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Abstract
Glaucoma is one of the major reasons for visual impairment all across the globe. The recent advancements in machine learn-
ing techniques have greatly facilitated ophthalmologists in the early diagnosis of ocular diseases through the employment of 
automated systems. Several studies have been published lately to address the timely detection of glaucoma using deep learning 
approaches. A comprehensive review of the deep learning approaches employed for glaucoma detection using retinal fundus 
images is presented in this paper. The available retinal image datasets, image pre-processing techniques, state-of-the-art 
models, and performance evaluation metrics used in the recent studies are reviewed. This systematic review aims to provide 
critical insights and potential research directions to the ophthalmologists and researchers in this domain.

Keywords Deep learning · Eye diseases · Glaucoma · Image processing · Machine learning · Ophthalmology · Transfer 
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Introduction

Glaucoma (Gl) is an ocular disease in which the optic nerve 
linking the eye and brain is impaired due to the increased 
intraocular pressure (IOP) [1]. It is an irreversible neuro-
degenerative optical disease that was first discovered back in 
the 17th century and is known as a main cause of blindness 
since the 19th century [2]. Regardless of the technologi-
cal advancements and availability of effective treatments, 
glaucoma is still a leading source of irreversible blindness 
all across the globe. According to a systematic review and 
meta-analysis developed by Tham et al. [3] from 50 popu-
lation-based studies, 111.8 million people are anticipated to 
suffer from glaucoma by the year 2040, out of which more 
than 85 million cases will be from Africa and Asia. The 
estimated cases for each continent are provided in Table 1.

Generally, glaucoma is diagnosed through IOP analy-
sis that should be > 22 mmHg without medication, the 
glaucomatous visual field defects, and the glaucomatous 
cupping of the optic disc [4]. Presently, the identification 
of glaucomatous structural changes and damages is a chal-
lenging attribute of glaucoma detection methods [5]. The 
shape and size of the optic cup disc is a vital attribute that 
needs to be considered during glaucoma diagnosis [6]. 
The comparison of Fig. 1a with b indicates an increase 
in the cup, which is a clear sign of glaucomatous optic 
neuropathy [4].

Timely diagnosis and treatment can greatly help in pre-
venting loss of vision due to glaucoma. Therefore, glau-
coma detection in the early stages is critical and needs to 
be improved through the introduction of novel techniques 
for screening, detection, and diagnosis of changes over 
time [7]. The collation of large medical datasets and recent 
developments in artificial intelligence (AI) have incited great 
research interest in developing deep learning algorithms that 
can more rapidly and precisely detect the glaucomatous 
damage on diagnostic tests in comparison to the conven-
tional manual approaches [8–11].

Automated glaucoma detection has several advantages 
over the manual approach. Easy identification of min-
ute abnormalities, less time consumption, and reduced 
human error are some of these advantages. Moreover, 
it is possible to develop automated glaucoma detection 
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systems via combined image processing techniques uti-
lizing either deep learning (DL) or machine learning 
(ML) techniques.

The deep learning approaches initially involve the col-
lection of images with and without glaucoma. This is 
followed by the application of image preprocessing tech-
niques for reducing noise from the images to get them 
ready for the feature extraction stage. These images are 
then inputted into the DL framework to automatically 
extract features and associated weights for learning the 
rules of classification. The weights are repeatedly opti-
mized for ensuring optimal classification outcomes. Lastly, 
an unseen set of images is used for testing the optimized 
weights. However, a large set of images is required in this 
architecture for training purposes. Thus, its performance 
can be critically restricted in the case of a limited number 
of images. Figure 2 depicts the deep learning pipeline for 
glaucoma detection.

Table 1  Estimated cases (in millions) with primary glaucoma by the 
year 2040

Region Number of 
glaucoma 
patients

The Caribbean and Latin America 12.86
North America 4.72
Europe 7.85
Africa 19.14
Asia 66.83

Fig. 1  a Optic nerve with normal cup; b optic nerve with increased cup due to glaucoma

Fig. 2  Deep learning approach 
in glaucoma detection
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Motivation

Considering the rapid advancements in the machine learning 
domain, many researchers have recently employed transfer 
learning and DL approaches to build automated glaucoma 
detection systems. However, there are only a few studies in 
the existing literature that have comprehensively reviewed 
the latest DL approaches used for glaucoma detection and 
discussed the available datasets and processing techniques. 
Recently, Thompson et al. [7] published a review paper that 
discussed the DL techniques employed in the screening, 
detection, and diagnosis of glaucoma progression. The latest 
applications of DL models with regard to glaucoma detec-
tion, their benefits, and the challenges linked with the devel-
opment of these models are critically reviewed in this paper. 
However, this study mainly focused on glaucoma detection 
with standard automated perimetry (SAP) and optical coher-
ence tomography (OCT). Moreover, the several available 
glaucoma-labeled datasets, image pre-processing techniques, 
and classification techniques were not fully addressed in this 
study.

Lately, Tong et al. [12] and Sarki et al. [1] have reviewed 
the applications of deep learning in detecting ocular diseases 
including cataract, diabetic macular edema (DME), glau-
coma (Gl), and diabetic retinopathy (DR). However, due to 
the wider scope of these studies, most of the state-of-the-art 
literature based on the DL techniques for glaucoma detection 
could not be covered.

In another study, Barros et al. [4] conducted a system-
atic review on the ML algorithms used in the retinal image 
processing for glaucoma detection and diagnosis. They 
shortlisted only 18 articles for review out of which only 8 
specifically covered the DL methods while the remaining 
10 included varied ML approaches. Moreover, only the arti-
cles published till August 2019 were included in this review 
paper.

Sengupta et al. [13] also reviewed the applications of 
DL for ophthalmic diagnosis using retinal fundus images. 
This paper described different fundus image databases that 
might be employed for DL purposes and assessed the DL 
applications in the detection of lesions and segmentation 
of blood vessels, optic cup, and optic disc. The researchers 
also discussed the DL models for classifying diseases like 
diabetic retinopathy, glaucoma, and macular degeneration 
and identified directions for future research as well. But none 
of the studies published recently were covered in this paper. 
Moreover, only 11 studies addressing the DL techniques for 
glaucoma detection were covered in their review [13].

Very recently, Janani et al. [14] has conducted a survey 
on early investigation of glaucoma using different ML, TL, 
and DL techniques. The paper presented the latest seg-
mentation and detection approaches and discussed current 
challenges and trends for giving the readers an overview of 

the existing state of research. However, the scope of this 
research is very limited, and only 10 studies from 2017 to 
2020 are covered in this review.

Thus, considering the shortcomings in the above-dis-
cussed review papers, it seemed important to perform a 
comprehensive review of the recent studies that employed 
DL and TL techniques for Glaucoma detection.

Contribution

This paper provides a thorough overview of the recent 
developments in glaucoma detection using deep learning 
approaches by reviewing the state-of-the-art literature 
from the below-mentioned perspectives: 

1. Available glaucoma databases.
2. Image pre-processing techniques for glaucoma detection.
3. Deep learning methods proposed for glaucoma detec-

tion.
4. Performance metrics for evaluating the glaucoma detec-

tion algorithms.

The remaining of the paper is organized as follows: the 
next section discusses the available glaucoma-labeled 
datasets and reviews the papers on the basis of datasets 
employed in their study. The pre-processing techniques 
applied to the retinal fundus images in the selected papers 
are assessed in the following section. The disease clas-
sification techniques employed in the research articles are 
analyzed in the next section. The following section high-
lights the key observations and findings of this study. The 
research gaps and future recommendations are covered in 
the next section followed by the conclusion of the study 
in the following section. Table 2 represents the distribu-
tion of the selected 61 articles with respect to the review 
objective.

Table 2  Categorization of selected articles based on study target

References Study target Num-
ber of 
articles

[9, 15–41] Used TL approach 28
[42–63] Proposed new DL-based approach 23
[64–74] Combined ML with DL 11
[8, 75–81] Used DL with optical coherence tomography 8
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Glaucoma Datasets

In the selected papers, different public and private datasets 
of retinal images are used and divided into testing and 
training examples. Drishti-GS [82] and RIM-ONE [83] the 
most commonly employed datasets in the recent studies for 
glaucoma detection. Drishti-GS dataset is used in 20 out of 
61 studies, while 22 studies employed RIM-ONE dataset 
for training and evaluation purposes. The description of 
all the datasets used in the articles is included in Table 3.

