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Abstract
This research work presents a method for ranking sensors using the data produced by these devices. The method classifies 
the data, identifying the occurrence of failures in sensors and anomalies in the environments, aiming to maintain a reliability-
based sensor ranking list. To generate the ranking list, overcoming the challenges implicit in this activity, the method adopts 
the theory of active perception as a basis. This approach divides the perception activity into levels that progressively add more 
sense to the information generated by the sensor, thus providing more reliability to the task of classifying the data generated 
by the sensors, without spending resources. This step allows you to create the ranking list in which the most reliable sensors 
will be at the top of the list. This list is managed through a distributed hash table to meet the distributed requirement of the 
Internet-of-Things (IoT) environment. The proposal was evaluated using four real data sets. The results of this research dem-
onstrate that the proposed approach can provide high reliability in the use of sensor data, using low computational resources 
and, thus, reducing latency in the processes of selection and use of sensors.
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Introduction

In the IoT environment, large-scale data detected in the envi-
ronments surrounding the physical world can be distributed, 
processed, and used by various services and applications 
to enable autonomous and intelligent decision-making [1, 
2]. The number of objects added to IoT is approaching 200 
billion, and the number of sensors is already over 50 billion 
[3]. As a result, the data generated by IoT far outweigh the 
capabilities of existing IT architectures and infrastructures, 

and its real-time requirement will also much emphasize the 
available computing capacity.

The cloud computing model is an efficient alternative 
for managing large volumes of data, allowing greater use 
without degrading performance. It is achieved through the 
implementation of homogeneous and theoretically unlim-
ited computing, storage, and network components. How-
ever, these advantages become an issue for latency-sensitive 
applications, which require nearby network nodes to meet 
their delay requirements [4].

To meet this demand, CISCO proposed the creation of 
a platform that it called Fog Computing, or, briefly, Fog, 
simply because fog (Fog) is a cloud close to the ground 
(network edge) [4]. In this computational architecture, each 
smart object is connected to one of the Fog devices. The 
devices can be interconnected, and each one is linked to 
the cloud [5]. The architecture allows sensors from the IoT 
environment (Edge) to produce useful data about the envi-
ronment around them, aiming to make this environment 
more intelligent. This task is made possible through access 
to the necessary information related to the environments, 
the collection, and analysis of past and present data. These 
data allow optimal decisions about people and their environ-
ments, preferably in real time [6].
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To allow data sharing, using these concepts, IoT mid-
dleware solutions have been adopted [7]. IoT middleware 
is used to collect data from sensors to be used by different 
applications, acting as an interface between the user/applica-
tion and the IoT network [8].

An IoT middleware usually offers resources for acqui-
sition, the discovery of new sensors, indexing, ranking, 
and query [9]. The indexing process involves storing and 
indexing the data collected from the resources, considering 
that the resources include sensors, devices, and services, to 
allow a fast and efficient search. The IoT resources ranking 
is performed by prioritizing criteria as quality of data, device 
availability, energy efficiency, and network latency. This task 
can be performed based on the generated observation (con-
tent) and the measurement data (context). Examples of use 
are applications such as industry and health that require reli-
ability associated with the processing and provision of data 
with low latency [10]. Only these two resources, indexing, 
and ranking will be considered in this research work.

The complexity and heterogeneity of objects connected 
to the IoT environment are also present in the data gener-
ated by them. Thus, a set of challenges arises from the vast, 
changeable, and diversified mass of data (data-intensive), 
on how to handle and use these data [11]. According to the 
National Science Foundation (NSF) [12], some of the sig-
nificant challenges of this environment include supporting 
real-time applications, from enabling artificial intelligence 
to controlling feedback in cyber-physical systems, by reduc-
ing latency.

Therefore, IoT systems with intensive use of data are 
challenged by the dynamics and uncertainty of the circum-
stances in which the system is located and by the recognition 
and search quickly in an ocean of noisy data coming from 
heterogeneous devices, meeting requirements that evolve 
rapidly [11].

To overcome these challenges, this research paper pre-
sents a sensor ranking approach. The method proposes to 
reduce latency and increase the reliability in the use of the 
information generated by the sensor. The construction of the 
ordered list of sensors is carried out based on the quality of 
the collected data. The work also intends to help in identi-
fying extreme events or failures in the devices, serving as a 
support tool in the control of the monitored environments. 
For this, the method uses the content (data generated by the 
sensor) and context information related to the state of the 
sensor at the exact moment of capture. To evaluate the data, 
two evaluation techniques are used. The first one is applied 
to most of the data and the second one is applied only to 
uncertain data, which considers the dynamic aspect and uses 
a time slice of data to define the sensor state. Finally, using 
context parameters, the method updates the ranking list.

This article describes the evolution of the research work 
presented in [13]. Unlike the previous work, the second level 

of the proposal now uses the nearest neighbor algorithm 
combined with the Interquartile Range (IQR) metric. The 
IQR metric was also used to generate labels for the data 
in the training step. Fuzzy logic is now only used in the 
third and last level of the proposal, to generate the final label 
related to the current state of each sensor. In addition, the 
proposal now brings an implementation of the computational 
architecture with a distributed approach, through the main-
tenance of ranking lists in distributed hash tables. Different 
datasets were also used, aiming to work with datasets used 
in more recent works. Additionally, the new datasets were 
also studied in works that identify the points of anomaly and 
failure present in each set, thus providing a way to assess the 
accuracy when using these data.

