Part D claims
Tot_30day_Fills The aggregate number of Medicare Part D standardized 30-day fills
Tot_Day_Suply The aggregate number of day’s supply for which this drug was dispensed
Tot_Drug_Cst The aggregate drug cost paid for all associated claims
Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one claim for the drug

2 https:// docs. rapids. ai/ api/ cuml/ stable/ api. html# random- forest.

https://docs.rapids.ai/api/cuml/stable/api.html#random-forest

SN Computer Science (2023) 4:462 Page 7 of 14 462

SN Computer Science

splits may yield results that are similar to, or better than
the other classifiers that use more sophisticated split-finding
techniques.

In contrast to the bagging technique that ET and Random
Forest apply, CatBoost and XGBoost are gradient boosted
machines (GBMs). For an additional study comparing
CatBoost and XGBoost’s performance in the classification of
imbalanced Big Data; please see [30]. Friedman introduced
the concept of GBMs in 2001 [31]. Like Bagging-based
classifiers, GBMs are ensembles of learners. However, the
ensembles are formed differently in the two techniques.
GBM ensembles are formed iteratively. We start with
a single learner, which yields a set of estimates ŷ of the
target y . Therefore, we may define a vector of residual
values e = L(y, ŷ) , where L is a loss function. The next step
in forming the ensemble is then to add a learner that uses
the training data to estimate the vector e . We then use a
combination of the output of the first two learners to find
a new vector of estimates, which is closer to the vector of
target values, that yields a new vector of residuals, with
which we can apply the same process to add a third learner to
the ensemble, and so on until we detect overfitting or reach a
pre-determined number of iterations. This iterative process
to form an ensemble of learners characterizes GBMs.

Chronologically, XGBoost was introduced before
CatBoost. Chen and Guestrin published the initial work
on XGBoost in 2016 [8]. In their study, Chen and Guestrin
describe XGBoost as having enhancements to GBMs
that make it an attractive candidate for Machine Learning
applications. They explain that the enhancements in
XGBoost provide scalability. In the context of their paper,
scalability means that XGBoost operates efficiently on large
datasets. They go on to explain that XGBoost achieves
scalability through five techniques: sparsity awareness,
approximate tree learning, effective cache access, data
compression, and sharding. Sparsity awareness refers to a
capability built into XGBoost that enables XGBoost to detect
when data have mostly a constant value interspersed with
anomalies, and to more quickly determine values for splits
in decision trees when this condition in the data is detected.
Approximate Tree Learning is Chen and Guestrin’s name
for the implementation of their weighted quantile sketch
algorithm, which is another technique XGBoost employs
for efficiently determining decision tree splits. Cache-
awareness refers to a data storage and retrieval strategy, built
in to XGBoost, that optimizes CPU cache utilization. Data
compression is another strategy for efficiently using system
resources that XGBoost employs to achieve scalability.
Compressed data can be read from a disk and decompressed
in less time than the same data in its uncompressed form can
be read from disk. XGBoost leverages this fact to handle
processing datasets more efficiently. The final enhancement

XGBoost adds to GBMs is data sharding. During model
fitting, XGBoost generates intermediate data, and stores the
data in blocks, which may then be distributed in separate
storage media, so that input/output operations on the data are
executed in parallel. We can attest to Chen and Guestrin’s
claims about the scalability of XGBoost, since we are able to
use it to efficiently classify the Part B and Part D Big Data.

CatBoost is the fourth classifier we use in our study. Like
XGBoost, the authors of the seminal work on CatBoost,
Prokhorenkova et al., introduce CatBoost as a GBM
implementation with enhancements. For an extensive survey
of CatBoost’s applications, please see [32]. However, the
enhancements they design for CatBoost are focused on
preventing overfitting in two ways. The first way CatBoost
guards against overfitting is with the Ordered Boosting
technique. Ordered Boosting is a method for selecting
samples for training and evaluating trees to prevent
overfitting. In Ordered Boosting, a set of candidate trees are
trained on distinct samples of the training data. CatBoost
then selects the best candidate based on its ability to estimate
the independent variable from a sample of the training data
that is not used to train any of the candidate trees. This is how
Ordered Boosting protects against overfitting. The second
precaution against overfitting that CatBoost offers is Ordered
Target Statistics. Ordered Target statistics is a technique for
encoding categorical features that is conceptually similar to
Ordered Boosting, due to its emphasis on sample selection.
In the Ordered Target Statistics encoding technique, the
encoded value of a categorical feature is computed from
the target (dependent variable) value that it co-occurs with.
However, it is not permitted to use the target value from
the same instance the categorical feature appears with. This
prevents the encoded value from directly depending on the
target value of the instance. Prokhorenkova et al. define
this type of dependence as “target leakage”. Target leakage
is similar to the overfitting that can occur when a model
memorizes output values associated with unique identifiers,
and therefore fails to generalize.

