
Vol.:(0123456789)

SN Computer Science (2023) 4:387
https://doi.org/10.1007/s42979-023-01827-9

SN Computer Science

ORIGINAL RESEARCH

The Convergence of Container and Traditional Virtualization:
Strengths and Limitations

Guoqing Li1 · Keichi Takahashi2 · Kohei Ichikawa1 · Hajimu Iida1 · Chawanat Nakasan3 ·
Pattara Leelaprute4 · Pree Thiengburanathum5 · Passakorn Phannachitta5

Received: 30 September 2021 / Accepted: 12 April 2023 / Published online: 11 May 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Virtual machines (VMs) are used extensively in the cloud. The underlying hypervisors allow hardware resources to be split
into multiple virtual units which enables server consolidation, fault containment, and resource management. However, VMs
with traditional architecture introduce heavy overhead and reduce application performance. Containers are becoming popular
options for running applications, yet such a solution raises security concerns due to weaker isolation than VMs. We are at the
point of container and traditional virtualization convergence where lightweight hypervisors are implemented and integrated
into the container ecosystem to maximize the benefits of VM isolation and container performance. However, there has been
no comprehensive comparison among different convergence architectures. To identify limitations and best-fit use cases, we
investigate the characteristics of Docker, Kata, gVisor, Firecracker, and QEMU/KVM by measuring the performance of
disk storage, main memory, CPU, network, system call, and startup time. In addition, we evaluate their performance of run-
ning the Nginx web server and the MySQL database management system. We use QEMU/KVM as an example of running
traditional VMs, Docker as the standard runc container, and the rest as the representatives of lightweight hypervisors. We
compare and analyze the benchmark results, discuss the possible implications, explain the trade-off each organization made,
and elaborate on the pros and cons of each architecture.

Keywords Virtualization performance · runC container · Lightweight hypervisor · gVisor · Kata · Firecracker

Introduction

The traditional VM architecture exemplified by QEMU/
KVM offers strong isolation [14] since each guest VM
has its own file system, authentication mechanism and a
layer of hypervisor sits in between the host, and guest OS,
which is the only way for the guest VM to communicate

This article is part of the topical collection “Cloud Computing and
Services Science” guest edited by Donald Ferguson, Markus Helfert
and Claus Pahl.

 * Guoqing Li
 guoqing_li@pm.me

 Keichi Takahashi
 keichi@tohoku.ac.jp

 Kohei Ichikawa
 ichikawa@is.naist.jp

 Hajimu Iida
 iida@itc.naist.jp

 Chawanat Nakasan
 chawanat.n@ku.th

 Pattara Leelaprute
 pattara.l@ku.ac.th

 Pree Thiengburanathum
 pree.t@cmu.ac.th

 Passakorn Phannachitta
 passakorn.p@cmu.ac.th

1 Nara Institute of Science and Technology, Nara, Japan
2 Tohoku University, Sendai, Japan
3 Kanazawa University, Kanazawa, Japan
4 Kasetsart University, Bangkok, Thailand
5 Chiang Mai University, Chiang Mai, Thailand

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01827-9&domain=pdf
http://orcid.org/0000-0001-9915-252X
http://orcid.org/0000-0002-1607-5694
http://orcid.org/0000-0003-0094-3984
http://orcid.org/0000-0002-2919-6620
http://orcid.org/0000-0002-0294-8597
http://orcid.org/0000-0001-7380-354X
http://orcid.org/0000-0001-6983-8336
http://orcid.org/0000-0003-3931-9097

 SN Computer Science (2023) 4:387387 Page 2 of 13

SN Computer Science

with the physical hardware. However, virtualizing hardware
resources imposes heavy performance overhead [15]. In con-
trast, Docker containers utilize Linux’s built-in features such
as cgroups to manage resources and namespaces to isolate
running processes which comes with much less performance
overhead [11]. Cloud providers have the economic incentive
to run as many containers as possible on the same host, and
although containers excel at performance, their isolation is
generally weaker and they expose a larger attack surface
[6] compared to VMs. There is a possibility of exploiting
existing kernel bug to break out of a container onto the
host and misuse of privilege containers have lead to many
security incidents. In 2017 alone, 454 vulnerabilities were
found in the Linux kernel,1 which can be a major risk for
containerized environments. A recent Kernel vulnerability—
CVE-2020-14386 found in 5.7 kernel release could even
allow container to escape and gain root privileges. There are
legitimate concerns from public cloud service providers who
base their services on containers, since they have no control
over what kind of applications are running in their cloud.

Several organizations address these security concerns
by implementing lightweight hypervisors which, when
used in conjunction with containers, strike a good balance
between performance and security isolation. Rapid innova-
tion in this area has resulted in several different architectural
approaches. A comprehensive performance evaluation as
presented in this paper is important when considering the
trade-offs of different approaches. We take a detailed look at
lightweight hypervisors used in containerized environments
and compares various performance metrics. Our goal is to
understand the overhead imposed by QEMU/KVM, Docker,
gVisor, Kata-qemu, and Kata-Firecracker.

This paper makes the following four contributions:

• We provide an extensive comparative performance analy-
sis of QEMU/KVM VM, Docker, gVisor, Kata-qemu,
and Kata-Firecracker.

• We identify the best-fit use case for practitioners by ana-
lyzing the pros and cons of each architecture in detail.

• We elaborate on the non-obvious limitations of each
architecture that affect virtualization performance.

• We provide up-to-date reviews on existing container and
traditional virtualization convergence technologies.

This paper extends our previous work [10] by adding experi-
ments to evaluate the CPU compute performance (NAS
Parallel Benchmark Suite), memory bandwidth (STREAM
benchmark), and read/write system call performance. We
also reconfigured the Kata container environment with the

newest runtime and redid the experiments. Both the Archi-
tecture and Evaluation sections are rewritten ton include
more details and in-depth analyses. The Discussion section
is restructured to provide better insights.

The structure of the paper is organized as follows:
Sect. “Background” describes the motivation and architec-
ture of each environment. Section “Evaluation” presents our
evaluation results in two parts:

• Part I—the low-level aspects which cover startup time,
memory footprint, system call latency, network through-
put, Disk I/O, and CPU performance.