High-resolution fundus (HRF) [84]: This dataset has 
been established by a collaborative research group to 
support comparative studies on automatic segmentation 
algorithms on retinal fundus images. The public database 

contains at the moment 15 images of healthy patients, 15 
images of patients with diabetic retinopathy and 15 images 
of glaucomatous patients. Binary gold standard vessel seg-
mentation images are available for each image. Also the 
masks determining field of view (FOV) are provided for 
particular datasets. The gold standard data are generated 
by a group of experts working in the field of retinal image 
analysis and clinicians from the cooperated ophthalmol-
ogy clinics.

Drishti-GS1 Dataset [85, 86]: This dataset consists of a 
total of 101 images. These have been divided into 50 training 
and 51 testing images. All the images have been marked by 
4 eye experts with varying clinical experience. All images 
were collected at Aravind eye hospital, Madurai from visi-
tors to the hospital, with their consent. Glaucoma patient 

Table 3  Available datasets for glaucoma detection and the works who used them

Dataset Description References

HRF [84] This dataset contains 45 fundus images of 15 normal, 15 diabetic retinopathy, and 
15 glaucoma patients, https:// www5. cs. fau. de/ resea rch/ data/ fundus- images/

[19, 20, 31, 34, 36, 37, 53, 66, 69–71]

Drishti-GS [85, 86] It contains total 101 images including 70 glaucomatous images and 31 normal 
images, http:// cvit. iiit. ac. in/ proje cts/ mip/ drish ti- gs/ mip- Datas et2/ Datas etdes cript 
ion. php

[19, 21, 24, 26, 29, 32, 34, 36, 44, 
50–52, 54, 56, 57, 69, 71–74]

ORIGA It has total 650 retinal images with 482 normal and 168 glaucomatous images, not 
available publicly

[27, 31, 35, 42, 48, 51, 67, 71, 74, 87]

SCES [88] There are total 1676 images in this dataset out of which 1630 are non-glaucoma-
tous and 46 are glaucomatous ones, not available publicly

[42, 48]

ACRIMA [89] It is the largest publicly accessible database for glaucoma detection with 396 
glaucomatous and 309 normal images. These images are obtained through the 
ACRIMA project (TIN2013-46751-R) that is aimed at developing automatic 
algorithms for retinal disease assessment, https:// figsh are. com/s/ c2d31 f850a f14c5 
b5232

[19, 31, 34, 36, 71]

RIM-ONE [90] RIM-ONE is a publicly available dataset that contains colored (Red, Green and 
Blue) Retinal funds images, http:// medim rg. webs. ull. es/

[18–20, 22, 24–27, 32, 34, 36, 44, 49, 
51, 52, 54, 57, 68, 71–74]

DRIONS [91] This dataset contains 110 coloured fundus images obtained from Miguel Servet 
Hospital, Spain, http:// www. ia. uned. es/ ejcar mona/ DRIONS- DB. html

[44, 71]

sjchoi86-HRF [92] It has total 401 retinal fundus images with 300 normal and 101 glaucomatous 
images, https:// github. com/ sjcho i86/ retin adata set/ tree/ master/ datas et

[19, 34, 70, 71]

REFUGE [93] It comprised 1200 coloured retinal images with 400 images each for testing, valida-
tion, and training purposes, https:// ai. baidu. com/ broad/ downl oad? datas et= gon

[26, 29, 35, 49, 56]

ODIR-2019 [94] 8 kinds of ocular diseases are covered in this dataset with 58 on-site and 30 off-site 
testing cases and 207 training classes, https:// odir2 019. grand- chall enge. org/ datas 
et/

[30, 47]

RIGA [95] It is a public database that contains images obtained from University of Michigan. 
The database has three subset, namely Magrabi (94 images), Bin Rushed (195 
images), and MESSIDOR ( 460 images), https:// deepb lue. lib. umich. edu/ data/ 
conce rn/ datas ets/ 3b591 905z? locale= en

[32, 33, 49, 50, 52, 65, 71]

I-ODA [96] The Illinois Ophthalmic Database Atlas (I-ODA) contains retinals images of the 
patients from the Illinois Eye and Ear Infirmary of the University of Illinois 
Chicago (UIC), Private Dataset

[50]

LAG [97] Contains 4584 fundus images from Tongren Hospital in Beijing, including 1711 
positive and 3143 negative samples for glaucoma, not available publicly

[35]

JSIEC [98] This dataset comprised 1087 high-resolution retinal fundus images taken at Joint 
Shantou International Eye Centre, China, This dataset is classified into 37 cat-
egories, out of which one contains 54 normal images and one has 13 glaucoma 
images, https:// www. kaggle. com/ linch undan

[36]

https://www5.cs.fau.de/research/data/fundus-images/
http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-Dataset2/Datasetdescription.php
http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-Dataset2/Datasetdescription.php
https://figshare.com/s/c2d31f850af14c5b5232
https://figshare.com/s/c2d31f850af14c5b5232
http://medimrg.webs.ull.es/
http://www.ia.uned.es/ejcarmona/DRIONS-DB.html
https://github.com/sjchoi86/retinadataset/tree/master/dataset
https://ai.baidu.com/broad/download?dataset=gon
https://odir2019.grand-challenge.org/dataset/
https://odir2019.grand-challenge.org/dataset/
https://deepblue.lib.umich.edu/data/concern/datasets/3b591905z?locale=en
https://deepblue.lib.umich.edu/data/concern/datasets/3b591905z?locale=en
https://www.kaggle.com/linchundan
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selection was done by clinical investigators based on clinical 
findings during the visit. Selected patients were between 40 
and 80 years of age with roughly equal number of males and 
females. The data collection protocol was as follows:

Online retinal fundus image dataset for glaucoma 
(ORIGA) [87]: ORIGA is an online retinal fundus image 
dataset for glaucoma analysis and research. Currently, 
ORIGA contains 650 retinal images annotated by trained 
professionals from Singapore Eye Research Institute where 
482 are normal and 168 are glaucomatous images.

The Singapore Chinese Eye Study (SCES) [88]: SCES is 
a dataset contains 1676 fundus images where 46 images are 
glaucoma cases.

Automatic glaucoma assessment using fundus images 
(ACRIMA) [89]: This dataset includes 705 fundus images 
(396 glaucoma and 309 normal images). They are part of 
the ACRIMA project and were obtained with prior consent 
from glaucoma and normal patients in accordance with the 
ethical standards set forth in the 1964 Declaration of Hel-
sinki. All patients were selected by experts according to their 
criteria and clinical findings during the examination. Most 
of the fundus images in this database are from the left and 
right eyes previously dilated and centered on the optic disc. 
Some were rejected because of artifacts, noise, and low con-
trast. All images in the ACRIMA database are annotated by 
two glaucoma experts with 8 years of experience. No other 
clinical information was taken into account when labeling 
the images.

Retinal image dataset for optic nerve evaluation (RIM-
ONE) [90]: RIM-ONE is a dataset that contains 159 stereo 
eye fundus images with a resolution of 2144 × 1424. The 
right part of the stereo image is disregarded. Two sets of 
ground-truths for optic disc and optic cup are available. The 
first set is commonly used for training and testing. The sec-
ond set acts as a “human” baseline.

DRIONS-DB [91]: This dataset that contains 110 eye 
fundus images with a resolution of 600 × 400. Two sets of 
ground-truth optic disc annotations are available. The first 
set is commonly used for training and testing. The second 
set acts as a “human” baseline.

High-resolution fundus (HRF) [92]: HRF is a dataset con-
tains 601 fundus images divided into 4 groups: normal (300 
images), glaucoma (101 images), cataract (100 images) and 
retina disease (100 images).

Retinal fundus glaucoma challenge (REFUGE) [93]: 
REFUGE is a dataset that provides a data set of 1200 fun-
dus images with ground truth segmentations and clinical 
glaucoma labels, currently the largest existing one.

Ocular disease intelligent recognition (ODIR) [94]: This 
challenge is a structured ophthalmic dataset of 5000 patients 
with age, color fundus photographs from left and right eyes 
and doctors’ diagnostic keywords collected by Shanggong 
Medical Technology Co., Ltd. from different hospitals/

medical centers in China. This competition consists of eight 
types of ocular diseases and a total of 6392 images with 
2873 normal, 1608 diabetes, 284 glaucoma, 293 cataract, 
266 age-related macula degeneration, 128 Hypertension, 232 
Pathological Myopia and 708 other diseases/abnormalities.