Methodology

We use the Machine Learning algorithms discussed in the
previous section to perform the experiments on the Part
B and Part D data we described above. All four of the
classifiers have implementations as libraries for the Python
programming language [33]. All the libraries are available
for download on the Internet, free of cost.

Machine Learning algorithms are stochastic in nature.
Put another way, they tend to produce different results
unless initial conditions for learning are kept exactly the
same. Robust performance under the variance of initial

 SN Computer Science (2023) 4:462 462 Page 8 of 14

SN Computer Science

conditions indicates a task that is suitable for Machine
Learning. Therefore, we execute ten iterations of fivefold
cross-validation with a recorded sequence of different seeds
for the random number generators used in our experiments
to ensure such variance in the initial conditions.

Every round of fivefold cross-validation yields one
AUC score. Therefore, we collect a total of 50 AUC scores
over the ten iterations of fivefold cross-validation. This
provides an ample number of samples for calculating
summary statistics of the results as well as performing
statistical tests and analyses.

Just as we have libraries that provide CatBoost,
XGBoost, Random Forest, and ET, we have a library,
scikit-learn [34], that facilitates fivefold cross-validation
and evaluation of the AUC scores. The use of these
libraries also facilitates the repeatability of our results.

Researchers have many options for encoding categorical
features. For a domain-specific technique for encoding
Medicare Big Data, see [35]. In this study, we use
CatBoost encoding. Readers interested in a comprehensive
investigation of encoding techniques should explore [36].

Encoding of categorical features and RUS are steps in
our experiments. The order in which they are performed
in conjunction with fivefold cross-validation is important.
In the program for running our experiments, we first
shuffle and split the data into training and testing subsets.
We then fit a CatBoost encoder on the training data, to
encode the categorical features. The CatBoost encoder
is part of the category-encoders library. After fitting the
CatBoost encoder to the training data, we then encode the
categorical features in the training and the test datasets.
Then, for experiments where RUS is required, we use
the RandomUnderSampler object from the imblearn
library to induce a specified class ratio. After encoding,
and applying RUS to the training data, we fit CatBoost,
XGBoost, ET, or Random Forest to it. Then, we evaluate
the fitted classifier’s AUC score on the test data.

One important note for reproducibility is that we use
GPU implementations of CatBoost, XGBoost, and Random
Forest. In preliminary experiments, we found these versions
of the classifiers to process the Part B and Part D data much
more quickly than their equivalent CPU implementations.

We conduct experiments over a number of combinations
of classifier, RUS level, and maximum tree depth. Different
classifiers support different levels of maximum tree depth,
so it is not possible to test all combinations. The maximum
tree depth of 6 is the default value of maximum tree depth
for CatBoost and XGBoost [37, 38]. Initially, we selected
maximum tree depths values of 6, 16, 24, 32, and 48 to get
a reasonable spread of maximum tree depth values between
the lowest default value of maximum tree depth of 6, and
the largest maximum tree depth we estimated would be

practical to use with our system, 48. Since we are working
with large datasets, in the interest of time, we opted not to
run experiments on maximum tree depths for classifiers if a
pattern of improving AUC scores was already established.
Hence, for Random Forest, we executed experiments with
maximum tree depths of 16, 24, 32, and 48. CatBoost only
supports maximum tree depth values up to 16, so 6 and 16
are the only maximum tree depths we use with CatBoost.
XGBoost supports all the levels of maximum tree depth we
wish to use. However, we encountered runtime errors due to
memory limitations for maximum tree depth values beyond
24. Therefore, our experimental results include maximum tree
depth values of 6, 16, and 24, for XGBoost. ET has unlimited
maximum tree depth by default. Therefore, it was only
necessary to conduct experiments with ET with maximum tree
depths of 16, 24, and the unlimited, default, maximum tree
depth settings to establish the pattern that ET’s AUC scores
improve in proportion with maximum tree depth. Table 4
contains all the non-default values of hyperparameters that
we use in our experiments.

Any of the classifiers are compatible with all the levels of
RUS used in our experiments. We use RUS to induce class
ratios of 1:1, 1:3, 1:9, 1:27, and 1:81. Therefore, we include
combinations of classifier, maximum tree depth, and the five
levels of RUS. The levels of RUS used are the same we used
in [39]. In addition to the experiments where RUS is applied,
we also conduct experiments where RUS is not applied to
determine whether results are better without RUS.

The system we use to run our experiments is a high-
performance computing environment. The environment
consists of 16 nodes. Each node is equipped with a 16 core
Intel Xeon CPU, 256 GB RAM, and an Nvidia V100 GPU.

Results

Table 5 contains the results of the initial experiments that we
conducted with the Part B and Part D data. Our key observa-
tion in the results is that the classifiers with higher maximum
tree depth yield better performance. In our initial experi-
ments, we used default maximum tree depths for all classi-
fiers. CatBoost and XGBoost both have a default maximum
tree depth of 6. We see that the AUC scores that CatBoost
and XGBoost yield are the lowest. ET’s default setting for
maximum tree depth is unlimited, and we see that it yields
the highest AUC scores. Furthermore, the Random Forest
implementation we use has a default maximum tree depth of
16, and the AUC scores it yields are in between CatBoost’s,
XGBoost’s, and ET’s. These initial results establish a clear
pattern that the AUC score is in proportion to the maximum
tree depth. We sought to confirm the pattern with further
experiments.