• Part II—the high-level aspects which cover two real-
world applications: Nginx webserver and MySQL data-
base.

Section “Discussion” describes the interpretation of our
benchmark results, and the pros and cons of each virtualiza-
tion platform. Section “Related Work” reviews related work.
Section “Conclusion and Future Work” concludes the paper
and suggests possible future work.

Background

Motivation

With the emergence and adoption of container technology
and lightweight hypervisors, there is inevitably a trade-off
between virtualization performance and security isolation.
For example, gVisor implemented the network stack in user-
space and using Gofer proxy to redirect I/O calls to provide
better isolation, but imposes heavy I/O performance over-
head. Practitioners face the challenge of making this kind
of trade-off. Different organizations choose to implement
their hypervisors according to their specific needs which
limits generality. Taking Firecracker as an example, it is
designed to run containers on a stripped down Linux kernel
[3]. Kata-qemu runs a minimal Clear Linux guest OS on a
QEMU VM, and containers are launched inside of the guest
via an agent. In both cases, this leaves no options for run-
ning guests with different kernels or Linux distributions. To
make good technology choices, it is crucial to understand (1)
what trade-offs each architecture made and (2) the perfor-
mance characteristics and limitations of each architecture.
The following subsection presents the overall architectural
components of each virtualization system and how they are
connected.

1 https:// www. cvede tails. com/ produ ct/ 47/ Linux- Linux- Kernel. html?
vendor_ id= 33.

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

SN Computer Science (2023) 4:387 Page 3 of 13 387

SN Computer Science

Architecture

QEMU/KVM

QEMU/KVM [4, 8] is an established approach for running
traditional VMs in the cloud. There are several other open
source hypervisors available which have their own design
considerations. For example, KVM is merged into the Linux
mainline kernel which utilize kernel’s existing scheduler
and memory manager, whereas Xen builds their own dom0
kernel and included several CPU schedulers. In our paper,
we will focus on QEMU/KVM only since Kata-qemu, Fire-
cracker, and gVisor are all the fork of KVM project.

The early generation of x86 hypervisors used the tech-
nique of trap and emulate [18], relying on the mechanism
of CPU exceptions, such as memory faults. The privileged
instruction exceptions will be trapped and the control will
be passed back to the hypervisor. Privileged instructions are
then emulated by the underlying hypervisor against the guest
VM state. The performance overhead of this technique is
costly, since it requires the CPU to run many more cycles to
execute the trapping and emulation instructions. This per-
formance overhead can be mitigated by the use of binary
translation [19], which works by translating certain sensi-
tive instructions, so they can run directly without causing
traps. Further improvement was made by the introduction of
CPU virtualization extensions in the hardware. Such as Intel
VT-x and AMD-V [16] which allow the classical trap and
emulate technique to run more efficiently. KVM is a Linux
kernel module that interfaces with the hardware virtualiza-
tion extension and reuses the Linux kernel’s existing CPU
scheduler and memory manager to provide a uniform API.

Intel’s Extended Page Table is used to enable Memory
Management Unit (MMU) virtualization to avoid the over-
head caused by software managed shadow page tables.
MMU virtualization is an important milestone for hardware
assisted virtualization, because the VT-x extensions alone
could not offer better performance compared to binary trans-
lation [1]. The KVM-userspace side is handled by QEMU
to serve requests that KVM cannot handle directly, such as
device emulations (block devices, network card, display,
etc.) The release of virtio drivers took the Disk and Network
I/O performance to the next level. Nowadays, virtio drivers
have become the de facto standard for storage and network
virtualization. PCI devices with Single Root I/O Virtualiza-
tion (SR-IOV) feature also push the boundaries of network
virtualization performance.

Docker

Containers utilize Linux built-in features: cgroups which
allow processes to be organized into hierarchical groups, so
that various types of resource usage (CPU and memory etc.)

can be controlled and monitored, and namespaces which
wrap a particular global system resource in an abstraction
that makes the processes running inside of this namespace
appear to own the whole global system resource, changes
of processes running in different namespaces are invisible
to other processes. Some of the important Linux names-
paces used by containers include: PID, NET, IPC, MNT,
UTS, MOUNT, and CGroup. RunC is a low-level command
line interface (CLI) tool to create and run containers. It cre-
ates the cgroups and namespaces and bind the processes.
Containerd is a daemon for managing the life-cycle of con-
tainers. Both runC and containerd are used by all of the
virtualization systems discussed in this paper except for
QEMU/KVM.

Docker is built on top of runC and containerd. It pro-
vides a rich set of CLI commands to manage containers,
and a common storage format for container images based
on the Overlay22 which is a union mount file system for
Linux to persist data at the writable layer. Btrfs and zfs are
also supported to enable advanced features such as creating
snapshots. Logical volume management can also be set up
using device mapper storage driver.

gVisor

Google’s gVisor3 provides an isolation layer between con-
tainerized applications and the host kernel, which is a feature
not offered by containers alone. It creates a sandbox to inter-
cept and redirect system calls to a secure userspace kernel.
Figure 1 shows the high-level architecture of gVisor.

gVisor provides two platforms4 for intercepting system
calls: ptrace and KVM. The ptrace platform uses the ptrace
debugger mechanism built into the host kernel to trap sys-
tem calls, whereas the KVM platform uses the Linux KVM
kernel module to take advantage of hardware virtualization

seccompKVM or ptrace

Container Sentry (user space
kernel)

Sandbox

runsc

Gofer

User
space

Kernel
space

9P

I/O

Host Kernel

Fig. 1 Architecture of gVisor

2 https:// www. kernel. org/ doc/ Docum entat ion/ files ystems/ overl ayfs.
txt.
3 https:// gvisor. dev/.
4 https:// gvisor. dev/ docs/ archi tectu re_ guide/ platf orms/.

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://gvisor.dev/
https://gvisor.dev/docs/architecture_guide/platforms/

 SN Computer Science (2023) 4:387387 Page 4 of 13

SN Computer Science

support for better performance. gVisor ptrace is important
for running containers in virtual environments where CPU
virtualization extensions are not available, such as a public
cloud environment where nested virtualization is disabled.

