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Abstract
We present findings from experiments in Medicare fraud detection, that are the result of research on two new, publicly 
available datasets. In this research, we employ popular, open-source Machine Learning algorithms to identify fraudulent 
healthcare providers in Medicare insurance claims data. As far as we know, we are the first to publish a study that includes 
datasets compiled from the latest Medicare Part B and Medicare Part D data. The datasets became available in 2021, and 
are the largest such datasets that we know of. We report details on two important findings. The first finding is that increased 
maximum tree depth is associated with the best performance in terms of area under the receiver-operating characteristic 
curve (AUC) for both datasets. The second finding, which is an important counterbalance to the first finding, is that one may 
utilize random undersampling (RUS) to reduce the size of the training data and simultaneously achieve similar or better AUC 
scores.To the best of our knowledge, our study is novel in reporting the importance of maximum tree depth for classifying 
imbalanced Big Data. Moreover, this work is unique in demonstrating that one may employ RUS to mitigate the increased 
resource consumption of higher maximum tree depth.
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Introduction

The exploration of new data is fertile ground for the devel-
opment of contributions to an application domain. New 
Medicare insurance claims data became publicly available in 
2021. These data, which we use in our study, come from two 
related sources. The first source is Medicare Physician & 
Other Practitioners—by Provider and Service (Part B) [1]. 
The second source is Medicare Part D Prescribers—by Pro-
vider and Drug (Part D) [2] insurance claims data. The data-
sets we compile from the Part B and Part D data are highly 

imbalanced Big Data. Our Part B dataset has approximately 
68 million training instances with a minority-to-majority 
class ratio of approximately 0.0019, and our Part D dataset 
has approximately 173 million instances, with a minority-
to-majority class ratio of approximately 0.0039. With all the 
facts available to us, we claim that this is the first study to 
contain findings that cover the latest Part B and Part D data 
in a single study on Medicare fraud detection as a supervised 
Machine Learning task.

Medicare is the United States’ public health insurance 
program. It provides health insurance for millions of Ameri-
cans aged 65 and over, as well as those with certain dis-
abilities. Medicare insurance fraud detection is a worthwhile 
pursuit, because facts indicate that a large amount of money 
could be recovered. Once recovered, it could be spent on 
providing more extensive healthcare to Medicare beneficiar-
ies. The Centers for Medicare and Medicaid Services (CMS) 
are the United States government departments responsible 
for Medicare. In 2019, the CMS provided an estimate that 
it made approximately $100 billion in improper payments 
[3]. In the same year, the United States Department of Jus-
tice published a report stating it recovered approximately 
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$3 billion prosecuting insurance fraud [4]. The CMS uses 
the term improper payments to cover payments made due to 
fraud and other errors. However, it is reasonable to assume 
that, due to the amount of estimated improper payments, 
more fraud could be detected. Therefore, Medicare fraud 
detection is a fitting application domain for the field of 
Machine Learning, since it is a suitable tool for process-
ing the Big Data repository of Medicare Insurance claims 
information.

The contributions we make in this research on the 
subject of classifying highly imbalanced Big Data for 
Medicare fraud detection concern three key concepts: 
maximum tree depth, Random Undersampling (RUS), and 
Area Under the Receiver-Operating Characteristic Curve 
(AUC) [5]. These contributions are an expansion of work 
we published previously [6]. Maximum tree depth refers 
to the longest allowable path from root to leaf node in a 
decision tree. It is an adjustable parameter in the decision-
tree-based ensemble classifiers we use. The classifiers we 
use are: CatBoost [7], XGBoost, [8], Random Forest [9], 
and Extremely Randomized Trees (ET) [10]. RUS is a 
technique to improve classification results when working 
with data that has a low minority-to-majority class ratio. 
Such data are known as imbalanced data. To perform RUS, 
one chooses a minority-to-majority class ratio, and then 
randomly discards instances of the majority class until the 
remaining data have the desired class ratio. AUC is a metric 
for measuring the performance of a classifier. It is calculated 
by varying the classification decision threshold from zero 
to one in small increments and plotting the false-positive 
rate versus the true-positive rate that the classifier yields for 
each value of the decision threshold. Once the points are 
plotted, a curve is formed, and AUC is the area under this 
curve. A perfect classifier yields an AUC score of 1.0, and a 
classifier that assigns instances to classes randomly yields an 
AUC score of approximately 0.5. These definitions of RUS, 
maximum tree depth, and AUC are key to understanding the 
contributions in this work.

This body of research makes two contributions to the 
field of research in classifying imbalanced Big Data. The 
first contribution of our research is to show that maximum 
tree depth in decision tree-based ensemble classifiers is 
a highly effective parameter to optimize AUC scores for 
Medicare fraud detection. We show that optimizing this 
parameter yields AUC scores over 0.98 in some cases. We 
vary maximum tree depth in our experiments over a wide 
range of values to show its substantial effect on experimental 
outcomes. Moreover, for each experiment, we use one, and 
only one, value for maximum tree depth.

The second contribution we make is to show that one may 
apply RUS to the Part B and Part D data and build Machine 
Learning models that yield AUC scores that are similar 

to, or better than AUC scores of models built with the full 
datasets. This is an important finding, because it allows for 
faster execution of model training. Since the Part B and Part 
D data are highly imbalanced, when we apply RUS to induce 
larger class ratios in the model training data, we reduce the 
size of the training data. Training the popular, open-source 
Machine Learning algorithms we employ is faster with 
smaller training data. This finding is a boon to researchers 
working in the field, since it enables one to conduct more 
experiments with the Part B and Part D data. The sections 
that follow this introduction are: Related Work, Algorithms, 
Methodology, Results, Statistical Analysis, and Conclusions.

Related Work

In this section, we provide background on research leading 
up to our study, and make the case for the novelty of our 
work. Ensemble decision tree-based Machine Learning 
techniques, the effect of maximum tree depth, RUS, and 
Big Data are the essential subjects of our study. Therefore, 
related works pertain to these concepts. Many of the studies 
were not conducted with datasets on the scale of the datasets 
we use. Moreover, in our search for related work, we found 
similar studies, but none that show the impact of maximum 
tree depth and RUS on AUC scores to the extent that we 
do, none use CatBoost for encoding categorical features, 
and none contain results of experiments performed with the 
latest Part B and Part D data.