SN Computer Science (2023) 4:462 Page 9 of 14 462

SN Computer Science

Due to space limitations, we abbreviate classifier names
in the results and statistical analysis as follows: CatBoost
is abbreviated as CB, Random Forest is abbreviated as RF-
GPU, XGBoost is abbreviated as XGB, and Extremely Ran-
domized Trees is abbreviated as ET. When a number follows
the abbreviation, it indicates the maximum tree depth. For
example, XGB-16 means XGBoost with a maximum tree
depth of 16.

Maximum tree depth is a challenging parameter to
optimize, since increasing it by one allows the learner to
potentially double the number of nodes in a decision tree,
and therefore, consume twice as much memory. We ran
into the same limitations on maximum tree depth with
both the Part B and Part D datasets. CatBoost builds bal-
anced decision trees. A balanced decision tree is a decision
tree with the additional requirement that the maximum
number of nodes are populated on every level before the
next level may be populated. Therefore, increasing the
maximum tree depth by one for CatBoost guarantees a
doubling of memory consumed by the decision trees.
CatBoost has strict limits on maximum tree depth values,
and will halt execution when it detects that the user has

specified a maximum tree depth larger than 16. Hence, we
provide results for CatBoost with its default maximum tree
depth of 6 and 16 in Table 6.

We were able to run experiments with XGBoost with
maximum tree depth as high as 24. We encountered runtime
errors when attempting to use XGBoost with larger values
of maximum tree depth.

By default, ET has no limit on maximum tree depth.
Unlike CatBoost, ET does not build balanced decision trees,
so the unlimited maximum tree depth does not guarantee a
huge memory consumption. Since we confirm the trend that
ET’s performance in terms of AUC increases as maximum
tree depth increases from 16 to 24, and we have AUC scores
ET yields with its default maximum tree depth, there is
sufficient evidence in Table 6 that ET conforms to our thesis
that increasing maximum tree depth is a highly effective
method for improving classifiers’ performance in terms of
AUC for Medicare fraud detection.

Due to the exponential relationship between maximum
tree depth and memory consumption, we found it necessary
to seek a mitigating technique. RUS is a natural candidate,
since it reduces the size of the training data. Therefore, we
took the best-performing models documented in Table 6,
and conducted further experiments with RUS. The outcomes
of those experiments are documented in Table 7. The mean
AUC scores in Table 7 offer further confirmation that higher
maximum tree depth, regardless of classifier, correlates with
higher AUC scores. CatBoost, with the smallest maximum
tree depth of 16, yields the lowest AUC scores, whereas
other learners with greater maximum tree depth yield mean
AUC scores that are much higher. The second important

Table 4 Changed
hyperparameter settings

Classifier/hyperparameter Setting Description

CatBoost
task_type GPU Use GPU(s) for execution
Devices 0 GPU device ID
max_ctr_complexity 1 Maximum number of features to combine
max_depth 6, 16 Maximum tree depth
n_estimators 100 Number of trees in ensemble
XGBoost
tree_method gpu_hist Use GPU(s) for execution
gpu_id 0 GPU device ID
n_estimators 100 Number of trees in ensemble
max_depth 6, 16, 24 Maximum tree depth
Random Forest
max_depth 16, 24, 32, or 48 Maximum tree depth
n_streams 8 Number of simultaneous GPU streams

active during the fit phase
ET
max_depth 16, 24, no limit (default) Maximum tree depth

Table 5 Mean AUC scores (ten iterations of fivefold cross-validation)

Standard deviations are below mean values in parentheses

Dataset CB ET RF-GPU-16 XGB

B 0.8656 0.9812 0.9350 0.9023
(0.0013) (0.0008) (0.0010) (0.0014)

D 0.7323 0.9675 0.8082 0.7563
(0.0009) (0.0004) (0.0009) (0.0007)

 SN Computer Science (2023) 4:462 462 Page 10 of 14

SN Computer Science

finding apparent in Table 7 is that the level of RUS appears
to have a small effect on AUC scores for some learners.
This is appealing, because, for imbalanced datasets, applying
RUS to applied induce higher class ratios reduces the size of
the training dataset to a multiple of the size of the minority
class. In the next section, we conduct statistical analyses to
determine the level of RUS we can apply to obtain optimal
performance in terms of AUC.