The Sentry is the userspace kernel that implements all
the kernel functionalities required by applications, such as
system calls, memory management, and page faulting logic.
The CPU scheduling is, however, handled by the Go-routine
scheduler. At the time of writing, there are 224 out of 291
system calls are implemented by Sentry which is sufficient
for most applications. Effectively, Sentry is playing both the
role of guest OS and hypervisor. Host system calls invoked
from Sentry are further filtered using seccomp,5 a kernel
facility that restricts the system calls that can be invoked by
applications with a configurable security policy.

File I/O is handled by a separate file proxy process called
Gofer, which communicates with the Sentry through the 9P
file system protocol [17]. This allows users to set up a writ-
able temporary file system overlay on top of the entire file
system, so that the container sandbox is isolated from the
host file system. Users can also enable read only file sys-
tem sharing between different containers. This allows some
degree of file space and cache performance optimization.

gVisor implements its own networking stack—netstack,
which is a component of Sentry. Netstack includes: TCP
connection state, control messages, and packet assembly
which are isolated from the host networking stack. Host net-
working pass-through feature is provided to applications that
require high networking performance. This model of secu-
rity in depth, with its many layers of isolation, also imposes
some performance overhead especially in the case of ptrace
due to the significant cost of context switching.

gVisor has been built into Google’s cloud infrastructure
to provide serverless computing services, such as Google
App Engine, Cloud Run, and Cloud Functions.

Kata QEMU

Kata containers6 are a collaboration between the Intel Clear
Linux project7 and hyper.sh8 projects. It is an example of
a container and virtualization convergence technology that
allows users to run containers within lightweight VMs. It has
been seamlessly integrated into the containerd system using
a shim, named containered-shim-kata-v2.

The virtualization part is based on QEMU/KVM to
enable hardware assisted virtualization, and a highly opti-
mized guest kernel includes the functionalities to run only
container workloads. The customized kernel is optimized
to reduce boot time and memory footprint, and a minimal
root file system based on Clear Linux reduces attack surface
significantly by removing many of the binaries commonly
found in general purpose Linux distributions. The only two
processes running inside of the VM at startup are Systemd
and a kata agent. The containerd-shim-kata and kata agent
communicate across a VSOCK socket.

By default, Kata uses the QEMU/KVM hypervisor.9
However, Kata allows users to run on different hypervisors:
Cloud Hypervisor, Firecracker, etc. Figure 2 shows Kata’s
high-level architecture. Kata allows running multiple con-
tainers in a pod, where a pod is a group of related containers
which share the same network namespace. Each pod of con-
tainers runs in a separate lightweight VM to provide strong
isolation.

Kata Firecracker

Amazon’s Firecracker [2] began as a fork of crosvm10
hypervisor written in Rust which runs VMs through the
KVM interface with a sandbox around virtual devices to
enhance security. Firecracker is an alternative to QEMU that
is lighter weight with minimal attack surface for security
and only the following six of essential device emulations
provided: a serial console, a minimal keyboard controller,
and four virtio devices (virtio-net, virtio-balloon, virtio-
block, and virtio-vsock) to handle network, memory, disk
I/O, and host/guest communication, respectively. Amazon
aims at integrating Firecracker into the container ecosystem
which is again another example of container and traditional
virtualization convergence technology. Firecracker uses an

Host Kernel

Kata-qemu or Firecracker

kvm

Custom Kernel

Agent

Pod 1

Custom Kernel

Agent

Pod 1

Conatinerd

Kata Shim V2
VSOCK

VM1 VM2

Fig. 2 Architecture of Kata Containers

5 https:// www. kernel. org/ doc/ html/ v4. 16/ users pace- api/ secco mp_ fil-
ter. html.
6 https:// katac ontai ners. io/.
7 https:// softw are. intel. com/ conte nt/ dam/ devel op/ exter nal/ us/ en/
docum ents/ intel- clear- conta iners-2- using- clear- conta iners- with-
docker- 706454. pdf.
8 https:// github. com/ hyper hq.

9 https:// github. com/ kata- conta iners/ qemu.
10 https:// chrom ium. googl esour ce. com/ chrom iumos/ platf orm/
crosvm/.

https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://katacontainers.io/
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-clear-containers-2-using-clear-containers-with-docker-706454.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-clear-containers-2-using-clear-containers-with-docker-706454.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-clear-containers-2-using-clear-containers-with-docker-706454.pdf
https://github.com/hyperhq
https://github.com/kata-containers/qemu
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://chromium.googlesource.com/chromiumos/platform/crosvm/

SN Computer Science (2023) 4:387 Page 5 of 13 387

SN Computer Science

emulated block device that can be mounted into the guest
via Device Mapper.

Our specific focus is to benchmark the performance of
running Kata containers inside of the Firecracker microVM,
which requires the configuration of the devmapper snap-
shotter. In essence, the container root file system is a device
mapper snapshot mounted into Firecracker as an emulated
virtio-block device. Firecracker also uses seccomp filters to
limit the system calls it can use, to enhance the security iso-
lation. The Firecracker process needs to be started by a jailer
process, which configures the required system resources and
permissions and then executes the Firecracker binary as a
non-privileged process. Firecracker also provides a cpuset
subsystem based on Cgroups which allows users to set the
CPU affinity of microVMs, preventing the host scheduler
from migrating between vCPUs which may cause resource
contention.

Evaluation

We first evaluate the low-level aspects of a computing sys-
tem: startup time, memory bandwidth, memory footprint,
system call latency, network throughput, disk I/O, and CPU
performance. We then benchmark two common applications,
Nginx webserver and MySQL database, which serve as real-
istic example workloads. Low-level benchmark metrics serve
as the fundamental indicator of performance characteristics
for each system and the high-level benchmark metrics are
used develop a better understanding of how different hyper-
visors perform in a practical setting environment.

All systems are set up on an x86-64 server with Intel
Xeon Silver 4208 CPUs. There are two sockets, and each
socket contains 8 physical cores with hyper-threading ena-
bled which provides a total of 32 logical cores. There are
32 GB of DDR4 SDRAM spanning across two NUMA
nodes and the ext4 file system is installed on a 548 GB hard
disk drive.