The remainder of the paper is organized as follows: the 
section "Related Works" section presents the related works 
with this proposal. The section "Background" presents the 
concepts related to the proposal. In the section "Sensor 
Ranking", the details of this proposal are discussed. The 
materials and methods used in this work are presented in the 
section "Evaluation". In the section "Experimental Results", 
the results obtained are presented and discussed in the sec-
tion “Discussion”. The section “Conclusions and Future 
Works” brings the conclusions and future works.

Related Works

Applications, such as industry, agriculture, and healthcare, 
require reliability associated with computing in services that 
require low latency requirements [10]. In this sense, many 
works have been dedicated to the discovery, indexing, and 
ranking of sensors to provide a fast and safe way to recover 
data from IoT devices. In this section, the most relevant 
works related to the ranking of sensors are presented.

In Table 1, it is possible to see a list of the works focus-
ing on the ranking of sensors. The second column identi-
fies whether the architecture proposed by the work can be 
implemented with a distributed approach. The third column 
identifies which tier (Cloud, Fog, or Edge) the data are 
processed in the proposal. The fourth column presents the 
computational complexity of the proposal (computational 
complexity less than O(n2) is considered low). The fifth col-
umn, Ranking Calculation, identifies how the values used in 
the ranking calculation are generated: Before (a user query), 
After, or Diverse (when part of the values is previously cal-
culated, and another part is calculated after the user query). 
The sixth column identifies how many steps or techniques 
the work uses to evaluate the data and generate the ranking 
of sensors. The seventh shows which works consider using 
historical sensor data (time) and the eighth column if the 
work considers fault handling (an anomaly in the environ-
ment or failure in capture).
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The previous version of this research [13], named Great-
est of Actual Time (GoAT), covers all aspects present in 
related works, except the feature of maintaining the classifi-
cation list in a distributed way, which is extremely important 
to meet the latency requirements present in this scenario. 
Comments below on related work do not include the previ-
ous version of this research. This means that statements like 
"none of the work", for example, disregard GoAT.

According to the bibliographic research carried out, only 
one of the articles [14] considers aspects related to iden-
tifying failures or anomalies. Despite this, the work does 
not describe how it is done and does not show results, so 
it was not included in the table of related works. None of 
the related works considers the fact that sensor failures can 
be transient or persistent, given the dynamic nature of the 
IoT environment, so the generated ranking may not reflect 
the actual state of the sensors. The researched works also 
do not create the ranking previously (make the ordering 
available before receiving queries), making it impossible to 
immediately respond to a request for a list of trusted sen-
sors. The use of the theory of active perception for ranking 
sensors was not used in any related works. The design of 
the proposal associated with the theory of perception aims 
to create a method that adds knowledge to the reasoning at 
each level of the theory, improving the data analysis process. 

Regarding this aspect, only three studies use more than one 
technique to evaluate the data.

Thus, considering the use of two evaluation techniques, 
one of them considering the dynamic aspect using the 
evaluation of the data referring to a time slice; regarding 
the classification of the state of the sensors in the normal, 
anomalous, and failure categories and, finally, considering 
the previous generation of the ranking list, thus reducing 
the latency in queries; and finally considering the ability to 
manage the ranking list of sensors in a distributed way, make 
evident the important scientific contribution of this proposal.

The literature review carried out presents the various 
approaches used in the sensor ranking activity, demonstrat-
ing the importance of this activity for the development of the 
IoT. However, despite the related proposals showing promis-
ing results, there are still some challenges and opportunities:

•	 Properly treat the data generated by sensors in the IoT 
environment, differentiate data that represent real meas-
urements of the environment around the sensor from data 
generated by failures or interference.

•	 Improve the sensor selection processes to reduce the 
amount of data to be analyzed in decision-making, allow-
ing the time between analysis and action to be as short as 
possible, meeting low latency requirements.

Table 1   Related works Work Features characteristics

Distributed Tier Complexity Ranking Evaluation Time Anom-
aly/
failure

Costa et al. [13] No Fog Low Before Two Yes Yes
Nesa and Banerjee [15] Yes Cloud High Before One No No
Dautov and Distefano [16] Yes Edge Low Diverse One No No
Ruta et al. [17] Yes Fog/cloud Low Diverse One No No
Kakunsi and Candra [18] No Cloud Low Diverse One No No
Kertiou et al. [8] Yes Fog/cloud High Before One No No
Dilli et al. [19] No Cloud Low Before One No No
Hussain et al. [20] No Cloud Low Before One No No
Nunes et al. [21] No Cloud Low Before One No No
Kang et al. [22] Yes Edge Low Before One No No
Zhang et al. [23] Yes Fog/edge High Diverse One Yes No
Saxena [24] No Cloud Low Before One No No
Wang et al. [25] Yes Fog/cloud Low Diverse One No No
Yuen and Wang [1] No Cloud Low Diverse One No No
Cabral et al. [26] Yes Cloud Low Before One Yes No
Niu et al. [27] No Cloud Low Diverse Two No No
Perera et al. [28] Yes Cloud Low Before Two No No
Truong et al. [29] Yes Fog/Cloud Low Before One Yes No
Walters et al. [30] Yes Fog Low After One No No
Wang et al. [31] Yes Fog Low Before One No No
Ostermaier et al. [32] No Cloud High Before Two Yes No
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•	 Improve the reliability of data obtained from sensors in 
the IoT environment, to reduce uncertainty in decision-
making.