Retinal fundus images for glaucoma analysis (RIGA)  
[95]: RIGA is a dataset that includes 3 different files: (1) 
MESSIDOR dataset file contains 460 original images 
and 460 images for every single ophthalmologist manual 
marking in total of 3220 images for the entire file. (2) Bin 
Rushed Ophthalmic center file and contains 195 original 
images and 195 images for every single ophthalmologist 
manual marking in total of 1365 images for the entire file. 
(3) Magrabi Eye center file and contains 95 original images 
and 95 images for every single ophthalmologist manual 
marking in total of 665 images for the entire file. The total 
of all the dataset images are 750 original images and 4500 
manual marked images. The images are saved in JPG and 
TIFF format.

The Illinois Ophthalmic Database Atlas (I-ODA) [96]: 
I-ODA is a dataset that contains retinals images of the 
patients from the illinois eye and ear infirmary of the uni-
versity of illinois chicago (UIC).

Large-scale attention-based glaucoma (LAG) [97]: LAG 
is a dataset that contains 4584 fundus images from Tongren 
Hospital in Beijing, including 1711 positive and 3143 nega-
tive samples for glaucoma. Each fundus image is diagnosed 
by a qualified glaucoma specialist, taking into account mor-
phological and functional analysis, namely intraocular pres-
sure, visual field loss and manual assessment of the optic 
disc.

Joint Shantou International Eye Centre (JSIEC)  [98]: 
JSIEC is a dataset comprised 1087 high-resolution reti-
nalfundus images taken at Joint Shantou International Eye 
Centre, China, This dataset is classified into 37 categories, 
out of which one contains 54 normal images and one has 13 
glaucoma images.

Image Preprocessing Techniques

Several image pre-processing steps are typically per-
formed to enhance the images. Moreover, the extraction of 
more unique and salient features also becomes easier for a 
network when the images are clearer and brighter [1]. This 
section provides an overview of the image pre-processing 
techniques employed in the selected recent studies. In the 
RGB color space, the green channel offers improved con-
trast and more information compared to the red and blue 
channels; therefore, the extraction of the green channel is 
done in some studies before further processing. For exam-
ple, Chaudhary et al. [74] carried out the green channel 
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extraction from the RGB image for further processing due 
to the increased sensitivity of human vision towards the 
green color [99].

Contrast enhancement is known to be an important image 
preprocessing technique. Gour et al. [69] used contrast lim-
ited adaptive histogram equalization (CLAHE) to improve 
the contrast of the image at all the channels. CLAHE is a 
processing method that is focused on small portions of an 
image rather than the complete image. Thus, it achieves bet-
ter performance in the case of fundus images compared to 
other methods [100]. The quality of all the images avail-
able in the dataset is standardized through CLAHE for clas-
sification. By doing so, the analysis of different attributes 
is not influenced by the sharp variations in the contrast of 
the images [54] and the learning complexity is also reduced 
[49]. CLAHE is employed in several recent studies including 
[25, 32, 49, 54, 57] for enhancing the contrast of the images.

Image resizing is another popular image pre-processing 
technique. The images are resized to lower resolution in 
accordance with the system requirements. For instance, 
Borwankar et al. [26] scaled down the images to 256 × 256 
to reduce the time and computational complexity, whereas 
images are resized to 512 × 512 dimensions in [32].

The region near the optic disc of the retina is especially 
affected in glaucoma and is regarded as the main region of 
interest (ROI) for Gl classification [69]. Orlando et al. [21] 
showed that better results are achieved when optic nerve 
head (ONH) images are used as the CNN input instead of 
complete retinal images. In [31–34], the researchers cropped 
the images around the ONH in the pre-processing step 
and then used these as input for their models. Sometimes 
researchers also masked the optical discs and blood ves-
sels to avoid false Gl detection and segmented the worthless 
black borders in the images for focusing on the ROI [1]. In 
[48], the ARGALI approach is employed for removing the 
bright fringe to get the center and radius of the trimming cir-
cle for ROI extraction. Chakrabarty et al. [66] used Adaptive 
Thresholding to get binary images. Gour et al. [69] cropped 

fundus images considering the optic disc as the center of 
the ROI to extract.

Another important pre-processing step, known as image 
augmentation, is typically applied in case of image imbal-
ance. Images are cropped, resized, rotated, and mirrored to 
produce new images when the Gl images are less than the 
healthy retinal images in a dataset [1]. Augmentation is an 
ML technique that is commonly employed in medical imag-
ing due to the unavailability of sufficient images [101]. It 
involves the addition of several image transformations in 
order to create modified versions of already available images 
to create larger dataset. The major objective of augmenta-
tion is to prevent overfitting that is a typical issue that arises 
while working with small datasets. For instance, Ovreiu 
et al. [31] applied different transformations, such as vertical 
and horizontal flipping, brightening by a factor in the range 
of 0.2–1, rotating from 0 to 180 degrees, and zooming by a 
factor in the range of 0.2–1. This is followed by augmenta-
tion for enhancing the image dataset to avoid overfitting of 
the training model and keeping the accurate image details. 
Similarly, Joshi et al. [29] also applied four types of image 
augmentation on the original dataset, which include resizing 
half scale, resizing double scale, 15 degrees anticlockwise 
rotation, and 15 degrees clockwise rotation.

A summary of pre-processing techniques used in the 
reviewed studies is given in Table 4.

Glaucoma Eye Disease Classification 
Techniques

This section reviews the deep learning approaches employed 
for glaucoma detection. Out of the 61 chosen articles, 25 
used a transfer learning technique (TL), 17 proposed new 
deep learning methods, 11 used a combination of machine 
learning classifiers such as backpropagation neural net-
work (BPNN), support vector machine (SVM), random 
forest (RF), etc. and 8 used deep learning with optical 

Table 4  Image pre-processing 
techniques used in the reviewed 
articles

Pre-processing technique References

Illumination correction [9, 36, 48]
Image rotation [17, 27]
Grayscale conversion [36, 44, 80]
Augmentation [9, 15, 16, 20, 25, 27, 29, 34, 37, 38, 42, 45, 47, 48, 51, 55, 56, 74–78, 80]
Resizing [17, 23, 29, 30, 32, 43, 50, 51, 56, 64, 66, 72, 74–77, 80]
Contrast enhancement [32, 46, 56, 73]
Contrast limited adaptive histo-

gram equalization
[21, 47, 69, 74]

Region of interest extraction [19–22, 24, 28, 32–34, 42, 44, 45, 48, 52, 55–57, 65–67, 69–71, 73]
Histogram equalization [49, 54]
Green channel extraction [52, 70, 74]
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coherence tomography (OCT) for glaucoma detection and 
classification.

TL Based on DL Approaches

Overall 25 out of 61 works have adopted a transfer learning 
approach for glaucoma detection through DL. An overview 
of these studies is given in Table 5.

In [15], transfer learning is used for detecting glau-
coma using colored fundus images. The researchers used 
10-fold Cross-Validation (CV) for evaluating the AUC of the 
model and achieved an AUC of 96.30%. Asaoka et al. [16] 
employed ResNet architecture and carried out tests using 
two datasets acquired from different institutes. Asaoka et al. 
used the data augmentation technique and utilized the area 
under the receiver operating characteristic curve (AROC) for 
measuring performance. They achieved an AROC of 99.7% 
and 94.8% in a dataset without augmentation and with aug-
mentation respectively.

Phan et al. [17] compared three CNN models, namely 
DenseNet-201, ResNet-152, and VGG19 for the classifi-
cation of retinal images. They applied deep CNN to 3312 
(2687 non-Gl, 256 Gl-suspected, and 369 Gl) retinal images 
and achieved an AUC of 90%. Al Ghamdi et al. [18] propose 
a semi-supervised TL convolutional neural network model 
for automated glaucoma detection. They achieved a sensitiv-
ity (SE) of 91.7%, a specificity (SP) of 93.3%, and accuracy 
(Acc) of 92.4% using the RIM-ONE database.

