
Vol.:(0123456789)

SN Computer Science (2023) 4:450
https://doi.org/10.1007/s42979-023-01836-8

SN Computer Science

ORIGINAL RESEARCH

Towards to Characterization of Network Management Traffic
in OpenStack‑Based Clouds

Adnei W. Donatti1 · Charles C. Miers2 · Guilherme P. Koslovski2 · Maurício A. Pillon2 · Tereza C. M. B. Carvalho1

Received: 30 September 2021 / Accepted: 12 April 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
OpenStack is versatile and popular, allowing full customization for creating private or public IaaS clouds. This work addresses
a network traffic analysis and characterization for the management domain inside OpenStack clouds. We conduct an induced
lifecycle to execute virtual machine (VM)-related tasks, measure the traffic, and identify the services behind the traffic gener-
ated by these operations. Also, we analyze the impact of different images of operating systems (OSs) and VM’s flavor in the
measured traffic. Moreover, we observe that predicting the volume of network traffic from operations, such as creation and
shelving instances of VMs, helps estimate bandwidth boundaries, avoiding bottlenecks, for example.

Keywords OpenStack · Network traffic · Characterization · VM · Virtual machine

Introduction

The network infrastructure is a key element for the cloud’s
performance [13]. When the network is slow, some cloud-
hosted services may be affected too [14]. OpenStack clouds
allow administrators to customize the network configura-
tion. A typical configuration divides the network into three
security domains: public, guest, and management [18]. This
configuration aims to guarantee basic traffic isolation and
security along with the cloud network, which is necessary
for preventing cloud administrative operations from causing
a negative impact on the user’s network performance. For

instance, the process of creating or shelving VMs instances
may cause heavy administrative network traffic, which needs
to be separated from the user domain [9].

Cloud administrators need to plan the cloud infrastruc-
ture correctly to avoid performance problems/bottlenecks.
To cope with the infrastructure planning, OpenStack ena-
bles the customization of the distribution of the services
within the data center. The servers and all service modules
can be placed following the administrator’s objective (e.g.,
high availability, consolidation, and load balancing). In this
context, this paper carries a network traffic analysis and
characterization, which gives insights on how common VM
management tasks (e.g., creating, pausing, and shelving)
may affect the administrative network of an OpenStack-
based cloud. This work stands as an extended version of
[7]. Such a modality of paper brings space for better discuss-
ing fundamental concepts, the experimentation process, and
approaching new experiments. Therefore, we highlight the
contributions of this work to understanding how one could
carry a network traffic characterization in an OpenStack
deployment, which is a crucial step for resource planning in
the cloud. In this extended version, we include a dataset [8]
summarizing the results of our experiments, and we also
investigate the impact of the VM’s flavor on the network
traffic and present.

This paper aims at the lack of information regarding how
user-generated tasks (e.g., creating an instance of VM) may
impact on the most internal network domain of OpenStack.

This work was funding by the National Council for Scientific and
Technological Development (CNPq).

This article is part of the topical collection “Cloud Computing
and Services Science” guest edited by Donald Ferguson, Markus
Helfert, and Claus Pahl.

 * Charles C. Miers
 charles.miers@udesc.br

 Adnei W. Donatti
 adnei.donatti@usp.br

1 Graduate Program in Electrical Engineering,
Escola Politécnica da Universidade de São Paulo,
São Paulo 05508-010, Brazil

2 Graduate Program in Applied Computing, Santa Catarina
State University, Joinville 89219-710, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01836-8&domain=pdf
http://orcid.org/0000-0002-1976-0478

 SN Computer Science (2023) 4:450 450 Page 2 of 19

SN Computer Science

The main contributions of this work are: (i) the characteri-
zation of management network traffic based on VM-task-
related (e.g., creating and shelving); (ii) experimental results
considering multiple OS images and flavors; and (iii) linear
regression to estimate network traffic (useful to cover not
experimented scenarios and for bandwidth management).

This work is organized as follows. “OpenStack infrastruc-
ture” defines the network-related concepts of OpenStack
clouds, and “Related work” discusses the related work.
“Characterization methodology” presents the characteriza-
tion method, while “Experiments and results” details the
testbed, experimentation processes, and results. “Analysis”
discusses the analysis, and “Considerations and future work”
presents our considerations.

OpenStack Infrastructure

OpenStack controls a large pool of computation resources,
acting as an operating system for the cloud [19]. To do so,
OpenStack divides the management services into optional or
core modules. Core modules represent the essential ones for
operating the cloud. For example, the networking function-
alities are held into Neutron module as well as Nova module
holds computing services. Also, these modules interact with
each other atop the data center network [21]. Inter-service
communication is commonly performed through a messag-
ing queue service, but REST requests can also be executed.

The message queuing services are essential for the cloud
to operate in a distributed manner, providing efficient
inter-process communication [20]. OpenStack supports

RabbitMQ, Qpid, and ZeroMQ solutions. ZeroMQ (https://
zeromq. org/) works with direct peer-to-peer communication
through TCP sockets, while RabbitMQ (https:// www. rabbi
tmq. com/) and Qpid (https:// qpid. apache. org/) implement
the Advanced Message Queuing Protocol (AMQP). Tra-
ditional OpenStack deployments use RabbitMQ. Figure 1
exemplifies how different services may interact/communi-
cate to execute VM-related tasks.

The data center (DC) network design and configuration
for OpenStack clouds may change according to the demand
of the cloud administrator. Although there are several ways
to configure a DC network for OpenStack, there are a few
common points, which must be considered. OpenStack
documentation states the division of the network traffic into
security domains: public, guest, and management (Fig. 2)
[17]. Moreover, some of the core OpenStack modules are:

• Horizon (dashboard): used for cloud overview and man-
agement.

• Nova (compute): handles mostly instance-related-tasks,
e.g., initialization, scheduling, and deallocation of VMs;

• Neutron (network): provides network connectivity all
over the cloud;

• Glance (image manager/storage): manages the storage
and retrieval images of VMs and containers;

• Swift (object storage): responsible for the storage and
retrieval of unstructured objects;

• Cinder (block storage): provides persistent block storage
for running instances; and

• Keystone (identity): responsible for authentication and
authorization services.

Fig. 1 Services interaction
related do VM operation

https://zeromq.org/
https://zeromq.org/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://qpid.apache.org/

SN Computer Science (2023) 4:450 Page 3 of 19 450

SN Computer Science

The Public Domain is comprised of the Application
Programming Interface (API) and External networks.
The External network provides Internet access to VMs,
while the API network is used to access OpenStack APIs.
The Guest network is the one inside the Guest Security
Domain, used by VM communication within the cloud
deployment; and the Management Domain is the most
internal security domain reachable only within the data
center. The Management Domain is mainly composed of
the Management network, although it could also include
a Storage network. OpenStack components’ communica-
tion as well as the access to VM images and volumes, for
example, are held over the Management Security Domain.

OpenStack provides users with several VM configu-
ration options. The VM flavor describes the basic set of
specifications about the VM. For example, one can define
the storage volume for the OS, the RAM configuration,
and the number of virtual CPUs. The VM flavor configu-
ration must be carefully thought, considering the OS and
the necessary resources for the machine to properly run.
In turn, flavors can be tailored to CPU-intensive or RAM-
intensive applications. The side effects of an imprecise fla-
vor configuration may not be exclusive of the VM itself, as
the data center network can also be impacted, since storage
services, which will be holding snapshots, for example,
are decoupled from the compute nodes. For example, if
the user requests more disk space than the VM actually

needs, disk-related operations will waste computing and
networking resources.

Related Work

The cloud infrastructure analysis is often seen from the
user’s perspective [1, 2, 4, 25], relinquishing the internal
operations and behavior of the cloud provider. There is a
lack of information regarding how user generated tasks (e.g.,
VM launch) may impact the behavior of the management
network [9]. Besides, cloud performance can be evaluated
by analyzing its behavior while its usage [3].

This paper offers the use of an analysis and characteriza-
tion approach for the understanding of the network traffic
into the provider’s management network regarding VM-
related tasks performed by the user (e.g., creating, stop-
ping, and shelving instances of VMs). This network traffic
understanding helps cloud administrators to better design
all the cloud architecture elements (e.g., network topology
and bandwidth). In this sense, we defined five criteria which
are used to compare this work to the other works in this area
(Table 1).

In work [9], RabbitMQ traffic remained not characterized
and there was a significant amount of miscellaneous (MISC)
network traffic. In our previous work [7], it was shown the
use of linear regression to predict the total network traffic

Fig. 2 Standard OpenStack
networking setup [9]

Cloud
Controller

Node

neutron-server

SQLdb

nova-scheduler

keystone

AMPQ

nova-api

Dashboard

HorizonAPI
�Internet

External

Guest

Management

Network Node

neutron-*-plugin-agent

neutron-L3-agent

neutron-DHCP-agent

neutron-metadata-agent

SDN Service
Node

Compute Node

nova-compute
neutron-plugin-agent

Project Network

PNET1*

VM1
VM2

PNET2*

VM3
VM4

* PNET1 = Project Network 1
* PNET2 = Project Network 2

Table 1 Related work comparison

Criteria [23] [11] [12] [26] [24] [9]

Collect traffic on the OpenStack cloud management network Partially No Yes No Yes Yes
Classify the network traffic regarding the state changes of VMs No No No No Partially Yes
Analyze the collected traffic for identifying which service the pack-

ets are related
No No No No No Partially

Store the characterized traffic into a database N.I N.I No N.I N.I Yes
Identify the timing in which packet was collected (timestamp) Yes N.I No N.I Yes Yes

 SN Computer Science (2023) 4:450 450 Page 4 of 19

SN Computer Science

volume produced by some user tasks for the management
of VMs, as well as the significant amount of MISC (miscel-
laneous) traffic was reduced. In this paper, we focus on an
extended version from [7], better detailing the experimen-
tation process, presenting a new experiment with VM fla-
vors, and deepening fundamental concepts. Finally, among
the related work, [24] is similar to our proposal. However,
the authors focused only on the network traffic generated
by creating and destroying multiple VM instances in geo-
distributed collaborative clouds, without separating traffic
between services, nor do they try to identify the time to
perform operations and the number of calls for each Open-
Stack service.

Characterization Methodology

Traffic and analysis characterization are techniques
employed to understand and solve performance issues in
computer networks [6]. Generally, these techniques involve
two steps: (i) measurement: collection/measurement of data
flowing through the network; and (ii) traffic analysis: to
study the measured data. Analyzing the network traffic is an
important step to identify/classify relevant characteristics,
although it can be limited according to the employed meas-
urement phase. Moreover, measuring traffic may assume
employing tools to capture data traveling across the net-
work (e.g., TCPdump). Depending on how measurement is
performed, it can be classified as Active, as the monitoring
approach impacts on the system being monitored or induces
specific situations, or Passive, in which the monitoring does
not influence the system [28].