•	 Provide a fully distributed solution capable of meeting 
low latency requirements.

This work aims to contribute to overcoming these 
challenges.

Background

This section describes the basic concepts related to the tech-
niques and algorithms employed. Concepts related to the 
Gradient Tree Boosting, used in the first data evaluation, 
are described. Nearest Neighbors, used to identify anoma-
lous segments in time series, are also presented. To compare 
these segments, a similarity measure is used to define an 
anomaly index for each segment. Using the generated anom-
aly index, the Interquartile Range metric is used to divide the 
data into normal, anomaly, and failure types. This division 
uses the anomaly index to evaluate each data segment and 
thus define which category it belongs to. The Fuzzy Infer-
ence System (FIS), used to evaluate the sensor state, is also 
presented. The Quality of Context (QoC) theory, which one 
of the parameters is used, and the Distributed Hash Table 
(DHT), used to manage the distributed sensor rank lists, are 
also presented.

Gradient Tree Boosting

The first evaluation of the sensor data in this work uses an 
algorithm belonging to the Gradient Tree Boosting (GDB) 
class, as shown in Fig. 1. Figure 1 demonstrates the appli-
cation of the GDB algorithm to the Intel Lab dataset [33], 
which contains information about data collected from sen-
sors, mounted on a Mica2Dot1 board, deployed at the Intel 
Berkeley Research Lab (IntelLab). The algorithms of the 
GDB class are algorithms that start by creating only one 
decision tree. After training, the values ​​for which the tree 
makes incorrect predictions are recorded. Then, a new tree 
is created to see how much the other tree makes mistakes. 
Then, the cycle is repeated up to a certain limit, always try-
ing to reduce the error rate [34]. The XGBoost implementa-
tion improves the performance of the conventional gradient 
augmentation tree by introducing two techniques: weighted 
quantile sketching (a data structure that supports merging 
and removing operations) and dispersion recognition split 
location (default direction at each node in the tree). XGBoost 

has been applied to several machine learning problems and 
has obtained better results than the other algorithms [35]. 
This algorithm has linear time complexity.

Nearest Neighbors Algorithm

Nearest neighbor techniques are widely applied to detect 
anomalous segments [36]. The technique uses a measure to 
generate an index that represents the similarity between each 
segment in the time series and all other segments. Segments 
with similar sequences of samples represent closest neigh-
bors. The similarity of a segment to its nearest neighbors is 
the basis for its anomaly index. In particular, if a segment 
is anomalous, its similarity to any other segment will be 
low [37].

Similarity Measure

To measure the similarity between segments, the Euclid-
ean distance metric was used. The motivation for using the 
Euclidean distance is that a zero distance, in other words, 
maximum similarity, occurs only when two segments are 
very similar in all n samples [37]. The Euclidean metric is 
presented in Eq. 1

Interquartile Range

The Interquartile Range (IQR) metric is useful to indicate 
whether the values of a dataset can be considered outliers 

(1)d(u, v) =

�

n
∑

i=1

�

ui − vi
�2

.

Fig. 1   Classification of a single sensor data [13]

1  Mica2Dot is a board used to enable low-power wireless sensor net-
works that allows connecting various types of sensors.
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[38]. Quartiles are the separators that divide a numerical 
dataset into four equal parts. The first quartile (Q1) is the 
value of the set that delimits the 25% smaller values (25% 
of the values are less than Q1 and 75% are greater than Q1). 
The second quartile (Q2) is the median itself, which sepa-
rates the 50% smaller from the 50% larger values. The third 
quartile (Q3) is the value that delimits the 25% higher values 
(75% of the values are lower than Q3 and 25% are higher 
than Q3). Thus, the first range of data (first 25% of data) 
starts at the smallest value and goes to Q1. The second range 
between 25 and 50% are values greater than Q1 and less than 
Q2. The third range corresponds to values between 50 and 
75%, that is, values greater than Q2 and smaller than Q3. 
The fourth and last range corresponds to values between 
75 and 100% (or the maximum value) of the data [39]. The 
interquartile range is the difference between Q3 and Q1.

The idea is to create thresholds using the value of the 
IQR index to facilitate the identification of values that are 
far from the most frequent values, and in some cases, even 
extrapolating the valid range of domain values.

Fuzzy Inference System (FIS)

The fuzzy logic is inspired by real-world phenomena in 
which events can hardly be considered entirely false or com-
pletely true [40]. Fuzzy logic offers a method, based on rules 
and mathematical sets, for the treatment of inaccuracy, thus 
being able to deal with imprecise or qualitative terms, such 
as "Low", "Medium", and "High" which cannot be expressed 
using binary logic.

These characteristics of fuzzy logic will be used to man-
age the current state of each sensor, with more qualita-
tive information than just the value of the trustworthiness 
parameter.

