
Vol.:(0123456789)

SN Computer Science (2023) 4:291
https://doi.org/10.1007/s42979-023-01742-z

SN Computer Science

ORIGINAL RESEARCH

A Machine Translation Like Approach to Generate Business Process
Model from Textual Description

Riad Sonbol1,2 · Ghaida Rebdawi1,2 · Nada Ghneim1,2

Received: 28 May 2022 / Accepted: 2 February 2023 / Published online: 28 March 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Modeling is one of the core tasks in Business Process Management (BPM). It represents the most critical step in the BPM
life cycle and is considered as a time consuming and costly task. These challenges raised the question of how researchers
can save this cost by building tools that could support modeling experts in their work to reduce the manual workload. In
this paper, we propose a Machine Translation (MT) like approach to deal with the problem of generating a business process
model based on a textual description. We chose to follow a semantic transfer-based MT approach. Our approach consists
of two main phases: The natural Language Analysis phase and BPMN diagram generation. Natural Language Analysis
phase aims to analyze the text and extract the required knowledge. One of the main outputs for this phase is a Concept Map
which summarizes the concepts of the related domain and the relationships between these concepts. This map represents a
background for our processing in the second phase where we try to generate the “translation”, which is the BPMN diagram
in our case. We achieve our goal in the second phase via a set of semantic, syntactic, and morphological manipulations.
The approach has been implemented and evaluated usinga similarity metric based on the Graph Edit Distance. The results
show that the proposed approach was able to generate models that are more than 81% similar to those created manually by
a human, outperforming the state of the art in this topic.

Keywords Natural language processing · Business process modeling · Model extraction · Machine translation

Introduction

Modeling is one of the core tasks in business process man-
agement (BPM) [1]. It aims to create representations (usu-
ally called models) of the processes of an organization to
understand them, documenting their details, analyzing their
performance to determine opportunities for improvements,
or representing the target process state [1].

Due to its challenges, modeling represents the most criti-
cal step in the BPM life cycle [2]. It is the most time con-
suming and costly task; it requires conducting a number of
meetings, workshops, interviews between modeling experts
and process performers to acquire the required knowledge
in a highly interactive and repetitive approach. According to

Herbst [2], building the as-is model consumes about 60% of
the overall time spent in a workflow project.

On the other hand, in most organizations, the required
information is available in textual forms; 85% of the infor-
mation in companies are stored in unstructured documents—
mostly textual [3]. This includes policies, reports, forms,
manuals, knowledge management systems, and email mes-
sages [3]. In addition, most process performers are accus-
tomed to expressing their needs in natural language [4].
These textual information represent potential sources of
knowledge needed in building the model.

These facts raised the question of how researchers can
save this cost by building tools that could support modeling
experts in their manual workload. These systems will not
replace modeling expert but will help them in creating mod-
els more efficiently in terms of the required time, cost, and
quality [5]. According to Friedrich et al. [6], substantial sav-
ings are possible by providing such automation tools.

Natural Language Processing (NLP) plays an essen-
tial role in dealing with the available textual documents
to extract the models: we need to handle many complex

 * Riad Sonbol
 riad.sonbol@hiast.edu.sy

1 Department of Informatics, Higher Institute for Applied
Sciences and Technology, Damascus, Syria

2 Faculty of Information and Communication Technology,
Arab International University, Daraa, Syria

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01742-z&domain=pdf
http://orcid.org/0000-0002-2785-2508

 SN Computer Science (2023) 4:291291 Page 2 of 16

SN Computer Science

challenges including extracting tasks, ordering them, and
dealing with concurrency, and loops [7]. In addition, there
are many problems related to the textual input which include
the various syntactic and semantic ambiguities [8], irrelevant
sections which could be found in the text for different rea-
sons (like giving a detailed example) [6], and complex NLP
problems like anaphora resolution. These challenges would
be faced even when dealing with a very short text such as the
following process “the process of choosing leads:”

“First, the Manager checks the open leads. Afterwards,
he selects the top five ones. He then tells his Sales Assistant
to call the contact person of the leads. The Sales Assistant
calls each customer. If someone is interested, he sends a
note to the Manager. The Manager then processes the lead.
Otherwise, he calls the next customer.”

We will use this simple process later in Sect. “The Pro-
posed Approach: A Machine Translation Like Approach” as
an example to clarify the output of each step in our approach.

In the next section, we will give a quick overview of most
related works on this topic. Section “Machine Translation:
An Overview” presents a short introduction to the main
machine translation approaches. Our approach is presented
in Sect. “The Proposed Approach: A Machine Transla-
tion Like Approach” and its evaluation results are shown
in Sect. “Evaluation”. Finally, we conclude our paper in
Sect. “Conclusion”

Related Works

The problem of generating models from texts has received
increasing attention in the last decade. Many approaches
have been proposed to deal with this problem based on NLP
techniques.

One of the most important contributions in this field is
the work of Friedrich et al. [6] who proposed a transforma-
tion approach for the automated generation of a business
process model in BPMN format from natural language text.
The approach can deal with text consisting of full, grammati-
cally correct sentences, ordered in a correct sequential with
no irrelevant information. The approach splits up the text
into individual sentences, then parse each sentence using
Stanford Parser [9]. Depending on the grammatical relations,
the approach extracts actors and actions, combines them,
and adds them to a data structure called World Model. This
model is a variation of the CREWS scenario model [10]
and represents intermediate information. The approach uses
some semantic resources such as WordNet and FrameNet
and includes a self-developed anaphora resolution compo-
nent. In the last phase of Friedrich’s approach, the informa-
tion contained in the World Model would be transformed
into its BPMN representation. Authors claim that the

generated models are 76% similar to those created manu-
ally by a human-based on the Graph Edit Distance metric.

Gonçalves et al. [11] combine the Group Storytelling
technique (which has been originally proposed by Santoro
[12]) with Text Mining and NLP techniques. The approach
gets a narrative structure that is mainly composed of events
(flow and participants). These texts are tokenized, annotated
with POS tags, then parsed by a shallow parser. Syntac-
tic-based templates would be applied to extract activities,
actors, and actions. These information would be stored in a
variation of the CREWS scenario model. The approach uses
some keywords (connectors) to determine the process flow.
The approach was further tested with a course enrollment
process modeled by students. Although the final model uses
BPMN format, but might not be complete and could con-
tain undesirable situations in the discovered process models,
such as activities without actors [11].