Among the classification techniques (port-based, statis-
tical, pattern matching, and protocol decoding) commonly
used to classify internet traffic [5, 10], a port-based approach
fits well when characterizing the OpenStack management
network. Inside the context of the OpenStack management
network, the services running are supposed to use well-
defined ports (e.g., Nova API—compute services—uses port
TCP/8774). The knowledge of these well-defined ports is
also important when defining firewall rules. However, when
deploying a naive port-based approach, the traffic generated
by inter-services communication is masked as RabbitMQ
network traffic (as we conclude from work [9]), since it uses
RabbitMQ’s port (TCP/5672) and not the application port
itself.

To properly address inter-service communication, we
focused on mapping established connections to Rab-
bitMQ. Once we know which services are communicat-
ing over RabbitMQ and what TCP port are they using,
the port-based approach is still valid. Thus, we upgrade
the first employed port-based approach by running lsof
(GNU/Linux list of files) and mapping connections to

RabbitMQ, helping to identify the processes listening to
RabbitMQ during the network traffic collection. Moreover,
we adopted an active measurement of the consumer opera-
tions on a VM instance. Since we found no information
to serve as a baseline for operations on VM instances, we
chose the Active approach and defined the sequence of
operations, called here as induced VM lifecycle.

The induced lifecycle is composed of VM-related
tasks that cause the instance to pass through a set of state
changes. For example, when the user shutoffs a VM, the
operation/task here is STOP, and the resulting state of the
VM is STOPPED. The operations/tasks in the induced life-
cycle are: (1) CREATE; (2) SUSPEND; (3) RESUME;
(4) STOP; and (5) SHELVE. Therefore, the VM instance
is (1) created, and then, its activity is (2) suspended, (3)
resumed, 4 stopped (shutoff), and (5) shelved. The induced
lifecycle starts with the VM instance creation and ends
when the VM is shelved (meaning that it is stored for fur-
ther use). Figure 4 depicts the induced lifecycle as well as
the set of state changes involved in the process.

Tracking the state of a VM in real time is a complicated
task, since it requires the knowledge of three different
information: (i) ongoing tasks; (ii) current situation/status;
and (iii) power (e.g., ON or OFF, RUNNING or SHUT-
DOWN). OpenStack maps ongoing tasks (i) as the TASK_
STATE, indicating what is happening to the VM (e.g.,
SUSPENDING, RESUMING, and DELETING). Also, the
TASK_STATE indicates a state transition, named based on
the action being executed [27]. About the current situation/
status (ii), OpenStack maps as VM_STATE, indicating a
stable non-transition state (e.g., PAUSED, STOPPED, and
SHELVED) [27]. On the other hand, the power (iii) is
mapped as POWER_STATE, reflecting a snapshot of the
hypervisor state, revealing if the machine is still running
and if there was a failure (e.g., RUNNING, SHUTDOWN,
and FAILED).

The VM states depicted in Fig. 3 refer to the VM_
STATE, representing the stable state. OpenStack has a
total of 12 possible VM states [16]. However, by analyzing
the operations of users on our private OpenStack cloud, we
find out the vast majority of our users typically have their
VMs in only 6 states, comprised by the induced lifecycle
(Fig. 4). Moreover, we often use the term VM state to refer
to the VM_STATE (stable non-transition state).

Summarizing Fig. 4:

• 1: Operation CREATE initializes the instance of
VM (the instance goes from state INITIALIZED to
ACTIVE);

• 2: Operation SUSPEND suspends the instance’s activ-
ity (once the operation is done, the VM state goes from
ACTIVE to SUSPENDED);

SN Computer Science (2023) 4:450 Page 5 of 19 450

SN Computer Science

• 3: Operation RESUME starts VM’s activity from where
it stopped (the VM state goes from SUSPENDED back
to ACTIVE);

• 4: Operation STOP performs a shutoff (the VM state goes
from ACTIVE to STOPPED); and

• 5: Operation SHELVE stores the instance for further use
(the VM state goes from STOPPED to SHELVED and,
once the hypervisor releases the VM’s image, the final
state hit is SHELVED_OFFLOADED).

Experiments and Results

In this section, we describe our experimentation method-
ology and results. Essential data are available through the
dataset published on Zenodo [8].

Experiment Setup

CloudLab (https:// www. cloud lab. us/) offers a flexible and
isolated environment for research on cloud computing, and
thus, it was chosen as our testbed for deploying OpenStack,
Stein release. CloudLab provides researchers with 256GB
RAM, and two 2.4 GHz processors servers. The OpenStack
m1.small flavor, composed of 1 vCPU, 2 GB RAM and 20
GB storage, was set as a default flavor. All instances were
interconnected by a 1 Gb/s network link. Figure 5 displays

the deployment setup adopted over a two-node topology
used in the experiments. The two-node topology is enough
to configure and separate (using VLAN) all the network
domains. Since this topology places several modules/ser-
vices running on the controller node, the loopback interface
is also relevant for monitoring.

The experiments are divided into: (i) OS image chang-
ing; and (ii) VM flavor changing. Experiment (i), OS
image changing, tells us how the VM-related tasks behave
(in terms of administrative traffic generated) according to
the running OS in the machine. On the other hand, Experi-
ment (ii), VM flavor changing, tells us whether the flavor
choice itself arouses any network traffic impact. Both experi-
ments use QCOW2-based OS images alongside KVM as
the hypervisor (the default option in the CloudLab environ-
ment). However, adopting any other hypervisor (e.g., Xen),
image file format, or OS image version does not impact the
method or experiments. Nevertheless, on behalf of experi-
ment replication, one should comprehend that using differ-
ent image file formats may slightly change some procedures
in the VM provisioning. Also, the experiments rely upon
VM-related tasks described in the induced lifecycle (CRE-
ATE, SUSPEND, RESUME, STOP, and SHELVE), dis-
cussed in “Characterization methodology” and depicted in
Fig. 4. Basically, Experiment (i) consists in performing the
induced lifecycle against VMs running 10 different OSs, and
Experiment (ii) consists in performing the induced lifecycle

Fig. 3 OpenStack VM’s states
and transitions. DELETED
and ERROR states are allowed
to be reached from any other
states [22]

Fig. 4 Induced VM lifecycle

https://www.cloudlab.us/

 SN Computer Science (2023) 4:450 450 Page 6 of 19

SN Computer Science

against VMs running the same OS but with different flavor
configurations.

Experiment (i), image changing, uses ten different
QCOW2-based OS images for instances of VMs:

• FreeBSD version 12.0, 454 MB image;
• GNU/Linux Fedora Cloud version 31−1.9, 319 MB

image;
• GNU/Linux Fedora Cloud version 32−1.6, 289 MB

image;
• GNU/Linux Ubuntu Server version 18.04 LTS (Bionic

Beaver), 329 MB image;
• MS Windows Server version 2012 R2, 6150 MB image;
• GNU/Linux CirrOS version 0.4.0, 15 MB image;
• GNU/Linux CentOS version 7, 898 MB image;
• GNU/Linux CentOS version 7, 1300 MB image;
• GNU/Linux Debian version 10, 550 MB image; and
• GNU/Linux Ubuntu Server version 20.04 LTS (Focal

Fossa), 519 MB image.

Experiment (ii), flavor changing, runs Ubuntu Bionic Beaver
VMs created in four different flavors:

• m1.small: 1 vCPU, 20 GB Disk, and 2048 MB RAM;
• m1.medium: 2 vCPUs, 40 GB Disk, and 4096 MB RAM;
• m1.large: 4 vCPUs, 80 GB Disk, and 8192 MB RAM;

and
• m1.xlarge: 8 vCPUs, 160 GB Disk, and 16384 MB RAM.

Automation Tools and Experiment Flow

To automate the experiments, we developed the OpenStack
Network Monitor (ONM),1 a tool that helps on measuring
and analyzing the network traffic of OpenStack. ONM is
divided into two main functions: (i) monitoring; and (ii) traf-
fic analysis. It is possible to customize its operation, being
able to fully parameterize the VMs (e.g., image and flavor),
and specify a full set of VM-related tasks to be executed
against the machines (we set the operations from the induced
lifecycle), while the traffic monitoring runs (TCPdump-
based). Moreover, ONM performs an analysis in the cap-
tured traffic, resulting in a database with relevant info about
the traffic (e.g., the service/module and operation generat-
ing the traffic, size, and flow). Our tool also supports work-
ing with VM image cache, although it was not used in the
experiments here described. The scheme in Fig. 6 depicts
the experimentation flow.

ONM implements a module2 that focuses on character-
izing the network traffic from RabbitMQ (“Characterization
methodology” introduces the challenges when characteriz-
ing RabbitMQ traffic). Since a naive port-based approach
does not fit here, ONM also monitors RabbitMQ’s port
(TCP 5672) through lsof. In this way, all the established

Fig. 5 Deployment setup
adopted over two nodes on
CloudLab testbed environment

1 Developed in Python 3.6, combining TCPdump for packet collec-
tion, and OpenStack Python APIs for handling the VMs: github.
com/Adnei/openstack_monitor.
2 Service Identified: github.com/Adnei/service_identi-
fier.

SN Computer Science (2023) 4:450 Page 7 of 19 450

SN Computer Science

Fig. 6 Experimentation flow.
The user informs the manage-
ment network interfaces to
ONM and the tool performs
the induced lifecycle for each
OS image. At the end of the
process, a database is created
holding all the useful info about
the network traffic. The data-
base is used for further study
of the data (e.g., creating tables
and plots)

Traffic Measuring and Analysis

OpenStack Network Monitor tool

Monitoring

User

Analysis Database

1. Identifies the
management network

interfaces

2. Upgrades the
environment (Python libs,

etc).

3. Starts the monitoring in
the management

interfaces

4. Performs the induced
lifecycle and measure the

network traffic

5. Returns the measured
network traffic (.pcap)

6. Starts the analysis of
the captured network

traffic

7. Analyzes the network
traffic (port based, flow...)

8. Persists useful info
about the network traffic

9. Finishes the analysis

Fig. 7 lsof—list open files—Linux command used to map connections established to TCP 5672 (RabbitMQ port)

 SN Computer Science (2023) 4:450 450 Page 8 of 19

SN Computer Science

connections to the RabbitMQ port can be properly mapped,
resulting in an efficient port-based approach. Figure 7 shows
how a default “lsof -i:5672” output looks like. The third col-
umn tells us which service established a connection to the
TCP 5672, and the last column tells us the source TCP port.