Quality of Context (QoC)

One of the main problems in the way of intelligent IoT is 
to understand the “context” or to understand the environ-
ment, situation, or state using data from sensors and then 
act autonomously. This is called "context-aware computing". 
However, context information of the same entity, of the same 
type, and obtained simultaneously may differ in terms of 
accuracy, probability of correction, reliability, etc. There-
fore, it can be said that the information has a quality, and 
this quality is called "Quality of Context" (QoC) [41]. QoC 
can help to resolve uncertain and conflicting situations about 
context information. Therefore, context-aware applications 
can take advantage of QoC if they are provided with usable 
QoC metrics that are evaluated considering their require-
ments regarding the collection, processing, and provision 
of context information [42]. It is important to highlight the 
difference between data and contextual information: “data” 

are raw data, taken directly from its source (sensors), and 
“context information” is processed data obtained by process-
ing raw data and usually with added metadata [43].

Distributed Hash Table (DHT)

This work considers the use of gateways, in which the data 
of each sensor will be processed and evaluated. The gate-
ways exchange information in a ranking list management 
model using the Distributed Hash Table (DHT) technique. 
The choice of this technique is due to its high degree of scal-
ability and the flexible support for query and update opera-
tions. DHT is a system with a decentralized approach that 
provides fast mechanisms for storage, queries, and updates. 
DHT is built on overlapping networks in which network 
objects are spread and identified with unique keys [44].

The Apache Cassandra implementation was chosen to 
enable exchanging information between the distributed lists 
[45]. Cassandra achieves horizontal scalability by partition-
ing all data stored in the system using a hash function called 
consistent hashing. Consistent hashing is similar to a Chord 
model [46], which is based on DHT. This model provides a 
scalable and efficient protocol for dynamic research in P2P 
systems with frequent node inputs and outputs. It indicates 
how to locate a resource, how a new node enters the sys-
tem, and how to deal with failures. DHT is used for both 
file storage and resource tracking. The nodes are placed in 
ascending order according to their IDs in a virtual ring. To 
improve scalability, the Chord node does not need routing 
information about all other nodes, but only a number of O 
(log N) nodes, and therefore, the search needs a maximum 
of O (log N) messages.

Active Perception Theory

The active perception uses models to inform the context-
dependent adjustments in sensors, aiming to direct the sen-
sors toward phenomena of greater interest [47].

Perception is not passive but active. Perceptual activ-
ity is exploratory, probing, searching. Perceptions do not 
merely fall on sensors as rain falls on the ground. During 
the act of looking, the pupils adjust to the level of illumina-
tion, the eyes bring the world into sharp focus, converge or 
diverge, the heads move to improve the vision of something 
[48]. This adaptability is crucial for survival in an uncertain 
world. Thus, the problem of active perception can be defined 
as the use of control strategies applied to the data acquisition 
process, which, in turn, will depend on the interpretation of 
the data and the objective of the task [48].

Considering that perception is often dependent on con-
text, other senses, and time, the active perception approach 
is divided into four levels: sensation, perception, perception 
over time, and active perception. Sensation is the process 
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by which the captured data enter the system. After sensa-
tion, perception interprets these data and gives it meaning. 
By observing a process for a particular time, it is possible 
to improve the interpretation of these data. This process 
is called perception over time, in which data are classified 
according to time, indicating that it is possible to evaluate 
perception concerning another perception. Finally, active 
perception includes reasoning, decisions, and actions based 
on the information received [49, 50].

Sensor Ranking

This section describes the method proposed in this research 
paper. Before describing the process, itself, some important 
concepts used in the proposal are defined. The datasets used 
in evaluating the method, as well as the experimental com-
puting platform used in the tests, are also described.

Time Series

The proposed method uses time series data. A time series is 
a finite sequence of samples, taken at increasing instants of 
time. In the proposal, the data of a measurement are evalu-
ated first individually and then in small subsets that refer to 
the data generated during a given time slice, or segments. A 
segment refers to a sequence of time series samples ordered 
in time.

Normal and Abnormal Data

In this proposal, if a given sample follows the trend of the 
rest of the data, then it is considered normal and, otherwise, 
it is considered abnormal. If considered normal, no further 
assessment is necessary. On the other hand, if it is consid-
ered abnormal, a second evaluation is made.

Persistent and Transient Failures

Sensor failures can be persistent or transient. As it is com-
mon for failures to occur in this type of communication (in 
capture and transmission), if the interference occurs in only 
one measurement, generating a single incorrect value, there 
is a high probability that these data will be misinterpreted. 
The way to get around this problem is through the analysis 
of the data produced in a time slice. The reason is that dis-
turbances related to energy sources and means of transmis-
sion are mainly transient, caused by imbalances that lead to 
momentary instabilities [51].

Failures and Anomalies

To verify the behavior of each sensor, the data generated by 
them are classified with the labels normal, abnormal, anom-
aly, and failure. Data marked as normal are those that indi-
cate that both the sensor and the environment in which the 
measurement is being made are stable (no anomalies) and 
the reading process was not affected by interference during 
data capture and transmission. Data in this range of values 
represent the data most frequently generated by the sensor.

