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Abstract
Virtual machines (VMs) are used extensively in the cloud. The underlying hypervisors allow hardware resources to be split 
into multiple virtual units which enables server consolidation, fault containment, and resource management. However, VMs 
with traditional architecture introduce heavy overhead and reduce application performance. Containers are becoming popular 
options for running applications, yet such a solution raises security concerns due to weaker isolation than VMs. We are at the 
point of container and traditional virtualization convergence where lightweight hypervisors are implemented and integrated 
into the container ecosystem to maximize the benefits of VM isolation and container performance. However, there has been 
no comprehensive comparison among different convergence architectures. To identify limitations and best-fit use cases, we 
investigate the characteristics of Docker, Kata, gVisor, Firecracker, and QEMU/KVM by measuring the performance of 
disk storage, main memory, CPU, network, system call, and startup time. In addition, we evaluate their performance of run-
ning the Nginx web server and the MySQL database management system. We use QEMU/KVM as an example of running 
traditional VMs, Docker as the standard runc container, and the rest as the representatives of lightweight hypervisors. We 
compare and analyze the benchmark results, discuss the possible implications, explain the trade-off each organization made, 
and elaborate on the pros and cons of each architecture.

Keywords Virtualization performance · runC container  · Lightweight hypervisor · gVisor · Kata · Firecracker

Introduction

The traditional VM architecture exemplified by QEMU/
KVM offers strong isolation [14] since each guest VM 
has its own file system, authentication mechanism and a 
layer of hypervisor sits in between the host, and guest OS, 
which is the only way for the guest VM to communicate 
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with the physical hardware. However, virtualizing hardware 
resources imposes heavy performance overhead [15]. In con-
trast, Docker containers utilize Linux’s built-in features such 
as cgroups to manage resources and namespaces to isolate 
running processes which comes with much less performance 
overhead [11]. Cloud providers have the economic incentive 
to run as many containers as possible on the same host, and 
although containers excel at performance, their isolation is 
generally weaker and they expose a larger attack surface 
[6] compared to VMs. There is a possibility of exploiting 
existing kernel bug to break out of a container onto the 
host and misuse of privilege containers have lead to many 
security incidents. In 2017 alone, 454 vulnerabilities were 
found in the Linux kernel,1 which can be a major risk for 
containerized environments. A recent Kernel vulnerability—
CVE-2020-14386 found in 5.7 kernel release could even 
allow container to escape and gain root privileges. There are 
legitimate concerns from public cloud service providers who 
base their services on containers, since they have no control 
over what kind of applications are running in their cloud.

Several organizations address these security concerns 
by implementing lightweight hypervisors which, when 
used in conjunction with containers, strike a good balance 
between performance and security isolation. Rapid innova-
tion in this area has resulted in several different architectural 
approaches. A comprehensive performance evaluation as 
presented in this paper is important when considering the 
trade-offs of different approaches. We take a detailed look at 
lightweight hypervisors used in containerized environments 
and compares various performance metrics. Our goal is to 
understand the overhead imposed by QEMU/KVM, Docker, 
gVisor, Kata-qemu, and Kata-Firecracker.

This paper makes the following four contributions:

• We provide an extensive comparative performance analy-
sis of QEMU/KVM VM, Docker, gVisor, Kata-qemu, 
and Kata-Firecracker.

• We identify the best-fit use case for practitioners by ana-
lyzing the pros and cons of each architecture in detail.

• We elaborate on the non-obvious limitations of each 
architecture that affect virtualization performance.

• We provide up-to-date reviews on existing container and 
traditional virtualization convergence technologies.

This paper extends our previous work [10] by adding experi-
ments to evaluate the CPU compute performance (NAS 
Parallel Benchmark Suite), memory bandwidth (STREAM 
benchmark), and read/write system call performance. We 
also reconfigured the Kata container environment with the 

newest runtime and redid the experiments. Both the Archi-
tecture and Evaluation sections are rewritten ton include 
more details and in-depth analyses. The Discussion section 
is restructured to provide better insights.

The structure of the paper is organized as follows: 
Sect. “Background” describes the motivation and architec-
ture of each environment. Section “Evaluation” presents our 
evaluation results in two parts:

• Part I—the low-level aspects which cover startup time, 
memory footprint, system call latency, network through-
put, Disk I/O, and CPU performance.

• Part II—the high-level aspects which cover two real-
world applications: Nginx webserver and MySQL data-
base.

Section “Discussion” describes the interpretation of our 
benchmark results, and the pros and cons of each virtualiza-
tion platform. Section “Related Work” reviews related work. 
Section “Conclusion and Future Work” concludes the paper 
and suggests possible future work.

Background

Motivation

With the emergence and adoption of container technology 
and lightweight hypervisors, there is inevitably a trade-off 
between virtualization performance and security isolation. 
For example, gVisor implemented the network stack in user-
space and using Gofer proxy to redirect I/O calls to provide 
better isolation, but imposes heavy I/O performance over-
head. Practitioners face the challenge of making this kind 
of trade-off. Different organizations choose to implement 
their hypervisors according to their specific needs which 
limits generality. Taking Firecracker as an example, it is 
designed to run containers on a stripped down Linux kernel 
[3]. Kata-qemu runs a minimal Clear Linux guest OS on a 
QEMU VM, and containers are launched inside of the guest 
via an agent. In both cases, this leaves no options for run-
ning guests with different kernels or Linux distributions. To 
make good technology choices, it is crucial to understand (1) 
what trade-offs each architecture made and (2) the perfor-
mance characteristics and limitations of each architecture. 
The following subsection presents the overall architectural 
components of each virtualization system and how they are 
connected.