In their 2018 study on data sampling and imbalanced big 
data, Bauder et al. compare multiple sampling techniques 
for Medicare fraud detection [11]. They compile a dataset by 
combining the Part B, Part D, and one additional Medicare 
dataset known as the “Medicare Durable Medical Equip-
ment, Devices & Supplies—by Referring Provider and 
Service” (DMEPOS) dataset [12]. Because their study was 
published in 2018, a smaller amount of Medicare claims 
data were available than what we experiment with here. 
Therefore, their combined dataset has fewer than 1 million 
instances. They employ versions of Random Forest, Logistic 
Regression [13], and Gradient Boosted Trees [14] for the 
Apache Spark environment [15]. In their findings, Bauder 
et al. report experimental outcomes for six data sampling 
techniques: RUS, Random Oversampling (ROS), Synthetic 
Minority Oversampling Technique (SMOTE), two adapta-
tions of borderline SMOTE [16], and Adaptive Synthetic 
Sampling Approach for Imbalanced Learning (ADASYN). 
Of the six techniques, Bauder et al. report that applying 
RUS to the training data fed to their classifiers yields the 
best performance. For these reasons, we use RUS as well. 
On the other hand, Bauder et al. do not show the impact 
of maximum tree depth on AUC scores for Medicare fraud 
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Detection. In addition, they do not employ CatBoost encod-
ing as we do to handle categorical features.

“An ensemble random forest algorithm for insurance 
big data analysis” by Lin et al. is a related study [17], 
because it involves Random Forest, sampling techniques, 
and classifying imbalanced data. In their study, the authors 
propose a variation on the Random Forest algorithm for 
predicting the likelihood that a consumer will purchase 
life insurance. They compare the performance of models 
built from training data with, and without SMOTE 
applied to address class imbalance. However, in their 
study, details on the class ratios induced by SMOTE are 
not apparent. Their study appears to be more concerned 
with the impact of their sampling technique on running 
time. We find that RUS has a negligible impact on running 
time, and therefore focus on its impact on classification 
results. We did not find details on the features of Lin 
et al.’s dataset, such as whether it has categorical features. 
One useful feature of our study is that we document the 
use of CatBoost encoding [7], a technique for handling 
categorical features that is practical for large datasets. The 
dataset Lin et al. work with has approximately 500,000 
instances and 16 attributes. Our study involves two much 
larger datasets. Moreover, we do not aim to propose a new 
variation on Random Forest. We use a publicly available, 
open-source version of Random Forest. For these reasons, 
our study is set apart from the one done by Lin et al.

A second study which involves Random Forest and 
Big Data is by Del Río et al. [18]. The dataset they use 
has approximately 6 million instances and 41 attributes. 
Therefore, it is on a smaller scale than what we work with 
here. Their study also does not concern maximum tree depth. 
Rather than experiment with maximum tree depth, Del Río 
et al. use one maximum tree depth setting for all experiments. 
Therefore, it is not a factor which can be analyzed for effect 
as we do here. While Del Río et al. document that RUS 
is applied to their data, it is only applied to induce a 1:1 
class ratio. Here, we document the application of RUS to 
induce five class ratios and show its effect on experimental 
outcomes. Therefore, the key differences between our study 
and Del Río et al.’s are our treatment of maximum tree 
depth, and RUS level as experimental factors.

Herrera et al. [19] published a related work that explores 
the impact of maximum tree depth with a classifier in 
common with one that we use. This is another study where 
Random Forest is employed to classify the so-called Big 
Data. However, the dataset Herrera et  al. conduct their 
experiments with contains 581,012 training instances, 
which is much smaller than the datasets we work with. 
Furthermore, we note that Herrera et al. use only a single 
dataset, whereas we present results covering two datasets. 
The focus of Herrera et al.’s study is a novel implementation 

of Random Forest for a high-performance computing 
environment. Hence, their interest in maximum tree depth is 
its impact on the running time of their implementation. Our 
focus on maximum tree depth is its impact on AUC scores 
for classifying Medicare insurance claims data.

In their 2017 study, Genuer et  al. evaluate multiple 
Random Forest variants’ performance to classify a dataset 
with approximately 120 million instances [20]. They 
compare the performance of five variants of Random Forest 
classifiers in terms of prediction error. Subsampling is 
an important term in their study, but it is not a technique 
for addressing class imbalance. Genuer et  al. present 
subsampling as a technique that is a part of building 
Random Forest models. We cover RUS, which is a sampling 
technique for addressing class imbalance. Moreover, Genuer 
et al.’s study concerns subsampling in conjunction with 
variations on Random Forest, whereas we present results 
from experiments combining RUS with Random Forest and 
other classifiers as well.

Fauzan and Murfi perform experiments with XGBoost 
and an insurance company’s customer data to forecast 
whether the customer will file an insurance claim in [21]. 
The customer data comprise a dataset of approximately 
1.5 million instances, with 57 attributes. As part of 
hyperparameter tuning, Fauzan and Murfi vary maximum 
tree depth between four and five. We take a more in-depth 
look at maximum tree depth, and we look at a broader range 
of maximum tree depths. In our experiments, maximum 
tree depth takes the values from 6, 16, 24, 32, and 48. 
Moreover, our experiments involve other learners, Random 
Forest, CatBoost, and ET in addition to XGBoost. Similar 
to Genuer et al., Fauzan and Murfi document experiments 
with subsampling, but we do not find that they experiment 
with RUS as a technique for addressing class imbalance in 
Big Data.

In their research on the use of XGBoost to predict loan 
default, Li et al. employ hyperparameter tuning to optimize 
results [22]. While they document that they use a grid search 
method to do hyperparameter tuning, they do not cover the 
impact of maximum tree depth on classification results. 
Furthermore, Li et al. use a dataset that has approximately 
130,000 instances and 143 features. Therefore, their study 
does not probe the impact of maximum tree depth on the 
classification of Big Data in the manner that our study does. 
One similarity between our study and Li et al. is the use of 
RUS. Their dataset is imbalanced, with a 1:22 minority-to-
majority class ratio, and they write that they undersample 
their data to induce a 1:4 class ratio. We experiment with a 
wider range of class ratios and provide analysis of the effect 
of RUS on the classification of two larger datasets.

In a study with data on a scale more characteristic of Big 
Data, Wang et al. document the performance of a classifier 
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built from a combination of logistic regression and XGBoost 
[23]. The dataset they use has approximately 50 million 
instances. The aim of their study is to show the performance 
of their proposed classifier in predicting the users’ activity in 
e-commerce websites. While Wang et al.’s research involves 
XGBoost and Big Data, it does not explore the effective-
ness of maximum tree depth or RUS in the classification 
task. Another difference between the studies is that, for easy 
repeatability, we use popular, open-source classifiers without 
modification. These facts differentiate our studies.