Table 1 shows the details of each execution environment.
We upgraded QEMU to match the version that Kata runt-
ime uses. Kata 2.2.0 is installed for both Kata-qemu and
Kata-Firecracker Containers, which is significantly different
from 1.x. Kata 2.x drops the support for Docker. We had to
use crictl utility to launch pods and containers.

Low‑Level Aspects

CPU Performance

NAS Parallel Benchmark tool is used to stress the CPU with
the “C class” matrix computation workload. We modified
the host CPU configuration to avoid thermal variation using
frequency-set -g performance to maximize and fix the CPU

clock speed. Four vCPUs are allocated for each container
and VM. In the case of Docker and gVisor, –cpuset-cpus
is used to restrict the container process to use only vCPUs
0,2,4,6 which are physically separate cores on the host.
Similarly, we use cpuset to pin QEMU/KVM VM to those
same cores. This setup will prevent the host scheduler from
migrating processes between vCPUs, thus maximizing cache
utilization, potentially achieving better performance than the
default configurations.

Figure 3 shows the average floating point compute per-
formance for calculating different problem sets. Most of
the platforms show similar benchmark results. One rea-
son is that KVM utilizes the hardware extensions, such as
VT-x for nearly native performance which explains why
there is little difference between Docker and KVM-based
platforms. The other reason is because by default all sys-
tems use Linux kernel’s Complete Fair Scheduler in con-
junction with Cgroups to control CPU resources. gVisor
is an exception, because the CPU scheduling relies on the
Go runtime scheduler which is a userspace scheduler runs
on top of OS kernel’s scheduler, and it may improve the
throughput of application workload that is highly concur-
rent, such as a web server. In the case of the cg and bt
problem sets, gVisor even surpassed the performance of
Docker and Kata-qemu, suggesting that gVisor could be a
good option for CPU-bound applications.

Memory Bandwidth

We use the STREAM benchmark tool to measure memory
bandwidth in different systems. Figure 4 shows the memory
bandwidth performance of vector operations on: COPY,
SCALE, ADD, and TRIAD. The result is similar to the CPU
benchmark. All KVM-based platforms have similar memory
bandwidth, while docker has slightly better performance
compared to others.

Table 1 Execution environment

Environment Software versions

host OS Ubuntu 20.04.3 LTS, Kernel 5.4.0-84
QEMU 5.2.0 libvirt 6.6.0, Guest Kernel 5.4.0-84
kata_qemu Kata 2.2.0, Guest Kernel 5.10.25-85, QEMU 5.2.0
kata_fc Kata 2.2.0, Guest Kernel 5.10.25-85, Firecracker

v0.23.1
gVisor gVisor release−20210720.0, Guest Kernel 4.4.0
Docker Docker 20.10.8, containerd v1.5.3, runc, 1.0.0
crictl crictl version 1.20.0-24-g53ad8bb7

 SN Computer Science (2023) 4:387387 Page 6 of 13

SN Computer Science

Startup Time

Fast startup time is crucial for container/VM provision-
ing [13], it is extremely important in the case of live
migrations. We use the time command to measure the
time from launching a container/VM to the stage of the
network stack being successfully initialized. We run an
Ubuntu:focal base image and a bash program inside of
the container. In the case of QEMU/KVM VM, we placed
the systemd-analyze time command in the startup
script to collect the startup time for 100 rounds. Figure 5
shows the average elapsed time of 100 complete container
creations. Since the startup time for QEMU/KVM was
significantly slower, the inaccuracies resulting from the
virtual clock are negligible.

The startup times varied between approximately 0.7
and 1.6 s in all container based environments. On average,
gVisor-kvm and gVisor-ptrace were the fastest, Docker was
0.13 s slower, Kata-firecracker was 0.37 s slower than that,
and Kata-qemu was only 0.10 s slower than Kata-firecracker.
Overall, the startup time of all containers were significantly
faster than full QEMU/KVM VM which took 8.76 s to fin-
ish booting.

Some important factors that affect start-up time are the
size of the hypervisor executable, boot sequence, and con-
figuration complexity etc. The time it takes to load these
binaries and files from disk is directly proportional to its
size. Docker and gVisor showed much faster startup time
compared to Kata and QEMU. This is because the former
two are essentially running two lightweight processes with
very small images. Kata runs Clear Linux which has a highly
optimized boot path, it runs only a systemd init daemon and
the kata agent, then the agent manages the creation of con-
tainers, which takes slightly longer start up times compared
to Docker and gVisor. It is not surprising that QEMU/KVM
takes the longest time to start up since the guest kernel image
is bulky and many other processes need to be initialized.

Memory Footprint

Smaller memory footprint puts less pressure on both RAM
and the CPU cache, allowing users to create a higher den-
sity of containers, and making more efficient use of sys-
tem resources. We estimate the memory footprint of each
container running the Ubuntu:focal base image by measur-
ing the size of private dirty pages of related processes. We
launched 100 containers in total and calculated the aver-
age size of private dirty pages. We chose private page size,
because it is the closest approximation of the actual memory
usage for each process as the number of containers scale to

Fig. 3 CPU throughput (NPB-OMP)

Fig. 4 Memory bandwidth (STREAM)

Fig. 5 Startup time

SN Computer Science (2023) 4:387 Page 7 of 13 387

SN Computer Science

infinity. We allocated 2 GB of memory for each QEMU/
KVM VM, which is the minimal size the guest can boot a
full ubuntu image successfully. In case of Kata-qemu and
Kata-Firecracker, we used the default configuration which
allocates 2 GB of memory for each VM.

As Fig. 6 indicates, Docker has the smallest footprint,
which is to be expected, because there is no additional
hypervisor. A Docker container is just an application process
on the host with namespaces and cgroup limits configured.
There are some additional processes running alongside each
container. For instance, the containerd-shim running in the
background sits as the parent process of each container, this
allows dockerd or containerd to detach from the container
process without stopping the container. Another process
containerd.sock is also running to facilitate the communi-
cation between containerd and the containerd-shim. Both
processes have quite a small memory footprint. The docker
daemon uses around 40 MB of memory, but they are shared
by all containers, so, as the number of containers scale,
the size of the daemon becomes a trivial contributor to the
memory footprint.