1 https:// www. cvede tails. com/ produ ct/ 47/ Linux- Linux- Kernel. html? 
vendor_ id= 33.

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
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Architecture

QEMU/KVM

QEMU/KVM [4, 8] is an established approach for running 
traditional VMs in the cloud. There are several other open 
source hypervisors available which have their own design 
considerations. For example, KVM is merged into the Linux 
mainline kernel which utilize kernel’s existing scheduler 
and memory manager, whereas Xen builds their own dom0 
kernel and included several CPU schedulers. In our paper, 
we will focus on QEMU/KVM only since Kata-qemu, Fire-
cracker, and gVisor are all the fork of KVM project.

The early generation of x86 hypervisors used the tech-
nique of trap and emulate [18], relying on the mechanism 
of CPU exceptions, such as memory faults. The privileged 
instruction exceptions will be trapped and the control will 
be passed back to the hypervisor. Privileged instructions are 
then emulated by the underlying hypervisor against the guest 
VM state. The performance overhead of this technique is 
costly, since it requires the CPU to run many more cycles to 
execute the trapping and emulation instructions. This per-
formance overhead can be mitigated by the use of binary 
translation [19], which works by translating certain sensi-
tive instructions, so they can run directly without causing 
traps. Further improvement was made by the introduction of 
CPU virtualization extensions in the hardware. Such as Intel 
VT-x and AMD-V [16] which allow the classical trap and 
emulate technique to run more efficiently. KVM is a Linux 
kernel module that interfaces with the hardware virtualiza-
tion extension and reuses the Linux kernel’s existing CPU 
scheduler and memory manager to provide a uniform API.

Intel’s Extended Page Table is used to enable Memory 
Management Unit (MMU) virtualization to avoid the over-
head caused by software managed shadow page tables. 
MMU virtualization is an important milestone for hardware 
assisted virtualization, because the VT-x extensions alone 
could not offer better performance compared to binary trans-
lation [1]. The KVM-userspace side is handled by QEMU 
to serve requests that KVM cannot handle directly, such as 
device emulations (block devices, network card, display, 
etc.) The release of virtio drivers took the Disk and Network 
I/O performance to the next level. Nowadays, virtio drivers 
have become the de facto standard for storage and network 
virtualization. PCI devices with Single Root I/O Virtualiza-
tion (SR-IOV) feature also push the boundaries of network 
virtualization performance.

Docker

Containers utilize Linux built-in features: cgroups which 
allow processes to be organized into hierarchical groups, so 
that various types of resource usage (CPU and memory etc.) 

can be controlled and monitored, and namespaces which 
wrap a particular global system resource in an abstraction 
that makes the processes running inside of this namespace 
appear to own the whole global system resource, changes 
of processes running in different namespaces are invisible 
to other processes. Some of the important Linux names-
paces used by containers include: PID, NET, IPC, MNT, 
UTS, MOUNT, and CGroup. RunC is a low-level command 
line interface (CLI) tool to create and run containers. It cre-
ates the cgroups and namespaces and bind the processes. 
Containerd is a daemon for managing the life-cycle of con-
tainers. Both runC and containerd are used by all of the 
virtualization systems discussed in this paper except for 
QEMU/KVM.

Docker is built on top of runC and containerd. It pro-
vides a rich set of CLI commands to manage containers, 
and a common storage format for container images based 
on the Overlay22 which is a union mount file system for 
Linux to persist data at the writable layer. Btrfs and zfs are 
also supported to enable advanced features such as creating 
snapshots. Logical volume management can also be set up 
using device mapper storage driver.

gVisor

Google’s gVisor3 provides an isolation layer between con-
tainerized applications and the host kernel, which is a feature 
not offered by containers alone. It creates a sandbox to inter-
cept and redirect system calls to a secure userspace kernel. 
Figure 1 shows the high-level architecture of gVisor.

gVisor provides two platforms4 for intercepting system 
calls: ptrace and KVM. The ptrace platform uses the ptrace 
debugger mechanism built into the host kernel to trap sys-
tem calls, whereas the KVM platform uses the Linux KVM 
kernel module to take advantage of hardware virtualization 

seccompKVM or ptrace

Container Sentry (user space
kernel)

Sandbox

runsc

Gofer

User
space

Kernel
space

9P

I/O

Host Kernel

Fig. 1  Architecture of gVisor

2 https:// www. kernel. org/ doc/ Docum entat ion/ files ystems/ overl ayfs. 
txt.
3 https:// gvisor. dev/.
4 https:// gvisor. dev/ docs/ archi tectu re_ guide/ platf orms/.

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://gvisor.dev/
https://gvisor.dev/docs/architecture_guide/platforms/
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support for better performance. gVisor ptrace is important 
for running containers in virtual environments where CPU 
virtualization extensions are not available, such as a public 
cloud environment where nested virtualization is disabled.