In 2019, Johnson and Khoshgoftaar published a study 
which involves data sampling and Medicare fraud detection 
with deep learning classifiers [24]. However, their study 
involves Medicare insurance fraud data which does not 
include the additional data that became publicly available 
in 2021 that we use here. Furthermore, Johnson and 
Khoshgoftaar use a different technique for handling the 
categorical attributes of the Medicare insurance claims 
data. They aggregate the data by healthcare provider, and 
replace some categorical data with descriptive statistics of 
the numeric data in the records that they aggregate over. 
Since the dataset they work with is aggregated, it is smaller 
than the datasets we work with here. In their study, Johnson 
and Khoshgoftaar experiment with a dataset that has 
approximately 6 million instances. Another key difference 
between the two studies is that we use decision tree-based 
classifiers, whereas Johnson and Khoshgoftaar use deep 
learning classifiers.

In our review of related work, we find opportunities to 
make contributions. There are many studies that discuss 
different components of our study, but none that reveal the 
synergy they provide when taken together. We find studies 
that claim to involve Big Data, but the data used are not on 
the scale of the data we use. We find studies that mention 
maximum tree depth, but do not systematically investigate 
the impact of maximum tree depth on the classification of 
imbalanced Big Data. To the best of our knowledge, this 
study is novel, because it covers experiments performed on 
two new, highly imbalanced Big Data datasets, with a unique 
methodology to show the impact of RUS and maximum tree 
depth on AUC scores.

Datasets

We use data provided by the CMS. CMS collected the Part 
B and Part D data from 2013 to 2019, and published it in 
2021. To the best of our knowledge, these datasets cover 
the longest period of time used in any study on Machine 
Learning for Medicare fraud detection. Moreover, the 
attributes of the data are different from those used in 
the previous studies. The Part B and Part D data are not 
immediately suitable for supervised Machine Learning. For 
example, the instances of the dataset must be labeled.

For both of the Part B and Part D datasets, we use 
the same logic to label them. The data for the labels are 
published by another department of the United States 
Government, the Office of the Inspector General (OIG). The 
publication is known as the List of Excluded Individuals 
and Entities (LEIE) [25]. The LEIE is updated monthly. The 
individuals and entities appearing in the LEIE are excluded 
from government backed healthcare programs, including 
Medicare. In the LEIE, the OIG provides categories of 
exclusions along with identifying information. For the 
application domain of Medicare fraud detection, we select 
the records of the LEIE that contain the same exclusion 
categories as documented by Herland et al. [26]. Table 1 
is a copy of the table from Herland et al. that specifies 
which exclusion rule codes we use to identify the records of 
fraudulent providers.

The identifying information of healthcare providers in the 
LEIE includes a National Provider Identifier (NPI). Records 
of the Part B and Part D data also contain an NPI. Therefore, 
we can match NPIs in the Part B and Part D data with the 
LEIE data, and label instances of the Part B and Part D data 
as fraudulent when there is a match, and the year value of the 
Part B or Part D record falls within the period of time when 
fraudulent claims may have been submitted. We define that 
period of time as follows: fraudulent claims may have been 
submitted any time before the start of the exclusion period 
until the end of the exclusion period. However, the year is 
the most specific time-related information we have in the 
Part B and Part D data, whereas the year and month is the 
most specific time-related information we have in the LEIE 

Table 1  LEIE exclusion codes 
and rules

Rule number Description

1128(a)(1) Conviction of program-related crimes
1128(a)(2) Conviction relating to patient abuse or neglect
1128(a)(3) Felony conviction relating to health care fraud
1128(b)(4) License revocation or suspension
1128(b)(7) Fraud, kickbacks and other prohibited activities
1128(c)(3)(g)(i) Conviction of two mandatory exclusion offenses 10 years
1128(c)(3)(g)(ii) Conviction of three mandatory exclusion offenses indefinite
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data. Therefore, we round the end of the exclusion period 
to the nearest year listed in the LEIE. For example, if the 
LEIE data contain a record stating that a provider’s exclu-
sion period ends in March 2017, then we label the provider’s 
records as fraudulent if their year value is less than 2017. 
However, if the exclusion period ends in July 2017, we label 
the provider’s data as fraudulent if the year value is less than 
2018. If the NPI of a provider in the Part B or Part D data 
does not exist in the LEIE data, or the year of the record is 
after the end of the period when fraudulent claims were pos-
sible, then we label the instance as not fraudulent.

Once a provider’s exclusion period is over, the provider 
is removed from the LEIE. Therefore, one must obtain the 
previous editions of the LEIE to completely label the Part B 
or Part D data. These previous editions are available in the 
Internet Archive.1

Although we use the same labeling process for both 
datasets, they have characteristics that make them unique. 
Records of the Part B dataset contain information on the 
treatments and procedures that healthcare providers admin-
ister to their patients for 1 year. One important acronym for 
understanding which treatment or procedure is specified in 

the record is HCPCS, which stands for Healthcare Com-
mon Procedure Coding System. Every record has an HCPCS 
code, which represents a specific treatment or procedure. We 
use the HCPCS code as a categorical feature. All the fields 
in the Part B data that we use as independent variables are 
defined in Table 2. We have copied the definitions of the 
features from the Part B Data Dictionary [27]. In addition, 
we augment the definitions in the data dictionary with the 
number of distinct values of the categorical features. CMS 
provides the NPI, name, and address of the provider in the 
Part B data. We discard this information, since these fields 
are unique identifiers and may hinder a Machine Learning 
model’s ability to generalize. When the labeling process is 
complete, our Part B dataset contains 67,856,547 records, 
with a minority-to-majority class ratio of approximately 
0.0019.

The Part D data are similar to the Part B data. However, 
instead of information on treatments and procedures, the 
Part D data have information on medications that healthcare 
providers prescribe for their patients. There is one record in 
the Part D data for every combination of provider, year, and 
medication. Medications are identified by brand name and 
generic name. We use these as categorical features. Simi-
lar to the Part B data, the Part D data also contain NPIs, 

Table 2  Features of the Part B dataset

Feature name Description

Rndrng_Prvdr_Crdntls The referring provider’s credentials [example: MD]; categorical, 23,672 distinct values
Rndrng_Prvdr_Gndr The referring provider’s gender; categorical, three distinct values
Rndrng_Prvdr_Ent_Cd Type of entity [individual or organization] reported in NPPES; categorical, 2 distinct values
Rndrng_Prvdr_Type Derived from the Medicare provider/supplier specialty code reported on all of the NPI’s Part B non-

institutional claims (DMEPOS and non-DMEPOS); categorical, 204 distinct values
Rndrng_Prvdr_Mdcr_Prtcptg_Ind Identifies whether the provider participates in Medicare and/or accepts assignment of Medicare allowed 

amounts; categorical two distinct values
HCPCS_Cd HCPCS code used to identify the specific medical service furnished by the provider; categorical 7738 

distinct values
HCPCS_Desc Description of the HCPCS code for the specific medical service furnished by the provider; categorical, 8252 

distinct values
HCPCS_Drug_Ind Identifies whether the HCPCS code for the specific service furnished by the provider is a HCPCS listed on 

the Medicare Part B Drug Average Sales Price (ASP) File; categorical, two distinct values
Place_Of_Srvc Identifies whether the place of service submitted on the claims is a facility (value of “F”) or non-facility 

