
Vol.:(0123456789)

SN Computer Science (2023) 4:92
https://doi.org/10.1007/s42979-022-01481-7

SN Computer Science

SURVEY ARTICLE

Keyword Extraction: A Modern Perspective

Tadashi Nomoto1 

Received: 30 August 2021 / Accepted: 27 October 2022 / Published online: 15 December 2022
© The Author(s) 2022

Abstract
The goal of keyword extraction is to extract from a text, words, or phrases indicative of what it is talking about. In this work,
we look at keyword extraction from a number of different perspectives: Statistics, Automatic Term Indexing, Information
Retrieval (IR), Natural Language Processing (NLP), and the emerging Neural paradigm. The 1990s have seen some early
attempts to tackle the issue primarily based on text statistics [13, 17]. Meanwhile, in IR, efforts were largely led by DARPA’s
Topic Detection and Tracking (TDT) project [2]. In this contribution, we discuss how past innovations paved a way for more
recent developments, such as LDA, PageRank, and Neural Networks. We walk through the history of keyword extraction
over the last 50 years, noting differences and similarities among methods that emerged during the time. We conduct a large
meta-analysis of the past literature using datasets from news media, science, and medicine to business and bureaucracy, to
draw a general picture of what a successful approach would look like.

Keywords  Historical survey · Meta-analysis · Keyword extraction · Automatic indexing · Natural language processing ·
Information extraction · Text generation

Introduction

The notion of ‘keyword’ has long defied a precise definition.
Boyce et al. [7] called it a surrogate that represents the topic
or content of a document, which in turn gives rise to another
question: What is a topic or content? Which is equally elu-
sive. History witnessed the rise of two major schools of
thought, one in terminology science (TS) and the other in
information retrieval (IR). The two have crisscrossed each
other as they progressed in their scientific endeavor. Termi-
nologists are generally concerned with finding terms that are
specific to a particular technical domain, useful to organize
knowledge relating to that domain, while people in informa-
tion retrieval are focused more on identifying terms (which
they call indexing terms) capable of distinguishing among
documents to improve document retrieval.

Despite some fundamental differences, there is one prin-
ciple that cuts across TS and IR: that keywords are terms
that reside in the document. Hulth [24] reported, however,
that people, when asked to provide keywords for their own

scientific writings, picked words not only from their work,
but also drew upon their own personal knowledge, suggest-
ing that keywords may not be confined to the text alone. In
Sect. 4, we show that this is indeed the case, drawing on evi-
dence from data from online sources. We argue that there is
more to keywords than indexing and technical terms (Fig. 1).

In this work, we use term keyword as an overarching term
to refer to linguistic expressions that take on one or more of
the following roles.

–	 Terminology: words or phrases that are used in a spe-
cific domain to denote a particular technical idea; e.g.,
phosphogypsum, progressive taxation, return on equity,
Planck constant, sarcoma, carcinogen.

–	 Topics: terms and labels that are part of a set of concepts
systematically assembled under a particular classification
policy; e.g., Wikipedia category names, Dewey Decimal
Classification.

–	 Index terms: terms indicating major concepts, ideas,
events, and people, referred to in a document or book;
e.g., JFK, Martin Luther King, Jr., Malcolm X.

–	 Summary terms: words or phrases that are meant to
serve as a quick description of the content; e.g., global
warming, deforestation, extreme weather.

 *	 Tadashi Nomoto
	 nomoto@acm.org

1	 National Institute of Japanese Literature, Tachikawa,
Tokyo 190‑0014, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01481-7&domain=pdf
http://orcid.org/0000-0002-3261-6403

	 SN Computer Science (2023) 4:9292  Page 2 of 19

SN Computer Science

This work is intended as an introduction to major ideas that
have evolved and shaped the field for the last 50 years, which
retain relevance to this day. Some of them came from TS,
others from IR or from computational linguistics. One may
ask why we need another survey of keyword extraction,
given that there have been a number of efforts out there with
an aim similar to ours, in particular Firoozeh et al. [19].1
The reason has to do with one problem they all share: the
failure to recognize the limits of extractive methods. Key-
words arise not only from inside the document but also from
outside, i.e., an external source the author has access to. To
be able to address keyword extraction requires delivering
solutions to both types of keywords. We will see how some
of the recent developments such as a generative paradigm
based on deep learning, can address the challenge with their
unique ability to ‘invent’ keywords as needed.