The Sentry is the userspace kernel that implements all 
the kernel functionalities required by applications, such as 
system calls, memory management, and page faulting logic. 
The CPU scheduling is, however, handled by the Go-routine 
scheduler. At the time of writing, there are 224 out of 291 
system calls are implemented by Sentry which is sufficient 
for most applications. Effectively, Sentry is playing both the 
role of guest OS and hypervisor. Host system calls invoked 
from Sentry are further filtered using seccomp,5 a kernel 
facility that restricts the system calls that can be invoked by 
applications with a configurable security policy.

File I/O is handled by a separate file proxy process called 
Gofer, which communicates with the Sentry through the 9P 
file system protocol [17]. This allows users to set up a writ-
able temporary file system overlay on top of the entire file 
system, so that the container sandbox is isolated from the 
host file system. Users can also enable read only file sys-
tem sharing between different containers. This allows some 
degree of file space and cache performance optimization.

gVisor implements its own networking stack—netstack, 
which is a component of Sentry. Netstack includes: TCP 
connection state, control messages, and packet assembly 
which are isolated from the host networking stack. Host net-
working pass-through feature is provided to applications that 
require high networking performance. This model of secu-
rity in depth, with its many layers of isolation, also imposes 
some performance overhead especially in the case of ptrace 
due to the significant cost of context switching.

gVisor has been built into Google’s cloud infrastructure 
to provide serverless computing services, such as Google 
App Engine, Cloud Run, and Cloud Functions.

Kata QEMU

Kata containers6 are a collaboration between the Intel Clear 
Linux project7 and hyper.sh8 projects. It is an example of 
a container and virtualization convergence technology that 
allows users to run containers within lightweight VMs. It has 
been seamlessly integrated into the containerd system using 
a shim, named containered-shim-kata-v2.

The virtualization part is based on QEMU/KVM to 
enable hardware assisted virtualization, and a highly opti-
mized guest kernel includes the functionalities to run only 
container workloads. The customized kernel is optimized 
to reduce boot time and memory footprint, and a minimal 
root file system based on Clear Linux reduces attack surface 
significantly by removing many of the binaries commonly 
found in general purpose Linux distributions. The only two 
processes running inside of the VM at startup are Systemd 
and a kata agent. The containerd-shim-kata and kata agent 
communicate across a VSOCK socket.

By default, Kata uses the QEMU/KVM hypervisor.9 
However, Kata allows users to run on different hypervisors: 
Cloud Hypervisor, Firecracker, etc. Figure 2 shows Kata’s 
high-level architecture. Kata allows running multiple con-
tainers in a pod, where a pod is a group of related containers 
which share the same network namespace. Each pod of con-
tainers runs in a separate lightweight VM to provide strong 
isolation.

Kata Firecracker

Amazon’s Firecracker [2] began as a fork of crosvm10 
hypervisor written in Rust which runs VMs through the 
KVM interface with a sandbox around virtual devices to 
enhance security. Firecracker is an alternative to QEMU that 
is lighter weight with minimal attack surface for security 
and only the following six of essential device emulations 
provided: a serial console, a minimal keyboard controller, 
and four virtio devices (virtio-net, virtio-balloon, virtio-
block, and virtio-vsock) to handle network, memory, disk 
I/O, and host/guest communication, respectively. Amazon 
aims at integrating Firecracker into the container ecosystem 
which is again another example of container and traditional 
virtualization convergence technology. Firecracker uses an 

Host Kernel

Kata-qemu or Firecracker

kvm

Custom Kernel

Agent

Pod 1

Custom Kernel

Agent

Pod 1

Conatinerd

Kata Shim V2
VSOCK

VM1 VM2

Fig. 2  Architecture of Kata Containers

5 https:// www. kernel. org/ doc/ html/ v4. 16/ users pace- api/ secco mp_ fil-
ter. html.
6 https:// katac ontai ners. io/.
7 https:// softw are. intel. com/ conte nt/ dam/ devel op/ exter nal/ us/ en/ 
docum ents/ intel- clear- conta iners-2- using- clear- conta iners- with- 
docker- 706454. pdf.
8 https:// github. com/ hyper hq.

9 https:// github. com/ kata- conta iners/ qemu.
10 https:// chrom ium. googl esour ce. com/ chrom iumos/ platf orm/ 
crosvm/.

https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://katacontainers.io/
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-clear-containers-2-using-clear-containers-with-docker-706454.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-clear-containers-2-using-clear-containers-with-docker-706454.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-clear-containers-2-using-clear-containers-with-docker-706454.pdf
https://github.com/hyperhq
https://github.com/kata-containers/qemu
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://chromium.googlesource.com/chromiumos/platform/crosvm/
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emulated block device that can be mounted into the guest 
via Device Mapper.

Our specific focus is to benchmark the performance of 
running Kata containers inside of the Firecracker microVM, 
which requires the configuration of the devmapper snap-
shotter. In essence, the container root file system is a device 
mapper snapshot mounted into Firecracker as an emulated 
virtio-block device. Firecracker also uses seccomp filters to 
limit the system calls it can use, to enhance the security iso-
lation. The Firecracker process needs to be started by a jailer 
process, which configures the required system resources and 
permissions and then executes the Firecracker binary as a 
non-privileged process. Firecracker also provides a cpuset 
subsystem based on Cgroups which allows users to set the 
CPU affinity of microVMs, preventing the host scheduler 
from migrating between vCPUs which may cause resource 
contention.