Data considered abnormal are evaluated again, but in this 
case, considering the temporal aspect (slice of time). In this 
second evaluation, a piece of data can also be considered 
normal, even though it was considered abnormal in the first 
evaluation. This occurs in cases where the data were consid-
ered abnormal due to a transient failure. If a measurement 
affected by a fault is analyzed as a time series, the sequence 
or sample segment corresponding to the fault will be differ-
ent from the normal trend of the time series. However, this 
will only be true if the deviation from normality is large 
enough to influence the measurement of the entire segment, 
which occurs in persistent failures. In the case of transient 
failures, a single abnormal data point, the influence on series 
measurement is less significant. Thus, when analyzed in a 
data segment, the disturbance caused is mitigated due to the 
presence of several other normal values.

In this second evaluation, the data can also be marked 
as anomalies, indicating the occurrence of anomalies in the 
environment. This occurs when several of the values in the 
data segment are relatively far from the normal range, but 
within a range of values that may exist in the environment's 
domain. This kind of data does not happen that often.

Finally, data considered as failure are data that occur 
due to persistent failures in devices, affecting the capture 
or transmission of data. In this case, the range of values is 
much further away from the other values, extrapolating the 
limits of valid values in the domain

Equations 2 and 3 use the anomaly index (ai) and IQR 
metric to label samples. Equation 2 is used to verify if a 
value is considered anomaly and Eq. 3 is used to label values 
considered failures. The factors anomaly factor (AF) and 
failure factor (FF) used in the formulas were defined in the 
data set training stage to better identify the discrepant data 
in each set.

Figure 2 shows an example of the application of this met-
ric: the points located below the gray line (close to 0.035) 
represent the data considered normal; the points between 
the gray and the green line (close to 0.05) represent the 

(2)Q3 + FF ∗ IQR < ai > Q3 + AF ∗ IQR

(3)ai > Q3 + FF ∗ IQR.
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anomalous data, and the points above the green line repre-
sent probably failure data. No data exist below zero, because 
the values represent the temperature in an environment that 
does not have negative temperatures.

The samples marked as failures refer to noise in the trans-
mission or capture of sensor data, and the data considered 
as anomalies represent the presence of a phenomenon in the 
observed environment surrounding the sensor.

Three‑Level Sensor Ranking

The ranking method proposed in this work is based on the 
theory of active perception [49, 50]. Similarly, in this pro-
posal, the task of ranking sensors is performed through an 
analysis that allows different levels of reasoning according 
to the context found.

Figure 3 shows an overview of all steps involved in this 
proposal and Fig. 4 presents an overview of the proposed 
algorithm only.

In the pre-processing step shown in Fig. 3, the samples 
are labeled, the variable data are discretized, and the train-
ing phase of the algorithms used is performed. Then, in the 
processing step shown in the figure, it is possible to identify 
the layer (Edge, Fog, and Cloud) the processes (acquisition, 
modeling, reasoning, and distribution) of the middleware 
that are executed (boxes with a gray background). Below the 
identification of each process, in orange, the functions per-
formed in the standard middlewares are represented. In the 
boxes with a green background, the processes present in the 
architecture of the developed experimental environment are 
described, represented by the text in black. In these boxes, 
the orange text represents the process performed or the input 
data sent to the tools used, identified by the gray text.

Finally, the ranking process is detailed in the last sec-
tion (indicated by the up arrow), on the top right (Active 

Perception), which shows the information flow of the pro-
posal. The image displays the levels of active perception 
starting with the activity of collecting data in the environ-
ment (following the direction of the red arrow), perception, 
perception over time, and active perception. The first level of 
the active perception, sensation (wrapped in a dashed line), 
is carried out by the sensors and, therefore, is outside the 
scope of this work. This activity is emulated by scripts in 
the evaluation tests performed. In this part of the image, the 

Fig. 2   Division of data into normal, anomaly, and failure values using 
the IQR metric

Fig. 3   Overview of all steps involved in this proposal: tiers of pro-
cessing, processes, and tools for each tier and active perception (pro-
posed)

Fig. 4   Algorithm for ranking sensors
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flow returns to the environment, indicating the execution of 
the actions taken at the level of active perception. Below 
the identification of each level, characteristics of the respec-
tive activity, and the techniques used to implement them are 
presented. Each step is identified according to the theory 
of active perception (black text), as well as the function of 
each one (text in green) and the algorithm or technique used 
(in blue).

Figure 4 presents a general flowchart of the algorithm 
used in the decision process during information processing. 
The flow shows the levels of the proposal and the decisions 
taken at the exit of the first and second level. As can be seen, 
the second and third levels are only executed if the informa-
tion on the first level (perception) is classified as abnormal. 
Otherwise, the flow goes directly to updating the distributed 
hash tables. Considering the case of the data being classi-
fied as abnormal, it is evaluated again at the second level 
(time perception) to see if it is a normal, a fault or if it is 
a change in the environment, that is, an anomaly. The flow 
continues to the third level, where the amount of each type 
of data generated by the sensor is used to define its current 
state as normal, fault, or anomaly. Finally, the process ends 
by updating the distributed hash tables. The image also dis-
plays a query module through which the distributed ranking 
list can be queried. In the current state of the proposal, this 
module has not yet been implemented and queries are made 
manually. In the following subsections, the implementations 
of each level will be detailed.