Diaz et al. [19] used five ImageNet-pretrained models 
(ResNet50, InceptionV3, VGG19, Xception, and VGG16) 
for automated glaucoma assessment using 1707 retinal 
images from five databases (ACRIMA, sjchoi86-HRF, 
RIM-ONE, Drishti-GS1, and HRF). They achieved an aver-
age sensitivity of 93.46%, a specificity of 85.80%, and an 
AUC of 96.05%. Cerentinia et al. [20] employed Goog-
LeNet architecture to detect the presence of glaucoma. They 
used images from varied databases and obtained an accu-
racy of 90% for HRF, 86.4% for RIM-ONE(r3), 86.2% for 

Table 5  Articles using transfer learning for Gl detection

References CNN architecture AUC SP SE ACC F1-score Recall G-mean

[9] ResNet 96.5% – – – – – –
[15] VGG-19 96.3% – – – – – –
[16] ResNet 99.7% – – – - – –
[17] DenseNet201, ResNet152, VGG-19 90% – – – – – –
[18] VGG-16 – 93.3% 91.7% 92.4% – – –
[19] Xception, ResNet50, Inception-V3, VGG-19, VGG-16 96.05% 85.85% 93.46% – – – –
[20] GoogleNet – – – 94.2% – – –
[21] VGG-S, Overfeat 71.8% – – – – – –
[22] ResNet50, InceptionResNetV2, InceptionV3, VGG-19, VGG-16 95.7% 91.4% 88.5% 90.1% – – –
[23] VGG – 93.2% 82.6% 87.6% – – –
[24] VGG-19 94% 89.01% 87.01% – – – –
[25] ResNet50 – 93% 21% 86% – – –
[25] GoogLeNet – 91% 29% 85% – – –
[26] ResNet – – – 98.9% 98.8% – –
[27] GoogLeNet – – – 91.2% – – –
[28] VGG-16 92% – – 91% – – –
[29] Darknet-53 – 95.84% 89.05% 93.69% – – –
[30] VGG-16, MobileNet, InceptionV3, ResNet 84.93% – – – – – –
[31] ResNet50 – – – 96.95% – – –
[32] ResNet, U-Net – – – 86.69% – – –
[33] U-Net – – – 99% 98% – –
[34] ResNet152, GoogLeNet, ResNet50 77% – - – – – -
[35] ResNet50 – – – – 71.24% 87.37% 81.53%
[36] VGG-19, VGG-16, VGG-S, VGG-M, VGG-F, CaffeNet, 

AlexNet
– – – 93.61% – – –

[37] VGG19, InceptionResNet-V2 – 90.1% 90.9% – – – –
[38] InceptionV3 92.2% – – – – – –
[41] ResNet50 – – – 94.7% – – –
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RIM-ONE(r2), and 94.2% RIM-ONE(r1) and 87.3% for the 
combination of the three RIM-ONE versions.

Orlando et al. [21] employed two convolutional neural 
network models from VGG-S and OverFeat to develop 
an automatic glaucoma detection system. An AUC value 
of 71.8% and 76.3% is achieved for VGG-S and OverFeat 
respectively. De et al. [22] used InceptionResNetV2, Incep-
tionV3, ResNet50, VGG-19, and VGG-16 for detecting glau-
coma on RIM-ONE datasets. The combination of Logistic 
Regression and InceptionResNet yielded promising results 
on RIM-ONE (r3) with an AUC of 86%. The same classi-
fier with ResNet resulted in an AUC of 95.7% on RIM-ONE 
(r2). In [23] VGG network were used for the classification 
of non-glaucoma and glaucoma images based on the visual 
field (VF) study results. For this purpose, VF samples were 
obtained from 3 ophthalmic centers in China and the sen-
sitivity 93.2%, specificity 82.6%, and accuracy 87.6% were 
achieved.

Gómez-Valverde et al. [24] used VGG 19 with a CNN 
TL approach for the classification of glaucoma using one 
private and two public datasets (DRISHTI-GS and RIM-
ONE). Serener et al. [25] proposed automated detection of 
advanced and early glaucoma using fundus images. In this 
work, TL is used for training and fine-tuning GoogLeNet 
and ResNet-50 deep CNN algorithms for Gl classification. 
The performance evaluation of the two models is done in 
terms of area under the ROC curve, specificity, sensitivity, 
and accuracy. The obtained results indicate that ResNet-50 
is outperformed by GoogLeNet in the advanced as well as 
early detection of glaucoma. Borwankar et al. [26] also pre-
sented a robust CNN-based model using ResNet architec-
ture to detect glaucoma. This model achieved an F1 score 
of 98.8% and an accuracy of 98.9% on the classification of 
glaucomatous images.

In [27], a TL-based model is designed for diagnosing 
IOP in the optic nerve. An improved validation accuracy 
of 91.2% is achieved through this model using RIM ONE, 
ORIGA, and DRIVE datasets. The training time, on the 
whole, is substantially reduced using the TL approach and 
inter-observability errors are minimized. Kim et al. [28] 
proposed a TL-based approach where Gradient-weighted 
Class Activation Mapping (Grad-CAM) and CNNs were 
employed for the detection and localization of glaucoma. 
This approach showed promising results by achieving a 
ROC-AUC score of 92% and an accuracy of 91% for the 
detection task.

Joshi et al. [29] proposed a cost-efficient automated Gl 
detection and pre-screening architecture for suspected glau-
coma in retinal images. The fundus images obtained from 
local hospital datasets and different public databases are 
used in training. The five-fold cross-validation of the trained 
model is done and 95.848% specificity, 89.054% sensitivity, 
and 93.698% accuracy are achieved. The obtained results 

also showed that this method has a fast glaucoma screen-
ing time and is scale and rotation invariant, and resolution-
independent. Gour et al. [30] proposed an automated multi-
label multi-class TL-based convolutional neural network for 
detecting ocular diseases using the ODIR database. In [31], 
the authors investigated the option of employing residual 
networks for detecting glaucoma in the early stages. They 
used a ResNet50 network that is pre-trained using the Ima-
geNet dataset and achieved a validation accuracy of 96.95%.

Yu et al. [32] introduced a modified version of U-Net 
architecture with ResNetmodel. The fundus images are taken 
from RIM-ONE, DRISHTI-GS1, and RIGA databases for 
glaucoma assessment. Their proposed approach achieved 
state-of-the-art performance on all three datasets. U-Net 
architecture is also employed in [33], where Kim et al. pro-
posed automated techniques for optic cup and disc segmen-
tation from regions of interest (ROI) in retinal images for 
glaucoma detection. They implemented two (multi-class 
and binary) fully convolutional networks and tried two ROIs 
(masked ROI and original ROI) as inputs for estimating the 
best segmentation results. They employed the RIGA dataset 
for training and testing the fully convolutional networks and 
achieved improved performance compared to the existing 
algorithms.

In [34], the authors developed a generalized DL model 
for glaucoma classification on fundus images. The model 
is trained and tested for three different DL architectures, 
namely ResNet-152, GoogLeNet, and ResNet-50, using five 
databases including ACRIMA, sjchoi86-HRF, RIM-ONE, 
Drishti-GS1, and HRF. The model is fine-tuned in order to 
achieve satisfactory specificity, accuracy, and AUC perfor-
mance when any of the datasets is used for testing.

Wang et al. [35] also used a TL approach for Gl detec-
tion. The obtained results on three datasets (iSee, ORIGA, 
and REFUGE) indicate the efficiency of the proposed sys-
tem in terms of different metrics including G-mean, F1, 
and recall. Claro et al. [36] proposed an automated glau-
coma detection approach using CNNs, shape, and texture 
descriptors. They used 6 retinal image datasets for evalu-
ating the proposed approach. The best result (an accuracy 
of 92.78% and 93.35% for performance set and develop-
ment set respectively) is achieve through the concatenation 
of CNNs with GLCM. Norouzifard et al. [37] developed a 
DL model for Gl detection from fundus images employing 
InceptionResNetV2 and compared it with another commonly 
employed model-VGG19. They employed the TL approach 
to overcome the overfitting issue due to the limited quantity 
of input images. The average sensitivity and specificity of 
InceptionResNet-V2 on re-test and test datasets were 93.3%, 
90.9%, 90.1%, and 100% respectively.

Ahn et al. [38] proposed a TL-based Glaucoma detec-
tion that involved CNN models and logistic classification. 
They achieved AUC values of 87.9%, 88.6%, and 92.2% on 
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different datasets. Shibata et al. [9] presented a Deep Resid-
ual Learning Algorithm with ResNet for Glaucoma screen-
ing. They used a training dataset having 1364 glaucomatous 
and 1768 healthy images and achieved an AUC of 96.5%.