Statistical Analysis

We perform ANOVA and Tukey HSD tests to get a better
sense of the impact of maximum tree depth and RUS on
AUC scores. The outcomes of the tests enable us to make
informed conclusions on the effect of the factors. Moreover,
they provide guidelines for future research. We perform
a total of four analyses. The first two analyses are on
experimental outcomes for experiments where RUS is not
applied. We do one analysis for experiments with the Part
B data, and one analysis for experiments with the Part D
data. These analyses are on the same data used to populate
Table 6. We provide two more analyses, for experiments
involving RUS. Again, the analyses are separated into one
for experiments involving the Part B Data, and one for
experiments involving the Part D data. The analyses on the
outcomes of experiments involving RUS are done on the
same data used to populate Table 7.

Table 6 Performance of
classifiers with varying levels
of maximum tree depth Mean
in terms of AUC Scores (ten
iterations of fivefold cross-
validation)

Standard deviations are below mean values in parentheses; blank spaces indicate that classifer/maximum
tree depth combination is not attempted

Dataset Classifier No limit 6 16 24 32 48

B RF-GPU 0.9350 0.9870 0.9886 0.9864
(0.0010) (0.0007) (0.0005) (0.0008)

B XGB 0.9023 0.9910 0.9944
(0.0014) (0.0004) (0.0003)

B ET 0.9812 0.8149 0.8860
(0.0008) (0.0047) (0.0014)

B CB 0.8656 0.8970
(0.0013) (0.0012)

D RF-GPU 0.8082 0.9520 0.9700 0.9685
(0.0009) (0.0008) (0.0003) (0.0004)

D XGB 0.7563 0.9245 0.9727
(0.0007) (0.0014) (0.0004)

D ET 0.9675 0.6986 0.7223
(0.0004) (0.0012) (0.0018)

D CB 0.7323 0.7485
(0.0009) (0.0008)

Table 7 Mean AUC scores of classifiers with varying maximum tree
depth and undersampling (ten iterations of fivefold cross-validation)

Standard deviations are below mean values in parentheses

Dataset RF-GPU-32 XGB-24 CB-16 ET

B 0.9886 0.9944 0.8970 0.9812
(0.0005) (0.0003) (0.0012) (0.0008)

B RUS 1:1 0.9753 0.9944 0.9307 0.9932
(0.0004) (0.0003) (0.0009) (0.0004)

B RUS 1:3 0.9840 0.9922 0.9343 0.9932
(0.0004) (0.0003) (0.0009) (0.0004)

B RUS 1:9 0.9885 0.9939 0.9303 0.9926
(0.0004) (0.0003) (0.0010) (0.0004)

B RUS 1:27 0.9905 0.9944 0.9215 0.9909
(0.0004) (0.0003) (0.0013) (0.0004)

B RUS 1:81 0.9907 0.9946 0.9120 0.9876
(0.0005) (0.0003) (0.0010) (0.0005)

D 0.9700 0.9727 0.7485 0.9675
(0.0003) (0.0004) (0.0008) (0.0004)

D RUS 1:1 0.9352 0.9529 0.7717 0.9763
(0.0005) (0.0006) (0.0007) (0.0003)

D RUS 1:3 0.9547 0.9681 0.7713 0.9759
(0.0002) (0.0004) (0.0007) (0.0004)

D RUS 1:9 0.9648 0.9726 0.7657 0.9746
(0.0004) (0.0004) (0.0008) (0.0004)

D RUS 1:27 0.9687 0.9736 0.7589 0.9724
(0.0003) (0.0004) (0.0006) (0.0004)

D RUS 1:81 0.9696 0.9735 0.7533 0.9696
(0.0004) (0.0004) (0.0009) (0.0004)

SN Computer Science (2023) 4:462 Page 11 of 14 462

SN Computer Science

Part B Experiments Without RUS: Analysis of Results
in Terms of AUC

The first experiments we analyze are the experiments involv-
ing maximum tree depth and the Part B data. To get started,
we perform an ANOVA test to determine whether maximum
tree depth has a significant impact on performance in terms
of AUC for classifying the Part B data. The Pr(>F) or p val-
ues for the F-statistics we calculate in the ANOVA tests are
practically zero, which indicates that maximum tree depth
has a statistically significant impact on performance in terms
of AUC (Table 8).

Since the ANOVA test shows that maximum tree depth
has a significant impact on performance in terms of AUC, a
Tukey HSD test will assign the levels of the maximum tree
depth factor into groups that yield equivalent performance.
The conclusion we draw from Table 9 is that the larger
values of maximum tree depth are associated with the best
AUC scores for classifying the part B data.

Classifier is the second factor in the ANOVA test results
in Table 8. Since the classifier also has a significant impact
on performance in terms of AUC, we conduct an HSD test
to rank classifiers in terms of the AUC scores they yield. We
report the results of the HSD test in Table 10. We find that
the most relevant implication of Table 10 is that the classifier

that accommodates only the lowest maximum tree depth of
all, CatBoost, is also ranked lowest in the HSD test.

Part D Experiments Without RUS: Analysis of Results
in Terms of AUC

We move on to analyze the impact of maximum tree depth
on the classification of the Part D data. We report the
results of an ANOVA test to determine the significance
of maximum tree depth and classifier in Table 11. The
Pr(>F) values of the F-statistics of the ANOVA tests are
practically zero. Thus, both classifier and maximum tree
depth have a significant effect on the classification results.