First Level

At this level, which was implemented using XGBoost, the 
model created in the training phase is used to classify data 
into normal and abnormal. The training of the algorithm was 
carried out with a sample of 25,000 cases from each dataset. 
In this proposal, if the segment that does not follow the trend 
of normal data will be considered abnormal, and after that, 
a second evaluation will be made to decide whether the data 
are an anomaly or a failure.

Second Level

This level uses time to evaluate the data provided by the 
sensor. The adoption of this approach (time) allows distin-
guishing transient from persistent failures. If a measurement 
affected by a failure is analyzed as a time series, then the 
sequence of samples or segments corresponding to the fail-
ure will be distinct from the normal trend of the time series. 
In other words, this segment will be considered anomalous 
[36].

To implement this concept, the nearest neighbor’s algo-
rithm was chosen. The basic idea is to use a similarity meas-
ure to assess the similarity between each segment in the 

time series and all other segments. Similar segments, that 
is, with similar sequences of samples, are known as near-
est neighbors. These must be differentiated from neighbors 
almost in time, which are adjacent segments with overlap-
ping samples [52].

The anomaly index, a measure of similarity between each 
segment, calculated using the Euclidean distance metric, is 
used to generate the thresholds values that divide data into 
normal, anomaly, and failure categories. These thresholds 
are generated by applying the IQR metric on the calculated 
anomaly indices. As a result, the data are divided into three 
categories according to how far each value is from most of 
the data (those furthest to the center of the normal distribu-
tion), as shown in Fig. 2. The limits are generated in the 
training step of the algorithm and then used in the tests. 
This allows the computational cost to be very small when 
executing the algorithm.

Third Level

In the final level, the sensor index is updated with this new 
information. To update the index, the data are processed 
using the concepts of Quality of Context (QoC) theory. The 
trustworthiness parameter of QoC (Eq. 4) is used as an indi-
cator to generate the ranking of sensors. In the trustworthi-
ness parameter, the value 0 (zero) means that this context 
source is not reliable, and 1 (one) represents total reliability 
in the context source [53]. In Eq. 4, the parameter T is the 
reliability, the ctxi is the set of trusted context elements for 
a sensor (labeled as "normal"), and W is the total number of 
context elements and must be greater than zero. The terms 
reliability and trustworthiness have the same meaning, and 
the second was used to name the QoC parameter

The value of the trustworthiness context parameter is 
then evaluated using a FIS. The modeled FIS has an input 
variable and an output variable. Figure 5 presents the fuzzy 
pertinence functions of the input variable (trustworthiness) 
and the output variable (sensor state). The sensor state vari-
able shows the functions with the output value already set.

As a final step, regardless of the level that was last per-
formed, the sensor ranking is updated with the new values 
of the trustworthiness parameter.

Evaluation

In this section, the computational architecture and the data 
sets used in the tests of the proposal are presented.

(4)T
(

ctxi
)

=
Number of Realiable Samples (ctxi)

W
.
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IoT Platform

Given the distributed nature of IoT devices, it is necessary to 
adopt a distributed architecture capable of ensuring the scal-
ability of the proposal. The exponential growth in the num-
ber of sensors in the IoT environment justifies the require-
ment for this type of approach. Thus, the proposed method 
will use a distributed approach using a cooperation model 
between Cloud and Fog Computing. The Apache Cassandra 
framework was used to manage the distributed ranking lists.

The computational architecture used in the tests is an 
adaptation of the FASTEN project [54]. Flexible and Auton-
omous Manufacturing Systems for Custom-Designed Prod-
ucts (FASTEN) is a project funded by the EU Horizon 2020 
program. FASTEN's Industrial IoT Platform aims to manipu-
late data from devices (robots, sensors, etc.) in industrial 
environments and serves as an intelligent data repository for 
the optimization and forecasting layer, allowing to improve 
the quality of the services offered and while meeting Indus-
try 4.0 [55] requirements.

Figure 6 presents architecture used. The changes about 
the FASTEN project consist in the use of the sensor ranking 
solution (GoAT [13]) and the use of distributed rank lists 
(Apache Cassandra). The bottom box in Fig. 6 represents the 
sensors (devices). The data from these sensors are sent to the 
platform using the Message Queuing Telemetry Transport 
(MQTT) protocol. To perform this function, the VerneMQ 
tool [56] was chosen. A connector continuously monitors 
topics (such as a message queue) in MQTT, and, as soon 
as a message arrives, it is automatically transferred to the 
Apache Kafka streaming platform [57]. Following the flow, 
the next box, GoAT, represents the proposal of this research 
work for ranking sensors.

After processing by the GoAT broker, messages are main-
tained in the Apache Cassandra tool. The persisted data can 
be used for monitoring the system. For the tests, three con-
tainers were configured in the Docker tool, representing 
a node in the DHT network. In this way, this architecture 
allows parallel processing, also reinforcing the scalability 
of the proposal.

Fig. 5   Fuzzy membership functions

Fig. 6   Proposed experimental 
environment—IoT platform
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Datasets Used

Four real data sets were selected to evaluate the proposed 
method, as shown in Table 2.