Another aspect of a keyword, often dismissed as less
important in the past literature, including UNESCO [59]—
which forms a moral foundation for Firoozeh et al. [19] 2—is
the length: we will demonstrate empirically that it plays an
important role in defining what it takes to be a keyword,
and argue that this recognition of a role the length plays
provides a key to solving what Hasan and Ng [23] called
‘conundrums in keyword extraction.’

Our overall contribution lies in putting in a new light
aspects of a keyword that have been left largely unexplored
and untouched in previous like-minded surveys. In the final
section, we will line up major methods that emerged over the
past 50 years, and compare them against one another, giving
some idea of where they stand in terms of performance and
design choices.

History

Automatic Term Indexing

Term indexing, described by Boyce et al. [7] as a field of
study concerned with finding surrogates that represent the
topic or content of documents, remains as relevant as ever
in information retrieval today. TFIDF, a widely acclaimed
method for finding important words, came into being in the
early 1970s when Salton and Yang [51] proposed to measure
the importance of a word using the following formula:

It marks a huge break from approaches prevalent at the time
that were mostly focused on the frequency of terms in and
across documents. TFIDF takes the importance of a word in
document as consisting of two components. The first com-
ponent f (wij) is the frequency of a word i in the document
j, also known as TF. The second component log2(⋅) , known
as the inverse document frequency or IDF, is to indicate how
uncommon the word is. g(wij) = 1 if wij appears in document
j; otherwise 0. Therefore,

∑
j g(wij) equals the number of

documents containing wi . n(D) is the total number of docu-
ments in a collection.

The discovery of TFIDF was followed a year later by
another formulation [52], which expanded and refurbished
the idea to deal with two-term keywords:

Note that this can be transformed into

where we are able to see the TF and IDF components more
clearly. I(ik)j denotes the importance of a two-word term wi wk
in document j.

(1)Iij = f (wij) log2
n(D)∑
j g(wij)

.

(2)
I(ik)j =

f (wij) f (wkj)

2�
log2 n(D) −

log2
∑

j g(wij) + log2
∑

j g(wkj)

2

�
.

(3)

I(ik)j =
1

2

�
f (wij) f (wkj)

�
log2

n(D)∑
j g(wij)

+ log2
n(D)∑
j g(wkj)

��
,

indexing terms

technical terms

keywords

Fig. 1   Keywords, technical terms, and indexing terms

1  Apart from their perfunctory treatment of topics that drove the field
up until the early 2010s, much of their contribution centers around
a re-classification of metrics long established in the community such
as TFIDF and word co-occurrence, following a somewhat vague style
guideline set forth by UNESCO [59] whose scientific value may be
open to debate (see Firoozeh et al. [19], Fig. 4).
2  UNESCO [59] states that (1) keywords people use for a document
should collectively cover major points of its content and (2) be dis-
tinctive enough to set it apart from other documents, which Firoozeh
et al. [19] extended with a few more axioms, including minimal-
ity, impartiality, and representability, none of which concerned the
length of a keyword. Their recommendation comes down to: ‘a key-
word needs to be non-redundant, free of bias, descriptive, unambigu-
ous, and in line with a communal practice.’

SN Computer Science (2023) 4:92	 Page 3 of 19  92

SN Computer Science

Meanwhile, Robertson and Jones [48] defined the term
importance in terms of how well it served the document
search. The importance of term wij was given by

where for a given query q

The problem with the approach, from a standpoint of
keyword extraction, is that to determine the term impor-
tance, one needs to find relevant documents for query q,
which can be challenging, because this would require asking
humans to make a judgement on relevance for each of the
documents collected. Another issue is that a term will no
longer have a unique score as it is made relative to a query:
the use of a different query may result in a different score
even for the same term. This is troublesome, as it implies
that the importance of a word cannot be determined with-
out a reference to a query. These issues inherent to the idea
make it unlikely that a relevance-based term indexing would
meaningfully contribute to keyword extraction.