Manop [39], proposed a deep transfer learning of the 
CNN model for detecting the glaucoma using ResNet50V2, 
VGG16, InceptionV3, and Xception. Since the existing 
dataset has a small number of images, this study uses the 
data augmentation techniques to increase the virtual num-
ber of images. The results reveal that the proposed models 
have performed the classification task for detecting glau-
coma. The proposed model achieved an accuracy level of 
VGG16, RestNet50V2, InceptionV3, and Xception are 
97.27%, 94.53%, 95.31%, and 94.92%, respectively. The 
comparison reveals that the deep transfer learning model 
with VGG16 architecture is the highest performance with 
an AUC of 98.94%.

Xi Xu et al. [40], propose a transfer learning technique 
that leverages the fundus feature learned from similar oph-
thalmic data to facilitate diagnosing glaucoma. Specifi-
cally, a transfer induced attention network (TIA-Net) for 
automatic glaucoma detection. The proposed framework 
extracts the discriminative features that fully characterize 
the glaucoma-related deep patterns under limited supervi-
sion. The proposed TIA-Net was tested on two real clinical 
datasets and achieve an accuracy of 85.7%/76.6%, sensitivity 
of 84.9%/75.3%, specificity of 86.9%/77.2%, and AUC of 
92.9% and 83.5%.

Touhidul et al. [41], propose, a glaucoma disease detec-
tion model based on transfer learning. Various pretrained 
models were used, such as VGG-16, VGG-19, DenseNet121, 

InceptionV3, and ResNet50. In addition, the local interpret-
able model-agnostic explanations (LIME) are used for the 
explainability of each used model. The comparison reveals 
that ResNet50 outperforms other models with an ACC of 
94.7%.

DL Approaches

In some studies, the authors developed a new deep learn-
ing-based framework for automated Gl detection. Table 6 
includes an overview of these research works with models 
details.

In [42], Chen et al. designed a 6-layered CNN frame-
work and achieved an AUC of 88.7% and 83.1% in SCES 
and ORIGA datasets using Softmax classifier. Raghavendra 
et al. [43] developed an 18-layer CNN model for glaucoma 
detection using 937 glaucomatous and 589 non-glaucoma-
tous fundus images. They achieved a specificity of 98.3%, 
a sensitivity of 98%, and an accuracy of 98.13%. Pal et al. 
[44] put forward a new multi-model deep learning network, 
termed as G-EyeNet, for detecting glaucoma using Drishti-
GS and DRIONS datasets and achieved an AUC of 92.3%.

Juneja et al. [45] developed an intelligent system based 
on the optic disc and optic cup segmentation. A DL archi-
tecture is designed in which convolutional neural networks 
are employed for automated Gl detection. In this system, two 
neutral networks operate in conjunction for segmenting optic 
disc and cup. They used fundus images from RIM-ONE r2 
and DRISHTI-GS datasets for testing and achieved an accu-
racy of 93% and 95.8% for cup and disc segmentation.

Table 6  Articles proposing new DL model for Gl detection

References Layers Classifier AUC SP SE ACC F1-score Recall Precision Kappa score

[42] 6 Softmax 88.7% – – – - – – –
[43] 18 Softmax – 98.3% 98% 98.13% – – – –
[44] 6 Softmax 92.3% – – – – – – –
[45] 31 Sigmoid – – – 95.8% – – – –
[47] 11 Softmax 80.5% – – – 85% – – 31%
[48] 6 Softmax 88.2% – – – – – – –
[50] 10 Softmax – – – – 79.9% 78.5% 81.4% –
[51] 6 Sigmoid 94% – – – – – – –
[52] 2 Sigmoid 94% – – – – – – –
[53] 3 DLS-recurrent deep 

neural classifier
– – – 89% – – – –

[54] 3 CapsNet 90.4% – – 90.9% 90.59% 86.88% 94.64% –
[55] 7 VGG-16 86.8% – – – 77.05% 79.67% 78.21% –
[56] 6 Softmax – 90% 100% 95% – – – –
[61] 2 Softmax – 95.90% 85.55% 91.11% – – – –
[62] 2 Sigmoid – – – 98.21% – – – –
[63] 2 Sigmoid 96.50% 96.01% 85.05% 90.05% – – – –
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Karkuzhali et  al. [46] proposed the use of optic cup 
and disc segmentation for testing glaucoma on the basis 
of GLCM-CNN classification. The proposed approach is 
found to be more reliable compared to the irregular visual 
field, intraocular pressure, and previous GLCM-CNN-based 
classification methods. Islam et al. [47] also presented a con-
volutional neural network-based method for early detection 
of ocular diseases including Glaucoma. They achieved an 
AUC of 80.5%, Kappa score of 31% and an F1-score of 
85%. Saxena et al. [48] also proposed a DL-based mecha-
nism for detecting glaucoma. It is a six-layer framework in 
which CNN is employed for the classification of patterns 
for glaucoma detection. The proposed architecture achieved 
satisfactory AUC values of 82.2% and 88.2% for ORIGA and 
SCES dataset respectively.

Huang et al. [49] designed a DL method for simultaneous 
segmentation of optic cup and optic disc in a retinal image. 
The lightweight concept of MobileNetV2 and encoder-
decoder structure of DeepLabV3+ is employed for the sim-
plification of the DL model. This is for reducing the burden 
of high-resolution clinical image input and enhancing the 
images’ features through histogram equalization and polar 
coordinate transformation for better generalization. This 
method achieved excellent results on varied datasets.

Mojab et al. [50] developed a new multi-task DL-based 
model, named interpretable glaucoma detector (InterGD), 
for glaucoma detection. There are two major components of 
this model, i.e. prediction and segmentation modules, which 
are efficiently incorporated in a unified multi-task architec-
ture to allow end-to-end training. Phasuk et al. [51] proposed 
an effective glaucoma screening network that achieved an 
AUC value of 94% on public datasets including DRISHTI-
GS, RIM-ONE R3, and ORIGA. Zilly et al. [52] used an 
ensemble learning-based CNN framework for retinal image 
segmentation and glaucoma detection. The proposed seg-
mentation algorithm outperformed the present approaches 
on the public DRISHTI-GS dataset on several metrics. The 
proposed approach provide effective results with an AUC of 
94% even with limited dataset availability.

Raja et al. [53] designed a novel DLRNL technique to 
improve early detection of glaucoma. This objective is 
achieved by applying the damped least-squares (DLS) 
method, Morlet wavelet transformation, and balanced his-
togram thresholding method in recurrent DNN. The perfor-
mance of the proposed technique is measured in terms of 
false-positive rate, detection time, and detection accuracy 
and it achieved improved results compared to the state-of-
the-art approaches. In the DLRNL technique, the false posi-
tive rate of Gl detection is reduced to 38% and 49% when 
compared to the state-of-the-art SP3S [102] and MLP clas-
sification [103] respectively.

Dos et al. [54] presented a method for automated glau-
coma classification using capsule network (CapsNet), which 

is a state-of-the-art DL model in which the hierarchical spa-
tial relationships between attributes are analyzed for repre-
senting images so that fewer training samples are required 
compared to classic CNNs for attaining effective classifica-
tion. They achieved promising results with 80.1% of kappa 
score, 90.4% of AUC, 90.59% of F1-score, 94.64% of preci-
sion, 86.88% of recall, and 90.90% of accuracy. The CapsNet 
achieved improved results in comparison to the other com-
monly employed frameworks and even the TL techniques.

Bajwa et al. [55] performed a two-stage study: a segmen-
tation stage employing regions with convolutional neural 
network (RCNN), and a classification stage in which the 
regions are classified as healthy and glaucomatous using 
deep CNN. They used 780 fundus images and achieved an 
AUC of 87.4%, a Sensitivity of 71.17% and an accuracy 
of 79.67%. Sharma et al. [56] proposed a robust DL-based 
CNN architecture for dealing with the glaucoma detection 
problem. The proposed network is composed of 6 convo-
lutional layers with varied activation functions along with 
pooling layers to get detailed and abstract details of the input 
image. The probability of an image being glaucomatous is 
predicted by the proposed model. The model is capable of 
automatically detecting glaucoma with 90% of specificity, 
100% of sensitivity, and 95% of accuracy. Shah et al. [57] 
proposed two new techniques, i.e. weak region of interest 
model-based segmentation (WRoIM) and parameter-shared 
branched network (PSBN) for the identification of cup and 
disc boundaries. Contrary to the past methods, the proposed 
techniques involved end-to-end training using single neural 
network architecture and employed dynamic cropping rather 
than the classic computer vision-based or manual cropping. 
They achieved a performance comparable to state-of-the-
art techniques with fewer network parameters on RIM-ONE 
v3 and Drishti-GS1 datasets. The results showed that the 
proposed techniques can serve as an interesting tool in the 
accurate and fast screening of glaucoma.