The Intel Lab dataset [33] contains information about 
data collected from 54 sensors with weatherboards that 
collected timestamped topology information, along with 
humidity, temperature, light, and voltage values once every 
31 s. The sensors, deployed in the Intel Berkeley Research 
Lab (Intel), were arranged in the lab. The data from sensor 
52 were used in the training phase, and data from sensors 2, 
3, 20, and 39 were used for testing the proposal.

Another dataset referred to environmental data and was 
collected from 9 buoys of the Networked Aquatic Micro-
bial Observing System (NAMOS), which is widely used in 
anomaly detection schemes [58]. In this dataset, data from 
sensor 107 were used in training, and that from sensors 101, 
102, and 106 were used for tests.

Figure 7 shows an overview of 14.181 stations of the 
National Oceanic and Atmospheric Administration (NOAA) 
[59]. In the NOAA dataset, data from station 010080 were 
used in training, and data from stations 010100, 010230, and 
010490 were used in the tests.

The last of the four datasets used have data collected from 
23 stations of the SensorScope [60], an outdoor temperature. 
For training, data from station 19 were used, and data from 
stations 2, 6, 7, 9, and 17 were used in the tests.

The subsets of data for each sensor (stations) were cho-
sen, because they contain data that are far from the average 
of each set (possible anomalies or failures). The combination 
of these datasets, in which the data were generated under 
different conditions, contributed to the evaluation of our 
proposal. To realize the experiments, a computer with an 
Intel Core i7 processor with 16 GB of RAM and a 250 GB 
SSD is used.

Experimental Results

Since the cases of datasets do not have labels, and to pro-
vide some metrics capable of demonstrating the quality of 
our method, the IQR metric is used to generate labels for 
the data in the training step. This approach allows generat-
ing indicators of the accuracy of the proposal, enabling the 
comparison of the outputs generated in the tests with the 
information obtained in the training step.

As an example of the application of the IQR metric to 
generate labels in the data, a graphical representation of the 
division of the data from the dataset SensorScope into the 
normal and abnormal values is showed in Fig. 8.

In the SensorScope dataset image shown in Fig. 8, the 
dots in blue (normal values) represent the natural tempera-
ture variations during a day (between 15 and − 10 °C) and 
the red dots represent the values considered to be abnor-
mal (anomalies in the environment or failures in capture or 
transmission). The data shown in the image refer to station 
19 of the dataset.

The thresholds of the IQR metric (Fig. 9) defined in the 
training step of the k-nearest neighbor algorithm were used 
in the tests of the algorithm.

Table 3 presents the overall error rates (in parentheses 
next to the name of each dataset) and the confusion matri-
ces (the letters N and A represent the normal and abnormal 

Table 2   Datasets

Dataset Cases (millions) Stations

Intel 2.3 54
NAMOS 0.24 9
NOAA 127 14,181
SensorScope 0.58 23

Fig. 7   NOAA hourly dataset 
[59]



SN Computer Science (2023) 4:392	 Page 11 of 15  392

SN Computer Science

labels, respectively) for all datasets. Both overall error rates 
and confusion table values are percentage values. Note that 
the values are presented in percentages, but values such as 
the total normal values and the total abnormal values were 
considered to inform the percentages, so the values add up to 
100% for each column of normal values and for each column 
of values abnormal. As the dataset cases did not have labels, 
the responses of the proposed algorithm were compared with 
the labels generated in the pre-processing step.

Table  4 shows the differences, for abnormal values, 
between the classification obtained in the pre-processing 
step (Abnormal-True) and in the tests (Abnormal-Predicted). 
The values referring to the pre-processing step are expressed 
in quantity and the other values are expressed in percentage. 
The table also displays the percentage of values for each data 
label. The Abnormal-True and Abnormal-Predicted columns 

Fig. 8   SensorScope dataset classified using the IQR metric

Fig. 9   The IQR metric is applied to values of the datasets: a Intel, b NAMOS, c NOAA, and d SensorScope
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have values defined at the first level of the algorithm (Per-
ception), and the anomaly, failure, and normal columns have 
values defined at the second level (Perception Time) of the 
algorithm. Note that in the values referring to the second 
level, the values of anomaly and failure add up to 100%, as 
they correspond to the parcels of abnormal values.

Figure 10 shows the times spent per dataset for process-
ing a request. The item "Response Time" refers to the total 
time from the submission of the request to the receipt of the 
response. The item "Latency" refers to the processing time 
of the ranking algorithm. The difference between latency 
and response time is because, in the calculation of latency, 
the time spent on data manipulation by the python Pandas 

framework was disregarded. In Fig. 10a, the times spent in 
the first step of the algorithm (first level of active perception) 
are shown, and in Fig. 10b, the times referring to the execu-
tion of the three levels of the algorithm are shown.

Discussion

In Figs. 8 and 9, it is possible to see that the use of the IQR 
metric is efficient to separate the data into normal, anoma-
lous, and fault data. The images clearly show the separation 

of the data close to the average of the most distant data. The 
justification lies in the fact that the occurrence of anomalies 
and failures in the sensors should generally be rare events 
when compared to data considered normal.