Salton et al. [52] takes somewhat a different route, explor-
ing what they call the discrimination value analysis. The idea
is based on the intuition that one can determine the importance
of a term by looking at how well it is able to discriminate
documents in a collection: a good indexing term is one that
would separate documents from one another, making a col-
lection sparse.

Assume that we have a document represented as a vector
which keeps track of the frequency of every term we find in
the document. Averaging the in-document frequency of each
term will give us a centroid vector, C = (c1, c2, c3 ⋯ ci ⋯ cn) ,
where each element ci looks like

n is a number representing how many unique terms we have
in the collection, and f(w) the in-document frequency of w.
Define the density of a collection by

where cos(⋅, ⋅) denotes the cosine similarity, C a centroid,
and Di a document vector, where

(4)Iij = log

(
r

R − r

)

(
n − r

N − n − R + r

) ,

N = the number of documents,

R = the number of relevant documents for q,

n = the number of documents containing term wij,

r = the number of relevant documents with wij.

(5)ci =
1

n

∑

j=1

f (wij),

(6)Q =

M∑

i=1

cos(C,Di),

M indicates the number of documents the collection con-
tains. Define a function DVk for wk as

For a given term wk , Qk is a Q score one gets by setting
f (wki) = 0 for every Di . DVk > 0 means that w has the abil-
ity to discriminate documents (because its removal from the
collection causes an increase in density, making documents
more similar). Salton et al. [52] define the discriminative
value of term wk in document j by

The authors reported that their approach, when applied to
three datasets, CRANFIELD [47], MEDLARS [16], and
TIME [52], led to an improvement by 10% over an approach
which only makes use of the term frequency.

Nagao et al. [41], inspired by �2 statistic, came up with
an interesting alternative

where

X2
i
 represents the importance of term i. The idea is that if its

frequency f (wij) deviates from its expected frequency mij , we
take it as worthy. One caveat is that one must have a large
collection of documents, to guarantee that an estimated X2
follows �2 the distribution.

The idea was further explored by Matsuo and Ishizuka
[36], who proposed to replace Eq. 10 with

f �(w, g) indicates how many sentences there are that con-
tain w and g together. f(w) is the count of sentences in a
document which contains w and p(⋅, g) the probability that
any given term appears together with g (in a sentence), i.e., ∑V

i
p(wi, g) , with V indicating the total number of uniques

words in a collection. f (w)p(⋅, g) thus corresponds to the
expected frequency of w co-occurring with g. G is a pre-
defined set of frequent terms in a document (with stopwords
and other minor words removed). The authors’ goal was to
find how far the observed co-occurrence frequency of w and
g deviates from its expected frequency. The further it veers
off, the greater its significance. Matsuo and Ishizuka [36]
went on to suggest using the following in place of Eq. 12:

(7)Di =
(
f (w1i), f (w2i), f (w3i),… , f (wni)

)
.

(8)DVk = Qk − Q.

(9)Ikj = f (wkj) ⋅ DVk.

(10)X2 =
∑

j

f (wij) − mij

mij

,

(11)mij =

∑
j f (wij)

∑
ij f (wij)

�

i

f (wij).

(12)�2(w) =
∑

g∈G

(f �(w, g) − f (w)p(⋅, g))2

f (w)p(⋅, g)
.

	 SN Computer Science (2023) 4:9292  Page 4 of 19

SN Computer Science

The formula penalizes a term if its chi-squared value
is backed by only a small number of high frequency
terms. Thus, if we have two terms A and B ( ∈ G ), and if A
occurs only with B and not any other member of G, �2(�)
will get a high score, but � �(�) will get 0.