Silvia et al. [58], proposed an early detection system of 
glaucoma based on a new method which uses densely con-
nected neural networks (DenseNet) with 201 layers, initially 
pre-trained on ImageNet, using ACRIMA dataset. An accu-
racy of approximately 97% and an F1-score of 96.9% were 
obtained.

Raveenthini et al. [59], proposed an automated framework 
for detection of diabetic retinopathy and glaucoma using 
non-linear features. Support vector machine (SVM) classifier 
with different kernels was used. Results shows that SVM-
radial basis function (RBF) kernel combination resulted in 
maximum accuracy of 85%, sensitivity of 84% and speci-
ficity of 94.32%. Tasnim et al. [60], proposed a glaucoma 
detection system where they compare three pretrained mod-
els InceptionV3, ResNet50, DenseNet121. An accuracy of 
85.29%, 77.61%, 81.53% were obtained respectively for the 
used models.
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Shubham et al. [61], proposed a deep learning-based 
system for glaucoma diagnosis using retinal fundus images. 
In this work, noise removal algorithm was used to enhance 
the quality of images. To accurately identify glaucoma from 
images of retinal fundus, an ensemble learning of three pre-
trained models was used (VGG16, ResNet50 and Goog-
LeNet). Overall, this strategy of ensemble learning allowed 
each single model contributes equally to the final predic-
tion. The proposed framework proved to be highly effective 
in classification performance with an accuracy of 91.11%, 
specificity of 95.90% and a sensitivity of 85.55%.

Marriam et al. [62], proposed an efficient deep learn-
ing approach for automatic glaucoma detection using optic 
disc and optic cup. The proposed framework includes three 
steps for glaucoma localization and classification. First, 
deep features of suspicious samples are computed using the 
EfficientNet-B0 feature extractor. Then, EfficientDet-D0’s 
bidirectional feature pyramid network (BiFPN) module takes 
the computed features from EfficientNet-B0 and performs 
top-down and bottom-up keypoint fusion multiple times. In 
the last step, local regions containing glaucomatous lesions 
with associated classes are predicted. An accuracy rate of 
98.21% was achieved.

Mohammed et al. [63], proposed a novel decision sup-
port system based on deep learning to diagnose glaucoma. 
First, the images were cropped using segmentation to ensure 
that the optic disk is center located in the image. Second, 
noise removal algorithm was used to enhance the quality 
of images. Five pre-trained models were used in this study 
(Densenet121, InceptionV3, Resnet50v2, Resnet101 and 
Mobilenet). The hyperparameters of the models were fine-
tuned to improve the performance. To combine the predic-
tion output of the five models, the results obtained by the 
models were averaged to get the final prediction. The results 
showed that the proposed method can identify glaucoma 
from eye fundus images with an accuracy of 90.05%, a sen-
sitivity of 85.05%, a specificity of 96.01% and an AUC of 
96.50%.

Approaches Combining DL and ML

A combination of DL and ML classifiers, including Back-
propagation neural network (BPNN), support vector 
machine (SVM), and random forest (RF) is proposed in 11 
papers for glaucoma detection. An overview of these studies 
is given Table 7.

Al-Bander et al. [64] carried out feature extraction using 
CNN and then employed SVM for glaucoma and non-glau-
coma classification. They achieved a sensitivity of 85%, a 
specificity of 90.8%, and an accuracy of 88.2%. Pandey et al. 
[65] developed glaucoma detection methods using machine 
learning techniques, image processing techniques, and DL-
based CNN model on the Bin Rushed database. Features, 
such as RDR and CDR, are extracted using image process-
ing techniques followed by classification of images using 
K-Nearest Neighbors, decision tree, support vector machine, 
and neural network. An accuracy of 99.6% is achieved in 
this study.

In [66], Chakrabarty et al. developed a DL–ML hybrid 
model with image processing for classifying high-resolution 
fundus images into non-glaucomatous and glaucomatous 
ones. They used the publicly available HRF database for 
this study and achieved 100% training and testing accuracy. 
Li et al. [67] proposed a classification-based Gl detection 
approach that integrated both holistic and local features. 
ConvNets are employed for representing the ROI features. 
SVM is applied to the deep features for detecting glaucoma. 
The proposed model achieved an AUC of 83.84% on the 
ORIGA dataset.

Touahri et al. [68] compared two different classification 
methods, one based on CNN classifiers and the other on 
Twin SVM (TWSVM) method. They employed these meth-
ods as a computer-aided diagnostic system for the auto-
mated classification of glaucomatous fundus images using 
the RIMONE dataset. The effectiveness of the proposed 
model is shown through several experimental results. Gour 
et al. [69] also developed an automated glaucoma diagnostic 

Table 7  Articles using combined DL and ML for Gl detection

References Model Layers Classifier AUC SP SE ACC F1-score Recall Precision

[64] CNN 23 RF – 90.8% 85% 88.2% – – –
[65] CNN 17 SVM – – – 99.6% – – –
 [66] CNN 3 SVM – – 100% 100% 100% – 100%
 [67] DCNN 8 SVM 83.84% – – – – – –
 [68] CNN 3 TWSVM – 97.76% 96.82% 97.26% – – 98.71%
 [69] – – SVM 88% – – 83.40% – – –
 [70] CNN 6 Softmax linear classifier – 98.01% 84.5% 99% – – –
 [71] DCGAN 4 SS-DCGAN 90.17% – – – – – –
 [73] cGAN – MLP, SMO, RF 100% 100% 100% 100% – – –
 [74] CNN – RF, SVM – – – 95.51% – – –
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system using fundus images. The fundus images of HRF 
and Drishti-GS1 databases are classified into glaucomatous 
and non-glaucomatous images using an SVM classifier. The 
performance of this approach is compared with the latest Gl 
detection approaches, including the DL ones, in terms of 
AUC and accuracy. The proposed system achieved 83.4% 
and 79.2% classification accuracy and AUC of 88% and 86% 
for HRF and Drishti-GS1 datasets respectively.

Abbas et al. [70] presented an unsupervised approach 
for detecting glaucoma, in which CNN is used for extract-
ing features and a deep belief network (DBN) Model with 
a Softmax classifier is employed to make the final decision. 
Diaz et al. [71] came up with a new approach by proposing 
a novel retinal image synthesizer and deep convolutional 
generative adversarial networks (DCGAN)-based semi-
supervised learning technique for glaucoma assessment. The 
model is trained using 86,926 retinal images taken from 14 
public and 1 private database and achieved a high classifica-
tion AUC of 90.17%. Thankur et al. [72] also proposed an 
ML-based classification approach for improved glaucoma 
detection using retinal images.

In a recent study, Bisneto et al. [73] proposed another 
approach for automated Gl detection employing generative 
adversarial network (GAN) for optic disc segmentation, fol-
lowed by the use of texture descriptors for the classification 
of healthy and glaucomatous regions. They used 556 retinal 
images to evaluate the proposed method and achieved a ROC 
curve of 1 and an accuracy of100%. Chaudhary et al. [74] 
presented a novel method, termed two-dimensional Fourier-
Bessel series expansion-based empirical wavelet transform 
(2D-FBSE-EWT), in which Fourier–Bessel series expansion 
(FBSE) spectrum of 0th and 1st order are used for detect-
ing boundaries. The fundus images are decomposed into 
sub-images. Two methods, one based on classic machine 
learning and the other based on ensemble ResNet-50, are 
proposed to detect glaucoma from the sub-images. These 
methods showed improved performance than state-of-the-
art glaucoma detection approaches. For RIM-ONE datasets, 
the first method achieved an accuracy of 95.51% and 90% 
using random forest (RF) classifier and SVM respectively. 
The second method also showed promising results achieving 
AUC, specificity, sensitivity, and accuracy values equal to 
96%, 83.3%, 94.3%, and 91.1% respectively.

Glaucoma Diagnosis with Optical Coherence 
Tomograpgy (OCT)

Deep learning has also been used lately in some studies to 
detect and diagnose the progression of glaucoma using opti-
cal coherence tomography (OCT). Over the past few years, 
spectral-domain optical coherence tomography (SDOCT) 
has turned out to be the most commonly employed tool for 
the diagnosis and detection of structural damages caused 

by glaucoma [104]. This section reviews some of the recent 
works in this area.