Evaluation

We first evaluate the low-level aspects of a computing sys-
tem: startup time, memory bandwidth, memory footprint, 
system call latency, network throughput, disk I/O, and CPU 
performance. We then benchmark two common applications, 
Nginx webserver and MySQL database, which serve as real-
istic example workloads. Low-level benchmark metrics serve 
as the fundamental indicator of performance characteristics 
for each system and the high-level benchmark metrics are 
used develop a better understanding of how different hyper-
visors perform in a practical setting environment.

All systems are set up on an x86-64 server with Intel 
Xeon Silver 4208 CPUs. There are two sockets, and each 
socket contains 8 physical cores with hyper-threading ena-
bled which provides a total of 32 logical cores. There are 
32 GB of DDR4 SDRAM spanning across two NUMA 
nodes and the ext4 file system is installed on a 548 GB hard 
disk drive.

Table 1 shows the details of each execution environment. 
We upgraded QEMU to match the version that Kata runt-
ime uses. Kata 2.2.0 is installed for both Kata-qemu and 
Kata-Firecracker Containers, which is significantly different 
from 1.x. Kata 2.x drops the support for Docker. We had to 
use crictl utility to launch pods and containers.

Low‑Level Aspects

CPU Performance

NAS Parallel Benchmark tool is used to stress the CPU with 
the “C class” matrix computation workload. We modified 
the host CPU configuration to avoid thermal variation using 
frequency-set -g performance to maximize and fix the CPU 

clock speed. Four vCPUs are allocated for each container 
and VM. In the case of Docker and gVisor, –cpuset-cpus 
is used to restrict the container process to use only vCPUs 
0,2,4,6 which are physically separate cores on the host. 
Similarly, we use cpuset to pin QEMU/KVM VM to those 
same cores. This setup will prevent the host scheduler from 
migrating processes between vCPUs, thus maximizing cache 
utilization, potentially achieving better performance than the 
default configurations.

Figure 3 shows the average floating point compute per-
formance for calculating different problem sets. Most of 
the platforms show similar benchmark results. One rea-
son is that KVM utilizes the hardware extensions, such as 
VT-x for nearly native performance which explains why 
there is little difference between Docker and KVM-based 
platforms. The other reason is because by default all sys-
tems use Linux kernel’s Complete Fair Scheduler in con-
junction with Cgroups to control CPU resources. gVisor 
is an exception, because the CPU scheduling relies on the 
Go runtime scheduler which is a userspace scheduler runs 
on top of OS kernel’s scheduler, and it may improve the 
throughput of application workload that is highly concur-
rent, such as a web server. In the case of the cg and bt 
problem sets, gVisor even surpassed the performance of 
Docker and Kata-qemu, suggesting that gVisor could be a 
good option for CPU-bound applications.

Memory Bandwidth

We use the STREAM benchmark tool to measure memory 
bandwidth in different systems. Figure 4 shows the memory 
bandwidth performance of vector operations on: COPY, 
SCALE, ADD, and TRIAD. The result is similar to the CPU 
benchmark. All KVM-based platforms have similar memory 
bandwidth, while docker has slightly better performance 
compared to others.

Table 1  Execution environment

Environment Software versions

host OS Ubuntu 20.04.3 LTS, Kernel 5.4.0-84
QEMU 5.2.0 libvirt 6.6.0, Guest Kernel 5.4.0-84
kata_qemu Kata 2.2.0, Guest Kernel 5.10.25-85, QEMU 5.2.0
kata_fc Kata 2.2.0, Guest Kernel 5.10.25-85, Firecracker 

v0.23.1
gVisor gVisor release−20210720.0, Guest Kernel 4.4.0
Docker Docker 20.10.8, containerd v1.5.3, runc, 1.0.0
crictl crictl version 1.20.0-24-g53ad8bb7
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Startup Time

Fast startup time is crucial for container/VM provision-
ing [13], it is extremely important in the case of live 
migrations. We use the time command to measure the 
time from launching a container/VM to the stage of the 
network stack being successfully initialized. We run an 
Ubuntu:focal base image and a bash program inside of 
the container. In the case of QEMU/KVM VM, we placed 
the systemd-analyze time command in the startup 
script to collect the startup time for 100 rounds. Figure 5 
shows the average elapsed time of 100 complete container 
creations. Since the startup time for QEMU/KVM was 
significantly slower, the inaccuracies resulting from the 
virtual clock are negligible.

The startup times varied between approximately 0.7 
and 1.6 s in all container based environments. On average, 
gVisor-kvm and gVisor-ptrace were the fastest, Docker was 
0.13 s slower, Kata-firecracker was 0.37 s slower than that, 
and Kata-qemu was only 0.10 s slower than Kata-firecracker. 
Overall, the startup time of all containers were significantly 
faster than full QEMU/KVM VM which took 8.76 s to fin-
ish booting.

Some important factors that affect start-up time are the 
size of the hypervisor executable, boot sequence, and con-
figuration complexity etc. The time it takes to load these 
binaries and files from disk is directly proportional to its 
size. Docker and gVisor showed much faster startup time 
compared to Kata and QEMU. This is because the former 
two are essentially running two lightweight processes with 
very small images. Kata runs Clear Linux which has a highly 
optimized boot path, it runs only a systemd init daemon and 
the kata agent, then the agent manages the creation of con-
tainers, which takes slightly longer start up times compared 
to Docker and gVisor. It is not surprising that QEMU/KVM 
takes the longest time to start up since the guest kernel image 
is bulky and many other processes need to be initialized.