Ghose et al. [13] propose the Rapid Business Process
Discovery (R-BPD) framework. This framework can query
heterogeneous information resources and rapidly construct
proto-models to be incrementally corrected by an analyst.
The approach analyzes the text in two different techniques:
template-based extraction technique and information extrac-
tion technique. The template-based extraction technique
uses templates of commonly occurring textual cues for pro-
cesses, such as if-then pattern. The second technique uses
an information extraction-based approach where Natural
Language Toolkit (NLTK) [14] was used to annotate the
text with POS tags and parse it to conduct the syntax tree.
Activities, objects, and actors were extracted based on the
resultant syntactic information. Then, sequence flows are
discovered through a predefined list of words. The output
of this approach is BPMN snippets rather than a fully con-
nected model.

Sinha [15] employs a linguistic analysis engine based on
the UIMA framework to extract the model from use cases.
Texts are tokenized, lemmatized, tagged then parsed by a
shallow parser using a Finite State Transducer. The system
annotates each verb with its related concept using a manu-
ally created domain dictionary. Next, a specialized version
of the anaphora resolution system described in [16] was
applied. For every actor, a swimlane is created. Afterward,
the process elements were added and the process model was
built sentence by sentence.

Another approach presented by Epure et al. [17] analyzes
textual input for archaeological processes with a single pro-
cess instance per text. The text is normalized then analyzed
sentence by sentence. This approach generates a parsing tree
for each sentence using Stanford parser, then identifies tran-
sitive verbs using WordNet and VerbNet to extract activi-
ties. Later, pre-defined domain-specific rules were applied
to identify the different relationships between activities. The

SN Computer Science (2023) 4:291 Page 3 of 16 291

SN Computer Science

approach returns chains of relationships without merging
them in a complete model.

Honkisz et al. [18] present a concept of a new method for
extracting the business process from natural language text
through an intermediate process model based on the spread-
sheet representation. The method of obtaining this model
is based on the syntactic analysis of the business process
description and extracting Subject-Verb-Object constructs,
which can be later transformed into process activities.

Van der Aa et al. [19] approach for the automatic extrac-
tion of declarative process models from natural language.
The approach used Natural Language Processing (NLP)
techniques that identify activities and their inter-relations
from textual constraint descriptions. Later this work has
been extended by the same authors in [20] where they pre-
sented an interactive approach that takes vocal statements
from the user as input and employs speech recognition to
convert them into multi-perspective, declarative process
models.

Other close works focus on the automatic comparison
and alignment of process information in semi-structured and
unstructured formats [21]. Henrik et al. [22] proposed a pro-
cess querying technique that can search repositories of both
textual and model-based process descriptions. The approach
automatically extracts activity-related and behavioral infor-
mation from both descriptions types and stores it in a unified
data format based on a Resource Description Framework
(RDF). Leopold et al. [23] propose the use of natural lan-
guage processing and machine learning for detecting candi-
date activities from a textual description of processes. Their
technique automatically identifies whether a task described
in a textual process description is (1) a manual task, (2) a
user task (interaction of a human with an information sys-
tem) or (3) an automated task.

Recently, many works explored the usage of deep learn-
ing approaches to handle process models extraction prob-
lems. Feng et al. [24] used a deep reinforcement learning
framework to automatically extract action sequences from
texts. Their architecture defines two Q-functions associated
with CNN networks to extract actions and model actions
Sequences. Qian et al. [25] formalized the process model
extraction task into the multi-grained text classification
problem and design a new hierarchical network to model
the conditional relation among multi-grained tasks.

Machine Translation: An Overview

Machine Translation (MT) is one of the common problems
in NLP domain. MT systems use different techniques to
obtain a target language text automatically from a source
language text. Two major approaches have been proposed
to deal with this problem: Statistical Machine Translation

(SMT) and Rule-Based Machine Translation (RBMT). SMT
approach tries to build ML systems by learning from parallel
corpora aligned at the sentence level, while RBMT approach
applies a set of linguistic rules in three phases: analysis,
transfer, and generation which could be performed at dif-
ferent linguistic levels (morphology, syntax or semantics)
[26]. Recently, many deep learning based techniques have
been proposed to improve machine translation systems [27].
In this section, we will focus on RBMT approaches since it
is related to our work.

Traditionally, RBMT approaches could be classified into
three categories:direct translation approach, transfer trans-
lation approach, and the interlingual approach. The differ-
ences between these three approaches could be represented
through a triangle called the Vauquois Triangle [28]. As
we can see in Fig. 1, the main dissimilarities are related to
the levels of analysis which should be done to complete the
translation task.

The direct translation approach is based on the word level
(the shallowest level of processing). Usually, a single word
or a string of words (n-gram) is taken from the source lan-
guage and looked up in a bilingual dictionary between the
source and the target languages to retrieve the translation.
This step could include some morphological preprocessing
to obtain the base form of words. Next, the translated words
would be rearranged to consider the preferred word order
in the target language. Typically, systems built using this
approach consist of a large bilingual dictionary and a pro-
gram for analyzing and generating texts [29].

A Transfer-based machine translation approach starts
by analyzing the source language text. The analysis could
be only at the lexical and syntactic level and called syntac-
tic transfer approach, or could cover the semantic level of
processing and called semantic transfer approach. In both
cases, the obtained representation is transferred to the tar-
get language using rules which map the source language
representation into their target language equivalents (such
as converting the syntactic tree from the source language to
the target language). Finally, the text in the target language
is generated.

Interlingual approach is based on extracting an abstract
language-independent representation for the meaning of the
text in the source language and reproducing it in the target
language. The main idea of this approach is that MT must
involve an ‘understanding’of texts’ content in general. The
approach starts with lexical, syntactical, and semantical pro-
cessing for source text and interpreting it into a canonical
interlingual. Later, this interlingual would be used to gener-
ate the target language text.

 SN Computer Science (2023) 4:291291 Page 4 of 16

SN Computer Science

The Proposed Approach: A Machine
Translation Like Approach

We propose an MT like approach to deal with the problem
of generating a business process model based on a textual
description. Since both of the textual description and the
BPMN diagram for a process are finally languages to express
the process, we can see the work of modeling expert as a
translation task from the natural language—which is under-
stood for business domain experts and all the process per-
formers-to BPMN which represents the language of software
engineers and modeling experts.

In the next section, we will explain how we can see our
problem as a machine translation task by showing the differ-
ent components for each language (the text and the BPMN)
from a language processing point of view, then we will
explain our approach in details.