Measurements of retinal nerve fiber layer (RNFL), 
macula, and optic nerve head (ONH) are routinely used 
in clinical settings for diagnosing diseases and detecting 
their progression [105]. But the traditional structural dam-
age assessment through SDOCT needs segmentation of the 
structure of interest to enable the extraction of proper meas-
urements like the thickness of RNFL. Although the soft-
ware is used for the automated segmentation of the area of 
interest, however, the output is still quite imperfect. Several 
works have reported segmentation errors of 19.9-−46.3% 
in SDOCT scans of the retinal nerve fiber layer [106, 107]. 
Although it is possible to manually check and correct the 
errors; this approach takes a lot of time and is quite hard to 
perform in a busy medical setting. Moreover, the analysis of 
multiple regions and parameters also makes the interpreta-
tion of SDOCT difficult. The integration of all the details 
acquired from sectoral and global RFNL thickness measure-
ments along with macular assessment and topographic ONH 
parameters can be quite tricky for the clinician. Furthermore, 
the chance of error is also increased due to the involvement 
of a larger number of parameters [7].

Considering these shortcomings associated with OCT 
interpretation, DL models can offer alternate methods for 
quantifying structural damages without depending upon the 
pre-defined attributes acquired from the automated segmen-
tation software. DL algorithms are capable of automatically 
learning attributes from the data, provided that there is an 
adequate amount of available data. Thus, these models can 
utilize raw SDOCT images with no requirements of the input 
or previously defined attributes (Table 8).

Keeping these into consideration, Mariottoni et al. [75] 
showed that it is possible to train a segmentation-free DL 
algorithm for predicting the thickness of RNFL during 
the assessment of a raw OCT B-scan. A high correlation 
has been observed in the segmentation-free predictions 
and conventional thickness of the retinal nerve fiber layer 
( r = 0.983,P < 0.001 ), with an absolute error of almost 2 
� m in the case of high-quality images. Moreover, the DL 
model was successful in extracting the reliable value of 
RNFL thickness from such images where the classic seg-
mentation method failed.

In another study, Thompson et al. [76] demonstrated 
that the raw SDOCT B-scans can be used to train a DL 
algorithm to directly discriminate glaucomatous eyes 
from the healthy ones. Their proposed DL algorithm 
showed an improved diagnostic performance compared 
to the classic parameters of RNFL thickness and achieved 
an AUC value of 96% in comparison to the 87% value 
for the global peripapillary RNFL thickness ( P < 0.001 ). 
Similarly, Maetschke et  al. [77] proposed a DL algo-
rithm capable of distinguishing between healthy and 
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glaucomatous eyes using unsegmented, raw OCT volumes 
of the ONH. This algorithm also exhibited better perfor-
mance compared to the traditional SDOCT parameters, 
with an AUC of 94% compared to the logistic regression 
model that combined SDOCT parameters and acquired an 
AUC value of 89%.

In addition to the ONH scans [77, 78] and RNFL [75], 
deep learning has also been employed for investigating 
macular scans [79]. Asaoka et al. [8] illustrated that a DL 
model developed using an 8 × 8 macular grid shows better 
results in the detection of glaucomatous damages than the 
ganglion cell or RNFL thickness measurements. Moreo-
ver, the DL model depicted better performance compared 
to the conventional random forest and SVM techniques 
applied to the macular measurements.

In another work, Muhammad et al. [79] built a hybrid 
DL system for glaucoma detection using swept-source 
wide-field OCT. They employed a pre-trained CNN for 
extracting features from the probability map images to 
use them as an input to the RF model for classification. 
The proposed model exhibited better performance than 
the traditional summary OCT parameters. However, a 
small sample having only 45 healthy and 57 glaucomatous 
images was used in this study which makes it unlikely to 
allow for enough generalizability and variation.

Besides the posterior segment OCT analysis, some 
works have also applied DL models upon anterior seg-
ment OCT images to diagnose angle closure or narrow 
angles [80, 81]. Fu et al. [81] achieved an AUC of 96% 
with a specificity of 92% and a sensitivity of 90% for 
a DL system trained for angle-closure detection using 
Visante OCT images. In another study, Xu et al. [80] 
used American–Chinese eyes for testing three multi-class 
convolutional neural networks. The ResNet18 classifier 
showed the best results in the detection of gonioscopic 
angle closure and achieved an AUC value of 92.8%. Con-
sidering the complexity involved in interpreting anterior 
segment OCT images, these models showed promising 
output for the automated assessment of those images to 
detect the presence of the narrow angles.

Metrics for Performance Evaluation

Different parameters are used for evaluating the efficiency 
of the classifiers. These metrics include area under the curve 
(AUC), accuracy (Acc), sensitivity (SE), specificity (SP), 
F1-score, precision, recall, G-mean, and Kappa score. The 
details of these parameters are covered in [108]. The most 
commonly used evaluation metrics include Accuracy which 
is chosen as a performance indicator in 29 studies, AUC 
used in 27 articles, while Specificity and Sensitivity are used 
as performance indicators in 16 and 17 studies respectively.

The other employed performance metrics include G-mean 
(1 studies), Kappa score (1 studies), precision (5 studies), 
recall (4 studies), and F1-score (6 studies). Table 9 shows 
the used metrics with their equations.

Discussion

Artificial intelligence is an exciting technology that is gain-
ing attention in varied domains all across the research com-
munity. Machine learning has a rich history in the scientific 
field [109, 110]. Currently, deep learning-based models in 
machine learning are effectively employed in imaging for 
pre-processing, segmentation, classification, and detection. 
In the reviewed studies, the convolutional neural network is 
found to be the most commonly used DL architecture, where 
51 out of 61 studies have employed CNN architecture. It can 
be said that CNN is presently the most dominant deep neural 
network especially for glaucoma detection along with diag-
nosing any other pathological sign from the clinical images 
(Table 10).

Moreover, it has been observed that the deep learning 
approach showed a good performance, particularly for 
binary classification. The binary classification is mostly 
done between the glaucomatous and healthy (non-glauco-
matous) cases. For instance, Bajwa et al. [55] and Al-bander 
et al. [64] employed DL techniques for the identification of 
non-glaucomatous and glaucomatous retinal images. Moreo-
ver, the DL approaches employed in most of the articles have 

Table 8  Articles using OCT with DL

References Data type Network AUC SP SE ACC Pearson r

[8] 8 × 8 macular grid 6-layer CNN 93.7% – – – –
[75] SDOCT raw B-scans of peripapillary RNFL ResNet34 – – – – 94%
[76] SDOCT raw B-scans of peripapillary RNFL ResNet34 96% – – – –
[77] OCT of the ONH 5-layer CNN 94% – – – –
[78] Horizontal B-scan through ONH 8-layer CNN – 99% 92% 94% –
[80] Anterior segment-OCT Inception-v3, ResNet18 92.8% – – – –
[81] Anterior segment-OCT VGG-16 96% 92% 90% – –
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efficiently identified a large number of cases with prominent 
pathological indications. However, there is a need for such 
efficient classifiers that can show outstanding detection per-
formance for the early stages of glaucoma developments as 
well. This is because early glaucoma detection is particularly 
crucial for taking appropriate preventive measures to avoid 
blindness caused by the deterioration over time.

Furthermore, the detailed analysis of selected studies 
showed that DL has a great potential in the health care sec-
tor, particularly in the domain of detecting ocular diseases 
like glaucoma. But the high computational costs and require-
ment of large databases are found to be some major issues 
associated with the deep learning techniques. Therefore, 
transfer learning and data augmentation techniques are used 
in some recent studies as an alternate way of optimizing 
and reducing network training. For instance, [16] adopted 
transfer learning approach to reduce the extensive training 
involved in the classic DL approaches, and obtained quite a 
high value of AUC 99.7%

Although no standardized metrics have been found 
in the literature for evaluating the performance of glau-
coma detection models, nevertheless, the authors have 

used different performance indicators for assessing their 
proposed work. The authors have predominantly used a 
combination of metrics including sensitivity, specificity, 
and accuracy to validate the performance of their proposed 
approaches. For instance, Raghavendra et al. [43] used 
CNN for detecting structural damages due to glaucoma 
and reported a sensitivity 98%, specificity 98.3%, and 
accuracy 98.13% for their presented method. Moreover, 
sensitivity, accuracy, and AUC is another widely employed 
metric combination, which is particularly suitable in DL 
approaches with an imbalanced image class. However, 
resampling or augmentation techniques are used in such 
cases for solving the issue of data imbalance. For instance, 
Chen et al. [42] employed augmentation techniques for 
overcoming the overfitting issue in data and obtained an 
AUC 88.7% and 83.10% on the SCES and ORIGA datasets 
respectively. Some other metrics are also used for meas-
uring performance, such as G-mean used by Wang et al. 
[35], Kappa score used by Islam et al. [47], F1-score used 
in [35, 47, 50, 54, 55, 66], and Precision used in [50, 54, 
55, 66, 68].