(value of “O”); categorical two distinct values
Tot_Benes Number of distinct Medicare beneficiaries receiving the service for each Rndrng_NPI, HCPCS_Cd, and 

Place_Of_Srvc
Tot_Srvcs Number of services provided; note that the metrics used to count the number provided can vary from service 

to service
Tot_Bene_Day_Srvcs Number of distinct Medicare beneficiary/per day services
Avg_Sbmtd_Chrg Average of the charges that the provider submitted for the service
Avg_Mdcr_Alowd_Amt Average of the Medicare allowed amount for the service
Avg_Mdcr_Pymt_Amt Average amount that Medicare paid after deductible and coinsurance amounts have been deducted for the 

line item service
Avg_Mdcr_Stdzd_Amt Average amount that Medicare paid after beneficiary deductible and coinsurance amounts have been 

deducted for the line item service and after standardization of the Medicare payment has been applied

1 http:// archi ve. org/ web.

http://archive.org/web


 SN Computer Science           (2023) 4:462   462  Page 6 of 14

SN Computer Science

names, and addresses of providers, which we discard to aid 
our models’ generalization. We list the fields in the Part D 
data that we use as features in Table 3. The definitions of 
the features are from the CMS Part D Data Dictionary [28]. 
Once we have completed labeling the Part D data, we have a 
dataset with 173,677,665 records. The minority-to-majority 
class ratio of the dataset is approximately 0.0039.

Algorithms

Our study concerns tree-based algorithms only. Moreover, 
the focus of our study is on the impact of maximum tree 
depth and RUS on the classifier’s ability to execute Medicare 
fraud detection. We employ publicly available open-source 
classifiers. This enables easily reproducible results, since 
the software we use in our experiments is readily available. 
As we stated in the introduction, the classifiers we use in 
this study are: CatBoost, XGBoost, ET, and Random Forest. 
All of these classifiers are implementations of ensemble 
techniques that leverage collections of decision trees.

Of the four classifiers, Random Forest is the simplest. It 
leverages a technique known as Bagging. Breiman coined 
the term Bagging in a study published in 1996 [29]. One 
may apply Bagging to both classification and regression 
tasks. Since our study involves classification, we focus on 
how bagging may be applied for classification. Bagging 
relies on a sampling technique known as bootstrap sampling. 
A bootstrap sample is a sample taken with replacement. To 
apply Bagging, one trains an ensemble of the same classifi-
ers on different bootstrap samples of the training data. After 
the classifiers are trained, one may use them for classifica-
tion. Bagging specifies that we treat the classifiers’ output 
as votes for the classification outcome. The class assigned 
to an instance is the class that the majority of the mem-
bers of the ensemble assign the instance to. Some informal 
reasoning about the probability of a correct result explains 
the appeal of Bagging. Suppose the probability of a correct 

classification of one of the learners is greater than one half. 
Then, as the size of the ensemble of learners increases, the 
probability that more than half of the learners will agree on 
the correct class of an instance will increase in proportion 
with the size of the ensemble.

In 2001, Breiman published the seminal work on Random 
Forest, a study where the Bagging technique is applied to 
ensembles of decision trees [9]. Moreover, Random Forest 
has an important feature that is separate from the Bagging 
technique, and applies to the decision trees that constitute 
a Random Forest ensemble. The feature has to do with the 
decision tree split-finding process that is executed when the 
decision trees are trained on the bootstrap samples. A split 
in a decision tree is the value used in a node of a decision 
tree to decide which edge to traverse out of the node. Split 
finding is the process of finding the best value to compare 
a feature of an instance to, to select the correct edge to 
follow in the decision tree. Random Forest’s innovation to 
split finding is in the initial selection of the feature to use 
for comparison. Random Forest randomly samples from 
a subset of the features in a dataset as a means to select 
the feature for comparison. Recently, a Random Forest 
implementation for Graphics Processing Units (GPUs) 
became publicly available.2 We utilize this implementation 
of Random Forest, since it has a much lower training time 
relative to other Random Forest implementations.

ET is a classifier that is closely related to Random Forest. 
Geurts et al. published the seminal work on ET in 2006 [10]. 
ET functions similarly to Random Forest, with one key 
difference: splits in decision trees are selected randomly. In 
the other three classifiers we use, splits in decision trees are 
selected systematically. The motivation for random selection 
of splits is that it can be faster than an optimization technique 
for calculating the best value for a split. Our results show 
that this technique of randomly selecting values to use for 

Table 3  Features of the Part D dataset

Feature name Description

Prscrbr_Type Derived from the Medicare provider/supplier specialty code; categorical, 249 distinct values
Prscrbr_Type_Src Source of the Medicare provider/supplier specialty code; categorical, 2 distinct values
Brnd_Name Brand name (trademarked name) of the drug filled; categorical, 3907 distinct values
Gnrc_Name A term referring to the chemical ingredient of a drug rather than the trademarked brand name 

under which the drug is sold; categorical, 2272 distinct values
Tot_Clms The number of Medicare Part D claims
Tot_30day_Fills The aggregate number of Medicare Part D standardized 30-day fills
Tot_Day_Suply The aggregate number of day’s supply for which this drug was dispensed
Tot_Drug_Cst The aggregate drug cost paid for all associated claims
Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one claim for the drug

2 https:// docs. rapids. ai/ api/ cuml/ stable/ api. html# random- forest.

https://docs.rapids.ai/api/cuml/stable/api.html#random-forest
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splits may yield results that are similar to, or better than 
the other classifiers that use more sophisticated split-finding 
techniques.