The general error percentages shown in Table 3 demon-
strate the efficacy of our proposal. However, in the NOAA 
data set, it is possible to verify higher values by analyzing 
only the error rates of the values classified as abnormal by 
the algorithm. In the other data sets, this rate is minimal. 
It was possible to verify, after analysis, that the threshold 
values of this set, for the failure and anomaly categories, 
differ drastically from the others. As can be seen in Fig. 9, 

Table 3   Normalized confusion 
matrix for all datasets (%)

Actual Values (%)
Intel (0,04) NAMOS (1.92) NOAA (0.40) SensorScope (0.09)

Pr
ed

ic
te

d
V

al
ue

s (
%

)

N A N A N A N A

N 99,998 3,600 N 98,333 11,455 N 99,998 33,885 N 99,913 2,597

A 0,002 96,400 A 1,667 88,545 A 0,002 66,115 A 0,087 97,403

N = Normal; A = Abnormal

Table 4   Classification of abnormal values (%)

Dataset Label first level Label second level

Abnormal 
(True)

Abnormal 
(Predicted)

Anomaly Failure Normal

Intel 500 96% 0% 100% 4%
NAMOS 1711 89% 44% 56% 13%
NOAA 785 66% 16% 84% 0%
SensorScope 77 97% 1% 99% 3%

Fig. 10   Response time and latency costs
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the limits between the normal and the other values are very 
close, which probably reveals the cause of the errors made 
by the algorithm.

Besides that, only a small part of the data are analyzed at 
all levels of the proposal. This is because the data considered 
normal, which consists of most of the data, are not processed 
in the second level of the proposal (Perception Time). This 
idea is clear when checking the graphs shown in Fig. 10, 
which shows considerably shorter processing times relative 
to the first level, Fig. 10a, concerning to the total processing 
time of the three levels shown in Fig. 10b.

Finally, Table 4 presents the data referring to the divi-
sion of the data considered abnormal into data that repre-
sent anomalies in the environment and in data that represent 
faults in the sensors. This type of approach can be extremely 
useful not only for controlled environments, assisting in dis-
aster prevention and maintenance of problematic sensors, 
but mainly to allow the safe use of information from sensors 
in the Normal state.

Conclusions and Future Works

This paper describes the efforts and results of a differenti-
ated research work focusing on the ranking of sensors for the 
Edge–Fog–Cloud environments. The main contributions of 
the work are to improve the reliability in the use of sensor 
data and to reduce the latency of this process, offering a 
method based on artificial intelligence to meet the require-
ments of intelligent environments, such as Smart Cities and 
Industry 4.0.

The immense volume of complex and heterogeneous 
data generated in the IoT environment poses challenges that 
must be overcome. One of the main challenges is related to 
computational resources, essential to process these data, to 
meet the real-time requirements inherent to the IoT environ-
ment. Also, the uncertainty added to the process, generated 
precisely by the complexity of the data, also represents an 
obstacle to be overcome.

The presented proposal allows to manipulate this data and 
using software components capable of processing data in a 
parallel, distributed way and, thus, meeting time restriction 
requirements.

Besides, through the implemented mechanisms, it allows 
to drastically reduce the computational effort involved in 
data processing, since almost all the data are analyzed with 
a very low computational cost (only the first level of the 
proposal is used in this subset of the data).

Another characteristic present in the proposal is related 
to the ability to deal with the imprecision inherent to 

devices in the IoT environment. The artificial intelligence 
algorithms applied incrementally provide more reliability 
in the use of the generated data.

Finally, due to the treatment of the uncertainty present 
in the data, the proposal also offers resources to facilitate 
monitoring in controlled environments through the clas-
sification of sensors in anomalous or in a state of failure.

The presented method makes use of several sets of real 
data, already used in other proposals, aiming to help to 
overcome the present challenges, as well as to facilitate the 
improvement of future proposals. Test results show error 
rates below 3% in two sets of data, 11% in one of them, 
and in only one of the four sets used, the rate cannot be 
considered low. Considering together the times obtained 
with regard to latency, which were close to 2 ms in the 
first processing level and 30 ms in the total time, it can be 
said that the proposed method is promising, as it combines 
reliability and latency reduction.

Finally, to the best of our knowledge, this is the first 
sensor ranking proposal that considers the fact that sensor 
failures can be transient or persistent, given the dynamic 
nature of the IoT environment. This work, as it was imple-
mented, also previously generates the list with the classi-
fication of the sensors, which allows responding immedi-
ately to a request for a list of reliable sensors. The use of 
the theory of active perception as the basis for developing 
the proposal allowed the creation of a method that adds 
knowledge to the reasoning at each level of the theory, thus 
improving the reliability of the data analysis process, using 
low computational resources.

As future work, tests are planned in a computational 
grid environment. This will considerably increase the 
amount of data processed by the method, since the volume 
of data generated by sensors is quite large. This procedure 
aims to demonstrate and evaluate the computational capac-
ity of the proposal. In this test, we also intend to use data 
captured online to reflect the characteristics of real envi-
ronments further. In the proposal presented, only univari-
ate data were considered, and the missing data were dis-
regarded. In future work, we also intend to address these 
two aspects. Finally, to optimize the use of the proposal, 
we want to use artificial intelligence techniques to define 
the hyperparameters, currently defined manually.
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