Summarizing the experimentation flow from Fig. 6,
we use scripts to identify the management network inter-
faces, configure the environment, and configure ONM to
run against these network interfaces and selected images.
In the sequence, ONM performs the induced lifecycle and
measures network traffic. The measured traffic is returned in
the “.pcap” extension, which is used as input for the traffic
analysis. Once the analysis is done, ONM returns a database
with the relevant information only, such as packet source/
destination, service, and timestamp.

Results

Table 2 brings a summary of data collected for all OSs in
Experiment (i). Observed metrics are: (i) Elapsed time of the
operation execution; (ii): Total network traffic generated by
the operation; and (iii) Total number of API calls identified
on each operation. Each operation (CREATE, SUSPEND,
RESUME, STOP, and SHELVE) was executed 30 times for
each OS image of VM.

It is worthwhile to mention that VM-related tasks are
basically handled at the Compute node, by the hypervisor,
and the VM itself. For example, a SUSPEND operation just
removes the VM out of memory and releases the vCPUs, but
the image file remains on the Compute Node. Also, a STOP
operation, for example, depends on the OS running on the
VM to be performed. Each OS may implement a shutoff
system call in their own way, resulting in the most varying
scenario. Thus, it is common that this kind of operation does
not imply heavy network traffic, since there is no significant
OpenStack participation in handling the operation itself,
other than delegating it to the responsible parts (Compute
node/hypervisor). However, operations, such as CREATE
and SHELVE, rely on the active participation of OpenStack
modules (which will be responsible for holding the VM
image or snapshot), resulting in traffic being captured for
analysis. In other words, the experiments are intended to
measure the participation of OpenStack (in terms of admin-
istrative traffic generated) in the VM-related tasks.

In Table 2, CREATE and SHELVE operations have
the greatest impact on the volume of network traffic. This
happens, because the image needs to be transferred from
Glance, in the Controller Node, to the Compute Node
(Fig. 5). Likewise, in SHELVE, the snapshot taken in Com-
pute Node needs to be transferred back to Glance. Table 2
also shows that the total traffic of CREATE and SHELVE
is not largely spread among the 30 observations (between
0.02% to Windows Server and 2.17% to CirrOS). The rest of

the VM-related tasks (SUSPEND, RESUME, and STOP) do
not imply intensive network traffic, only API calls and local
operations in Compute Node. To focus on the OpenStack
participation, we split up the metrics by OpenStack service.
Table 3 allows us to see the traffic by service, and Table 4
approaches the API calls by service.

Observing Table 4, the number of measured API calls
may vary according to the implementation of the induced
lifecycle and VM configurations, e.g., additional configu-
rations on the network would cause an increased number
of Neutron-API calls. We automated the experiments using
OpenStack Python APIs to handle VM-related tasks, as well
as OpenStack Connection. Compute [15], but one could find
another way to do so. The variation of API calls obtained
was between 1.3% (CentOS) and 12.75% (Ubuntu Bionic
Beaver), although CREATE operation of MS Windows
Server has an Standard Deviation (SD) value a bit higher
when comparing to the others SD values for all the opera-
tions and OS images. The highest SD value, among all oper-
ations, was measured for CirrOS and MS Windows Server in
SUSPEND operation, 36.2% and 34.9%, respectively.

From Table 3, it is evident that Glance, the module
responsible for managing the VM images, represents most
of the network traffic, as well as CREATE operation (for
all images) produces the amount of Glance traffic around
to the image size. For instance, the Glance traffic measured
for CREATE operation using MS Windows Server is around
6615.876 MB, and the image size of MS Windows Server is
6150 MB, confirming the transmission of the image through
the network. Therefore, one can assume the amount of
administrative traffic as the total measured minus the image
size. Proceeding with MS Windows Server CREATE exam-
ple, 6645.582 MB (Table 2) − 6150 MB (image size) =
495.582 MB of administrative network traffic. SHELVE
operation also takes the same logic, although the file trans-
ferred through the network is a snapshot, not an OS image.
The remaining operations do not produce massive network
traffic and run on few seconds.

Figures 8 and 9 provide a complimentary evaluation of
the network behavior during CREATE and SHELVE opera-
tions. Figure 8 shows boxplots for the data flow per second
(MB/s in log10 +1 scale). The boxplot assists in visualizing
how spread the data are by dividing its “body” into four
quartiles (dots represent outliers). For instance, the boxplots
for Cirros and Centos 7 in CREATE operation look symmet-
ric (equal proportions around the median), which means that
it is a normal distribution. However, some identified outliers
suggest peaks in the network traffic, possibly indicating the
time when the image is transferred from one node to another
through the network.

On the other hand, one may observe a positively skewed
distribution by analyzing the boxplots for MS Windows
CREATE and SHELVE (Fig. 8). In this case, the mean is

SN Computer Science (2023) 4:450 Page 9 of 19 450

SN Computer Science

Table 2 Data summary of the
analyzed metrics

Image Operation Total traffic, MB (mean ± sd) Total API calls
(mean ± sd)

Execution
time, s (mean
± sd)

Ubuntu Bionic Beaver CREATE 358.759 ± 1.988 67 ± 2.801 25.433 ± 1.455
Ubuntu Bionic Beaver RESUME 1.821 ± 0.404 13 ± 0.745 4 ± 0
Ubuntu Bionic Beaver SHELVE 1129.658 ± 5.195 85 ± 10.845 37.767 ± 1.695
Ubuntu Bionic Beaver STOP 3.291 ± 0.874 16 ± 2.985 9.8 ± 0.761
Ubuntu Bionic Beaver SUSPEND 2.359 ± 0.773 10 ± 1.717 6 ± 0
Centos 7 (1300 MB) CREATE 1419.955 ± 0.709 100 ± 2.541 48.6 ± 1.776
Centos 7 (1300 MB) RESUME 2.007 ± 0.215 13 ± 0.407 4.1 ± 0.316
Centos 7 (1300 MB) SHELVE 1424.304 ± 0.639 108 ± 1.442 57.2 ± 1.229
Centos 7 (1300 MB) STOP 1.518 ± 0.21 6 ± 0.651 4 ± 0
Centos 7 (1300 MB) SUSPEND 3.232 ± 0.293 13 ± 1.453 8.1 ± 0.316
Centos 7 (898 MB) CREATE 876.562 ± 0.738 79 ± 3.886 33 ± 1.563
Centos 7 (898 MB) RESUME 2.031 ± 0.255 14 ± 0.548 4 ± 0
Centos 7 (898 MB) SHELVE 936.403 ± 0.453 82 ± 3.806 39.8 ± 1.317
Centos 7 (898 MB) STOP 2.556 ± 0.308 11 ± 3.218 6 ± 0
Centos 7 (898 MB) SUSPEND 2.736 ± 0.324 11 ± 2.535 6.3 ± 0.675
Cirros CREATE 25.65 ± 0.559 55 ± 1.94 16.3 ± 0.675
Cirros RESUME 1.998 ± 0.198 14 ± 2.583 4 ± 0
Cirros SHELVE 33.749 ± 0.271 31 ± 2.833 7.2 ± 0.632
Cirros STOP 22.649 ± 0.187 96 ± 0.675 63.2 ± 0.422
Cirros SUSPEND 1.85 ± 0.314 7 ± 2.533 4 ± 0
Debian 10 CREATE 592.787 ± 0.676 78 ± 2.644 32 ± 0.667
Debian 10 RESUME 1.989 ± 0.139 13 ± 1.031 4 ± 0
Debian 10 SHELVE 1539.051 ± 0.808 119 ± 2.062 63 ± 1.563
Debian 10 STOP 2.339 ± 0.509 10 ± 3.059 5.6 ± 0.843
Debian 10 SUSPEND 2.563 ± 0.384 9 ± 0.801 6 ± 0
Fedora 31 CREATE 368.741 ± 2.292 71 ± 5.238 24.633 ± 1.608
Fedora 31 RESUME 1.803 ± 0.405 13 ± 0.838 3.967 ± 0.183
Fedora 31 SHELVE 993.256 ± 3.7 73 ± 9.138 30.033 ± 0.669
Fedora 31 STOP 1.999 ± 0.536 10 ± 2.684 5.767 ± 0.728
Fedora 31 SUSPEND 2.359 ± 0.808 11 ± 2.606 6 ± 0
Fedora 32 CREATE 317.146 ± 0.667 71 ± 2.282 26.4 ± 0.968
Fedora 32 RESUME 1.918 ± 0.311 13 ± 0.89 3.967 ± 0.183
Fedora 32 SHELVE 853.332 ± 0.797 83 ± 4.452 40 ± 1.145
Fedora 32 STOP 2.44 ± 0.372 10 ± 2.683 5.867 ± 0.507
Fedora 32 SUSPEND 3.29 ± 0.251 13 ± 1.437 8.067 ± 0.254
Ubuntu Focal Fossa CREATE 555.52 ± 1.143 75 ± 4.109 28.8 ± 1.229
Ubuntu Focal Fossa RESUME 2.17 ± 0.282 14 ± 1.96 4 ± 0
Ubuntu Focal Fossa SHELVE 1391.565 ± 0.695 118 ± 3.347 61.7 ± 1.947
Ubuntu Focal Fossa STOP 4.318 ± 0.607 17 ± 3.161 10.2 ± 0.632
Ubuntu Focal Fossa SUSPEND 4.317 ± 0.6 17 ± 3.607 10.2 ± 0.632
FreeBSD 12 CREATE 487.157 ± 1.812 66 ± 4.554 23.367 ± 1.991
FreeBSD 12 RESUME 1.675 ± 0.51 13 ± 1.597 4.067 ± 0.365
FreeBSD 12 SHELVE 483.855 ± 1.243 44 ± 3.809 15.533 ± 0.507
FreeBSD 12 STOP 18.031 ± 0.567 97 ± 2.837 62.833 ± 0.379
FreeBSD 12 SUSPEND 1.329 ± 0.419 7 ± 2.139 4 ± 0
MS Windows Server CREATE 6645.582 ± 1.593 163 ± 10.563 94.9 ± 2.771
MS Windows Server RESUME 1.829 ± 0.368 13 ± 1.234 4 ± 0
MS Windows Server SHELVE 6668.887 ± 7.262 230 ± 6.801 137.967 ± 4.03
MS Windows Server STOP 18.084 ± 0.463 98 ± 2.511 62.933 ± 0.254

 SN Computer Science (2023) 4:450 450 Page 10 of 19

SN Computer Science

higher than the median. Also, there is such a frequency of
high values (high data flow in the network) to the point of
eliminating the outliers. Thus, the network is at a high rate
during most of the operation, indicating the process of send-
ing around 6 GB of data corresponding to the OS image.
Additionally, the cumulative distribution provided in Fig. 9
reinforces the growing network traffic during about 45–50%
of the operation.