The two variants of gVisor (ptrace and KVM) use nearly
the same amount of memory per instance. They both con-
sume 7 × more memory compared to Docker. Both gVisor
platforms run an additional process, runsc-sandbox, to wrap
around containers. In addition to that, a runsc-gofer process
for each container is also running in the background to han-
dle I/O requests.

Kata-qemu consumes 88× more memory than Docker
and 10× more than gVisor. The main reason is that a Kata
container is not just a container, but a container running
within a lightweight VM with a dedicated guest kernel.
Many processes are running in the background, such as
virtiofsd, qemu-virtiofs-system-x86, Kata-proxy, and Kata-
shim, which lead to a significantly larger memory footprint

compared to both Docker and gVisor. Kata creates one pod
per VM which means, for each pod, the user will have to
run additional kernels and all other related processes. Mul-
tiple containers can be run in a single pod, but they will be
sharing the same namespaces and resources, so the memory
footprint will be large if a single container pod is desired.
Kata-firecracker uses slightly less memory compared to
Kata-qemu, which is what we expect, since Firecracker is
an optimized version of QEMU. Unnecessary device emula-
tion drivers have not been included making it lightweight.

However, none of these container-based systems are
comparable with QEMU/KVM. QEMU/KVM needed 325×
more memory than Docker. Since we installed a general
purpose Linux distribution that runs many services. Apart
from that, the guest kernel used by Kata is highly optimized,
which leads to much smaller memory footprint compared to
a full Ubuntu:focal server distribution.

System Call

System call performance gives insight about the cost of
user-kernel context switching. Figure 7 shows the average
wall-clock time for invoking getpid(), read(), and
write() system calls of ten iterations. For the read system
call, the program reads from the /dev/zero device file,
and for the write case, it writes to the /dev/null device
file, so that the system calls will not spend any time waiting
for disk I/O. There was a significant overhead with both
gVisor-ptrace and gVisor-KVM. In particular, gVisor-ptrace
getpid() latency is over 100× larger than Docker, Kata,
and QEMU/KVM, which is a result of the inefficient ptrace
mechanism, which requires additional context switches
for each system call. With gVisor-KVM, the system call
latency is about 10 × less than gVisor-ptrace, but still quite

Fig. 6 Average memory footprint of 100 guests
Fig. 7 System call latency

 SN Computer Science (2023) 4:387387 Page 8 of 13

SN Computer Science

slow compared to the others. Docker, Kata-qemu, Kata-
firecracker, and QEMU/KVM are comparable. However,
Docker getpid() latency is slightly slower than QEMU/
KVM based systems which is potentially caused by the use
of seccomp. At the time of writing, Kata does not yet sup-
port seccomp.

Network Throughput

We measured the network throughput from the host to each
virtual environment using iPerf 3.6.11 A TCP stream from
the host to each virtual environment was generated for a
total duration of 40 s. The graph in Fig. 8 shows the aver-
age network throughput. gVisor scored the worst on both
KVM and ptrace platforms. This is due to its immature user-
space network stack, netstack, which handles all aspects of
network activities in the userspace to provide an additional
layer of isolation at the cost of higher overhead. It should be
noted that recent releases of gVisor optionally allow network
pass-through, so that containers can use the host network
stack directly, which is faster but weaker isolation. gVisor-
kvm has by far the worst performance, as it is still in an
experimental stage and has not yet been optimized. QEMU/
KVM shows good network throughput thanks to the virtio
network driver. Docker scored the best network throughput,
indicating that little overhead is imposed.

Disk I/O

Disk I/O performance is important to applications that
perform frequent I/O operations. Fio−3.1212 was used to
measure the Disk I/O performance. Each environment was
allocated 2 GB of RAM and four virtual CPUs. Docker
was configured to use the device mapper storage driver13 in
direct-lvm mode. QEMU/KVM was configured with virtio
drivers. We created a dedicated LVM logical volume for-
matted ext4 file system to bypass the host file system cache.
O_DIRECT flag is set to enable non-buffered I/O, and a
10 GB file (5× of the allocated RAM) is used to minimize
the effect of memory caching.

Figure 9 demonstrates the sequential read latency for dif-
ferent block sizes. QEMU/KVM has the worst mean perfor-
mance among all block sizes. In contrast, Kata-firecracker
has the best mean performance and least variance compared
to all the others.

Table 2 summarizes the latencies relative to Kata-fire-
cracker. Most notably, the sequential write performance is
two orders of magnitude slower than the others as indicated

in Fig. 10. The reason for this is that an I/O request from the
container sandbox needs to route through ptrace or KVM
then the Sentry, then it is passed over the 9P protocol to a
Gofer proxy, and then finally to the host file system. In the
case of 16 KB block size, Kata-firecracker is at least twice
as fast as any of the others. There was not much latency
increase when the block size changed to 64 KB. However,

Fig. 8 Network throughput

Fig. 9 Sequential read latency

Table 2 Relative latency compared to Firecracker

Environment 16K read 256K read 16K write 256K write

QEMU/KVM 3.8 13.0 2.0 5.0
kata_qemu 2.0 2.0 3.9 1.2
kata_fc 1.0 1.0 1.0 1.0
gV_ptr 2.0 6.2 328.0 151.0
gV_kvm 2.5 15.0 334.0 150.0
Docker 2.0 7.0 1.7 4.0

12 https:// github. com/ axboe/ fio/.
13 https:// docs. docker. com/ stora ge/ stora gedri ver/ device- mapper-
driver.

11 https:// github. com/ esnet/ iperf.

https://github.com/axboe/fio/
https://docs.docker.com/storage/storagedriver/device-mapper-driver
https://docs.docker.com/storage/storagedriver/device-mapper-driver
https://github.com/esnet/iperf

SN Computer Science (2023) 4:387 Page 9 of 13 387

SN Computer Science

when a 256 KB block size is used, the latency increased
sharply which is possibly evidence that smaller block sizes
fit within caches at the hardware layer.