Since classifier and maximum tree depth also have a
significant impact on AUC scores when classifying the
Part D data, we conduct HSD tests to rank these factors.
Table 12 contains the results of an HSD test to rank levels
of maximum tree depth in accordance with their impacts
on AUC scores. Interestingly, the groups that the HSD
test determines for the Part D experiments are the same
as the groups that the HSD test determines for the Part B
experiments. Therefore, we draw the same conclusion that
performance in terms of AUC is positively correlated with
maximum tree depth.

Since the p value of the F-statistic for the classifier
value in the ANOVA test results in Table 11 is practically
0, we conduct an HSD test to rank classifiers in terms of
their impact on AUC scores. The results of the HSD test
for the Part D data in Table 13 are also the same as the
results of the HSD test for the Part B data in Table 10.
Therefore, the result aligns with the previous findings, for
classifying the Part D data. The classifier that yields the
lowest AUPRC scores is also the one that allows the lowest
possible maximum tree depth.

Part B RUS Experiments: Analysis of Results in Terms
of AUC

As mentioned previously, increasing maximum tree depth
has an exponential relationship with potential resource
consumption. Therefore, a technique for mitigating the
resource consumption is attractive. Since applying RUS

Table 8 ANOVA for depth and classifier as factors of performance in
terms of AUC

*Value is less than 1 × 10

−15

Df Sum Sq Mean Sq F value Pr(>F)

Depth 5 0.84 0.17 1206.27 *
Classifier 3 1.14 0.38 2733.87 *
Residuals 591 0.08 0.00

Table 9 HSD test groupings after ANOVA of AUC for the depth factor

Group a consists of: 32, 48, no limit
Group b consists of: 24
Group c consists of: 16
Group d consists of: 6

Table 10 HSD test groupings after ANOVA of AUC for the classifier
factor

Group a consists of: RF-GPU
Group b consists of: XGB
Group c consists of: ET
Group d consists of: CB

Table 11 ANOVA for depth and classifier as factors of performance
in terms of AUC

*Value is less than 1 × 10

−15

Df Sum Sq Mean Sq F value Pr(>F)

Depth 5 3.99 0.80 1004.47 *
Classifier 3 2.90 0.97 1215.38 *
Residuals 591 0.47 0.00

 SN Computer Science (2023) 4:462 462 Page 12 of 14

SN Computer Science

shrinks the size of the training data for imbalanced data-
sets, it is a natural candidate for a way to combat increased
resource consumption due to increased maximum tree
depth. However, one should be cognizant of any trade-
off of performance in terms of AUC for the decreased
resource consumption that RUS affords. Therefore, we
conduct a statistical analysis to determine whether RUS
has a significant impact on performance in terms of AUC.
We analyze results for the classifiers and maximum tree
depth levels that yield the best performance in terms of
AUC that we identify in the previous sections. The first
analysis we conduct is an ANOVA test for the effect of
RUS and classifier on Medicare fraud detection in the Part
B data. The Pr(>F) values reported in Table 14 indicate
that both classifier and level of RUS have a significant
impact on AUC scores.

Since RUS has a significant effect on classification of the
Part B data, an HSD test will tell us which levels of the RUS
factor are associated with the highest AUC scores. In this
case, we see the 1:9 and 1:3 class ratios listed in Table 15
yield the highest AUC scores. This is good news, since it
means we can apply RUS to obtain smaller training data, and
maintain strong performance in terms of AUC.

Next, we proceed with an HSD test to rank classifiers
across all levels of RUS. In Table 16, we find that XGBoost

with a maximum tree depth of 24 yields the best perfor-
mance. Furthermore, the results in Table 16 indicate the
classifier that permits the lowest maximum tree depth is
associated with the lowest AUC scores as we vary levels
of RUS.

Part D RUS Experiments: Analysis of Results in Terms
of AUC

We do a similar analysis on the effect of classifier and RUS
on AUC scores for classifying the part D data. Table 17 con-
tains the results of an ANOVA test where classifier and RUS
are treated as factors. The Pr(>F) values indicate that both
factors have a significant impact on classifying the Part D
data.

The HSD results in Table 18 indicate that RUS applied
to induce a class ratio of 1:9 yields the best AUC scores to
classify the Part D data. These results are similar to those for
classifying the Part B data; only now the 1:3 class ratio has
moved to the group that yields the second-best performance.

We conduct a second HSD test for the classifier factor’s
effect on AUC scores. The outcome of the test is reported in
Table 19. For the Part D data, the result for the group that
yields the lowest AUC scores is the same as for the Part B
data. However, the best-performing classifier is different.
Here, we find that, across all levels of RUS, ET is associated
with the best performance.