In contrast to the bagging technique that ET and Random 
Forest apply, CatBoost and XGBoost are gradient boosted 
machines (GBMs). For an additional study comparing 
CatBoost and XGBoost’s performance in the classification of 
imbalanced Big Data; please see [30]. Friedman introduced 
the concept of GBMs in 2001 [31]. Like Bagging-based 
classifiers, GBMs are ensembles of learners. However, the 
ensembles are formed differently in the two techniques. 
GBM ensembles are formed iteratively. We start with 
a single learner, which yields a set of estimates ŷ of the 
target y . Therefore, we may define a vector of residual 
values e = L(y, ŷ) , where L is a loss function. The next step 
in forming the ensemble is then to add a learner that uses 
the training data to estimate the vector e . We then use a 
combination of the output of the first two learners to find 
a new vector of estimates, which is closer to the vector of 
target values, that yields a new vector of residuals, with 
which we can apply the same process to add a third learner to 
the ensemble, and so on until we detect overfitting or reach a 
pre-determined number of iterations. This iterative process 
to form an ensemble of learners characterizes GBMs.

Chronologically, XGBoost was introduced before 
CatBoost. Chen and Guestrin published the initial work 
on XGBoost in 2016 [8]. In their study, Chen and Guestrin 
describe XGBoost as having enhancements to GBMs 
that make it an attractive candidate for Machine Learning 
applications. They explain that the enhancements in 
XGBoost provide scalability. In the context of their paper, 
scalability means that XGBoost operates efficiently on large 
datasets. They go on to explain that XGBoost achieves 
scalability through five techniques: sparsity awareness, 
approximate tree learning, effective cache access, data 
compression, and sharding. Sparsity awareness refers to a 
capability built into XGBoost that enables XGBoost to detect 
when data have mostly a constant value interspersed with 
anomalies, and to more quickly determine values for splits 
in decision trees when this condition in the data is detected. 
Approximate Tree Learning is Chen and Guestrin’s name 
for the implementation of their weighted quantile sketch 
algorithm, which is another technique XGBoost employs 
for efficiently determining decision tree splits. Cache-
awareness refers to a data storage and retrieval strategy, built 
in to XGBoost, that optimizes CPU cache utilization. Data 
compression is another strategy for efficiently using system 
resources that XGBoost employs to achieve scalability. 
Compressed data can be read from a disk and decompressed 
in less time than the same data in its uncompressed form can 
be read from disk. XGBoost leverages this fact to handle 
processing datasets more efficiently. The final enhancement 

XGBoost adds to GBMs is data sharding. During model 
fitting, XGBoost generates intermediate data, and stores the 
data in blocks, which may then be distributed in separate 
storage media, so that input/output operations on the data are 
executed in parallel. We can attest to Chen and Guestrin’s 
claims about the scalability of XGBoost, since we are able to 
use it to efficiently classify the Part B and Part D Big Data.

CatBoost is the fourth classifier we use in our study. Like 
XGBoost, the authors of the seminal work on CatBoost, 
Prokhorenkova et  al., introduce CatBoost as a GBM 
implementation with enhancements. For an extensive survey 
of CatBoost’s applications, please see [32]. However, the 
enhancements they design for CatBoost are focused on 
preventing overfitting in two ways. The first way CatBoost 
guards against overfitting is with the Ordered Boosting 
technique. Ordered Boosting is a method for selecting 
samples for training and evaluating trees to prevent 
overfitting. In Ordered Boosting, a set of candidate trees are 
trained on distinct samples of the training data. CatBoost 
then selects the best candidate based on its ability to estimate 
the independent variable from a sample of the training data 
that is not used to train any of the candidate trees. This is how 
Ordered Boosting protects against overfitting. The second 
precaution against overfitting that CatBoost offers is Ordered 
Target Statistics. Ordered Target statistics is a technique for 
encoding categorical features that is conceptually similar to 
Ordered Boosting, due to its emphasis on sample selection. 
In the Ordered Target Statistics encoding technique, the 
encoded value of a categorical feature is computed from 
the target (dependent variable) value that it co-occurs with. 
However, it is not permitted to use the target value from 
the same instance the categorical feature appears with. This 
prevents the encoded value from directly depending on the 
target value of the instance. Prokhorenkova et al. define 
this type of dependence as “target leakage”. Target leakage 
is similar to the overfitting that can occur when a model 
memorizes output values associated with unique identifiers, 
and therefore fails to generalize.

Methodology

We use the Machine Learning algorithms discussed in the 
previous section to perform the experiments on the Part 
B and Part D data we described above. All four of the 
classifiers have implementations as libraries for the Python 
programming language [33]. All the libraries are available 
for download on the Internet, free of cost.

Machine Learning algorithms are stochastic in nature. 
Put another way, they tend to produce different results 
unless initial conditions for learning are kept exactly the 
same. Robust performance under the variance of initial 
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conditions indicates a task that is suitable for Machine 
Learning. Therefore, we execute ten iterations of fivefold 
cross-validation with a recorded sequence of different seeds 
for the random number generators used in our experiments 
to ensure such variance in the initial conditions.

Every round of fivefold cross-validation yields one 
AUC score. Therefore, we collect a total of 50 AUC scores 
over the ten iterations of fivefold cross-validation. This 
provides an ample number of samples for calculating 
summary statistics of the results as well as performing 
statistical tests and analyses.

Just as we have libraries that provide CatBoost, 
XGBoost, Random Forest, and ET, we have a library, 
scikit-learn [34], that facilitates fivefold cross-validation 
and evaluation of the AUC scores. The use of these 
libraries also facilitates the repeatability of our results.

Researchers have many options for encoding categorical 
features. For a domain-specific technique for encoding 
Medicare Big Data, see [35]. In this study, we use 
CatBoost encoding. Readers interested in a comprehensive 
investigation of encoding techniques should explore [36].

Encoding of categorical features and RUS are steps in 
our experiments. The order in which they are performed 
in conjunction with fivefold cross-validation is important. 
In the program for running our experiments, we first 
shuffle and split the data into training and testing subsets. 
We then fit a CatBoost encoder on the training data, to 
encode the categorical features. The CatBoost encoder 
is part of the category-encoders library. After fitting the 
CatBoost encoder to the training data, we then encode the 
categorical features in the training and the test datasets. 
Then, for experiments where RUS is required, we use 
the RandomUnderSampler object from the imblearn 
library to induce a specified class ratio. After encoding, 
and applying RUS to the training data, we fit CatBoost, 
XGBoost, ET, or Random Forest to it. Then, we evaluate 
the fitted classifier’s AUC score on the test data.

One important note for reproducibility is that we use 
GPU implementations of CatBoost, XGBoost, and Random 
Forest. In preliminary experiments, we found these versions 
of the classifiers to process the Part B and Part D data much 
more quickly than their equivalent CPU implementations.