Language Levels: Text vs. BPMN

Traditionally, the processing of any written language goes
through three main levels:morphological, syntactic, and
semantic. Each of these levels focuses on a specific “con-
text” in the language. In natural language, there are standard
definitions of these contexts and levels of processing, but
when dealing with visual languages, we find quite different
points of view, especially at the syntactic and semantic lev-
els. In the following three paragraphs, we will start with a

generic definition of each level, then adapt these definitions
to natural and modeling languages. It is worth to mention
that the proposed levels are somehow simplistic since the
main aim for these levels is (1) to separate what could be
considered “morphological” from what is “syntactical” or
“semantical” while “translating” the text into a BPMN dia-
gram, (2) and to be used when going throw the descending
side of Vauquois Triangle (Fig. 1)

In Morphological Level,morphology refers to the analysis
of the smallest meaningful unit of a language. Therefore,
the context of processing is the basic element in the lan-
guage. In natural languages, basic elements are words, while
in BPMN basic elements are tasks, events, gateways, data
objects, sequence flows, pools, and lanes (Fig. 2). Each of

Fig. 1 Vauquois triangle (adapted from [28])

Fig. 2 Generic forms for BPMN components

SN Computer Science (2023) 4:291 Page 5 of 16 291

SN Computer Science

these elements consists of a combination of visual elements
and the text that is associated with these elements.

Syntactic Level studies the arrangement of basic ele-
ments in the language to create a well-formed independent
statement, question, request, command, exclamation, etc. In
natural language, the context of processing is the sentence.
In BPMN, the “BPMN sentence” is formed by two or more
basic elements. For example, a lane combined with a task
form a well-formed statement that says who is responsible for
doing a task, two tasks with a sequence flow between them
form a statement related to the order of two tasks, etc. In
natural languages, a text or any part of it is syntactically cor-
rect if all of its sentences are syntactically correct. Similarly,
a BPMN or any part of it is syntactically correct if all possi-
ble BPMN sentences in the diagram are syntactically correct.

Semantic Level deals with the meaning of language units
and sentences in natural languages or the whole diagram in
the BPMN language. In NLP and BPMN, the key concern in
semantic level is how the meaning of larger units (sentence
and words) could be obtained from the meaning of smaller
units (words and phrases), and how this meaning could be
transferred accurately to the target language.

The next figure (Fig. 3) shows a summarization of the
main levels in natural languages and the corresponding lev-
els in BPMN diagrams.

The Approach

Generating the BPMN diagram from the textual descrip-
tion of a process is a complex task that needs a deep level
of processing in both syntactic and semantic levels of pro-
cessing. Therefore, the direct transfer approach is not the
best solution. In this paper, we use a semantic transfer-based
approach. Our approach consists of two main phases: natural
language analysis and modeling language generation.

The natural language analysis phase aims to analyze the
text and extract the required knowledge from it. In addition to

the syntactic analysis results, one of the main outputs for this
phase is a Concept Map which summarizes the concepts of
the related domain and their relationships. We generate this
Concept Map using both syntactic and semantic processing
on the whole text. This map represents a background for our
processing in the second phase where we try to generate the
“translation” i.e. the BPMN diagram in our case. We achieve
our goal in the second phase by applying a set of semantic,
syntactic, and morphological post processing procedures. At
the semantic step, we generate a “Text Graph” that represents
the main paths in the model regardless of any consideration
for the syntactic and morphological constraints. Later, tun-
ing steps would be applied to consider the grammar and the
morphology of the target language (BPMN).

One of the major points in the proposed approach is
separating the problem of generating a semantically correct
diagram i.e. a diagram that reflects all main paths in the
text from the problem of generating a syntactically correct
BPMN diagram. The main challenge in the first problem is
having an overall understanding of the whole text by recog-
nizing the main paths which could be scattered and over-
lapped because of the different conditions and cases in the
process text. On the other hand, the main challenge in the
second problem is translating that overall understanding into
a correct BPMN by dividing the different paths into syntacti-
cally correct BPMB elements.

To facilitate the process of transferring the semantic from
natural language text into the business process model, we
proposed the usage of a concept map. We designed a con-
cept map extraction algorithm to overcome the limitation
of previously proposed semantic representation. Although
we are inspired by the “world model” structure which has
been proposed by Friedrich et al. [6], our concept map is
rather different from their structure. The “world model” of
Friedrich et al. is mainly syntax-oriented, action-centric, and
defined in the context of each sentence [30], it is borrowed
from the field of robotics where it is usually used to govern
robotic actions [31]. It consists of four main elements: Actor,
Resource, Action, and Flow. It is constructed based on an
algorithm that takes each sentence in the text, decomposes,
analyzes it, then the action of each phrase is extracted with
its different parts (Actors, and Resources). On the other
hand,our concept map is mainly semantic-oriented, concept
centric, and defined in the context of the whole text. It is
borrowed from the field of education where it is usually used
to represent the concepts the learner should know at the end
of a specific course or program [32] i.e. we mainly focus on
answering the question of “what are the main concepts in the
process” then “what are the relations and actions between
these concepts.

The next figure (Fig. 4) shows a general overview of our
approach. In the next two sections, we will describe each of
the two main phases in more detail.

Fig. 3 Main levels in natural languages vs BPMN language

 SN Computer Science (2023) 4:291291 Page 6 of 16

SN Computer Science

Phase 1: Natural Language Analysis

As mentioned above, the main target in this stage is analyz-
ing the text and extracting the required knowledge. We do
this through three steps:

1. Morphological and Lexical Analysis: In this step, we
split the text into sentences and the sentences into words.
Then, we extract words’ lemmas using Stanford Lem-
matizer. Lemmas will be used in the next steps.

2. Syntactic Analysis: First, we use Stanford pos-tagger
[34]to tag each word with its suitable part of speech tag
which gives the syntactic role of the word (such as Plu-
ral Noun, Singular Noun, Adverb, Adjective...). These
syntactic information will help us determine the entities
and the concepts in the next semantic processing step.
Then, we use Chen and Manning parser [33] to gener-
ate the dependency tree for each sentence. According to
the authors, the parser outperforms other greedy pars-
ers using sparse indicator features in both accuracy and
speed. It can parse more than 1000 sentences per second
which makes it suitable for our needs in this work. The
following figure (Fig. 5) shows a sample dependency
tree:

3. Semantic Analysis:This step of analysis consists of two
components: semantic tagging and Concept Map extrac-
tion.

(a) Semantic Tagging: One of the main problems in
generating BPMN is to connect correctly the dif-
ferent activities. Therefore, we extract semantic
tags from sentences to guide us while connect-
ing two sentences (which will represent a set of
activities). Tagging process uses a lexicon-based
approach to tag words using the following tags

• “Decision”: tags words that represent or trigger a
decision taken from one of the actors in the pro-
cess. This tag could be used for words such as
“assess”, “check”, “test”, “determine” or expres-
sions such as “must... or...”, “can... or...”.