Kata-firecracker is clearly ahead in all cases, followed by
Kata-qemu, Docker, and QEMU/KVM. There was a similar
trend with 64 KB block size. The performance gap between
Kata and the next best doubled at a block size of 1 MB.
QEMU/KVM showed a large variance at the upper end in
both 64 KB and 256 KB block.

Figure 11 shows the random read latency. All platforms
showed a similar trend. However, Kata-qemu surpassed the
performance of Kata-firecracker when the block size was
greater than 64 KB. In contrast to sequential read, gVisor-
ptrace performed better than gVisor-kvm, when doing ran-
dom reads, but both still ranked the worst performance.

Figure 12 shows the random write latency. Docker has the
best performance with 16 KB block size. Kata-firecracker
and Kata-qemu outperformed Docker when the block size
is bigger than 16 KB.

Kata containers come with a special device-mapper stor-
age driver which uses virtualized block devices rather than
formatted file systems. Instead of using an overlay file sys-
tem for the container’s root file system, a block device is
used directly. This approach allows Kata containers to out-
perform the others at all aspects of Disk I/O performance.

gVisor introduces overhead in several places: commu-
nication between components needs to cross the sandbox
boundary and I/O operations must be routed through the
Gofer process to enforce the gVisor security model. More
importantly, the internal virtual file system implementation
in Sentry has serious performance issues due to the fact that
I/O operations need to perform path walks on every file
access, such as open(path) and stat(path). Each I/O
operation requires a remote procedure call over 9P to Gofer
to access the file. gVisor contributors have started working
on rewriting the current virtual file system to address this

performance bottleneck by delegating the path resolution to
the file system. This new virtual file system implementation
is being tested at Google internally at the time of writing.

Real‑World Workload

MySQL

Sysbench 1.0.17 and MySQL14 8.0.20 were used to measure
the performance of a typical database workload. We popu-
lated a table with 10 million rows of data and benchmarked
the throughput and latency using a mixture of queries con-
sisting of: Select (70%), Insert (20%), and Update and Delete
(10%) queries. Figures 13 and 14 show the throughput and
average latency, respectively. gVisor-kvm and gVisor-ptrace

Fig. 10 Sequential write latency Fig. 11 Random read latency

Fig. 12 Random write latency

14 https:// www. mysql. com/.

https://www.mysql.com/

 SN Computer Science (2023) 4:387387 Page 10 of 13

SN Computer Science

had the worst performance which achieves only 6% and 9%
of what Kata-firecracker achieved respectively. Docker,
QEMU/KVM, and Kata-qemu were comparable, but still
ranged from 5.68 to 6.82× less throughput than Kata-fire-
cracker. The average latency was negatively correlated with
the throughput. The larger the latency, the less throughput
was achieved. Both throughput and latency results were con-
sistent with the disk I/O benchmark.

Nginx Serving a Static Web Page

We used wrk15 4.10 to measure the throughput of Nginx16
serving a 4KB static web page. Each environment was
configured to allow one worker process and a maximum

of 1024 concurrent connections. We used wrk to simulate
HTTP GET requests for a duration of 10 s with 1,000 open
connections.

Figure 15 shows the throughput of HTTP GET request
for each environment. Kata-qemu performed the best which
was slightly better than qemu-kvm and Docker. However,
its throughput was 3.47× higher than Kata-firecracker. Low
throughput from Kata-firecracker can be attributed to its
limitation of handling I/O serially at the rate no greater than
13,000 IOPS [2]. Both gVisor-kvm and gVisor-ptrace were
the worst with almost the same throughput.

Discussion

As the benchmark results and analysis indicate, different
virtualization platforms have different performance charac-
teristics because of their different architectures, aims, and
purposes.

Security Isolation

Security is never guaranteed, but isolating application pro-
cesses from the host kernel reduces the attack surface, and
so reduces risk. Docker containers have full access to the
host kernel, and so have the weakest isolation of the systems
discussed in this paper.

QEMU/KVM offers strong isolation from the host pro-
vided by KVM, and a small attack surface in the QEMU
hypervisor which is fairly mature and passed the test of
time. Kata-qemu runs containers on QEMU/KVM VM, but
it uses stripped down version of QEMU that has been com-
piled with many unnecessary features disabled resulting in a
QEMU binary less than half the size of the standard QEMU
build. Disabling features reduces the attack surface.

Fig. 13 MySQL OLTP throughput

Fig. 14 MySQL OLTP latency

Fig. 15 Nginx webserver throughput

15 https:// github. com/ wg/ wrk.
16 https:// nginx. org.

https://github.com/wg/wrk
https://nginx.org

SN Computer Science (2023) 4:387 Page 11 of 13 387

SN Computer Science

Kata-firecracker uses the Firecracker hypervisor which
was specifically designed to be minimal, and therefore mini-
mal attack surface. It was written in Rust which is a memory
safe programming language.

gVisor has a particular good isolation due to its modular
architecture split into application container, Sentry, Gofer,
and using seccomp to provide a sandbox.

Startup Time

Fast startup time is important for applications that require
automatic scaling, dynamic load balancing, or latency-
sensitive event-driven services. We might expect Docker to
startup fastest, because it is not loading a hypervisor, but it
is creating a multi-layer OverlayFS file system. This causes
Docker to startup slightly slower than gVisor.

gVisor is actually the fastest, despite loading a Sentry and
Gofer for each container, because its OverlayFS write direc-
tory tmpfs is in RAM. QEMU/KVM is the slowest, because
it loads a bulky QEMU binary and a general purpose guest
kernel. Kata-qemu is faster, because it uses a stripped down
version of QEMU and a minimal guest kernel, and the same
is true for Kata-firecracker.

Memory Overhead

RAM is the most precious resource, because it is the limiting
factor on the number of guest instances that can be running
at the same time. Smaller memory footprint is better to opti-
mize the overall utilization of the host hardware. Docker has
negligible memory overhead, because it is simply running
the application process in a container, and the container is
nothing more than a small data structure in the host kernel.
QEMU/KVM has the largest memory overhead consisting
of RAM allocated to the guest operating system and the
RAM consumed by the hypervisor process itself. Kata-qemu
also allocates RAM to the guest operating system, but the
hypervisor and guest kernel are both smaller; on average, the
memory overhead is less than a third of a standard QEMU/
KVM VM. Kata-firecracker has only slightly less memory
overhead, because, although Firecracker is smaller than the
stripped down QEMU, they are still running the same guest
kernel. gVisor’s memory overhead is much smaller than
Kata, because it is only running the lightweight Sentry and
Gofer processes.