We conduct experiments over a number of combinations 
of classifier, RUS level, and maximum tree depth. Different 
classifiers support different levels of maximum tree depth, 
so it is not possible to test all combinations. The maximum 
tree depth of 6 is the default value of maximum tree depth 
for CatBoost and XGBoost [37, 38]. Initially, we selected 
maximum tree depths values of 6, 16, 24, 32, and 48 to get 
a reasonable spread of maximum tree depth values between 
the lowest default value of maximum tree depth of 6, and 
the largest maximum tree depth we estimated would be 

practical to use with our system, 48. Since we are working 
with large datasets, in the interest of time, we opted not to 
run experiments on maximum tree depths for classifiers if a 
pattern of improving AUC scores was already established. 
Hence, for Random Forest, we executed experiments with 
maximum tree depths of 16, 24, 32, and 48. CatBoost only 
supports maximum tree depth values up to 16, so 6 and 16 
are the only maximum tree depths we use with CatBoost. 
XGBoost supports all the levels of maximum tree depth we 
wish to use. However, we encountered runtime errors due to 
memory limitations for maximum tree depth values beyond 
24. Therefore, our experimental results include maximum tree 
depth values of 6, 16, and 24, for XGBoost. ET has unlimited 
maximum tree depth by default. Therefore, it was only 
necessary to conduct experiments with ET with maximum tree 
depths of 16, 24, and the unlimited, default, maximum tree 
depth settings to establish the pattern that ET’s AUC scores 
improve in proportion with maximum tree depth. Table 4 
contains all the non-default values of hyperparameters that 
we use in our experiments.

Any of the classifiers are compatible with all the levels of 
RUS used in our experiments. We use RUS to induce class 
ratios of 1:1, 1:3, 1:9, 1:27, and 1:81. Therefore, we include 
combinations of classifier, maximum tree depth, and the five 
levels of RUS. The levels of RUS used are the same we used 
in [39]. In addition to the experiments where RUS is applied, 
we also conduct experiments where RUS is not applied to 
determine whether results are better without RUS.

The system we use to run our experiments is a high-
performance computing environment. The environment 
consists of 16 nodes. Each node is equipped with a 16 core 
Intel Xeon CPU, 256 GB RAM, and an Nvidia V100 GPU.

Results

Table 5 contains the results of the initial experiments that we 
conducted with the Part B and Part D data. Our key observa-
tion in the results is that the classifiers with higher maximum 
tree depth yield better performance. In our initial experi-
ments, we used default maximum tree depths for all classi-
fiers. CatBoost and XGBoost both have a default maximum 
tree depth of 6. We see that the AUC scores that CatBoost 
and XGBoost yield are the lowest. ET’s default setting for 
maximum tree depth is unlimited, and we see that it yields 
the highest AUC scores. Furthermore, the Random Forest 
implementation we use has a default maximum tree depth of 
16, and the AUC scores it yields are in between CatBoost’s, 
XGBoost’s, and ET’s. These initial results establish a clear 
pattern that the AUC score is in proportion to the maximum 
tree depth. We sought to confirm the pattern with further 
experiments.
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Due to space limitations, we abbreviate classifier names 
in the results and statistical analysis as follows: CatBoost 
is abbreviated as CB, Random Forest is abbreviated as RF-
GPU, XGBoost is abbreviated as XGB, and Extremely Ran-
domized Trees is abbreviated as ET. When a number follows 
the abbreviation, it indicates the maximum tree depth. For 
example, XGB-16 means XGBoost with a maximum tree 
depth of 16.

Maximum tree depth is a challenging parameter to 
optimize, since increasing it by one allows the learner to 
potentially double the number of nodes in a decision tree, 
and therefore, consume twice as much memory. We ran 
into the same limitations on maximum tree depth with 
both the Part B and Part D datasets. CatBoost builds bal-
anced decision trees. A balanced decision tree is a decision 
tree with the additional requirement that the maximum 
number of nodes are populated on every level before the 
next level may be populated. Therefore, increasing the 
maximum tree depth by one for CatBoost guarantees a 
doubling of memory consumed by the decision trees. 
CatBoost has strict limits on maximum tree depth values, 
and will halt execution when it detects that the user has 

specified a maximum tree depth larger than 16. Hence, we 
provide results for CatBoost with its default maximum tree 
depth of 6 and 16 in Table 6.

We were able to run experiments with XGBoost with 
maximum tree depth as high as 24. We encountered runtime 
errors when attempting to use XGBoost with larger values 
of maximum tree depth.

By default, ET has no limit on maximum tree depth. 
Unlike CatBoost, ET does not build balanced decision trees, 
so the unlimited maximum tree depth does not guarantee a 
huge memory consumption. Since we confirm the trend that 
ET’s performance in terms of AUC increases as maximum 
tree depth increases from 16 to 24, and we have AUC scores 
ET yields with its default maximum tree depth, there is 
sufficient evidence in Table 6 that ET conforms to our thesis 
that increasing maximum tree depth is a highly effective 
method for improving classifiers’ performance in terms of 
AUC for Medicare fraud detection.

Due to the exponential relationship between maximum 
tree depth and memory consumption, we found it necessary 
to seek a mitigating technique. RUS is a natural candidate, 
since it reduces the size of the training data. Therefore, we 
took the best-performing models documented in Table 6, 
and conducted further experiments with RUS. The outcomes 
of those experiments are documented in Table 7. The mean 
AUC scores in Table 7 offer further confirmation that higher 
maximum tree depth, regardless of classifier, correlates with 
higher AUC scores. CatBoost, with the smallest maximum 
tree depth of 16, yields the lowest AUC scores, whereas 
other learners with greater maximum tree depth yield mean 
AUC scores that are much higher. The second important 

Table 4  Changed 
hyperparameter settings

Classifier/hyperparameter Setting Description

CatBoost
task_type GPU Use GPU(s) for execution
Devices 0 GPU device ID
max_ctr_complexity 1 Maximum number of features to combine
max_depth 6, 16 Maximum tree depth
n_estimators 100 Number of trees in ensemble
XGBoost
tree_method gpu_hist Use GPU(s) for execution
gpu_id 0 GPU device ID
n_estimators 100 Number of trees in ensemble
max_depth 6, 16, 24 Maximum tree depth
Random Forest
max_depth 16, 24, 32, or 48 Maximum tree depth
n_streams 8 Number of simultaneous GPU streams 

active during the fit phase
ET
max_depth 16, 24, no limit (default) Maximum tree depth

Table 5  Mean AUC scores (ten iterations of fivefold cross-validation)

Standard deviations are below mean values in parentheses

Dataset CB ET RF-GPU-16 XGB

B 0.8656 0.9812 0.9350 0.9023
(0.0013) (0.0008) (0.0010) (0.0014)

D 0.7323 0.9675 0.8082 0.7563
(0.0009) (0.0004) (0.0009) (0.0007)
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finding apparent in Table 7 is that the level of RUS appears 
to have a small effect on AUC scores for some learners. 
This is appealing, because, for imbalanced datasets, applying 
RUS to applied induce higher class ratios reduces the size of 
the training dataset to a multiple of the size of the minority 
class. In the next section, we conduct statistical analyses to 
determine the level of RUS we can apply to obtain optimal 
performance in terms of AUC.