Table 9  Metrics with their equations

Metrics Equation

 TN, TP, FP, FN  Where TN, TP, FP, FN are numbers of true negatives, true positives, false positives and false negatives, respectively
 AUC 

AUC of ROC curve can be measured by the following equation, AUC 
= ∫

1

0

ROC(t) dt

 . Where t = (1−specificity) 
and ROC (t) is sensitivity

Accuracy Accuracy = (TN + TP)/(TN + TP + FN + FP) = (Number of correct assessments)/Number of all assessments)
Sensitivity, Recall Sensitivity = Recall = TP/(TP + FN) = (Number of true positive assessment)/(Number of all positive assessment)
Specificity Specificity = TN/(TN + FP) = (Number of true negative assessment)/(Number of all negative assessment
 F1-Score F1-Score = 2TP/(2TP + FP + FN)
Precision Precision = ( Number of true positive assessment )/(number of positives predicted by your classifier)
 G-mean G-mean = 

√

Precision × Recall

Kappa score The definition of � is: � = (Po - Pe)/(1 - Pe). Where Po is the relative observed agreement among raters, and Pe is 
the hypothetical probability of chance agreement

Table 10  Performance 
evaluation metrics used in the 
selected articles

References Metrics

[8, 9, 15–17, 19, 21, 22, 24, 30, 38, 42, 44, 47, 48, 51, 54, 55, 67, 69, 71, 73, 76, 
77, 80, 81]

Area under curve (AUC)

[18, 20, 22, 23, 25, 27, 29, 31, 36, 43, 45, 52–54, 56, 64–66, 68–70, 73, 74, 78] Accuracy (Acc)
[18, 19, 22–25, 29, 37, 43, 52, 56, 64, 68, 70, 73, 78, 81] Specificity (SP)
[18, 19, 22–25, 29, 37, 43, 52, 56, 64, 66, 68, 70, 73, 78, 81] Sensitivity (SE)
[35, 50, 54, 55] Recall
[50, 54, 55, 66, 68] Precision
[35, 47, 50, 54, 55, 66] F1_Score
[35] G-mean
[47] Kappa score
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Future Research

Though a lot of progress has been made in the detection 
of glaucoma progression using DL approaches, however, 
there are certain open research challenges that need to be 
addressed in the future. This section discusses these short-
comings and indicates the possible improvements that are 
needed in this regard.

Unavailability of adequate data: At present, large 
datasets of the clinical images are unavailable and manu-
ally annotated data is also scarce. However, a huge set of 
fundus images is typically required for training DL algo-
rithms, since a smaller training set may result in unsatis-
factory output with respect to accuracy. This issue can be 
solved in the future by: 

1. Employing numerous enhancement techniques, such as 
color settings, cropping, shifting, and rotating.

2. Advanced augmentations techniques, such as (Mixup 
[111], CutMix [112]...).

Moreover, Generative Adversarial Network (GAN) can 
also be employed for training the DL architecture with 
more distinctive attributes and robustness, as argued in 
[71, 73, 113]. Successful implementation of generative 
adversarial networks can greatly help in generating big 
volumes of medically related synthetic data. This will not 
only facilitate in increasing the availability of relevant data 
but will also be useful in avoiding privacy concerns [13].

Architectures specific for clinical imaging: In deep 
learning, various transfer learning-based architectures, 
including VGGNet, AlexNet, and GoogLeNet, are avail-
able to train a new set of images, like clinical photo-
graphs. However, these architectures are less appropriate 
with respect to classification accuracy for clinical data. 
For instance, Li et al. [23] employed VGG for glaucoma 
detection using retinal fundus images and achieved almost 
87.6% accuracy. It is mainly because these TL architec-
tures are developed for objects like flowers, animals, etc. 
Therefore, these architectures might not be appropriate for 
real-time clinical images. Some work is thus needed for 
implementing a transfer learning-based framework that is 
trained on proper clinical images instead of objects it and 
may function as a general framework and can be retrained 
eventually for improving the classification accuracy of the 
medical images.

Improvements in DL models: Although deep learning 
approaches have shown exceptional performance in medi-
cal imaging and detection of ocular diseases, these DL 
Models can be improved further by increasing computa-
tional power through an increase in the network capac-
ity [114, 115] while keeping the overfitting factor into 

consideration. Moreover, the effectiveness of these mod-
els can also be enhanced by creating object-based mod-
els instead of image-based ones. For instance, in order 
to detect a particular malformation in the eyes, a deep 
neural network should be designed to learn about only 
that malformation while ignoring the other types of mal-
formations. Ouyang et al. [116] has also pointed out the 
effectiveness of object-based identification over the one 
based on images.

Selection of optimum values for DL architectures: Neural 
networks have shown exceptional results in detecting ocular 
diseases, however, the complexity associated with modula-
tion is not very obvious. For example, the hyperparameters 
of existing deep learning techniques, like AlexNet or CNN, 
are fine-tuned by many researchers for enhancing classifi-
cation efficiency. However, in some cases, the background 
behind deep learning frameworks predictions is not quite 
known and is considered as a BlackBox. Thus, it is still 
quite tricky to identify the effectual model and best possible 
values for modules in different layers as well as the total 
number of hidden layers. Moreover, knowledge specific to 
the domain is also required to select attributes for regulari-
zation, learning rate, and the number of epochs. Therefore, 
automated algorithms for optimization can be introduced in 
the future for finding the optimum rates for different deep 
learning architectures on varied glaucoma datasets.

Unavailability of standardized performance evaluation 
metrics: Another open challenge that needs to be addressed 
in the future is the unavailability of standardized metrics 
that can be used for evaluating the performance of the mod-
els designed for glaucoma detection [13]. Different metrics 
have been used by different researchers for measuring the 
effectiveness of their proposed work. This variability makes 
it quite difficult to have a comparison among different DL 
architectures developed for a particular state of glaucoma. 
For instance, Chakrabarty et al. [66] reported accuracy of 
100% and argued that their design is better than most of the 
other state-of-the-art approaches, while with respect to area 
under the curve, Asaoka et al. [16] achieved 99.7% which 
is higher than other AUC values reported in the literature.

Integration of telehealth with deep learning: A consider-
able portion of the world population residing in the rural 
regions is particularly suffering from a lack of access to 
health experts. Telehealth has emerged to be a promising 
solution under such circumstances [117]. Thus, there could 
be a possibility of combining telehealth, cloud computing, 
and neural networks in the future for diagnosing glaucoma 
from retinal fundus photographs. For instance, patients from 
a rural region can capture fundus images using a mobile 
phone and transfer them using cloud computing to a plat-
form where a glaucoma detection model (designed using 
a deep learning approach) is implemented. The configured 
system can then detect glaucoma by analyzing the image 
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followed by returning the diagnosis and prescription to the 
patients.

Conclusion

Deep learning techniques hold a promising future in the 
domain of glaucoma diagnosis and progression detection. 
In the past few years, DL models have exhibited exceptional 
performance in the detection and quantification of glau-
comatous damages through fundus images and thus have 
shown potential for cost-effective glaucoma screening tests.

This paper provides a thorough systematic review of the 
latest techniques used in the literature for glaucoma detec-
tion. The selected papers are reviewed from the perspective 
of datasets, image pre-processing techniques, and classifi-
cation methods employed in these studies. With regard to 
classification approaches, this review included papers that 
(1) employed transfer learning, (2) designed a new deep 
learning network, (3) adopted a combination of ML and DL 
approaches, and (4) utilized optical coherence tomography. 
A comprehensive discussion on the findings is also covered 
in this paper.

Papers published from 2015 to 2022 have been considered 
for review. Though considerable developments have been 
made with artificial intelligence and deep learning in the 
diagnosis and detection of glaucoma progression, however, 
a lot of work remains to be done. This paper can serve as an 
important study to understand the state-of-the-art develop-
ments in glaucoma detection and might be expanded further 
in the future for including the updated review of the chal-
lenging and rapidly growing domain of glaucoma detection.
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