Memory Footprint

Smaller memory footprint puts less pressure on both RAM 
and the CPU cache, allowing users to create a higher den-
sity of containers, and making more efficient use of sys-
tem resources. We estimate the memory footprint of each 
container running the Ubuntu:focal base image by measur-
ing the size of private dirty pages of related processes. We 
launched 100 containers in total and calculated the aver-
age size of private dirty pages. We chose private page size, 
because it is the closest approximation of the actual memory 
usage for each process as the number of containers scale to 

Fig. 3  CPU throughput (NPB-OMP)

Fig. 4  Memory bandwidth (STREAM)

Fig. 5  Startup time
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infinity. We allocated 2 GB of memory for each QEMU/
KVM VM, which is the minimal size the guest can boot a 
full ubuntu image successfully. In case of Kata-qemu and 
Kata-Firecracker, we used the default configuration which 
allocates 2 GB of memory for each VM.

As Fig. 6 indicates, Docker has the smallest footprint, 
which is to be expected, because there is no additional 
hypervisor. A Docker container is just an application process 
on the host with namespaces and cgroup limits configured. 
There are some additional processes running alongside each 
container. For instance, the containerd-shim running in the 
background sits as the parent process of each container, this 
allows dockerd or containerd to detach from the container 
process without stopping the container. Another process 
containerd.sock is also running to facilitate the communi-
cation between containerd and the containerd-shim. Both 
processes have quite a small memory footprint. The docker 
daemon uses around 40 MB of memory, but they are shared 
by all containers, so, as the number of containers scale, 
the size of the daemon becomes a trivial contributor to the 
memory footprint.

The two variants of gVisor (ptrace and KVM) use nearly 
the same amount of memory per instance. They both con-
sume 7 × more memory compared to Docker. Both gVisor 
platforms run an additional process, runsc-sandbox, to wrap 
around containers. In addition to that, a runsc-gofer process 
for each container is also running in the background to han-
dle I/O requests.

Kata-qemu consumes 88× more memory than Docker 
and 10× more than gVisor. The main reason is that a Kata 
container is not just a container, but a container running 
within a lightweight VM with a dedicated guest kernel. 
Many processes are running in the background, such as 
virtiofsd, qemu-virtiofs-system-x86, Kata-proxy, and Kata-
shim, which lead to a significantly larger memory footprint 

compared to both Docker and gVisor. Kata creates one pod 
per VM which means, for each pod, the user will have to 
run additional kernels and all other related processes. Mul-
tiple containers can be run in a single pod, but they will be 
sharing the same namespaces and resources, so the memory 
footprint will be large if a single container pod is desired. 
Kata-firecracker uses slightly less memory compared to 
Kata-qemu, which is what we expect, since Firecracker is 
an optimized version of QEMU. Unnecessary device emula-
tion drivers have not been included making it lightweight.

However, none of these container-based systems are 
comparable with QEMU/KVM. QEMU/KVM needed 325× 
more memory than Docker. Since we installed a general 
purpose Linux distribution that runs many services. Apart 
from that, the guest kernel used by Kata is highly optimized, 
which leads to much smaller memory footprint compared to 
a full Ubuntu:focal server distribution.

System Call

System call performance gives insight about the cost of 
user-kernel context switching. Figure 7 shows the average 
wall-clock time for invoking getpid(), read(), and 
write() system calls of ten iterations. For the read system 
call, the program reads from the /dev/zero device file, 
and for the write case, it writes to the /dev/null device 
file, so that the system calls will not spend any time waiting 
for disk I/O. There was a significant overhead with both 
gVisor-ptrace and gVisor-KVM. In particular, gVisor-ptrace 
getpid() latency is over 100× larger than Docker, Kata, 
and QEMU/KVM, which is a result of the inefficient ptrace 
mechanism, which requires additional context switches 
for each system call. With gVisor-KVM, the system call 
latency is about 10 × less than gVisor-ptrace, but still quite 

Fig. 6  Average memory footprint of 100 guests
Fig. 7  System call latency
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slow compared to the others. Docker, Kata-qemu, Kata-
firecracker, and QEMU/KVM are comparable. However, 
Docker getpid() latency is slightly slower than QEMU/
KVM based systems which is potentially caused by the use 
of seccomp. At the time of writing, Kata does not yet sup-
port seccomp.

Network Throughput

We measured the network throughput from the host to each 
virtual environment using iPerf 3.6.11 A TCP stream from 
the host to each virtual environment was generated for a 
total duration of 40 s. The graph in Fig. 8 shows the aver-
age network throughput. gVisor scored the worst on both 
KVM and ptrace platforms. This is due to its immature user-
space network stack, netstack, which handles all aspects of 
network activities in the userspace to provide an additional 
layer of isolation at the cost of higher overhead. It should be 
noted that recent releases of gVisor optionally allow network 
pass-through, so that containers can use the host network 
stack directly, which is faster but weaker isolation. gVisor-
kvm has by far the worst performance, as it is still in an 
experimental stage and has not yet been optimized. QEMU/
KVM shows good network throughput thanks to the virtio 
network driver. Docker scored the best network throughput, 
indicating that little overhead is imposed.