Statistical Analysis

We perform ANOVA and Tukey HSD tests to get a better 
sense of the impact of maximum tree depth and RUS on 
AUC scores. The outcomes of the tests enable us to make 
informed conclusions on the effect of the factors. Moreover, 
they provide guidelines for future research. We perform 
a total of four analyses. The first two analyses are on 
experimental outcomes for experiments where RUS is not 
applied. We do one analysis for experiments with the Part 
B data, and one analysis for experiments with the Part D 
data. These analyses are on the same data used to populate 
Table 6. We provide two more analyses, for experiments 
involving RUS. Again, the analyses are separated into one 
for experiments involving the Part B Data, and one for 
experiments involving the Part D data. The analyses on the 
outcomes of experiments involving RUS are done on the 
same data used to populate Table 7.

Table 6  Performance of 
classifiers with varying levels 
of maximum tree depth Mean 
in terms of AUC Scores (ten 
iterations of fivefold cross-
validation)

Standard deviations are below mean values in parentheses; blank spaces indicate that classifer/maximum 
tree depth combination is not attempted

Dataset Classifier No limit 6 16 24 32 48

B RF-GPU 0.9350 0.9870 0.9886 0.9864
(0.0010) (0.0007) (0.0005) (0.0008)

B XGB 0.9023 0.9910 0.9944
(0.0014) (0.0004) (0.0003)

B ET 0.9812 0.8149 0.8860
(0.0008) (0.0047) (0.0014)

B CB 0.8656 0.8970
(0.0013) (0.0012)

D RF-GPU 0.8082 0.9520 0.9700 0.9685
(0.0009) (0.0008) (0.0003) (0.0004)

D XGB 0.7563 0.9245 0.9727
(0.0007) (0.0014) (0.0004)

D ET 0.9675 0.6986 0.7223
(0.0004) (0.0012) (0.0018)

D CB 0.7323 0.7485
(0.0009) (0.0008)

Table 7  Mean AUC scores of classifiers with varying maximum tree 
depth and undersampling (ten iterations of fivefold cross-validation)

Standard deviations are below mean values in parentheses

Dataset RF-GPU-32 XGB-24 CB-16 ET

B 0.9886 0.9944 0.8970 0.9812
(0.0005) (0.0003) (0.0012) (0.0008)

B RUS 1:1 0.9753 0.9944 0.9307 0.9932
(0.0004) (0.0003) (0.0009) (0.0004)

B RUS 1:3 0.9840 0.9922 0.9343 0.9932
(0.0004) (0.0003) (0.0009) (0.0004)

B RUS 1:9 0.9885 0.9939 0.9303 0.9926
(0.0004) (0.0003) (0.0010) (0.0004)

B RUS 1:27 0.9905 0.9944 0.9215 0.9909
(0.0004) (0.0003) (0.0013) (0.0004)

B RUS 1:81 0.9907 0.9946 0.9120 0.9876
(0.0005) (0.0003) (0.0010) (0.0005)

D 0.9700 0.9727 0.7485 0.9675
(0.0003) (0.0004) (0.0008) (0.0004)

D RUS 1:1 0.9352 0.9529 0.7717 0.9763
(0.0005) (0.0006) (0.0007) (0.0003)

D RUS 1:3 0.9547 0.9681 0.7713 0.9759
(0.0002) (0.0004) (0.0007) (0.0004)

D RUS 1:9 0.9648 0.9726 0.7657 0.9746
(0.0004) (0.0004) (0.0008) (0.0004)

D RUS 1:27 0.9687 0.9736 0.7589 0.9724
(0.0003) (0.0004) (0.0006) (0.0004)

D RUS 1:81 0.9696 0.9735 0.7533 0.9696
(0.0004) (0.0004) (0.0009) (0.0004)
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Part B Experiments Without RUS: Analysis of Results 
in Terms of AUC 

The first experiments we analyze are the experiments involv-
ing maximum tree depth and the Part B data. To get started, 
we perform an ANOVA test to determine whether maximum 
tree depth has a significant impact on performance in terms 
of AUC for classifying the Part B data. The Pr(>F) or p val-
ues for the F-statistics we calculate in the ANOVA tests are 
practically zero, which indicates that maximum tree depth 
has a statistically significant impact on performance in terms 
of AUC (Table 8).

Since the ANOVA test shows that maximum tree depth 
has a significant impact on performance in terms of AUC, a 
Tukey HSD test will assign the levels of the maximum tree 
depth factor into groups that yield equivalent performance. 
The conclusion we draw from Table 9 is that the larger 
values of maximum tree depth are associated with the best 
AUC scores for classifying the part B data.

Classifier is the second factor in the ANOVA test results 
in Table 8. Since the classifier also has a significant impact 
on performance in terms of AUC, we conduct an HSD test 
to rank classifiers in terms of the AUC scores they yield. We 
report the results of the HSD test in Table 10. We find that 
the most relevant implication of Table 10 is that the classifier 

that accommodates only the lowest maximum tree depth of 
all, CatBoost, is also ranked lowest in the HSD test.

Part D Experiments Without RUS: Analysis of Results 
in Terms of AUC 

We move on to analyze the impact of maximum tree depth 
on the classification of the Part D data. We report the 
results of an ANOVA test to determine the significance 
of maximum tree depth and classifier in Table 11. The 
Pr(>F) values of the F-statistics of the ANOVA tests are 
practically zero. Thus, both classifier and maximum tree 
depth have a significant effect on the classification results.

Since classifier and maximum tree depth also have a 
significant impact on AUC scores when classifying the 
Part D data, we conduct HSD tests to rank these factors. 
Table 12 contains the results of an HSD test to rank levels 
of maximum tree depth in accordance with their impacts 
on AUC scores. Interestingly, the groups that the HSD 
test determines for the Part D experiments are the same 
as the groups that the HSD test determines for the Part B 
experiments. Therefore, we draw the same conclusion that 
performance in terms of AUC is positively correlated with 
maximum tree depth.