Compute Performance

Faster compute performance results in shorter runtimes,
more responsive applications, and higher throughput. Com-
pute performance is a function of CPU clock speed, memory
bandwidth, and cache hit rate. The underlying hardware is
the same, so the benchmarks of memory bandwidth and

CPU throughput are basically the same for each virtualiza-
tion system except for the discrete 3D Fast Fourier Trans-
form benchmark (ft) where Docker and Kata-firecracker
outperform the others. We do not yet have an explanation
for this discrepancy.

System Call Latency

System calls are used frequently during I/O operations, such
as file and network transfers. Applications that perform a
lot of I/O benefit from low latency system calls. Given that
QEMU/KVM, Kata-qemu, and Kata-firecracker all trap sys-
tem calls using KVM, and all have fairly optimized system
call handlers, it is unsurprising that the performance of these
three is similar and essentially as good as Docker, which
directly calls the host kernel.

Notably, gVisor’s system call latency is very much slower,
especially when using the ptrace platform. The difference
between ptrace and KVM is that KVM traps system calls in
hardware, whereas ptrace traps them entirely in userspace.
Having a userspace kernel adds an extra layer of isolation,
but it also reduces application performance. It is worth not-
ing that gVisor only implements about half the Linux system
calls, so some applications may experience compatibility
issues. In addition, Sentry is still under active development
and has not yet been well optimized. At the time of writing,
we cannot yet recommend running I/O intensive applications
on gVisor.

Network

Network performance is important for many common use
cases such as web application servers. gVisor-kvm network
throughput is extremely poor even compared to gVisor-
ptrace which is counter intuitive given that KVM is hard-
ware accelerated, whereas ptrace is done in software. We
suspect that there is a bug in the implementation, and so can-
not recommend gVisor-kvm for network applications at the
time of writing. However, using host network pass-through
mitigates this issue. All the other virtualization platforms
achieved in excess of 30 Gbps throughput which is more
than sufficient for most applications.

Disk I/O

Good disk I/O performance is important for applications
such as databases, file servers, static web servers, and video
streaming servers.

gVisor has by far the worst disk I/O performance by an
order of magnitude. This is due to the security architecture
that requires I/O requests to go through many layers. Also,
the path walk limitation of the virtual file system is highly
inefficient. The project is still early in its development, we

 SN Computer Science (2023) 4:387387 Page 12 of 13

SN Computer Science

would expect this and the other optimizations to improve
over the next few years.

Docker is not much better than QEMU/VM and sig-
nificantly slower than Kata-qemu and Kata-firecracker, we
believe that this is mainly due to the overhead of OverlayFS.
The clear performance winner here is Kata-firecracker
closely followed by kata-qemu.

Other Points of Note

There are other aspects to consider when choosing a virtu-
alization platform which have an indirect impact on perfor-
mance in practice. For example, virtualization systems that
comply with the Open Container Initiative (OCI) specifica-
tion17 can be seamlessly integrated into the container eco-
system, including higher level management systems, such
as Kubernetes, which provides orchestration, scheduling,
self-healing, and load balancing. OCI compatible systems
include Docker, gVisor, and Kata.

The size of the developer and user communities, and the
maturity of the supporting infrastructure is an important fac-
tor to consider when choosing a virtualization solution. For
example, Docker has wide support and DockerHub provides
a quick and simple deployment method. Similarly, QEMU/
KVM is a mature and well-established virtualization solu-
tion. In contrast, gVisor and Kata are still quite immature
and not widely adopted.

Another consideration is live migration, which is a mature
feature of QEMU/KVM, but not available in any of the other
systems discussed in this paper.

Kata has some of the best performance characteristics
but also has several limitations. At the time of writing,
SELinux is not supported by Kata’s guest kernel and joining
the host or an existing VM network is not possible due to the
guest–host isolation.18

Related Work

[7] studied the CPU, memory, storage, and network per-
formance of Docker containers and VMs, and elaborated
on the limitations that impact virtualization performance.
They concluded that containers result in equal or better per-
formance than VMs in all aspects. [5] studied the isolation
characteristics of both gVisor and Firecracker from the per-
spective of Linux Kernel code footprint. Linux containers
exercised a significantly larger kernel code footprint com-
pared to Firecracker. Firecracker is very effective at reducing
the frequency of system calls to the host kernel, whereas

gVisor executes even more kernel code compared to native
Linux, since its design leads to a lot of duplicated function-
ality. [9] adopted a similar methodology as [7]; however,
they targeted Docker and its rival Flockport (LXC). Their
results were similar to [7], but they pointed out that Docker
allows only one application per container, which reduces
utilization, whereas Flockport does not impose such restric-
tions. [20] did a similar performance study of gVisor, Runc,
and Kata containers. Their result is similar to what we have
discovered.

None of those aforementioned studies investigated the
characteristics of memory footprint and startup time, which
are critical to many container applications. Apart from that,
container and virtualization convergence solutions have
emerged to be a promising alternative that strikes a good
balance between performance and isolation, yet there has
been no existing research providing detailed analysis on their
limitations and benefits. Our paper focuses on those emerg-
ing technologies backed up by Google, Amazon, Baidu, and
Intel, and provides practitioners a comprehensive analysis
and review on the most up-to-date solutions.

Conclusion and Future Work

We have conducted a comprehensive performance analysis
of various innovative lightweight hypervisors used in con-
junction with containers. The benchmark results showed var-
ious trade-offs made by each solution and a number of bot-
tlenecks that affect virtualization performance are identified.
The pros and cons of each system are discussed at length,
and some limitations that could be potentially addressed in
the future are pointed out.