• “Case”: tags words that represent or trigger pro-
cessing a special case based on a condition, such
as “if”, “otherwise”...

• “Go-to”: tags words which represent or trigger
repeating certain steps i.e. going back to one of the
previous steps, such as “sent back”, “send some-
thing back”, “procedure is repeated”...

Fig. 4 General overview of the proposed approach

Fig. 5 Sample dependency tree using stanford CoreNLP

SN Computer Science (2023) 4:291 Page 7 of 16 291

SN Computer Science

• “Merge”: tags words which represent or trigger
merging more than one path, such as “in any of
the cases”, “in all cases”...

• “Seq”: tags words that represent or trigger a direct
sequence, such as “then”, “after that”...

• “Parallel”: tags words which represent or trigger
parallelism, such as “while”, “meantime”...

• “End”: tags words that represent or trigger an end
of the process, such as “end of the process”...

 The tagging process is implemented using lexi-
con at lemma level i.e. we tag a word W using the
tag T if the lemma of W exists in the lexicon of
the tag T. This lexicon is expanded semantically
using WordNet to cover all possible synonyms.
The final lexicon consists of 43 expressions.

(b) Concept Map Extraction: In this step, we will
try to generate a “Concept Map” automatically
from the text. Concept Map (CM) is a context-
dependent knowledge which consists of a set of
concepts connected using relationships. Concept
Maps have been proposed by Joseph Novak [32]
in the context of representing the emerging sci-
ence knowledge of students [34]. In education,
Concept Map is usually used to represent “what
the learner knows” or “what the learner should
know”. In our case, we will use CM as an inter-
mediate semantic representation which describes
“what business analyst should know before mod-
eling the described process”. It will represent the
knowledge in the whole text i.e. a kind of domain
ontology.

 Concept Map could be represented as a graph
where concepts are enclosed in nodes and rela-
tions are represented by labeled links between
related nodes (i.e. concepts). These relation-
ships with their related concepts form propo-
sitions (or semantic units). For example, in the
next figure (Fig. 6) a simple Concept Map is rep-
resented, where “Feedback” and “Customer” are
two concepts related to each other by a relation-
ship labeled “receive”. The relationship with the
two concepts forms the propositions “customer
receives feedback”.

 This algorithm starts by detecting noun phrases
boundaries using a rule-based tagger, then con-

cepts are extracted using a set of templates. After
that, the algorithm merges the different forms (ali-
ases) of the same concept in one entity. Next, we
extract relationships between concepts based on a
set of syntactic rules. Finally, we merge anaphoras
with their related concepts. In the following, we
will explain in details these steps:

(i) Noun Phrase Boundary (NPBT) Tagging: In this step,
we use a rule-based tagging approach to tag words with
three possible Noun Phrase Boundary (NPB) Tags.
These three tags will be used later to determine the
boundaries of noun phrases:

• “SE” tags the first word in the noun phrase.
• “IE” tags the other words in the noun phrase

(except the first word).
• “O” tags the remaining words in the text which

could not be part of a noun phrase

(ii) Concepts Detection: In this step, we scan the text to
extract the noun phrases using the result of NPB-tagger.
Any sequence of words with tags SE and IE represents
a possible concept. Anaphora cases such as “he”, or
“she” are considered as possible concepts in the previ-
ous tagging step. To distinguish between the different
occurrences of the same pronoun in text, we add a loca-
tion suffix to each anaphora. Forexample, if we have
the pronoun “he” in the second sentence, we add the
concept he_2 where 2 is the location suffix.

(iii) Alias Detection: Some concepts could appear in dif-
ferent forms in the text. In this step, we merge all these
possible forms into one concept. To do that, we detect
the possible merges by checking if any concept is an
ending of another one, regardless of stopwords or
morphological affixes. For example, the two concepts
“response comment” and “the comment” are candidates
for a merge since the second concept is an ending of the
first one. Practically, we found that this heuristic is suf-
ficient to detect the possible merges since users usually
use the same words to express the same concept when
describing a business process. When there is more than
one possible merge, we choose the nearest one based
on the number of words. After merging concepts, we
consider the longest form (in terms of the number of
words) as the main concept, and we consider all other
forms as aliases.

(iv) Relationships Generation: after extracting the concepts
from the text, we connect them by semantic relation-
ships in three ways:

Fig. 6 Simple Concept Map

 SN Computer Science (2023) 4:291291 Page 8 of 16

SN Computer Science

• If a concept X starts with a concept Y, we add
a relationship from X to Y labeled by “related
to” like the case of “confirmation” and “con-
firmation document”.

• If there is a verb connecting two concepts1 by
subject-object relationships in the dependency
tree, we create a relationship between these two
concepts labeled by the verb. Here, we con-
sider different cases of conjunctions, such as:
“X can accept or reject Y”, “X process Y and
Z”, “X and Y process X”.

• If there is a direct relationship between two
concepts in the dependency tree, we reflect
it as a relationship in the Concept Map. For
example, in the phrase “the contact person of
leads” we create a relationship between “con-
tact person” and “leads” labeled by “of”.

(v) Anaphora Resolver: We resolve anaphora using the
extracted concepts and relationships. The next figure
(Fig. 7) represents the result of applying the previous
steps on “the process of choosing leads”:

 “First, the Manager checks the open leads. After-
wards, he selects the top five ones. He then tells his
Sales Assistant to call the contact person of the leads.
The Sales Assistant calls each customer. If someone is
interested, he sends a note to the Manager. The Man-
ager then processes the lead. Otherwise, he calls the
next customer.”

 The previous Concept Map contains 6 anaphoras:
he_2, he_3, he_5, he_7, ones_2, and someone_5. For
each anaphora, we consider all previous concepts, in

terms of their occurrence in the text, as possible resolv-
ers. Our objective in this step is to rank these possible
concepts and to choose the most suitable one. We do
that by comparing the context of the anaphora and the
context of each possible concept. The context is defined
by its in-relationships (relations from other nodes),
and its out-relationships (relations to other nodes). For
example, the context of “he_7” could be defined by its
relationship with “customer”, i.e. he is the person who
“phones” the “customer”. In the same way, “he_5” is
the person who “send” a “note”, and “send sth to” the
“manager”.