Since the p value of the F-statistic for the classifier 
value in the ANOVA test results in Table 11 is practically 
0, we conduct an HSD test to rank classifiers in terms of 
their impact on AUC scores. The results of the HSD test 
for the Part D data in Table 13 are also the same as the 
results of the HSD test for the Part B data in Table 10. 
Therefore, the result aligns with the previous findings, for 
classifying the Part D data. The classifier that yields the 
lowest AUPRC scores is also the one that allows the lowest 
possible maximum tree depth.

Part B RUS Experiments: Analysis of Results in Terms 
of AUC 

As mentioned previously, increasing maximum tree depth 
has an exponential relationship with potential resource 
consumption. Therefore, a technique for mitigating the 
resource consumption is attractive. Since applying RUS 

Table 8  ANOVA for depth and classifier as factors of performance in 
terms of AUC 

*Value is less than 1 × 10

−15

Df Sum Sq Mean Sq F value Pr(>F)

Depth 5 0.84 0.17 1206.27 *
Classifier 3 1.14 0.38 2733.87 *
Residuals 591 0.08 0.00

Table 9  HSD test groupings after ANOVA of AUC for the depth factor

Group a consists of: 32, 48, no limit
Group b consists of: 24
Group c consists of: 16
Group d consists of: 6

Table 10  HSD test groupings after ANOVA of AUC for the classifier 
factor

Group a consists of: RF-GPU
Group b consists of: XGB
Group c consists of: ET
Group d consists of: CB

Table 11  ANOVA for depth and classifier as factors of performance 
in terms of AUC 

*Value is less than 1 × 10

−15

Df Sum Sq Mean Sq F value Pr(>F)

Depth 5 3.99 0.80 1004.47 *
Classifier 3 2.90 0.97 1215.38 *
Residuals 591 0.47 0.00
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shrinks the size of the training data for imbalanced data-
sets, it is a natural candidate for a way to combat increased 
resource consumption due to increased maximum tree 
depth. However, one should be cognizant of any trade-
off of performance in terms of AUC for the decreased 
resource consumption that RUS affords. Therefore, we 
conduct a statistical analysis to determine whether RUS 
has a significant impact on performance in terms of AUC. 
We analyze results for the classifiers and maximum tree 
depth levels that yield the best performance in terms of 
AUC that we identify in the previous sections. The first 
analysis we conduct is an ANOVA test for the effect of 
RUS and classifier on Medicare fraud detection in the Part 
B data. The Pr(>F) values reported in Table 14 indicate 
that both classifier and level of RUS have a significant 
impact on AUC scores.

Since RUS has a significant effect on classification of the 
Part B data, an HSD test will tell us which levels of the RUS 
factor are associated with the highest AUC scores. In this 
case, we see the 1:9 and 1:3 class ratios listed in Table 15 
yield the highest AUC scores. This is good news, since it 
means we can apply RUS to obtain smaller training data, and 
maintain strong performance in terms of AUC.

Next, we proceed with an HSD test to rank classifiers 
across all levels of RUS. In Table 16, we find that XGBoost 

with a maximum tree depth of 24 yields the best perfor-
mance. Furthermore, the results in Table 16 indicate the 
classifier that permits the lowest maximum tree depth is 
associated with the lowest AUC scores as we vary levels 
of RUS.

Part D RUS Experiments: Analysis of Results in Terms 
of AUC 

We do a similar analysis on the effect of classifier and RUS 
on AUC scores for classifying the part D data. Table 17 con-
tains the results of an ANOVA test where classifier and RUS 
are treated as factors. The Pr(>F) values indicate that both 
factors have a significant impact on classifying the Part D 
data.

The HSD results in Table 18 indicate that RUS applied 
to induce a class ratio of 1:9 yields the best AUC scores to 
classify the Part D data. These results are similar to those for 
classifying the Part B data; only now the 1:3 class ratio has 
moved to the group that yields the second-best performance.

We conduct a second HSD test for the classifier factor’s 
effect on AUC scores. The outcome of the test is reported in 
Table 19. For the Part D data, the result for the group that 
yields the lowest AUC scores is the same as for the Part B 
data. However, the best-performing classifier is different. 
Here, we find that, across all levels of RUS, ET is associated 
with the best performance.

Conclusions

The first conclusion we would like to mention involves 
CatBoost. We were not able to increase the maximum 
tree depth of the decision trees in the CatBoost classifier 
beyond 16. This is a much lower maximum tree depth 
than the other classifiers permit. However, CatBoost plays 
another important role in our experiments. We use CatBoost 
encoding to encode the categorical features in the Part B 
and Part D datasets. Given the strength of the results, we 
feel that future work to ascertain CatBoost’s contribution to 
the results is appropriate. This can be determined by further 
experiments including different techniques for encoding 
categorical features.

Our experimental results and statistical analyses reveal 
some facts about Medicare fraud detection in the latest, pub-
licly available Part B and Part D data. These findings are a 
contribution, since they pertain to new data. The first impor-
tant finding is the effect of maximum tree depth on AUC 
scores. Our results show that maximum tree depth is posi-
tively correlated with AUC scores. The second noteworthy 

Table 12  HSD test groupings after ANOVA of AUC for the depth 
factor

Group a consists of: 32, 48, no limit
Group b consists of: 24
Group c consists of: 16
Group d consists of: 6

Table 13  HSD test groupings after ANOVA of AUC for the classifier 
factor

Group a consists of: RF-GPU
Group b consists of: XGB
Group c consists of: ET
Group d consists of: CB

Table 14  ANOVA for RUS and classifier as factors of performance in 
terms of AUC 

*Value is less than 1 × 10

−15

Df Sum Sq Mean Sq F value Pr(>F)

RUS 5 0.02 0.00 81.75 *
Classifier 3 1.08 0.36 8796.68 *
Residuals 1191 0.05 0.00
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result of our study is that one may employ learners with 
higher maximum tree depth values, and apply RUS to induce 
class ratios to build models that outperform models trained 
on the full dataset, in terms of AUC scores. This is good 
news for researchers experimenting with the Part B and 
Part D datasets. Fewer training instances, which translate to 
shorter model training time, can be used to get results simi-
lar to, or better than results obtained with the full Part B or 

Part D datasets. For classifying the Part B data, we find that 
models trained on data with RUS applied to make the class 
ratio 1:3 yield the best performance. Similarly, for the Part 
D data, we find models trained on data with RUS applied to 
induce the 1:9 class ratio yield the best performance. Since 
both the Part B and Part D datasets are large and imbalanced, 
applying RUS reduces the size of the training data by two 
orders of magnitude. The reduction in the size of the train-
ing data mitigates the increased resource consumption that 
is a by-product of increasing maximum tree depth. In future 
work, we plan to extend our analysis to other metrics, such 
as Area Under the Precision–Recall Curve, and other highly 
imbalanced Big Data.
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