Figure 9 shows that, for most OSs (apart from MS Win-
dows Server and FreeBSD 12), the network behavior is con-
stant for around 80% of the CREATE operation and 75% of
the SHELVE operation. What happens to FreeBSD 12 is
similar to the previously analyzed scenario on MS Windows
Server. FreeBSD 12 has an execution time for SHELVE of
around 15 s (Table 2). The only OS with a lower execu-
tion time for this operation is Cirros (about 7 s to a 15
MB image). SHELVE operation takes more than 30 s for
all the other OSs, and MS Windows takes about 137 s, for
instance (Table 2). In addition, Fig. 8 shows that FreeBSD
also registers a high frequency of high values (positively
skewed distribution in SHELVE operation). Nevertheless, it
occurs within a shorter period. Figure 9 confirms the analy-
sis, showing constant values during 68% of the operation
(meaning a high data rate during 32% of the execution time
for SHELVE).

We set up a linear regression model to study the rela-
tionship between the size of the image and the total traf-
fic created by the operation. The linear regression model
allows to understand the growth of the network traffic as a
function of the image size. Therefore, the image size rep-
resents the predictor variable for the network traffic, which
is the target/response variable. Figure 10 shows the linear
regression models for operations CREATE and SHELVE,
y = 40.700864 + 1.002707x and y = 425.4478 + 0.9401x ,
respectively. Y stands for the response variable (network
traffic volume) and X stands for the predictor (image size in
MB). We employed nine OS images and one other image to
compare the predicted value by the model to an actual meas-
ured value. The OS image used in the comparison predicted
vs. actual is chosen randomly.

We found good accuracy responses for CREATE opera-
tion (Fig. 10), such as a Min Max Accuracy (MMX) =
93% (approximately) and Mean Absolute Percentage Error
(MAPE) = 7% (approximately). We adopted a confidence
level of 90% ; the identified values of intercept and slope:
40.700864 and 1.002707. Slope coefficients suggests that
there is a strong relationship between image size and

network traffic (Pr value of 4e − 14). Pr shows the prob-
ability of observing extreme values leading to coefficients
of value 0 (called null hypothesis). If Pr is low enough, we
can discard the null hypothesis. Thus, when the value of
Pr is significant, it can be stated the null hypothesis is dis-
carded. Regarding intercept coefficients, the relationship
between image size and network traffic is not so strong
despite still valid (Pr value of 0.0139); strongly significant
R-squared and p value: 0.9998 and 3.997e − 14 ; and resid-
ual standard error of 32.3 MB on 7 degrees of freedom.

Regarding the linear model for SHELVE operation
(Fig. 10), we do not achieve high levels of accuracy:
MMX = 61% and MAPE = 39% . A 90% confidence level
is adopted; we identified intercept and slope values of
425.4478 and 0.9401. Slope coefficients suggest that there
is a strong relationship between image size and network
traffic (Pr value of 1.43e − 06). Intercept coefficients sug-
gests a valid relationship between image size and network
traffic (Pr value of 0.0208). R-squared and p value of
0.9697 and 1.425e − 06 , both significant for the context;
and residual standard error of 366.5 MB on only 7 degrees
of freedom. Overall, both linear models provide a direction
of what to expect from the network traffic volume when
performing CREATE and SHELVE operations. Moreover,
even with satisfactory results for the context, it is evident
that a larger dataset could lead the models to a better sta-
tistical validation.

Another scenario worth investigating is the network traf-
fic generated when the OS image remains the same, but the
VM’s flavor is changed, which is our Experiment (ii). As
mentioned in “OpenStack infrastructure”, the flavor of the
VM specifies a basic set of configurations for the machine.
Therefore, this scenario helps in understanding if the flavor
choice may impact the network traffic volume. Table 5 sum-
marizes the results for Experiment (ii), comparing metrics
Total Traffic (in MB), API Calls, and 10 different QCOW2-
based OS images for instances of VMs: for instances of VMs
created under the flavors m1.small, m1.medium, m1.large,
and m1.xlarge.

From Table 5, it is evident that the traffic volume does
not change according to the flavor itself. However, one could
measure the traffic volume by applying some load for mem-
ory and/or disk to the VM. Applying some load to the VM
would actually make use of the resource allocated by the
flavor and, perhaps, one could see the traffic volume increas-
ing according to the flavor mostly for operation SHELVE.
However, this is outside of the scope of this experiment.

Table 2 (continued) Image Operation Total traffic, MB (mean ± sd) Total API calls
(mean ± sd)

Execution
time, s (mean
± sd)

MS Windows Server SUSPEND 1.24 ± 0.433 6 ± 1.517 4 ± 0

SN Computer Science (2023) 4:450 Page 11 of 19 450

SN Computer Science

Ta
bl

e
3

 T
ra

ffi
c

vo
lu

m
e

(M
B

)/s
er

vi
ce

 (m
ea

n
±

 S
D

)

O
pe

ra
tio

n
Im

ag
e

C
ei

lo
m

-
et

er
C

in
de

r
D

es
ig

na
te

G
la

nc
e

H
ea

t
K

ey
sto

ne
M

ag
nu

m
M

an
ila

M
IS

C
N

eu
tro

n
N

ov
a

R
ab

-
bi

tM
Q

Sa
ha

ra
Tr

ov
e

C
R

EA
TE

U
bu

nt
u

B
io

ni
c

B
ea

ve
r

0.
02

2
±

0.

00
4

0.
00

8
±

0.

00
7

0.
10

5
±

0.

01
2

34
6.

61
 ±

0.

01
0.

07
3

±

0.
08

7
0.

14
 ±

0.

01
6

0.
01

2
±

0.

01
9

0.
00

7
±

0.

00
7

9.
55

2
±

1.

60
5

0.
34

5
±

0.

15
9

1.
11

 ±

0.
19

4
0.

24
9

±

N
A

0
±

 0
.0

01
0.

01
1

±

0.
01

7

C
en

to
s 7

(1

30
0

M
B

)

0.
02

2
±

0.

00
1

0.
01

8
±

0.

01
5

0.
19

5
±

0.

01
6

13
98

.2
95

 ±

0.
09

3
0.

19
 ±

0.

18
6

0.
19

5
±

0.

02
7

0.
16

6
±

0.

34
5

0.
00

6
±

0.

00
5

18
.0

41
 ±

0.

91
9

0.
90

2
±

0.

36
1.

73
9

±

0.
44

9
0.

25
7

±

N
A

0.
00

2
±

0.

00
2

0.
15

8
±

0.

35
1

C
en

to
s

7
(8

98

M
B

)

0.
01

 ±

0.
00

6
0.

14
2

±

0.
00

8
86

0.
56

2
±

0.

12
3

0.
22

3
±

0.

29
8

0.
16

3
±

0.

02
7

0.
24

5
±

0.

47
4

0.
00

6
±

0.

00
7

13
.2

29
 ±

1.

01
5

0.
55

 ±

0.
29

3
1.

36
2

±

0.
23

2
N

A
0.

00
1

±

0.
00

1
0.

04
9

±

0.
05

5

C
irr

os
0.

00
3

±

0.
00

4
0.

06
1

±

0.
00

4
15

.7
84

 ±

0.
00

4
0.

08
4

±

0.
14

2
0.

14
5

±

0.
02

6
0.

03
3

±

0.
04

9
0.

00
1

±

0.
00

2
7.

93
8

±

0.
40

4
0.

43
4

±

0.
27

6
1.

12
9

±

0.
04

0.
00

1
±

0.

00
2

0.
01

5
±

0.

03
1

D
eb

ia
n

10
0.

01
 ±

0.

00
7

0.
13

7
±

0.

01
8

57
5.

64
4

±

0.
00

5
0.

36
2

±

0.
09

5
0.

14
6

±

0.
02

3
0.

03
3

±

0.
04

7
0.

00
4

±

0.
00

4
14

.4
82

 ±

0.
53

7
0.

48
1

±

0.
16

4
1.

36
6

±

0.
35

7
0.

30
5

±

N
A

0.
00

2
±

0.

00
2

0.
06

7
±

0.

06
1

Fe
do

ra
 3

1
0.

02
1

±
 0

0.
00

7
±

0.

00
6

0.
11

6
±

0.

04
8

35
6.

15
9

±

0.
01

7
0.

1
±

0.

12
4

0.
13

7
±

0.

02
7

0.
03

2
±

0.

03
5

0.
06

5
±

0.

14
6

9.
54

7
±

1.

73
4

0.
37

4
±

0.

23
6

1.
02

5
±

0.

20
9

N
A

0.
00

1
±

0.

00
1

0.
02

5
±

0.

03
4

Fe
do

ra
 3

2
0.

02
1

±

0.
00

4
0.

00
9

±

0.
00

9
0.

33
9

±

0.
10

6
30

3.
51

1
±

0.

01
1

0.
09

 ±

0.
12

6
0.

14
1

±

0.
02

3
0.

02
8

±

0.
04

3
0.

00
5

±

0.
00

7
11

.6
 ±

0.

63
8

0.
36

2
±

0.

13
5

0.
98

8
±

0.

23
6

0.
32

1
±

N

A
0.

00
1

±

0.
00

2
0.

04
1

±

0.
04

7
U

bu
nt

u
Fo

ca
l

Fo
ss

a

0.
02

2
±

0.

00
1

0.
00

5
±

0.

00
5

0.
12

7
±

0.

01
4

53
9.

85
7

±

0.
00

3
0.

29
5

±

0.
04

9
0.

15
9

±

0.
03

3
0.

01
8

±

0.
02

3
0.

00
4

±

0.
00

4
13

.4
08

 ±

1.
03

8
0.

44
7

±

0.
17

7
1.

09
4

±

0.
18

5
N

A
0.

08
1

±

0.
06

6

Fr
ee

B
SD

12

0.
02

3
±

0.

00
5

0.
00

8
±

0.

00
5

0.
09

2
±

0.

01
47

6.
31

6
±

0.

00
3

0.
06

 ±

0.
08

0.
15

1
±

0.

03
7

0.
01

9
±

0.

03
0.

00
3

±

0.
00

3
8.

58
 ±

1.

67
3

1.
05

1
±

0.

15
5

0.
82

8
±

0.

15
0.

29
2

±

N
A

0.
01

4
±

0.

02
5

M
S

W
in

-
do

w
s

Se
rv

er

0.
02

2
±

0.

00
1

0.
02

4
±

0.

00
6

0.
45

2
±

0.

11
5

66
15

.8
76

 ±

1.
03

7
0.

23
3

±

0.
17

8
0.

24
3

±

0.
03

3
0.

05
7

±

0.
04

1
0.

01
2

±

0.
00

5
25

.9
8

±

1.
92

7
1.

16
 ±

0.

60
6

1.
42

9
±

1.

00
6

0.
00

4
±

0.

00
6

0.
08

 ±

0.
13

2

SU
S- PE

N
D

U
bu

nt
u

B
io

ni
c

B
ea

ve
r

0.
00

9
±

 0
0.