 We give each possible concept a score for being a
resolver for the anaphora. This score is calculated based
on the maximum similarity between the relationships
of each possible concept and the relationships of the
anaphora. WuP similarity (or Wu-Palmer similarity) is
used to calculate the similarity between two relations
[35].

 The final Concept Map for the previous process is
shown in Fig. 8.

Fig. 7 The Output of steps 1–4 on “the process of choosing leads”

Fig. 8 Final output of applying concept map extraction algorithm on
“the process of choosing leads”

1 We consider that a verb is connecting two concepts if it connects a
word from the first concept with a word from the second one.

SN Computer Science (2023) 4:291 Page 9 of 16 291

SN Computer Science

Phase 2: Modeling Language Generation
After finishing the natural language analysis phase, we gen-
erate a semantic representation of the knowledge in the text
(i.e. the Concept Map). In addition, we analyze the sentences
morphologically and syntactically. Just like what business
analysts do while constructing the BPMN diagram, our sys-
tem will “put the Concept Map in its minds” while gen-
erating the model. In the current phase, we use all these
information while building the BPMN. This phase could be
divided into three levels:

1. Text Graph Generation: At the first level, we focus on
the semantic correctness of the generated BPMN graph
by discovering the main paths in the process from the
text. Therefore, we ignore all details related to activities’
labels since we consider it as a morphological task (see
Sect. “Language Levels: Text vs. BPMN”).

 To achieve this goal, our approach uses sentences as a
sub-process (which could simply consist of one activity),
then tries to find paths between these sub-processes. The
output is a graph connecting these sentences (we will
call it “Text Graph”).

 Text Graph is generated using the following algo-
rithm:

(a) Initialization: In this step we initialize a graph
G=(V,E) which consists of:

• A vertex V[i] for each sentence i in the text.
• An edge between every two vertices representing

two consecutive sentences.

(b) Connecting “Decision” and “Cases” vertices Deci-
sion vertices are the vertices where its related sen-
tence contains a word tagged by “Decision” based
on the output of the previous semantic tagging
step. In the same way, we define Case vertices.

 The aim of this step is connecting each Case
vertex with its related Decision vertex. We do that
by defining the context of the Case and the context
of all previous Decisions. Each context consists
of the concepts surrounding the words tagged by
“Decision” / “Case”. Concept Map helps us in
extracting these concepts. We evaluate the simi-
larity between each Case/Decision pair based on
the distance between “Decision” context concepts
and “Case” context concepts within the concept
map. Finally, we connect the Case node with the
Decision node with the most similar context using
an edge labeled as “Cond”.

 The algorithm is detailed in Algorithm 1. As
described in step 4 (Algorithm 1), we chose 5 words
length after (or before) each “decision” or “case”
words to define “decision” context and “case”
context. The value 5 has been chosen as a distance
threshold by looking at many previous works in
natural language processing [36, 37] which chose
5-grams in their applications. The choice of N in
n-gram features reflects the maximum meaningful
length sequence of words. In our case, this distance
threshold reflects the number of words that might be
related (with high probability) to the context. For this
reason, we have chosen 5 after testing its efficiency
experimentally.

 SN Computer Science (2023) 4:291291 Page 10 of 16

SN Computer Science

(c) Adding Repeat edges: The trigger for this step is
the existence of a go-to vertex in the graph i.e.
a vertex that includes the “Go-to” tag in its sen-
tence. To add repeating edges, we connect each
Go-to vertex with one of the previous vertices in
terms of the order of their occurrence in the text.
Thus, we scan all previous sentences starting from
the closest to choose the most similar context. We
compare the context of Go-to (i.e. the concepts
surrounding the words with the tag go-to) with
the context of the destination sentence’s head (i.e.
concepts which exist at the beginning of the sen-
tence). As a result, a loop is formed by adding an
edge between the most contextually similar previ-
ous node and the go-to node.

 The algorithm is detailed in Algorithm 2.

(d) Process End Vertices: For each node containing a
word tagged as ’end’, we delete all out edges.

(e) Process Merge Vertices: Merge cases are needed
mainly as a result of the second step which pro-
duces some paths that are not connected with any
other node (because of different paths in the flow).
For each vertex Vm containing a word tagged as
’merge’, we connect each vertex Vt with this vertex
when (1) Vt has no out edges, (2) Vt is not an end
node, and (3) t < m.

(f) Sequence Processing: For each vertex Vs contain-
ing a word tagged as ’sequence’, we connect Vs
with Vs−1 and delete all incoming edges to Vs . Fig-
ure 9 shows a sample TextGraph which represents
the result of applying these steps on “choosing
leads process”.

2. BPMN Syntactic-based tuning
 At this step, we convert the TextGraph to a syntacti-

cally correct BPMN. We apply the following steps to
create the Business Process Diagram:

(a) Change each vertex in TextGraph to a BPMN task
and label it with the TextGraph node related sen-
tence.

(b) Change each relation between two vertices in the
graph to the BPMN sequence flow between the
two related tasks.

(c) Create a BPMN start event and connect it with the
first BPMN task.

(d) Create a BPMN end event and connect all open
TextGraph vertices (i.e. nodes with no out-edges)
with it.

(e) Convert each conditional case in TextGraph to a
BPMN exclusive gateway.

(f) Convert each parallel case in TextGraph to a
BPMN parallel gateway.

(g) Split complex tasks: Some TextGraph nodes might
contain multiple tasks. To simplify a complex
task, we apply the following steps:

(i) Extract verbs from node label.
(ii) Extract splitters, such as “otherwise”, “,”, “:”, “and”,

“if”, etc.

SN Computer Science (2023) 4:291 Page 11 of 16 291

SN Computer Science

Fig. 9 Applying Text Graph
Generation on “the process
choosing leads”

Fig. 10 Splitting Complex Tasks

(iii) Using splitters and verbs, we extract the chunks in this
label. A chunk consists of a set of words between two
consecutive splitters and contains at least one verb.

(iv) Reorder chunks: we define a set of rules to reorder the
extracted chunks. For example: “A if B” contains two
chunks “A”, “if B”. We reorder these two chunks to be

“if B”, “A” since the condition should appear before the
action (see the example in Fig. 10)

(v) Replace the node by creating a task for each chunk, then
reconnect the flows with these new tasks.