Disk I/O

Disk I/O performance is important to applications that 
perform frequent I/O operations. Fio−3.1212 was used to 
measure the Disk I/O performance. Each environment was 
allocated 2 GB of RAM and four virtual CPUs. Docker 
was configured to use the device mapper storage driver13 in 
direct-lvm mode. QEMU/KVM was configured with virtio 
drivers. We created a dedicated LVM logical volume for-
matted ext4 file system to bypass the host file system cache. 
O_DIRECT flag is set to enable non-buffered I/O, and a 
10 GB file (5× of the allocated RAM) is used to minimize 
the effect of memory caching.

Figure 9 demonstrates the sequential read latency for dif-
ferent block sizes. QEMU/KVM has the worst mean perfor-
mance among all block sizes. In contrast, Kata-firecracker 
has the best mean performance and least variance compared 
to all the others.

Table 2 summarizes the latencies relative to Kata-fire-
cracker. Most notably, the sequential write performance is 
two orders of magnitude slower than the others as indicated 

in Fig. 10. The reason for this is that an I/O request from the 
container sandbox needs to route through ptrace or KVM 
then the Sentry, then it is passed over the 9P protocol to a 
Gofer proxy, and then finally to the host file system. In the 
case of 16 KB block size, Kata-firecracker is at least twice 
as fast as any of the others. There was not much latency 
increase when the block size changed to 64 KB. However, 

Fig. 8  Network throughput

Fig. 9  Sequential read latency

Table 2  Relative latency compared to Firecracker

Environment 16K read 256K read 16K write 256K write

QEMU/KVM 3.8 13.0 2.0 5.0
kata_qemu 2.0 2.0 3.9 1.2
kata_fc 1.0 1.0 1.0 1.0
gV_ptr 2.0 6.2 328.0 151.0
gV_kvm 2.5 15.0 334.0 150.0
Docker 2.0 7.0 1.7 4.0

12 https:// github. com/ axboe/ fio/.
13 https:// docs. docker. com/ stora ge/ stora gedri ver/ device- mapper- 
driver.

11 https:// github. com/ esnet/ iperf.

https://github.com/axboe/fio/
https://docs.docker.com/storage/storagedriver/device-mapper-driver
https://docs.docker.com/storage/storagedriver/device-mapper-driver
https://github.com/esnet/iperf
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when a 256 KB block size is used, the latency increased 
sharply which is possibly evidence that smaller block sizes 
fit within caches at the hardware layer.

Kata-firecracker is clearly ahead in all cases, followed by 
Kata-qemu, Docker, and QEMU/KVM. There was a similar 
trend with 64 KB block size. The performance gap between 
Kata and the next best doubled at a block size of 1 MB. 
QEMU/KVM showed a large variance at the upper end in 
both 64 KB and 256 KB block.

Figure 11 shows the random read latency. All platforms 
showed a similar trend. However, Kata-qemu surpassed the 
performance of Kata-firecracker when the block size was 
greater than 64 KB. In contrast to sequential read, gVisor-
ptrace performed better than gVisor-kvm, when doing ran-
dom reads, but both still ranked the worst performance.

Figure 12 shows the random write latency. Docker has the 
best performance with 16 KB block size. Kata-firecracker 
and Kata-qemu outperformed Docker when the block size 
is bigger than 16 KB.

Kata containers come with a special device-mapper stor-
age driver which uses virtualized block devices rather than 
formatted file systems. Instead of using an overlay file sys-
tem for the container’s root file system, a block device is 
used directly. This approach allows Kata containers to out-
perform the others at all aspects of Disk I/O performance.

gVisor introduces overhead in several places: commu-
nication between components needs to cross the sandbox 
boundary and I/O operations must be routed through the 
Gofer process to enforce the gVisor security model. More 
importantly, the internal virtual file system implementation 
in Sentry has serious performance issues due to the fact that 
I/O operations need to perform path walks on every file 
access, such as open(path) and stat(path). Each I/O 
operation requires a remote procedure call over 9P to Gofer 
to access the file. gVisor contributors have started working 
on rewriting the current virtual file system to address this 

performance bottleneck by delegating the path resolution to 
the file system. This new virtual file system implementation 
is being tested at Google internally at the time of writing.

Real‑World Workload

MySQL

Sysbench 1.0.17 and MySQL14 8.0.20 were used to measure 
the performance of a typical database workload. We popu-
lated a table with 10 million rows of data and benchmarked 
the throughput and latency using a mixture of queries con-
sisting of: Select (70%), Insert (20%), and Update and Delete 
(10%) queries. Figures 13 and 14 show the throughput and 
average latency, respectively. gVisor-kvm and gVisor-ptrace 

Fig. 10  Sequential write latency Fig. 11  Random read latency

Fig. 12  Random write latency

14 https:// www. mysql. com/.

https://www.mysql.com/
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had the worst performance which achieves only 6% and 9% 
of what Kata-firecracker achieved respectively. Docker, 
QEMU/KVM, and Kata-qemu were comparable, but still 
ranged from 5.68 to 6.82× less throughput than Kata-fire-
cracker. The average latency was negatively correlated with 
the throughput. The larger the latency, the less throughput 
was achieved. Both throughput and latency results were con-
sistent with the disk I/O benchmark.