00
1

±

0.
00

2
0.

02
4

±

0.
00

9
0.

00
3

±

0.
00

2
0.

02
5

±

0.
05

5
0

±
 0

.0
01

0.
00

9
±

0.

01
8

0.
00

3
±

0.

00
2

1.
77

5
±

0.

55
6

0.
03

5
±

0.

04
2

0.
15

6
±

0.

03
4

N
A

0
±

 0
0.

00
9

±

0.
02

3

C
en

to
s 7

(1

30
0

M
B

)

0.
00

5
±

0.

00
6

0.
03

3
±

0.

00
4

0.
04

 ±

0.
09

2
0.

01
2

±

0.
02

0.
00

5
±

0.

00
5

0.
00

4
±

0.

00
4

2.
80

8
±

0.

32
7

0.
12

7
±

0.

11
1

0.
18

5
±

0.

11
9

0.
00

1
±

0.

00
2

0.
01

3
±

0.

03
4

C
en

to
s

7
(8

98

M
B

)

0.
01

1
±

0.

00
7

0.
00

2
±

0.

00
3

0.
02

6
±

0.

00
6

0.
00

8
±

0.

00
5

0.
00

4
±

0.

00
7

0.
08

 ±

0.
07

7
0.

00
2

±

0.
00

3
2.

43
6

±

0.
34

5
0.

05
9

±

0.
02

8
0.

15
3

±

0.
02

1
0

±
 0

0.
00

3
±

0.

00
3

C
irr

os
0.

00
9

±
 0

0.
00

3
±

0.

00
4

0.
01

4
±

0.

00
3

0.
00

1
±

0.

00
1

0.
00

9
±

0.

00
9

0.
01

2
±

0.

01
7

0.
00

2
±

0.

00
1

0.
00

5
±

0.

00
3

1.
59

9
±

0.

28
8

0.
03

 ±

0.
00

8
0.

18
1

±

0.
07

N
A

0.
00

7
±

0.

00
4

 SN Computer Science (2023) 4:450 450 Page 12 of 19

SN Computer Science

Ta
bl

e
3

 (c
on

tin
ue

d)

O
pe

ra
tio

n
Im

ag
e

C
ei

lo
m

-
et

er
C

in
de

r
D

es
ig

na
te

G
la

nc
e

H
ea

t
K

ey
sto

ne
M

ag
nu

m
M

an
ila

M
IS

C
N

eu
tro

n
N

ov
a

R
ab

-
bi

tM
Q

Sa
ha

ra
Tr

ov
e

D
eb

ia
n

10
0.

00
9

±

 0
.0

01
0.

00
3

±

 0
.0

05
0.

02
1

±

0.
00

2
0.

00
2

±

0.
00

2
0.

10
8

±

0.
10

6
0.

00
2

±

 N
A

0.
00

8
 ±

 0
.0

07
0

±
 0

2.
23

7
±

0.

38
0.

07
6

±

0.
12

6
0.

10
4

±

0.
04

5
0

±
 0

0.
00

1
±

0.

00
1

Fe
do

ra
 3

1
0.

00
9

±
 0

0.
00

1
±

0.

00
3

0.
00

1
±

0.

00
1

0.
03

 ±

0.
05

3
0.

01
2

±
 0

0.
01

2
±

0.

02
1

0.
01

3
±

0.

03
7

1.
69

4
±

0.

57
9

0.
03

8
±

0.

04
1

0.
14

5
±

0.

03
4

0.
00

2
±

0.

00
2

Fe
do

ra
 3

2
0.

00
6

±

0.
00

7
0.

10
8

±

0.
03

3
0.

00
4

±

0.
00

5
0.

02
2

±

0.
05

8
0.

00
6

±

0.
01

0.
01

6
±

0.

02
5

0.
00

1
±

0.

00
3

2.
93

7
±

0.

27
7

0.
07

1
±

0.

08
5

0.
11

6
±

0.

07
4

0.
00

1
±

0.

00
1

0.
01

6
±

0.

03
1

U
bu

nt
u

Fo
ca

l
Fo

ss
a

0.
01

1
±

0.

00
7

0.
00

3
±

0.

00
4

0.
04

4
±

0.

01
3

0.
00

3
±

0.

00
3

0.
15

3
±

0.

16
4

0.
00

8
±

0.

01
4

0.
03

6
±

0.

05
3

0.
00

3
±

0.

00
3

3.
81

5
±

0.

51
3

0.
09

7
±

0.

11
9

0.
15

5
±

0.

09
0.

00
2

±

0.
00

2
0.

00
6

±

0.
00

5

Fr
ee

B
SD

12

0.
00

9
±

 0
0.

00
2

±

0.
00

4
0.

01
3

±

0.
00

4
0

±
 0

0.
00

6
±

0.

00
5

0
±

 0
0.

00
2

±

0.
00

2
0.

00
2

±

0.
00

2
1.

05
4

±

0.
42

5
0.

17
4

±

0.
05

3
0.

07
2

±

0.
02

5
0

±
 0

0.
01

 ±

0.
02

1
M

S
W

in
-

do
w

s
Se

rv
er

0.
03

1
±

0.

03
1

0.
00

3
±

0.

00
5

0.
01

9
±

0.

05
0.

00
1

±

0.
00

3
0.

01
6

±

0.
02

5
0.

00
2

±

0.
00

3
1.

03
 ±

0.

42
2

0.
08

5
±

0.

05
0.

06
4

±

0.
01

5
0.

00
4

±

0.
00

8

R
ES

U
M

E
U

bu
nt

u
B

io
ni

c
B

ea
ve

r

0.
00

1
±

0.

00
4

0.
01

4
±

0.

00
5

0.
00

1
±

0.

00
2

0.
03

6
±

0.

06
5

0
±

 0
0.

01
1

±

0.
02

1
1.

46
 ±

0.

39
5

0.
04

1
±

0.

05
7

0.
2

±
 0

.0
41

0.
00

1
±

0.

00
2

0.
01

 ±

0.
02

3

C
en

to
s 7

(1

30
0

M
B

)

0.
00

9
±

0.

01
0.

01
7

±

0.
00

6
0.

08
8

±

0.
12

2
N

A
0.

04
4

±

0.
07

9
0

±
 0

1.
62

6
±

0.

22
0.

05
6

±

0.
02

1
0.

20
7

±

0.
05

5
0.

00
4

±
 0

0.
09

7
±

0.

12
5

C
en

to
s

7
(8

98

M
B

)

0.
00

9
±

0.

00
1

0.
00

3
±

0.

00
5

0.
01

5
±

0.

00
4

0
±

 0
0.

01
4

±

0.
02

2
0.

00
1

±

N
A

0.
09

3
±

0.

10
6

0.
00

2
±

0.

00
3

1.
62

4
±

0.

23
8

0.
09

3
±

0.

10
8

0.
24

1
±

0.

11
0

±
 0

0.
00

4
±

0.

00
5

C
irr

os
0

±
 0

0.
00

1
±

0.

00
1

0.
00

9
±

0.

01
2

N
A

0.
03

2
±

0.

04
6

0.
00

1
±

0.

00
2

1.
73

3
±

0.

18
9

0.
03

2
±

0.

01
7

0.
19

4
±

0.

01
9

0
±

 N
A

0.
00

4
±

0.

00
3

D
eb

ia
n

10
0.

00
9

±
 0

0.
00

4
±

0.

00
4

0.
01

6
±

0.

00
5

0.
00

5
±

0.

00
9

0.
09

3
±

0.

00
3

0.
03

9
±

0.

06
0.

00
6

±

0.
00

2
1.

67
1

±

0.
14

7
0.

05
2

±

0.
02

5
0.

12
8

±

0.
04

6
0.

00
1

±

0.
00

2
0.

00
8

±

0.
00

6
Fe

do
ra

 3
1

0.
00

3
±

0.

00
4

0.
01

3
±

0.

00
3

0
±

 0
0.

02
3

±

0.
02

7
0.

00
6

±

0.
00

7
0.

01
1

±

0.
02

0.
00

2
±

0.

00
3

1.
38

3
±

0.

39
7

0.
05

1
±

0.

04
7

0.
18

9
±

0.

03
3

0.
00

1
±

0.

00
1

0.
00

1
±

 0

Fe
do

ra
 3

2
0.

10
4

±

0.
03

1
0.

00
2

±

0.
00

4
0.

00
8

±

0.
02

6
0.

01
2

±

0.
01

1
0.

01
2

±

0.
02

6
0.

00
3

±

0.
00

3
1.

64
6

±

0.
28

7
0.

03
3

±

0.
01

8
0.

10
6

±

0.
03

7
0.

00
1

±

0.
00

2
0.

00
4

±

0.
00

5
U

bu
nt

u
Fo

ca
l

Fo
ss

a

0.
00

2
±

0.

00
3

0.
01

3
±

0.

00
5

0.
00

2
±

0.

00
2

0.
1

±

0.
01

3
0.

03
7

±

N
A

0.
03

 ±

0.
04

9
0

±
 N

A
1.

86
3

±

0.
30

9
0.

03
5

±

0.
01

7
0.

12
7

±

0.
08

7
0

±
 N

A
0.

00
3

±

0.
00

3

Fr
ee

B
SD

12

0.
00

2
±

0.

00
4

0.
01

4
±

0.

00
5

0
±

 0
0.

00
8

±

0.
00

7
0.

02
 ±

0.

03
3

0.
00

4
±

0.

00
3

0.
00

1
±

0.

00
2

1.
34

5
±

0.

50
5

0.
20

5
±

0.

05
0.

09
4

±

0.
02

9
0.

00
1

±

0.
00

2
0.

00
4

±

0.
00

6
M

S
W

in
-

do
w

s
Se

rv
er

0.
00

2
±

0.

00
3

0.
03

3
±

0.

03
8

0.
00

2
±

0.

00
4

0.
00

9
±

0.

01
0.

01
3

±

0.
02

1
0.

01
3

±

0.
02

4
0

±
 0

1.
54

5
±

0.

34
5

0.
12

3
±

0.

06
7

0.
1

±
 0

.0
33

0.
00

2
±

0.

00
2

0.
01

3
±

0.

01
6

SN Computer Science (2023) 4:450 Page 13 of 19 450

SN Computer Science

Ta
bl

e
3

 (c
on

tin
ue

d)

O
pe

ra
tio

n
Im

ag
e

C
ei

lo
m

-
et

er
C

in
de

r
D

es
ig

na
te

G
la

nc
e

H
ea

t
K

ey
sto

ne
M

ag
nu

m
M

an
ila

M
IS

C
N

eu
tro

n
N

ov
a

R
ab

-
bi

tM
Q

Sa
ha

ra
Tr

ov
e

ST
O

P
U

bu
nt

u
B

io
ni

c
B

ea
ve

r

0.
00

3
±

0.