(h) BPMN Morphological-Based Tuning:
 After converting the TextGraphto the syntax of

BPMN, we apply a set of procedures to rewrite
the different labels (activities, edges, and lanes)
in the previously constructed diagram. These pro-
cedures focus on the correctness of the simplest
units in the BPMN diagram, for this reason,we
call it “morphological-based tuning” (See our
definition for morphology in BPMN language in
Sect. “Language Levels: Text vs. BPMN”).

 (i) Activities Labels: To enhance the activity
labels, we apply a set of syntactical tem-
plates to extract a phrase that represents the
task and exclude other details. For exam-
ple, “He selects the top five ones” will be
“select the top five ones”.

 (ii) Edges Labels: Flows after exclusive gate-
ways should be labeled by meaningful

 SN Computer Science (2023) 4:291291 Page 12 of 16

SN Computer Science

conditions. We determine these labels by
applying a set of rules which cover these
two main cases:

(A) Explicit Conditions: When the condi-
tion is expressed clearly like in the
example “if A, then B”, we get the label
directly from the condition part (A part
in the last example).

(B) Implicit conditions: When the condition
is indirectly mentioned like in the exam-
ple “it could be accepted or rejected, in
the former case.... in the latter case...”,
we extract the condition using the out-
put of anaphora resolution processing.

 (iii) Lanes Labels: Each lane represents an
actor in the process. Hence, it should have
been extracted as a concept in the Con-
cept Map. Using the Concept Map and the
output of the dependency tree, we extract
the concept which plays the “subject” role
in each activity. Concept Map helps us in
(1) standardizing lanes labels (for exam-
ple, both info department and department
should be represented by the same concept
i.e. the same lane since we merged all ali-
ases in one concept while building the con-
cept map), (2) dealing with anaphora actors
(they, it..), since these anaphoras are “ali-
ases” of other concepts, (3) exclude unreal
actors, such as “procedure”, “process”,
“activity”, since they are not concepts in
the Concept Map.

 To deal with activities with no actor, we assign them
to the actor of the previous activity in the model.

The output of this phase is the final result of the proposed
approach. Figure 11 illustrate the output of applying the
approach on “the process of choosing leads”.

Evaluation

To evaluate our work, we implemented the proposed
approach in java and used it to conduct the experiments. It
took in our implementation 150 s to complete processing
all the dataset (2 to 6 s per text) and generate the BPMN
diagram for each of them (using 4.5 GHz Intel Core i7 and
16GB RAM). We applied two experiments: In this first
experiment we evaluated the similarity between the gen-
erated models and the manually constructed one, we used
Friedrich dataset [30] which consists of 47 textual processes
to evaluate the similarity. In the second experiment, we con-
ducted an expert evaluation on a sample of 5 diagrams. In
the next two sections, we will discuss the details and the
results of each experiment.

Experiment 1: Similarity Evaluation

To measure the similarity between the auto-extracted mod-
els and the manually constructed ones, we use Graph Edit
Distance (GED) which has been proposed by Dijkman [38]
and can be applied for different aspects of a process model
[4]. In this experiment, we will use a dataset collected by
Friedrich [30]. This dataset is one of the best known datasets
in this domain in terms of its size and variety, as it consists
of 47 textual process descriptions (in total, 432 sentences)
collected from different sources: Academic (15 models),
Industry (9 models), Textbook (9 models), and Public Sector
(14 models). The dataset represents processes from different
domains (computer, hotels, manufacturing, HR, etc.) and is
divided into 10 groups according to its source.

Fig. 11 The generated BPMN for “the process of choosing leads”

SN Computer Science (2023) 4:291 Page 13 of 16 291

SN Computer Science

The evaluation process starts with matching activities
labels in both models (the manual and the generated model)
using the edit distance algorithm. This matching produces
pairs Mi = (n,m) of similar activities with a similarity value
sim(Mi) or sim(n, m). Depending on these pairs the similarity
is calculated using the formula:

simged(P1,P2) = 1 − {snv, sev, sbv}

Where:
snv =

‖sn‖
‖N1‖+‖N2‖

 sev = ‖se‖
‖A1‖+‖A2‖

 sbv = 2.
∑

(n,m)∈M 1−sim(n,m)

‖N1‖+‖N2‖−‖sn‖
M represents the matched pairs based on the matching

procedure.
Ni represents the activities in Pi.
Ai represents the edges (flows) in Pi.
sn is the set of all inserted and deleted nodes i.e. it evalu-

ates the unmatched activities between P1 and P2.
se is the set of all inserted or deleted edges i.e. it evaluates

the unmatched flows between P1 and P2.
Dijkman recommended using a weighted aver-

age for the three components snv, sev, sbv instead of
using a plain average [39]. In our evaluation we used the
weights which have been suggested by Friedrich [30]:
w
sbv

= 0.4,w
snv

= 0.3,w
sev

= 0.3.

The results of our evaluation show that our approach can
generate models with more than 81% similarity comparing

to manually created diagrams. The detailed results of the 10
groups of processes are shown in Table 1.

Experiment 2: Expert Evaluation

The main objective of this experiment is to see whether the
generated models are useful and understandable from an
expert point of view. The generated models were evaluated
by an independent analyst in the range from 1 to 5, where 1
denotes a totally useless diagram and 5 denotes a totally use-
ful diagram. In particular, value 3 has been used to denote
the diagrams that are sufficiently useful to be used as a first
draft for the desired model i.e. the expert sees that it is useful
to correct the generated diagram instead of building it from
scratch. Table 2 provides more details about these five levels.

The result (Fig. 12) shows that the analyst found that 42
out of 47 are useful (with usefulness level 3,4, or 5), while
the remaining 10 diagrams are considered not very useful
or totally useless. The results of this experiment indicated
that our approach could generate a useful diagram in about
89% of tested models. Besides, in about 59% of the cases,
analysts considered the output very useful, which means
that the generated model gives the correct paths and extract
almost all tasks. On the other hand, the analyst decided that
the generated models are not good enough to be used in
about 11% of the cases.