Conclusions

The first conclusion we would like to mention involves
CatBoost. We were not able to increase the maximum
tree depth of the decision trees in the CatBoost classifier
beyond 16. This is a much lower maximum tree depth
than the other classifiers permit. However, CatBoost plays
another important role in our experiments. We use CatBoost
encoding to encode the categorical features in the Part B
and Part D datasets. Given the strength of the results, we
feel that future work to ascertain CatBoost’s contribution to
the results is appropriate. This can be determined by further
experiments including different techniques for encoding
categorical features.

Our experimental results and statistical analyses reveal
some facts about Medicare fraud detection in the latest, pub-
licly available Part B and Part D data. These findings are a
contribution, since they pertain to new data. The first impor-
tant finding is the effect of maximum tree depth on AUC
scores. Our results show that maximum tree depth is posi-
tively correlated with AUC scores. The second noteworthy

Table 12 HSD test groupings after ANOVA of AUC for the depth
factor

Group a consists of: 32, 48, no limit
Group b consists of: 24
Group c consists of: 16
Group d consists of: 6

Table 13 HSD test groupings after ANOVA of AUC for the classifier
factor

Group a consists of: RF-GPU
Group b consists of: XGB
Group c consists of: ET
Group d consists of: CB

Table 14 ANOVA for RUS and classifier as factors of performance in
terms of AUC

*Value is less than 1 × 10

−15

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.02 0.00 81.75 *
Classifier 3 1.08 0.36 8796.68 *
Residuals 1191 0.05 0.00

SN Computer Science (2023) 4:462 Page 13 of 14 462

SN Computer Science

result of our study is that one may employ learners with
higher maximum tree depth values, and apply RUS to induce
class ratios to build models that outperform models trained
on the full dataset, in terms of AUC scores. This is good
news for researchers experimenting with the Part B and
Part D datasets. Fewer training instances, which translate to
shorter model training time, can be used to get results simi-
lar to, or better than results obtained with the full Part B or

Part D datasets. For classifying the Part B data, we find that
models trained on data with RUS applied to make the class
ratio 1:3 yield the best performance. Similarly, for the Part
D data, we find models trained on data with RUS applied to
induce the 1:9 class ratio yield the best performance. Since
both the Part B and Part D datasets are large and imbalanced,
applying RUS reduces the size of the training data by two
orders of magnitude. The reduction in the size of the train-
ing data mitigates the increased resource consumption that
is a by-product of increasing maximum tree depth. In future
work, we plan to extend our analysis to other metrics, such
as Area Under the Precision–Recall Curve, and other highly
imbalanced Big Data.

Acknowledgements We would like to thank the Data Mining and
Machine Learning Research Group at Florida Atlantic University for
their assistance in preparing this manuscript.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

 1. The Centers for Medicare and Medicaid Services: Medicare
Physician & Other Practitioners: by provider and service. 2021.
https:// data. cms. gov/ provi der- summa ry- by- type- of- servi ce/ medic
are- physi cian- other- pract ition ers/ medic are- physi cian- other- pract
ition ers- by- provi der- and- servi ce. Accessed 9 May 2022.

 2. The Centers for Medicare and Medicaid Services: Medicare Part
D Prescribers: by provider and drug. 2021. https:// data. cms. gov/
provi der- summa ry- by- type- of- servi ce/ medic are- part-d- presc rib-
ers/ medic are- part-d- presc ribers- by- provi der- and- drug. Accessed
18 Feb 2022.

 3. Centers for Medicare and Medicaid Services: 2019 Estimated
Improper Payment Rates for Centers for Medicare & Medicaid
Services (CMS) Programs. 2019. https:// www. cms. gov/ newsr
oom/ fact- sheets/ 2019- estim ated- impro per- payme nt- rates- cente
rs- medic are- medic aid- servi ces- cms- progr ams. Accessed 1 Mar
2022.

 4. Civil Division, U.S. Department of Justice: Fraud Statistics, Over-
view. 2020. https:// www. justi ce. gov/ opa/ press- relea se/ file/ 13543
16/ downl oad. Accessed 18 Jan 2022.

 5. Bekkar M, Djemaa HK, Alitouche TA. Evaluation measures for
models assessment over imbalanced data sets. J Inf Eng Appl.
2013;3(10):27–38.

 6. Hancock J, Khoshgoftaar TM. Optimizing ensemble trees for big
data healthcare fraud detection. In: 2022 IEEE 23rd international
conference on information reuse and integration for data science
(IRI); 2022. IEEE. p. 243–49

 7. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A.
Catboost: unbiased boosting with categorical features. Adv Neural
Inf Process Syst. 2018;31:1–11.

 8. Chen T, Guestrin C. Xgboost: a scalable tree boosting system.
Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining-KDD ’16; 2016.