00
4

0.
03

9
±

0.

00
4

0.
00

2
±

0.

00
2

0.
01

3
±

0.

01
1

0.
01

6
±

0.

01
8

0.
00

6
±

0.

01
4

0.
00

4
±

0.

00
3

2.
82

3
±

0.

91
0.

05
3

±

0.
02

0.
19

8
±

0.

06
8

0.
00

1
±

0.

00
1

0.
01

4
±

0.

02
6

C
en

to
s 7

(1

30
0

M
B

)

0.
00

9
±

0.

00
1

0.
00

1
±

0.

00
2

0.
01

6
±

0.

00
8

0.
00

1
±

0.

00
1

0.
04

8
±

0.

10
7

N
A

0.
02

1
±

0.

04
0.

00
1

±

0.
00

2
1.

25
3

±

0.
22

9
0.

04
6

±

0.
04

6
0.

14
1

±

0.
05

9
0

±
 0

0.
00

7
±

0.

01

C
en

to
s

7
(8

98

M
B

)

0.
00

9
±

 0
0.

00
4

±

0.
00

4
0.

02
4

±

0.
00

3
0.

00
2

±

0.
00

2
0.

00
8

±

0.
00

5
0.

07
2

±

0.
10

7
0.

00
4

±

0.
00

3
2.

19
5

±

0.
30

6
0.

07
2

±

0.
12

9
0.

19
2

±

0.
09

0.
00

2
±

0.

00
2

C
irr

os
0.

01
1

±
 0

0.
01

4
±

0.

00
5

0.
24

7
±

0.

00
7

0.
02

 ±

0.
00

3
0.

16
 ±

0.

14
4

0.
01

3
±

0.

00
1

0.
08

5
±

0.

04
4

0.
00

7
±

0.

00
4

20
.7

69
 ±

0.

30
1

0.
45

1
±

0.

16
6

0.
79

5
±

0.

10
5

0.
00

4
±

0.

00
1

0.
08

 ±

0.
05

D
eb

ia
n

10
0.

01
1

±

0.
00

7
0

±
 0

0.
02

8
±

0.

02
2

0.
00

2
±

0.

00
2

0.
06

7
±

0.

02
0.

00
9

±

0.
01

4
0.

00
2

±

0.
00

1
0.

00
3

±

0.
00

4
2.

08
6

±

0.
49

0.
02

7
±

0.

01
2

0.
1

±
 0

.0
83

0
±

 0
0.

02
5

±

0.
04

8
Fe

do
ra

 3
1

0.
01

 ±

0.
00

4
0.

00
1

±

0.
00

4
0.

02
1

±

0.
00

5
0.

00
1

±

0.
00

1
0.

04
2

±

0.
06

8
0.

00
9

±

0.
00

9
0.

00
9

±

0.
02

0.
00

1
±

0.

00
2

1.
60

7
±

0.

54
8

0.
03

9
±

0.

04
3

0.
13

8
±

0.

04
7

0.
00

1
±

0.

00
1

0.
01

5
±

0.

02
7

Fe
do

ra
 3

2
0.

00
9

±
 0

0.
00

4
±

0.

00
5

0.
08

5
±

0.

02
7

0.
00

2
±

0.

00
2

0.
03

8
±

0.

09
7

0.
00

7
±

0.

00
7

0.
01

8
±

0.

03
4

2.
16

1
±

0.

36
7

0.
03

2
±

0.

01
2

0.
09

3
±

0.

05
1

0.
00

2
±

0.

00
2

0.
01

5
±

0.

03
4

U
bu

nt
u

Fo
ca

l
Fo

ss
a

0.
01

1
±

0.

00
7

0.
00

4
±

0.

00
4

0.
04

6
±

0.

01
5

0.
00

1
±

0.

00
2

0.
07

4
±

0.

03
5

0.
00

9
±

0.

01
4

0.
00

8
±

0.

00
6

3.
94

 ±

0.
57

4
0.

12
4

±

0.
14

4
0.

09
8

±

0.
03

6
0

±
 0

0.
01

3
±

0.

02
4

Fr
ee

B
SD

12

0.
01

3
±

0.

00
7

0.
01

4
±

0.

00
5

0.
25

8
±

0.

00
9

0.
00

4
±

0.

00
4

0.
1

±

0.
09

9
0.

01
8

±

0.
02

3
0.

02
9

±

0.
03

4
0.

00
7

±

0.
00

3
15

.1
2

±

0.
66

3
1.

93
9

±

0.
18

2
0.

48
2

±

0.
20

5
0.

00
1

±

0.
00

1
0.

05
1

±

0.
04

M
S

W
in

-
do

w
s

Se
rv

er

0.
01

5
±

0.

00
9

0.
01

6
±

0.

00
6

0.
29

3
±

0.

06
7

0.
01

8
±

0.

00
9

0.
16

2
±

0.

12
6

0.
02

4
±

0.

01
8

0.
03

4
±

0.

03
5

0.
00

9
±

0.

00
4

16
.3

08
 ±

0.

77
1

0.
66

4
±

0.

42
6

0.
48

6
±

0.

12
3

0.
00

2
±

0.

00
2

0.
05

4
±

0.

09
6

SH
EL

V
E

U
bu

nt
u

B
io

ni
c

B
ea

ve
r

0.
03

3
±

0.

00
2

0.
01

 ±

0.
00

6
0.

15
1

±

0.
01

1
11

13
.5

57
 ±

0.

08
8

0.
10

5
±

0.

09
9

0.
07

2
±

0.

02
0.

02
4

±

0.
03

2
0.

01
 ±

0.

01
2

11
.6

63
 ±

1.

58
3

0.
30

7
±

0.

14
1

0.
82

4
±

0.

11
4

0.
02

5
±

0.

03
1

C
en

to
s 7

(1

30
0

M
B

)

0.
03

5
±

0.

00
1

0.
02

9
±

0.

02
8

0.
23

3
±

0.

01
4

14
01

.2
11

 ±

0.
56

0.
26

 ±

0.
17

1
0.

06
7

±

0.
01

0.
11

8
±

0.

10
5

0.
00

8
±

0.

00
4

20
.0

3
±

0.

87
4

0.
79

 ±

0.
33

4
1.

42
3

±

0.
53

7
0.

09
8

±

0.
15

1

C
en

to
s

7
(8

98

M
B

)

0.
03

4
±

0.

00
1

0.
01

3
±

0.

01
3

0.
16

9
±

0.

02
1

91
9.

58
1

±

0.
52

7
0.

17
9

±

0.
13

4
0.

08
9

±

0.
01

4
0.

07
7

±

0.
07

5
0.

00
6

±

0.
00

3
14

.8
44

 ±

0.
44

1
0.

46
2

±

0.
24

2
0.

89
8

±

0.
13

3
0.

04
9

±

0.
05

5

C
irr

os
0.

03
3

±

0.
00

1
0.

00
4

±

0.
00

5
0.

02
6

±

0.
00

4
28

.7
21

 ±

0.
02

7
0.

13
8

±

0.
14

0.
05

6
±

0.

00
8

0.
00

3
±

0.

00
1

0.
00

1
±

0.

00
2

4.
08

7
±

0.

34
5

0.
11

8
±

0.

08
2

0.
58

7
±

0.

05
2

0.
00

7
±

0.

00
8

D
eb

ia
n

10
0.

03
3

±

0.
00

2
0.

01
8

±

0.
00

5
0.

26
2

±

0.
02

1
15

12
.1

23
 ±

0.

10
6

0.
61

 ±

0.
13

9
0.

06
2

±

0.
01

1
0.

09
3

±

0.
05

2
0.

00
9

±

0.
00

4
24

.0
48

 ±

0.
65

5
0.

72
8

±

0.
21

4
0.

97
1

±

0.
22

1
0.

00
3

±

0.
00

2
0.

09
 ±

0.

05
4

Fe
do

ra
 3

1
0.

03
3

±

0.
00

1
0.

01
 ±

0.

00
8

0.
14

8
±

0.

06
97

9.
69

6
±

0.

07
1

0.
11

6
±

0.

11
3

0.
06

4
±

0.

01
1

0.
01

4
±

0.

02
3

0.
02

8
±

0.

05
7

9.
80

9
±

1.

64
7

0.
26

9
±

0.

14
3

0.
65

4
±

 0
.1

0.
27

3
±

N

A
0.

00
1

±

0.
00

2
0.

01
4

±

0.
02

3

 SN Computer Science (2023) 4:450 450 Page 14 of 19

SN Computer Science

Ta
bl

e
3

 (c
on

tin
ue

d)

O
pe

ra
tio

n
Im

ag
e

C
ei

lo
m

-
et

er
C

in
de

r
D

es
ig

na
te

G
la

nc
e

H
ea

t
K

ey
sto

ne
M

ag
nu

m
M

an
ila

M
IS

C
N

eu
tro

n
N

ov
a

R
ab

-
bi

tM
Q

Sa
ha

ra
Tr

ov
e

Fe
do

ra
 3

2
0.

03
2

±

0.
00

6
0.

01
5

±

0.
01

3
0.

38
3

±

0.
14

5
83

6.
53

 ±

0.
11

8
0.

17
4

±

0.
16

1
0.

07
 ±

0.

01
9

0.
06

6
±

0.

05
3

0.
00

6
±

0.

00
4

14
.9

59
 ±

0.

75
9

0.
33

9
±

0.

15
9

0.
70

4
±

0.

28
5

0.
26

4
±

N

A
0.

00
2

±

0.
00

2
0.

04
6

±

0.
04

9
U

bu
nt

u
Fo

ca
l

Fo
ss

a

0.
03

3
±

0.

00
2

0.
01

9
±

0.

00
8

0.
26

3
±

0.

01
2

13
65

.0
56

 ±

0.
08

7
0.

42
8

±

0.
12

6
0.

08
1

±

0.
01

8
0.

08
6

±

0.
06

1
0.

00
7

±

0.
00

4
23

.9
64

 ±

0.
84

8
0.

69
7

±

0.
10

8
0.

79
9

±

0.
25

N
A

0.
13

 ±

0.
05

6

Fr
ee

B
SD

12

0.
03

4
±

0.

00
1

0.
00

3
±

0.

00
4

0.
06

2
±

0.

00
5

47
6.

90
8

±

0.
08

4
0.

06
8

±

0.
09

3
0.

05
8

±

0.
01

2
0.

01
8

±

0.
03

0.
00

2
±

0.

00
3

5.
59

8
±

1.

21
4

0.
66

9
±

0.

12
4

0.
43

 ±

0.
12

2
0.

00
1

±

0.
00

1
0.

00
7

±

0.
01

5
M

S
W

in
-

do
w

s
Se

rv
er

0.
03

5
±

0.