Table 1 The detailed results of our approach on Friedrich dataset

Group number Number of
models

Source type Our approach (%)

1 4 Academic 81.72
2 2 Academic 79.51
3 8 Academic 84.42
4 1 Academic 64.31
5 4 Industry 71.95
6 4 Industry 69.72
7 1 Industry 79.45
8 3 Textbook 77.19
9 6 Textbook 73.77
10 14 Academic 90.77
Total 47 Academic 81.21

Table 2 The 5 Usefulness Levels

Rating Label Description

1 Totally useless There is a lot of errors, it is totally useless
2 Not very useful Some parts are correct. However, there are a lot of error, I prefer to build it from scratch
3 Somewhat useful There are some major errors, but it is sufficiently useful to be used as a first draft for the desired model
4 Very useful Most of the diagram is correct. It gives the correct paths in the process and extracts almost all tasks

correctly. However, it needs some small changes and improvements
5 Totally useful It is correct, I just need to add some tiny improvements

Fig. 12 The distribution of analyst evaluation

 SN Computer Science (2023) 4:291291 Page 14 of 16

SN Computer Science

Discussion

Our experiments show that the generated BPMN diagrams
are 81% similar to manually created ones. Error analysis
shows clearly that most error cases do not affect the main
flows in the process. In most cases, the process is still
“semantically correct” (i.e.the main flows are recognized
correctly) which might be the reason why the analyst (in
the second experiment) found the generated model useful
in 89% of the cases. In these cases, the analyst decided that
it is better to correct the generated diagrams comparing to
building them from scratch. This indicates that there is a
considerable saving of time and effort comparing to building
the model manually from the text.

We think that separating the semantic level of processing
from the detailed morpho-syntactic levels plays the most
important role in improving the “semantically correctness”
and avoiding major errors, we “borrow” this idea from
semantic transfer-based machine translation approaches
where approaches focus on having a semantic representa-
tion (TextGraph in our approach) which is transferred to the
target language, and only after that the detailed morphologi-
cal and syntactic processing is done [22, 39].

The effect of using a semantic transfer-based MT
approach could seem clear when comparing our detailed
results (Table 1) with the detailed results of a syntax-
oriented approach like Friedrich et al. approach [30]. Our
approach achieves significantly better similarity when the
process model text is larger in terms of the number of sen-
tences (or the number of tasks in the targeted model), and
complex in term of the number of conditions and cases (or
the number of gateways and sequence flow in the targeted
model). For instance, our approach achieves significantly
better results for groups 2 and 4 which have the largest num-
ber of sentences and gateways. This result could be expected
since as much as the text is large, the paths would be scat-
tered over the text, and the probability of overlapping would
be larger, and the role of semantic-level processing (i.e. the
whole text or the whole BPMN diagram, see Fig. 3) would
be much important.

TextGraph provides a solution for three main challenges:

1. The spreading of errors over paths: When there is an
error in one of the activities, in most cases this error
affects previous or next activity without affecting other
flows in the process.

2. Recognize the flow when paths are scattered within the
text: It is common to introduce the possible paths at the
beginning then providing the details of each path in the
next sections in the text like in the following example:

 “The manager of the department can then reject
or accept the order. If the order is accepted

a paragraph explaining this path..... On the other
hand, when the manager rejects the order ... a
paragraph explaining this path.....”

 The effect of detecting the main paths over the whole
text is expected to increase as much as the number of
sentences between these two paths (acceptance and
rejection paths in the last example) increases.

3. The ability to handle more complex flows when there
is more than one level of gateways and when there are
overlapped paths, for example: “the supervisor can
accept or reject the report. These rules could be auto-
mated, to reduce the workload on the supervisor.textbfIf
the supervisor rejects the report, the employee, who sub-
mitted it, is given a chance to edit it, for example, to cor-
rect errors or better describe an expense.If the super-
visor approves the report, it goes to the treasurer. The
treasurer checks that all the receipts have been submit-
ted and match the items on the list.If all is in order, the
treasurer accepts the expenses for processing (including,
e.g., payment or refund, and accounting). If receipts are
missing or do not match the report, he sends it back to
the employee. If a report returns to the employee for
corrections, it must again go to a supervisor, even if the
supervisor previously approved the report.If the treas-
urer accepts the expenses for processing, the report
moves to an automatic activity that links to a payment
system.”

On the other hand, the usage of the concept map provides
a kind of taxonomy for the process to avoid:

1. Unreal actors since we accept the only actor which exists
in the concept map.

2. Expressing the same actor in different format such as
“Supply Chain Management” and “SCM”, “informatics
department” and “department”, “the expense report” and
“the report”...

3. Predicting the actors in a better way when it is men-
tioned indirectly using anaphora such as “He makes the
commercial audit and issues the approval for payment.”

Conclusion

In this paper, we presented a semantic transfer machine
translation-based approach to generate models starting
from the text. The approach consists of two phases: Natu-
ral Language Analysis and Modeling Language Genera-
tion. In Natural Language Analysis phase, we analyze the
text, extract the required knowledge, and generate a Con-
cept Map which summarizes the concepts of the related
domain and the relationships between these concepts. In

SN Computer Science (2023) 4:291 Page 15 of 16 291

SN Computer Science

Modeling Language Generation Phase, we focus primar-
ily on transferring the semantic of the text into a diagram
(called “TextGraph”) that represents the main paths in
the process. Later, we apply a set of syntactic, and mor-
phological tuning steps to convert this TextGraph into the
final BPMN model.The approach was implemented and
evaluated using a similarity metric based on the graph
edit distance.

Our evaluation has shown encouraging results. On aver-
age, we were able to generate models that are more than
81% similar to manually created models.

Funding This study has received no funding.

Data availability The used data is publically available as mentioned
in evaluation section (Friedrich dataset, Reference Number for this
dataset is [30]).

Declarations

Conflict of interest Authors declare that they have no conflict of inter-
est.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

 1. Becker J, Rosemann M, Von Uthmann C. Guidelines of business
process modeling. In: Business process management. Springer;
2000. p. 30–49.

 2. Herbst J, Karagiannis D. An inductive approach to the acquisi-
tion and adaptation of workflow models. In: Proceedings of the
IJCAI, vol. 99. Citeseer; 1999. p. 52–57.

 3. Blumberg R, Atre S. The problem with unstructured data. Dm
Rev. 2003;13(42–49):62.

 4. Laporti V, Borges MR, Braganholo V. Athena: a collabo-
rative approach to requirements elicitation. Comput Ind.
2009;60(6):367–80.

 5. Riefer M, Ternis SF, Thaler T. Mining process models from
natural language text: a state-of-the-art analysis, Multikonferenz
Wirtschaftsinformatik (MKWI-16), March 2016. p. 9–11.

 6. Friedrich F, Mendling J, Puhlmann F. Process model genera-
tion from natural language text. In: International conference on
advanced information systems engineering. Springer; 2011. p.
482–496.

 7. Mendling J, Leopold H, Pittke F. 25 challenges of semantic
process modeling. Int J Inf Syst Softw Eng Big Companies
(IJISEBC). 2015;1(1):78–94.