It is evident that the current architectural trend of virtu-
alization platforms is to converge. Container and hypervisor
hybrid solutions have the potential to supplant traditional
VMs as the leading virtualization architecture. However,
these solutions have not yet become a mature alternative.
Traditional VMs would still be the preferred option for many
use cases. Kata is on the right track to earn the title of having
the security of a VM and the performance of a container,
but it also has quite a few limitations. gVisor solved some
practical problems in today’s cloud environment; however,
their I/O architecture is not yet full optimized.

Future research on reducing the memory footprint of
lightweight hypervisor-based containers would be desirable.
Research using Xen hypervisor with customized unikernels
[12] opens the possibility of creating lighter and safer VMs
than containers. KubeVirt, a Kubernetes addon that runs
VMs alongside containers at scale, is an important virtual-
ization convergence technology that solves the issues that
some legacy applications cannot be easily containerized.

17 https:// openc ontai ners. org/.
18 https:// github. com/ kata- conta iners/ docum entat ion/ blob/ master/
Limit ations. md.

https://opencontainers.org/
https://github.com/kata-containers/documentation/blob/master/Limitations.md
https://github.com/kata-containers/documentation/blob/master/Limitations.md

SN Computer Science (2023) 4:387 Page 13 of 13 387

SN Computer Science

Acknowledgements This work is partly supported by JSPS KAKENHI
under Grant Nos. JP18K11326, JP20K19808, and JP21K11913. We
would like to thank Mr. James for many detailed discussions and sug-
gestions, and his tremendous help on the proof reading.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author
states that there is no conflict of interest and this research is not spon-
sored by any organizations discussed in this paper.

References

 1. Adams K, Agesen O. A comparison of software and hard-
ware techniques for x86 virtualization. ACM Sigplan Not.
2006;41(11):2–13.

 2. Agache A, Brooker M, Iordache A, Liguori A, Neugebauer R,
Piwonka P, Popa D-M. Firecracker: Lightweight virtualization
for serverless applications. In: 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’20),
2020:419–434.

 3. Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V, Mitch-
ell N, Muthusamy V, Rabbah R, Slominski A. et al. Serverless
computing: Current trends and open problems. In: Research
Advances in Cloud Computing, pp 1–20. Springer; 2017.

 4. Bellard F. QEMU, a fast and portable dynamic translator. In: USE-
NIX Annual Technical Conference (ATC’05), 2005:41–46.

 5. Caraza-Harter T, Swift MM. Blending containers and virtual
machines: a study of firecracker and gvisor. In: Proceedings of
the 16th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, 2020:101–113.

 6. Combe T, Martin A, Di Pietro R. To Docker or not to Docker: a
security perspective. IEEE Cloud Comput. 2016;3(5):54–62.

 7. Felter W, Ferreira A, Rajamony R, Rubio J. An updated perfor-
mance comparison of virtual machines and Linux containers. In:
2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2015:171–172.

 8. Kivity A, Kamay Y, Laor D, Lublin U, Liguori A. KVM: The
Linux virtual machine monitor. In: The Linux symposium.
2007;1:225–30.

 9. Kozhirbayev Z, Sinnott RO. A performance comparison of con-
tainer-based technologies for the cloud. Future Gener Comput
Syst. 2017;68:175–82.

 10. Li G, Takahashi K, Ichikawa K, Iida H, Thiengburanathum P,
Phannachitta P. Comparative performance study of lightweight

hypervisors used in container environment. In: Proceedings of the
11th International Conference on Cloud Computing and Services
Science - CLOSER, pp 215–223. INSTICC, SciTePress; 2021.

 11. Li Z, Kihl M, Lu Q, Andersson JA. Performance overhead com-
parison between hypervisor and container based virtualization.
In: IEEE 31st International Conference on Advanced Information
Networking and Applications (AINA), 2017:955–962.

 12. Manco F, Lupu C, Schmidt F, Mendes J, Kuenzer S, Sati S, Yasu-
kata K, Raiciu C, Huici F. My VM is lighter (and safer) than your
container. In: 26th Symposium on Operating Systems Principles
(SOSP’17), 2017:218–233.

 13. Mao M, Humphrey M. A performance study on the VM startup
time in the cloud. In: IEEE Fifth International Conference on
Cloud Computing (CLOUD 2012), 2012:423–430.

 14. Matthews JN, Hu W, Hapuarachchi M, Deshane T, Dimatos D,
Hamilton G, McCabe M, Owens J. Quantifying the performance
isolation properties of virtualization systems. In: 2007 Workshop
on Experimental Computer Science, pp. 6–es; 2007.

 15. McDougall R, Anderson J. Virtualization performance: per-
spectives and challenges ahead. ACM SIGOPS Oper Syst Rev.
2010;44(4):40–56.

 16. Neiger G, Santoni A, Leung F, Rodgers D, Uhlig R. Intel vir-
tualization technology: Hardware support for efficient processor
virtualization. Intel Technol J, 2006;10(3).

 17. Pike R, Presotto D, Dorward S, Flandrena B, Thompson K,
Trickey H, Winterbottom P. Plan 9 from Bell Labs. Comput Syst.
1995;8(2):221–54.

 18. Popek GJ, Goldberg RP. Formal requirements for virtu-
alizable third generation architectures. Commun ACM.
1974;17(7):412–21.

 19. Sites RL, Chernoff A, Kirk MB, Marks MP, Robinson SG. Binary
translation. Commun ACM. 1993;36(2):69–81.

 20. Wang X, Du J, Liu H. Performance and isolation analysis
of runc, gvisor and kata containers runtimes. Clust Comput.
2022;25(2):1497–513.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	The Convergence of Container and Traditional Virtualization: Strengths and Limitations
	Abstract
	Introduction
	Background
	Motivation
	Architecture
	QEMUKVM
	Docker
	gVisor
	Kata QEMU
	Kata Firecracker

	Evaluation
	Low-Level Aspects
	CPU Performance
	Memory Bandwidth
	Startup Time
	Memory Footprint
	System Call
	Network Throughput
	Disk IO

	Real-World Workload
	MySQL
	Nginx Serving a Static Web Page

	Discussion
	Security Isolation
	Startup Time
	Memory Overhead
	Compute Performance
	System Call Latency
	Network
	Disk IO
	Other Points of Note

	Related Work
	Conclusion and Future Work
	Acknowledgements
	References