 9. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

Table 15 HSD test groupings after ANOVA of AUC for the RUS fac-
tor

Group a consists of: 1:9, 1:3
Group ab consists of: 1:27
Group b consists of: 1:1
Group c consists of: 1:81
Group d consists of: No RUS

Table 16 HSD test groupings after ANOVA of AUC for the classifier
factor

Group a consists of: XGB-24
Group b consists of: ET
Group c consists of: RF-GPU-32
Group d consists of: CB-16

Table 17 ANOVA for RUS and classifier as factors of performance in
terms of AUC

*Value is less than 1 × 10

−15

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.01 0.00 44.45 *
Classifier 3 9.55 3.18 50352.60 *
Residuals 1191 0.08 0.00

Table 18 HSD test groupings after ANOVA of AUC for the RUS fac-
tor

Group a consists of: 1:9
Group ab consists of: 1:27, 1:3
Group bc consists of: 1:81
Group c consists of: No RUS
Group d consists of: 1:1

Table 19 HSD test groupings after ANOVA of AUC for the classifier
factor

Group a consists of: ET
Group b consists of: XGB-24
Group c consists of: RF-GPU-32
Group d consists of: CB-16

https://data.cms.gov/provider-summary-by-type-of-service/medicare-physician-other-practitioners/medicare-physician-other-practitioners-by-provider-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-physician-other-practitioners/medicare-physician-other-practitioners-by-provider-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-physician-other-practitioners/medicare-physician-other-practitioners-by-provider-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-part-d-prescribers/medicare-part-d-prescribers-by-provider-and-drug
https://data.cms.gov/provider-summary-by-type-of-service/medicare-part-d-prescribers/medicare-part-d-prescribers-by-provider-and-drug
https://data.cms.gov/provider-summary-by-type-of-service/medicare-part-d-prescribers/medicare-part-d-prescribers-by-provider-and-drug
https://www.cms.gov/newsroom/fact-sheets/2019-estimated-improper-payment-rates-centers-medicare-medicaid-services-cms-programs
https://www.cms.gov/newsroom/fact-sheets/2019-estimated-improper-payment-rates-centers-medicare-medicaid-services-cms-programs
https://www.cms.gov/newsroom/fact-sheets/2019-estimated-improper-payment-rates-centers-medicare-medicaid-services-cms-programs
https://www.justice.gov/opa/press-release/file/1354316/download
https://www.justice.gov/opa/press-release/file/1354316/download

 SN Computer Science (2023) 4:462 462 Page 14 of 14

SN Computer Science

 10. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees.
Mach Learn. 2006;63(1):3–42.

 11. Bauder RA, Khoshgoftaar TM, Hasanin T. Data sampling
approaches with severely imbalanced big data for medicare fraud
detection. In: 2018 IEEE 30th international conference on tools
with artificial intelligence (ICTAI); 2018. IEEE. p. 137–42

 12. The Centers for Medicare and Medicaid Services: Medicare
Durable Medical Equipment, Devices & Supplies: by Referring
Provider and Service. 2021. https:// data. cms. gov/ provi der- summa
ry- by- type- of- servi ce/ medic are- durab le- medic al- equip ment- devic
es- suppl ies/ medic are- durab le- medic al- equip ment- devic es- suppl
ies- by- refer ring- provi der- and- servi ce. Accessed 18 Jan 2022

 13. Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic
regression. J R Stat Soc Ser C (Appl Stat). 1992;41(1):191–201.

 14. Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D,
Freeman J, Tsai D, Amde M, Owen S. Mllib: machine learning in
apache spark. J Mach Learn Res. 2016;17(1):1235–41.

 15. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A,
Meng X, Rosen J, Venkataraman S, Franklin MJ. Apache
spark: a unified engine for big data processing. Commun ACM.
2016;59(11):56–65.

 16. Han H, Wang W-Y, Mao B-H. Borderline-smote: a new over-sam-
pling method in imbalanced data sets learning. In: International
conference on intelligent computing; 2005. Springer. p. 878–887

 17. Lin W, Wu Z, Lin L, Wen A, Li J. An ensemble random for-
est algorithm for insurance big data analysis. IEEE Access.
2017;5:16568–75.

 18. Del Río S, López V, Benítez JM, Herrera F. On the use of
mapreduce for imbalanced big data using random forest. Inf Sci.
2014;285:112–37.

 19. Herrera VM, Khoshgoftaar TM, Villanustre F, Furht B. Random
forest implementation and optimization for big data analytics on
lexisnexis’5s high performance computing cluster platform. J Big
Data. 2019;6(1):1–36.

 20. Genuer R, Poggi J-M, Tuleau-Malot C, Villa-Vialaneix N. Ran-
dom forests for big data. Big Data Res. 2017;9:28–46.

 21. Fauzan MA, Murfi H. The accuracy of xgboost for insurance claim
prediction. Int J Adv Soft Comput Appl. 2018;10(2):159–71.

 22. Li H, Cao Y, Li S, Zhao J, Sun Y. Xgboost model and its
application to personal credit evaluation. IEEE Intell Syst.
2020;35(3):52–61.