 8. Bajwa IS. A natural language processing approach to generate
sbvr and ocl. Ph.D. thesis, University of Birmingham. 2014.

 9. De Marneffe M-C, Manning CD. The stanford typed dependen-
cies representation. In: Coling 2008: proceedings of the workshop
on cross-framework and cross-domain parser evaluation. 2008. p.
1–8.

 10. Achour CB. Guiding scenario authoring. In: EJC. 1998. p.
152–171.

 11. de AR Gonçalves JC, Santoro FM, Baião FA. Let me tell you a
story-on how to build process models. J Univers Comput Sci.
2011;17(2):276–95.

 12. Santoro FM, Borges MR, Pino JA. Tell us your process: a group
storytelling approach to cooperative process modeling. In: 2008
12th international conference on computer supported cooperative
work in design. IEEE; 2008. p. 29–34.

 13. Ghose A, Koliadis G, Chueng A. Process discovery from model
and text artefacts. In: IEEE Congress on Services (Services 2007),
vol. 2007. IEEE; 2007. p. 167–74.

 14. Loper E, Bird S. Nltk: The natural language toolkit. In: Proceed-
ings of the ACL-02 workshop on effective tools and methodolo-
gies for teaching natural language processing and computational
linguistics. 2002. p. 63–70.

 15. Sinha A, Paradkar A. Use cases to process specifications in busi-
ness process modeling notation. In: 2010 IEEE international con-
ference on web services. IEEE; 2010. p. 473–480.

 16. Kennedy C, Boguraev B. Anaphora for everyone: pronominal
anaphora resolution without a parser. In: COLING 1996 volume
1: the 16th international conference on computational linguistics.
1996.

 17. Epure EV, Martín-Rodilla P, Hug C, Deneckère R, Salinesi C.
Automatic process model discovery from textual methodologies.
In: 2015 IEEE 9th international conference on research challenges
in information science (RCIS). IEEE; 2015. p. 19–30.

 18. Honkisz K, Kluza K, Wiśniewski P. A concept for generating
business process models from natural language description. In:
International conference on knowledge science, engineering and
management. Springer; 2018. p. 91–103.

 19. van der Aa H, Di Ciccio C, Leopold H, Reijers HA. Extracting
declarative process models from natural language. In: Interna-
tional conference on advanced information systems engineering.
Springer; 2019. p. 365–382.

 20. van der Aa H, Balder KJ, Maggi FM, Nolte A. Say it in your own
words: defining declarative process models using speech recog-
nition. In: International conference on business process manage-
ment. Springer; 2020. p. 51–67.

 21. Van der Aa H. Comparing and aligning process representations.
In: BPM (Dissertation/Demos/Industry). Springer; 2018. p.
16–20.

 22. Leopold H, van der Aa H, Pittke F, Raffel M, Mendling J, Rei-
jers HA. Searching textual and model-based process descrip-
tions based on a unified data format. Softw Syst Model.
2019;18(2):1179–94.

 23. Leopold H, van der Aa H, Reijers HA. Identifying candidate tasks
for robotic process automation in textual process descriptions. In:
Enterprise, business-process and information systems modeling.
Springer; 2018. p. 67–81.

 24. Feng W, Zhuo HH, Kambhampati, S. Extracting action sequences
from texts based on deep reinforcement learning. In: Proceedings
of the 27th international joint conference on artificial intelligence.
2018. p. 4064–4070.

 25. Qian C, Wen L, Kumar A, Lin L, Lin L, Zong Z, Li S, Wang J.
An approach for process model extraction by multi-grained text
classification. In: International conference on advanced informa-
tion systems engineering. Springer; 2020. p. 268–282.

 26. Charoenpornsawat P, Sornlertlamvanich V, Charoenporn T.
Improving translation quality of rule-based machine translation.
In: COLING-02: machine translation in Asia. 2002.

 27. Koehn P. Neural machine translation. Cambridge: Cambridge
University Press; 2020.

 28. Dorr B J, Hovy EH, Levin LS. Machine translation: interlingual
methods. 2004.

 29. Hutchins J. Machine translation: general overview. In: The Oxford
handbook of computational linguistics. 2003.

 SN Computer Science (2023) 4:291291 Page 16 of 16

SN Computer Science

 30. Friedrich F. Automated generation of business process models
from natural language input. M. Sc., School of Business and Eco-
nomics. Humboldt-Universität zu Berli; 2010.

 31. Lomas M, Cross E, Darvill J, Garrett R, Kopack M, Whitebread K.
A robotic world model framework designed to facilitate human-
robot communication. In: Proceedings of the SIGDIAL 2011 con-
ference. 2011; p. 301–306.

 32. Novak J, Gowin D. Learning how to learn. Cambridge: Cambridge
University Press; 1984.

 33. Chen D, Manning CD. A fast and accurate dependency parser
using neural networks. In: Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP).
2014. p. 740–750.

 34. Novak JD, Cañas AJ. The theory underlying concept maps
and how to construct them. Florida Inst Hum Mach Cogn.
2006;1(1):1–31.

 35. Wu Z, Palmer M. V verbs semantics and lexical selection. In:
Proceedings of the 32nd annual meeting on association for com-
putational linguistics. 1994. p. 133–138.

 36. Bassil Y, Alwani M. Context-sensitive spelling correction using
google web 1t 5-gram information. Comput Inf Sci. 2012;5(3).

 37. Brants T. Web 1t 5-gram version 1. http://www.ldc.upenn.edu/
Catalog/CatalogEntry.jsp?catalogId=LDC2006T13 (2006).

 38. Dijkman R, Dumas M, Van Dongen B, Käärik R, Mendling J.
Similarity of business process models: metrics and evaluation.
Inf Syst. 2011;36(2):498–516.

 39. Jones B, Andreas J, Bauer D, Hermann KM, Knight K. Semantics-
based machine translation with hyperedge replacement grammars.
In: Proceedings of COLING 2012. 2012. p. 1359–1376.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	A Machine Translation Like Approach to Generate Business Process Model from Textual Description
	Abstract
	Introduction
	Related Works
	Machine Translation: An Overview
	The Proposed Approach: A Machine Translation Like Approach
	Language Levels: Text vs. BPMN
	The Approach
	Phase 1: Natural Language Analysis
	Phase 2: Modeling Language Generation

	Evaluation
	Experiment 1: Similarity Evaluation
	Experiment 2: Expert Evaluation
	Discussion

	Conclusion
	References