00
1

0.
03

2
±

0.

00
4

0.
65

9
±

0.

16
7

64
06

.8
69

 ±

12
08

.7
35

0.
31

9
±

0.

19
9

0.
06

4
±

0.

01
6

0.
09

 ±

0.
03

5
0.

01
8

±

0.
00

4
37

.0
46

 ±

1.
88

5
1.

54
 ±

0.

95
1

22
2.

09
4

±

12
09

.8
65

0.
00

4
±

0.

00
1

0.
11

6
±

0.

19
7

SN Computer Science (2023) 4:450 Page 15 of 19 450

SN Computer Science

Table 4 API calls/service
(mean ± SD)

Operation Image Glance Keystone Neutron Nova

CREATE Ubuntu Bionic Beaver 4 ± 0 9 ± 1.416 41 ± 1.589 14 ± 0.89
Centos 7 (1300 MB) 13 ± 1.252 60 ± 1.494 24 ± 0.816
Centos 7 (898 MB) 11 ± 1.636 47 ± 2.066 18 ± 1.252
Cirros 10 ± 1.265 32 ± 0.85 10 ± 0.675
Debian 10 10 ± 1.033 47 ± 2.348 18 ± 0.699
Fedora 31 10 ± 1.655 41 ± 1.691 14 ± 0.986
Fedora 32 10 ± 1.042 42 ± 1.524 15 ± 0.855
Ubuntu Focal Fossa 13 ± 2.003 43 ± 2.394 16 ± 0.738
FreeBSD 12 11 ± 2.074 39 ± 2.313 13 ± 0.95
MS Windows Server 14 ± 2.141 100 ± 10.785 47 ± 1.502

SUSPEND Ubuntu Bionic Beaver NA 1 ± NA 6 ± 1.143 4 ± 0.484
Centos 7 (1300 MB) 2 ± 0.707 8 ± 0.568 5 ± 0.422
Centos 7 (898 MB) 1 ± NA 8 ± 2.685 4 ± 0.316
Cirros 2 ± NA 5 ± 2.406 3 ± 0.316
Debian 10 1 ± NA 6 ± 0.699 3 ± 0
Fedora 31 1 ± 0 6 ± 1.424 4 ± 0.484
Fedora 32 2 ± 0.707 8 ± 1.39 5 ± 0.379
Ubuntu Focal Fossa 2 ± NA 12 ± 2.908 6 ± 0.675
FreeBSD 12 NA 5 ± 2.132 3 ± 0.183
MS Windows Server 1 ± 0 4 ± 1.455 3 ± 0.254

RESUME Ubuntu Bionic Beaver 1 ± NA 11 ± 0.774 2 ± 0
Centos 7 (1300 MB) NA 11 ± 0.422
Centos 7 (898 MB) 1 ± NA 11 ± 0.316 3 ± 0.316
Cirros NA 12 ± 2.677 2 ± 0
Debian 10 11 ± 0.85 3 ± 0.422
Fedora 31 1 ± 0 11 ± 0.679 3 ± 0.183
Fedora 32 2 ± 0.548 11 ± 0.466
Ubuntu Focal Fossa 3 ± NA 11 ± 0.816 3 ± 0.422
FreeBSD 12 2 ± NA 11 ± 1.57 3 ± 0.254
MS Windows Server 2 ± 0.707 11 ± 0.724 3 ± 0.346

STOP Ubuntu Bionic Beaver 2 ± 0.535 11 ± 2.614 6 ± 0.607
Centos 7 (1300 MB) NA 4 ± 0.632 3 ± 0.316
Centos 7 (898 MB) 8 ± 3.373 4 ± 0.316
Cirros 2 ± 0.447 65 ± 0.422 30 ± 0
Debian 10 2 ± 0.707 6 ± 2.53 3 ± 0.667
Fedora 31 1 ± 0 7 ± 2.811 3 ± 0.403
Fedora 32 7 ± 2.479 3 ± 0.32
Ubuntu Focal Fossa 2 ± 0.707 12 ± 2.983 6 ± 0.483
FreeBSD 12 2 ± 1.166 66 ± 1.213 31 ± 0.669
MS Windows Server 2 ± 1.029 66 ± 1.474 31 ± 0.583

SHELVE Ubuntu Bionic Beaver 10 ± 0.183 6 ± 1.383 46 ± 4.071 19 ± 1.159
Centos 7 (1300 MB) 9 ± 0 6 ± 0.85 66 ± 0.789 27 ± 0.471
Centos 7 (898 MB) 8 ± 1.269 47 ± 3.498 20 ± 0.919
Cirros 5 ± 0.516 14 ± 2.547 4 ± 0.422
Debian 10 6 ± 0.675 74 ± 1.43 31 ± 0.738
Fedora 31 10 ± 0.183 6 ± 1.184 38 ± 3.845 15 ± 0.615
Fedora 32 6 ± 1.599 49 ± 3.83 20 ± 0.964
Ubuntu Focal Fossa 9 ± 0 7 ± 1.524 72 ± 2.716 31 ± 0.738
FreeBSD 12 5 ± 0.968 23 ± 3.358 8 ± 0.479
MS Windows Server 6 ± 0.997 150 ± 4.938 66 ± 2.069

 SN Computer Science (2023) 4:450 450 Page 16 of 19

SN Computer Science

Analysis

Altogether, the experiments are designed to associate the
image’s size with the resultant network traffic for each
operation in the induced lifecycle (Fig. 4). In addition to
that, the experiments also allow us to measure the baseline
management traffic, which considers only the network traf-
fic strictly necessary for OpenStack to handle the operation
requests (excluding tasks such as image transfer through the
network). Therefore, such a method is replicable regardless
of specific characteristics of the OS images, such as the
version. On the other hand, the more images with different
sizes, more accurate the results.

From experiment (ii), we confirm that varying the VM
flavors does not significantly change the resultant traffic by
the operations stated in the induced lifecycle. Such flavors
serve as designs for instances created from them, setting
configuration parameters such as the number of vCPUs,
available RAM, and Disk space. Therefore, such specifi-
cations do not significantly affect the network load. How-
ever, creating a snapshot from a running VM instance with
allocated resources (e.g., memory and disk) could lead to

increased traffic in the network, reflecting the snapshot’s
transmission, which could be investigated in future works.

SUSPEND, RESUME, and STOP operations do not
result in heavy network traffic. These operations mostly
rely on system calls and tasks performed on the hypervisor.
Therefore, the output network traffic depends mainly on the
elapsed time. This can be confirmed in Table 2, since dif-
ferent VMs yield a similar amount of traffic per second. On
the other hand, CREATE and SHELVE operations produce
most significant amount of network traffic. The network
traffic measured was classified according to the service it
belongs to. Also, the inter-service communication traffic,
previously masked as only RabbitMQ traffic, is now mapped
into its respective services using the lsof tool. There is still
a small amount of MISC traffic (Table 3), which is related
to MySQL, since several OpenStack modules were contem-
plated in the classification. Moreover, the number of API
calls depends on how the operations are performed (e.g.,
implementation using Python APIs, CLI). Also, each opera-
tion does not require a constant number of API calls. In fact,
this may vary depending on configurations, such as the num-
ber of network interfaces on the VM instance.

Fig. 8 Box plot of traffic (MB)
per second of each OS image

SN Computer Science (2023) 4:450 Page 17 of 19 450

SN Computer Science

Fig. 9 CDF plot of traffic per
second for each OS image

0.00

0.25

0.50

0.75

1.00

0 100 200 300 0 50 100 150 200
Traffic (MB) Traffic (MB)

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

image
Centos 7 (1300 MB)

Centos 7 (898 MB)

Cirros

Debian 10

Fedora 31

Fedora 32

FreeBSD 12

Ubuntu Bionic Beaver

Ubuntu Focal Fossa

Windows Server

CREATE Operation SHELVE Operation

Fig. 10 Linear regression model for CREATE and SHELVE operations. Image size is the predictor and network traffic is the target/response
variable

 SN Computer Science (2023) 4:450 450 Page 18 of 19

SN Computer Science

Creating or shelving VM instances demands a consid-
erable amount of bandwidth, depending on the size of the
images. Therefore, content caching is a desirable providence
to remain only the management traffic. For instance, such
operations may cause the network to clog up if content
caching is unavailable and the network is not well designed
(e.g., lack of resources, minimal topology). Usually, a con-
tent caching joint with a dedicated storage network is the
preferred approach. However, such means do not exclude
the necessity for resource planning, which avoids under/
over resource-provisioning, providing reliability whenever
content caching is impossible (e.g., first-time creation, VM
instance replica for increased reliability). Therefore, estimat-
ing the resultant traffic for VMs creation and shelving are
still the most viable approach considering resource planning
and network design.

Considerations and Future Work

The present work contributes to a method for character-
izing the network traffic in OpenStack’s management
domain. We perform network monitoring based on some
of the most common operations to VM instances, such
as creating and stopping them. Our data are available

through a summarized dataset published on Zenodo [8].
Additionally, we analyze the impact of such operations on
the network and provide a linear regression to predict the
resultant network load for creating and shelving instances
based on their OS images.

The network traffic characterization allows adminis-
trators to understand certain behaviors and plan resource
allocation. It is especially challenging to characterize the
inter-service communication traffic on OpenStack, since
such an inter-service interaction is masked under Rab-
bitMQ traffic. Thus, this paper also presents an alterna-
tive to identifying and mapping services communicating
over RabbitMQ. Finally, we also point out the possibility
for future work on measuring how a snapshot of a working
VM with allocated and in-use resources could affect the
network traffic and performance.

Acknowledgements The authors would like to thank the support of
FAPESC, and LabP2D/UDESC.

Data availability A summarized dataset was published on Zenodo [8].
Tools were developed in Python 3.6, combining TCPdump for packet
collection, and OpenStack Python APIs for handling the VMs: https://
github. com/ Adnei/ opens tack_ monit or. The tool developed to identify
teh traffic by service is available on: https:// github. com/ Adnei/ servi
ce_ ident ifier.