Nginx Serving a Static Web Page

We used wrk15 4.10 to measure the throughput of Nginx16 
serving a 4KB static web page. Each environment was 
configured to allow one worker process and a maximum 

of 1024 concurrent connections. We used wrk to simulate 
HTTP GET requests for a duration of 10 s with 1,000 open 
connections.

Figure 15 shows the throughput of HTTP GET request 
for each environment. Kata-qemu performed the best which 
was slightly better than qemu-kvm and Docker. However, 
its throughput was 3.47× higher than Kata-firecracker. Low 
throughput from Kata-firecracker can be attributed to its 
limitation of handling I/O serially at the rate no greater than 
13,000 IOPS [2]. Both gVisor-kvm and gVisor-ptrace were 
the worst with almost the same throughput.

Discussion

As the benchmark results and analysis indicate, different 
virtualization platforms have different performance charac-
teristics because of their different architectures, aims, and 
purposes.

Security Isolation

Security is never guaranteed, but isolating application pro-
cesses from the host kernel reduces the attack surface, and 
so reduces risk. Docker containers have full access to the 
host kernel, and so have the weakest isolation of the systems 
discussed in this paper.

QEMU/KVM offers strong isolation from the host pro-
vided by KVM, and a small attack surface in the QEMU 
hypervisor which is fairly mature and passed the test of 
time. Kata-qemu runs containers on QEMU/KVM VM, but 
it uses stripped down version of QEMU that has been com-
piled with many unnecessary features disabled resulting in a 
QEMU binary less than half the size of the standard QEMU 
build. Disabling features reduces the attack surface.

Fig. 13  MySQL OLTP throughput

Fig. 14  MySQL OLTP latency

Fig. 15  Nginx webserver throughput

15 https:// github. com/ wg/ wrk.
16 https:// nginx. org.

https://github.com/wg/wrk
https://nginx.org
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Kata-firecracker uses the Firecracker hypervisor which 
was specifically designed to be minimal, and therefore mini-
mal attack surface. It was written in Rust which is a memory 
safe programming language.

gVisor has a particular good isolation due to its modular 
architecture split into application container, Sentry, Gofer, 
and using seccomp to provide a sandbox.

Startup Time

Fast startup time is important for applications that require 
automatic scaling, dynamic load balancing, or latency-
sensitive event-driven services. We might expect Docker to 
startup fastest, because it is not loading a hypervisor, but it 
is creating a multi-layer OverlayFS file system. This causes 
Docker to startup slightly slower than gVisor.

gVisor is actually the fastest, despite loading a Sentry and 
Gofer for each container, because its OverlayFS write direc-
tory tmpfs is in RAM. QEMU/KVM is the slowest, because 
it loads a bulky QEMU binary and a general purpose guest 
kernel. Kata-qemu is faster, because it uses a stripped down 
version of QEMU and a minimal guest kernel, and the same 
is true for Kata-firecracker.

Memory Overhead

RAM is the most precious resource, because it is the limiting 
factor on the number of guest instances that can be running 
at the same time. Smaller memory footprint is better to opti-
mize the overall utilization of the host hardware. Docker has 
negligible memory overhead, because it is simply running 
the application process in a container, and the container is 
nothing more than a small data structure in the host kernel. 
QEMU/KVM has the largest memory overhead consisting 
of RAM allocated to the guest operating system and the 
RAM consumed by the hypervisor process itself. Kata-qemu 
also allocates RAM to the guest operating system, but the 
hypervisor and guest kernel are both smaller; on average, the 
memory overhead is less than a third of a standard QEMU/
KVM VM. Kata-firecracker has only slightly less memory 
overhead, because, although Firecracker is smaller than the 
stripped down QEMU, they are still running the same guest 
kernel. gVisor’s memory overhead is much smaller than 
Kata, because it is only running the lightweight Sentry and 
Gofer processes.

Compute Performance

Faster compute performance results in shorter runtimes, 
more responsive applications, and higher throughput. Com-
pute performance is a function of CPU clock speed, memory 
bandwidth, and cache hit rate. The underlying hardware is 
the same, so the benchmarks of memory bandwidth and 

CPU throughput are basically the same for each virtualiza-
tion system except for the discrete 3D Fast Fourier Trans-
form benchmark (ft) where Docker and Kata-firecracker 
outperform the others. We do not yet have an explanation 
for this discrepancy.

System Call Latency

System calls are used frequently during I/O operations, such 
as file and network transfers. Applications that perform a 
lot of I/O benefit from low latency system calls. Given that 
QEMU/KVM, Kata-qemu, and Kata-firecracker all trap sys-
tem calls using KVM, and all have fairly optimized system 
call handlers, it is unsurprising that the performance of these 
three is similar and essentially as good as Docker, which 
directly calls the host kernel.

Notably, gVisor’s system call latency is very much slower, 
especially when using the ptrace platform. The difference 
between ptrace and KVM is that KVM traps system calls in 
hardware, whereas ptrace traps them entirely in userspace. 
Having a userspace kernel adds an extra layer of isolation, 
but it also reduces application performance. It is worth not-
ing that gVisor only implements about half the Linux system 
calls, so some applications may experience compatibility 
issues. In addition, Sentry is still under active development 
and has not yet been well optimized. At the time of writing, 
we cannot yet recommend running I/O intensive applications 
on gVisor.