 23. XingFen W, Xiangbin Y, Yangchun M. Research on user con-
sumption behavior prediction based on improved xgboost algo-
rithm. In: 2018 IEEE international conference on big data (Big
Data); 2018. IEEE. p. 4169–175.

 24. Johnson JM, Khoshgoftaar TM. Deep learning and data sam-
pling with imbalanced big data. In: 2019 IEEE 20th international
conference on information reuse and integration for data science
(IRI); 2019. IEEE. p. 175–83.

 25. LEIE: Office of Inspector General Leie Downloadable Databases.
[Online]. https:// oig. hhs. gov/ exclu sions/ index. asp. Accessed 12
Apr 2022

 26. Herland M, Khoshgoftaar TM, Bauder RA. Big data fraud
detection using multiple medicare data sources. J Big Data.
2018;5(1):1–21.

 27. The Centers for Medicare and Medicaid Services: Medicare
Physician & Other Practitioners: by Provider and Service Data
Dictionary. 2021. https:// data. cms. gov/ resou rces/ medic are- physi
cian- other- pract ition ers- by- provi der- and- servi ce- data- dicti onary.
Accessed 28 Jan 2022.

 28. The Centers for Medicare and Medicaid Services: Medicare Part
D Prescribers: by provider and drug data dictionary. 2021. https://
data. cms. gov/ resou rces/ medic are- part-d- presc ribers- by- provi der-
and- drug- data- dicti onary. Accessed 4 May 2022.

 29. Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
 30. Hancock J, Khoshgoftaar TM. Performance of catboost and

xgboost in medicare fraud detection. In: 2020 19th IEEE interna-
tional conference on machine learning and applications (ICMLA);
2020. IEEE. p. 572–79.

 31. Friedman JH. Greedy function approximation: a gradient boosting
machine. Ann Stat. 2001;29:1189–232.

 32. Hancock JT, Khoshgoftaar TM. Catboost for big data: an interdis-
ciplinary review. J Big Data. 2020;7(1):1–45.

 33. Van Rossum G, Drake F. Python 3 reference manual createspace.
Scotts Valley; 2009.

 34. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion
B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V.
Scikit-learn: machine learning in python. J Mach Learn Res.
2011;12:2825–30.

 35. Johnson JM, Khoshgoftaar TM. Hcpcs2vec: Healthcare procedure
embeddings for medicare fraud prediction. In: 2020 IEEE 6th
international conference on collaboration and internet computing
(CIC); 2020. IEEE. p. 145–52.

 36. Hancock JT, Khoshgoftaar TM. Survey on categorical data for
neural networks. J Big Data. 2020;7(1):1–41.

 37. Parameters. Yandex Corporation. https:// catbo ost. ai/ en/ docs/ refer
ences/ train ing- param eters/ common. Accessed 09 July 2022

 38. XGBoost Parameters. XGBoost Developers. https:// xgboo st. readt
hedocs. io/ en/ stable/ param eter. html. Accessed 09 July 2022.

 39. Hancock JT, Khoshgoftaar TM. Hyperparameter tuning for medi-
care fraud detection in big data. SN Comput Sci. 2022;3(6):1–13.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://data.cms.gov/provider-summary-by-type-of-service/medicare-durable-medical-equipment-devices-supplies/medicare-durable-medical-equipment-devices-supplies-by-referring-provider-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-durable-medical-equipment-devices-supplies/medicare-durable-medical-equipment-devices-supplies-by-referring-provider-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-durable-medical-equipment-devices-supplies/medicare-durable-medical-equipment-devices-supplies-by-referring-provider-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-durable-medical-equipment-devices-supplies/medicare-durable-medical-equipment-devices-supplies-by-referring-provider-and-service
https://oig.hhs.gov/exclusions/index.asp
https://data.cms.gov/resources/medicare-physician-other-practitioners-by-provider-and-service-data-dictionary
https://data.cms.gov/resources/medicare-physician-other-practitioners-by-provider-and-service-data-dictionary
https://data.cms.gov/resources/medicare-part-d-prescribers-by-provider-and-drug-data-dictionary
https://data.cms.gov/resources/medicare-part-d-prescribers-by-provider-and-drug-data-dictionary
https://data.cms.gov/resources/medicare-part-d-prescribers-by-provider-and-drug-data-dictionary
https://catboost.ai/en/docs/references/training-parameters/common
https://catboost.ai/en/docs/references/training-parameters/common
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html

	Exploring Maximum Tree Depth and Random Undersampling in Ensemble Trees to Optimize the Classification of Imbalanced Big Data
	Abstract
	Introduction
	Related Work
	Datasets
	Algorithms
	Methodology
	Results
	Statistical Analysis
	Part B Experiments Without RUS: Analysis of Results in Terms of AUC
	Part D Experiments Without RUS: Analysis of Results in Terms of AUC
	Part B RUS Experiments: Analysis of Results in Terms of AUC
	Part D RUS Experiments: Analysis of Results in Terms of AUC

	Conclusions
	Acknowledgements
	References