Table 5 Summary of results for Experiment (ii). The network traffic does not change according to the flavor

Image Operation Total traffic, MB (mean ± sd) API calls (mean ± sd) Execution
time, s (mean
± sd)

Ubuntu Bionic Beaver (m1.small) CREATE 358.003 ± 1.663 67 ± 2.9 25.433 ± 1.455
SUSPEND 2.032 ± 0.586 10 ± 1.464 6 ± 0
RESUME 1.752 ± 0.436 13 ± 0.819 4 ± 0
STOP 3.16 ± 0.968 16 ± 3.066 9.8 ± 0.761
SHELVE 1126.785 ± 1.582 79 ± 5.279 37.767 ± 1.695

Ubuntu Bionic Beaver (m1.medium) CREATE 373.715 ± 1.074 78 ± 4.247 30.7 ± 1.725
SUSPEND 3.182 ± 0.398 13 ± 2.218 8.1 ± 0.305
RESUME 2.047 ± 0.219 14 ± 1.813 4 ± 0
STOP 3.447 ± 0.536 15 ± 3.431 8.567 ± 1.04
SHELVE 1173.608 ± 1.114 103 ± 5.703 52.933 ± 2.196

Ubuntu Bionic Beaver (m1.large) CREATE 368.394 ± 2.163 68 ± 3.256 24.4 ± 1.192
SUSPEND 2.19 ± 0.799 13 ± 3.126 7.867 ± 0.507
RESUME 1.548 ± 0.406 13 ± 1.991 4 ± 0
STOP 1.976 ± 0.873 12 ± 3.178 7.467 ± 1.383
SHELVE 1163.87 ± 1.966 81 ± 5.386 38.433 ± 1.524

Ubuntu Bionic Beaver (m1.xlarge) CREATE 368.903 ± 1.613 67 ± 3.604 24.167 ± 1.289
SUSPEND 2.564 ± 0.77 13 ± 2.091 8 ± 0
RESUME 2.478 ± 0.508 17 ± 2.95 5.967 ± 0.183
STOP 2.756 ± 0.791 13 ± 2.891 7.867 ± 1.042
SHELVE 1172.323 ± 1.356 85 ± 4.241 41 ± 1.174

https://github.com/Adnei/openstack_monitor
https://github.com/Adnei/openstack_monitor
https://github.com/Adnei/service_identifier
https://github.com/Adnei/service_identifier

SN Computer Science (2023) 4:450 Page 19 of 19 450

SN Computer Science

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Aishwarya K, Sankar S. Traffic analysis using hadoop cloud. In:
(ICIIECS), 2015. pp. 1–6. https:// doi. org/ 10. 1109/ ICIIE CS. 2015.
71928 72.

 2. Alenezi M, Almustafa K, Meerja KA. Cloud based sdn and nfv
architectures for iot infrastructure. Egypt Inf J. 2019;20(1):1–10.
https:// doi. org/ 10. 1016/j. eij. 2018. 03. 004.

 3. Bruneo D. A stochastic model to investigate data center perfor-
mance and qos in iaas cloud computing systems. IEEE Trans
Parallel Distrib Syst. 2014;25(3):560–9. https:// doi. org/ 10. 1109/
TPDS. 2013. 67.

 4. Chaudhary R, Aujla GS, Kumar N, Rodrigues JJPC. Opti-
mized big data management across multi-cloud data centers:
Software-defined-network-based analysis. IEEE Commun Mag.
2018;56(2):118–26. https:// doi. org/ 10. 1109/ MCOM. 2018. 17002
11.

 5. Dainotti A, Pescape A, Claffy KC. Issues and future directions in
traffic classification. IEEE Netw. 2012;26(1):35–40.

 6. Dainotti A, Pescape A, Ventre G. A packet-level characteriza-
tion of network traffic. In: 2006 11th International Workshop on
Computer-Aided Modeling, Analysis and Design of Communi-
cation Links and Networks, 2006. pp. 38–45. https:// doi. org/ 10.
1109/ CAMAD. 2006. 16497 16.

 7. Donatti A, Miers C, Koslovski G, Pillon M, Carvalho T. Charac-
terization of network management traffic in openstack based on
virtual machine state changes. In: Proceedings of the 11th Inter-
national Conference on Cloud Computing and Services Science
- CLOSER. INSTICC, SciTePress, 2021. pp. 232–239. https:// doi.
org/ 10. 5220/ 00104 47102 320239.

 8. Donatti AW. Administrative openstack traffic. 2021. https:// doi.
org/ 10. 5281/ zenodo. 57854 94.

 9. Donatti AW, Koslovski GP, Pillon MA, Miers CC. Network traffic
characterization in the control network of openstack based on vir-
tual machines state changes. In: Proc. 10th CLOSER, SciTePress,
2020. pp. 347–354. https:// doi. org/ 10. 5220/ 00094 04203 470354.

 10. Finsterbusch M, Richter C, Rocha E, Muller J, Hanssgen K. A
survey of payload-based traffic classification approaches. IEEE
Comm Surveys Tutor. 2014;16(2):1135–56. https:// doi. org/ 10.
1109/ SURV. 2013. 100613. 00161.

 11. Flittner M, Bauer R. Trex: Tenant-driven network traffic extraction
for sdn-based cloud environments. In: 2017 Fourth International
Conference on Software Defined Systems (SDS), 2017. pp. 48–53.
https:// doi. org/ 10. 1109/ SDS. 2017. 79391 40.

 12. Gustamas RG, Shidik GF. Analysis of network infrastructure per-
formance on cloud computing. In: 2017 International Seminar on
Application for Technology of Information and Communication
(iSemantic), 2017. pp. 169–174. https:// doi. org/ 10. 1109/ ISEMA
NTIC. 2017. 82518 64.

 13. Maswood MMS, Medhi D. Optimal connectivity to cloud data
centers. In: 2017 IEEE 6th International Conference on Cloud
Networking (CloudNet), 2017. pp. 1–6.

 14. OpenStack: What to do when things are running slowly. https://
docs. opens tack. org/ opera tions- guide/ ops- maint enance- slow. html.
Accessed 13 Aug 2020.

 15. OpenStack: Openstack docs: Connection. https:// docs. opens tack.
org/ opens tacks dk/ latest/ user/ conne ction. html, 2018. Accessed 15
Jul 2020.

 16. OpenStack: Provision an instance, 2018. https:// docs. opens tack.
org/ opera tions- guide/ ops- custo mize- provi sion- insta nce. html.

 17. OpenStack: Networking architecture, 2019. https:// docs. opens
tack. org/ secur ity- guide/ netwo rking/ archi tectu re. html.

 18. OpenStack: Openstack documentation. https:// docs. opens tack. org,
2019. Accessed 15 Jul 2020.

 19. OpenStack: What is openstack? 2019. https:// www. opens tack. org/
softw are.

 20. OpenStack: Message queuing. https:// docs. opens tack. org/ secur
ity- guide/ messa ging. html, 2020. Accessed 22 Jul 2020.

 21. OpenStack: Openstack docs: Conceptual architecture. https:// docs.
opens tack. org/ insta ll- guide/ get- start ed- conce ptual- archi tectu re.
html, 2020. Accessed 15 Jul 2020.

 22. OpenStack: Virtual machine states and transitions, 2023. https://
docs. opens tack. org/ nova/ latest/ refer ence/ vm- states. html.

 23. Sankari S, Varalakshmi P, Divya B. Network traffic analysis of
cloud data centre. In: 2015 International Conference on Com-
puting and Communications Technologies (ICCCT), 2015. pp.
408–413. https:// doi. org/ 10. 1109/ ICCCT2. 2015. 72927 85.

 24. Sciammarella T, Couto RS, Rubinstein MG, Campista MEM,
Costa LHMK. Analysis of control traffic in a geo-distributed col-
laborative cloud. In: 2016 5th IEEE Cloudnet, 2016. pp. 224–229.
https:// doi. org/ 10. 1109/ Cloud Net. 2016. 14.

 25. Shete S, Dongre N. Analysis amp; auditing of network traffic in
cloud environment. In: 2017 International Conference on Intel-
ligent Computing and Control Systems (ICICCS), 2017. pp.
97–100.

 26. Venzano D, Michiardi P. A measurement study of data-intensive
network traffic patterns in a private cloud. In: Proc. IEEE/ACM
6th UCC, UCC ’13, IEEE, Washington/DC, USA; 2013. pp.
476–481.

 27. Wiki O. Vmstate. 2014. https:// wiki. opens tack. org/ wiki/ VMSta
te. Accessed 22 Jul 2020.

 28. Williamson C. Internet traffic measurement. IEEE Internet Com-
put. 2001;5(6):70–4. https:// doi. org/ 10. 1109/ 4236. 968834.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/ICIIECS.2015.7192872
https://doi.org/10.1109/ICIIECS.2015.7192872
https://doi.org/10.1016/j.eij.2018.03.004
https://doi.org/10.1109/TPDS.2013.67
https://doi.org/10.1109/TPDS.2013.67
https://doi.org/10.1109/MCOM.2018.1700211
https://doi.org/10.1109/MCOM.2018.1700211
https://doi.org/10.1109/CAMAD.2006.1649716
https://doi.org/10.1109/CAMAD.2006.1649716
https://doi.org/10.5220/0010447102320239
https://doi.org/10.5220/0010447102320239
https://doi.org/10.5281/zenodo.5785494
https://doi.org/10.5281/zenodo.5785494
https://doi.org/10.5220/0009404203470354
https://doi.org/10.1109/SURV.2013.100613.00161
https://doi.org/10.1109/SURV.2013.100613.00161
https://doi.org/10.1109/SDS.2017.7939140
https://doi.org/10.1109/ISEMANTIC.2017.8251864
https://doi.org/10.1109/ISEMANTIC.2017.8251864
https://docs.openstack.org/operations-guide/ops-maintenance-slow.html
https://docs.openstack.org/operations-guide/ops-maintenance-slow.html
https://docs.openstack.org/openstacksdk/latest/user/connection.html
https://docs.openstack.org/openstacksdk/latest/user/connection.html
https://docs.openstack.org/operations-guide/ops-customize-provision-instance.html
https://docs.openstack.org/operations-guide/ops-customize-provision-instance.html
https://docs.openstack.org/security-guide/networking/architecture.html
https://docs.openstack.org/security-guide/networking/architecture.html
https://docs.openstack.org
https://www.openstack.org/software
https://www.openstack.org/software
https://docs.openstack.org/security-guide/messaging.html
https://docs.openstack.org/security-guide/messaging.html
https://docs.openstack.org/install-guide/get-started-conceptual-architecture.html
https://docs.openstack.org/install-guide/get-started-conceptual-architecture.html
https://docs.openstack.org/install-guide/get-started-conceptual-architecture.html
https://docs.openstack.org/nova/latest/reference/vm-states.html
https://docs.openstack.org/nova/latest/reference/vm-states.html
https://doi.org/10.1109/ICCCT2.2015.7292785
https://doi.org/10.1109/CloudNet.2016.14
https://wiki.openstack.org/wiki/VMState
https://wiki.openstack.org/wiki/VMState
https://doi.org/10.1109/4236.968834

	Towards to Characterization of Network Management Traffic in OpenStack-Based Clouds
	Abstract
	Introduction
	OpenStack Infrastructure
	Related Work
	Characterization Methodology
	Experiments and Results
	Experiment Setup
	Automation Tools and Experiment Flow
	Results

	Analysis
	Considerations and Future Work
	Acknowledgements
	References