Network

Network performance is important for many common use 
cases such as web application servers. gVisor-kvm network 
throughput is extremely poor even compared to gVisor-
ptrace which is counter intuitive given that KVM is hard-
ware accelerated, whereas ptrace is done in software. We 
suspect that there is a bug in the implementation, and so can-
not recommend gVisor-kvm for network applications at the 
time of writing. However, using host network pass-through 
mitigates this issue. All the other virtualization platforms 
achieved in excess of 30 Gbps throughput which is more 
than sufficient for most applications.

Disk I/O

Good disk I/O performance is important for applications 
such as databases, file servers, static web servers, and video 
streaming servers.

gVisor has by far the worst disk I/O performance by an 
order of magnitude. This is due to the security architecture 
that requires I/O requests to go through many layers. Also, 
the path walk limitation of the virtual file system is highly 
inefficient. The project is still early in its development, we 
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would expect this and the other optimizations to improve 
over the next few years.

Docker is not much better than QEMU/VM and sig-
nificantly slower than Kata-qemu and Kata-firecracker, we 
believe that this is mainly due to the overhead of OverlayFS. 
The clear performance winner here is Kata-firecracker 
closely followed by kata-qemu.

Other Points of Note

There are other aspects to consider when choosing a virtu-
alization platform which have an indirect impact on perfor-
mance in practice. For example, virtualization systems that 
comply with the Open Container Initiative (OCI) specifica-
tion17 can be seamlessly integrated into the container eco-
system, including higher level management systems, such 
as Kubernetes, which provides orchestration, scheduling, 
self-healing, and load balancing. OCI compatible systems 
include Docker, gVisor, and Kata.

The size of the developer and user communities, and the 
maturity of the supporting infrastructure is an important fac-
tor to consider when choosing a virtualization solution. For 
example, Docker has wide support and DockerHub provides 
a quick and simple deployment method. Similarly, QEMU/
KVM is a mature and well-established virtualization solu-
tion. In contrast, gVisor and Kata are still quite immature 
and not widely adopted.

Another consideration is live migration, which is a mature 
feature of QEMU/KVM, but not available in any of the other 
systems discussed in this paper.

Kata has some of the best performance characteristics 
but also has several limitations. At the time of writing, 
SELinux is not supported by Kata’s guest kernel and joining 
the host or an existing VM network is not possible due to the 
guest–host isolation.18

Related Work

[7] studied the CPU, memory, storage, and network per-
formance of Docker containers and VMs, and elaborated 
on the limitations that impact virtualization performance. 
They concluded that containers result in equal or better per-
formance than VMs in all aspects. [5] studied the isolation 
characteristics of both gVisor and Firecracker from the per-
spective of Linux Kernel code footprint. Linux containers 
exercised a significantly larger kernel code footprint com-
pared to Firecracker. Firecracker is very effective at reducing 
the frequency of system calls to the host kernel, whereas 

gVisor executes even more kernel code compared to native 
Linux, since its design leads to a lot of duplicated function-
ality. [9] adopted a similar methodology as [7]; however, 
they targeted Docker and its rival Flockport (LXC). Their 
results were similar to [7], but they pointed out that Docker 
allows only one application per container, which reduces 
utilization, whereas Flockport does not impose such restric-
tions. [20] did a similar performance study of gVisor, Runc, 
and Kata containers. Their result is similar to what we have 
discovered.

None of those aforementioned studies investigated the 
characteristics of memory footprint and startup time, which 
are critical to many container applications. Apart from that, 
container and virtualization convergence solutions have 
emerged to be a promising alternative that strikes a good 
balance between performance and isolation, yet there has 
been no existing research providing detailed analysis on their 
limitations and benefits. Our paper focuses on those emerg-
ing technologies backed up by Google, Amazon, Baidu, and 
Intel, and provides practitioners a comprehensive analysis 
and review on the most up-to-date solutions.

Conclusion and Future Work

We have conducted a comprehensive performance analysis 
of various innovative lightweight hypervisors used in con-
junction with containers. The benchmark results showed var-
ious trade-offs made by each solution and a number of bot-
tlenecks that affect virtualization performance are identified. 
The pros and cons of each system are discussed at length, 
and some limitations that could be potentially addressed in 
the future are pointed out.

It is evident that the current architectural trend of virtu-
alization platforms is to converge. Container and hypervisor 
hybrid solutions have the potential to supplant traditional 
VMs as the leading virtualization architecture. However, 
these solutions have not yet become a mature alternative. 
Traditional VMs would still be the preferred option for many 
use cases. Kata is on the right track to earn the title of having 
the security of a VM and the performance of a container, 
but it also has quite a few limitations. gVisor solved some 
practical problems in today’s cloud environment; however, 
their I/O architecture is not yet full optimized.

Future research on reducing the memory footprint of 
lightweight hypervisor-based containers would be desirable. 
Research using Xen hypervisor with customized unikernels 
[12] opens the possibility of creating lighter and safer VMs 
than containers. KubeVirt, a Kubernetes addon that runs 
VMs alongside containers at scale, is an important virtual-
ization convergence technology that solves the issues that 
some legacy applications cannot be easily containerized.

17 https:// openc ontai ners. org/.
18 https:// github. com/ kata- conta iners/ docum entat ion/ blob/ master/ 
Limit ations. md.

https://opencontainers.org/
https://github.com/kata-containers/documentation/blob/master/Limitations.md
https://github.com/kata-containers/documentation/blob/master/Limitations.md
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