Table 1 gives some sense of how well it works. The test
was done using 20 scientific papers. We observe that � ′
is doing almost as good as TFIDF, without relying on the
document frequency, which the latter requires. Every mate-
rial that � ′ makes use of comes from inside the document.
The table also shows the performance of keygraph, another
method based on a co-occurrence metric, described below.
TF is the simplest of all, relying only on the term frequency.

Ohsawa et al. [43] are the earliest attempt (to our knowl-
edge) to leverage the notion of word graph to extract key-
words, an approach they termed ‘keygraph.’ A word graph
is an interconnected network of words built by linking words
based on how closely a pair of words are associated, e.g., the
number of times the pair co-occurs in a sentence. Ohsawa
et al. [43] defined the strength of association A between a
pair of words, w1 and w2 , using the formula

D is a set of sentences in the document, |wi|s represents the
number of times wi occurs in sentence s, and similarly for
|wj|s . min(x, y) = x if x ≤ y; otherwise y . A was meant to
ignore weakly connected pairs.

Figure 2 shows a word graph consisting of five nodes,
each corresponding to a word, and a link between nodes,
indicating that corresponding words occur together in some
of the sentences in D. The width of a link indicates the
strength of association as given by Eq. 14.

The approach further divides a word graph into a set
of subgraphs which the authors claimed to correspond to
distinct topics the writer may have had in mind when pen-
ning the document. Figure 3 gives some idea of what they
are like. Each node (or vertex) represents a word, with an
edge (solid line) signaling the presence of a co-occurrence
relation between words, indicating that there are sen-
tences in which they appear together. A subgraph is a set
of nodes (words) where every member of the set is linked
to every other. Ohsawa et al. [43] assume that a keyword

(13)� �(w) = �2(w) −max
g∈G

(f �(w, g) − f (w)p(⋅, g))2

f (w)p(⋅, g)
.

(14)A(wi,wj) =
∑

s∈D

min(|wi|s, |wj|s).

is a word that participates in multiple subgraphs, such
as words denoted by k1 and k2 in Fig. 3. The following is a
formal definition of the importance of word w that encap-
sulates the idea:

where

and

g stands for a subgraph in document D. G = {g1, g2,… , gm} .
Note that

B(w, g) indicates how many times w co-occurred with a
member of a subgraph g. N(g) is a normalizing factor. Intui-
tively, I(w) says that the greater the number of subgraphs is
that contain w, the more important it will be, a proposition

(15)I(w) = 1 −
∏

g∈G

(
1 −

B(w, g)

N(g)

)
,

B(w, g) =
∑

s∈D

|w|s ⋅ |g − w|s,

N(g) =
∑

s∈D

∑

w∈s

|w|s ⋅ |g − w|s,

(16)|g − w|s =
{

|g|s − |w|s if w ∈ g

|g|s otherwise.

|g|s = |{w ∣ w ∈ g} ∩ {w ∣ w ∈ s}|.

Table 1   Performance of � ′ vs. baselines

TF � ′ TFIDF Keygraph

Precision 0.53 0.51 0.55 0.42
Recall 0.48 0.62 0.61 0.44

w4

w1

w2

w3 w5

Fig. 2   A word graph

g2

g1

g3

k1

k2

Fig. 3   Subgraphs

SN Computer Science (2023) 4:92	 Page 5 of 19  92

SN Computer Science

which could be interpreted as saying that important words
are those whose occurrence is widespread across the docu-
ment. According to Ohsawa et al. [43], the approach per-
formed on par with TFIDF in document retrieval.

We conclude the section by pointing out that the past
approaches to term indexing share a particular view about its
nature [27]: an indexing term is something that resides in a
document, occurs frequently across documents, and exhibits
a distinct distributional pattern. Term weighting schemes
proposed in the Automatic Indexing literature all reflect this
principle one way or another.

Computational Linguistics

Justeson and Katz [26] were the first attempt to look into
linguistic properties of technical terms. They examined
the terminology used in technical dictionaries from vari-
ous domains, including fiber optics, physics and mathemat-
ics, medicine, and psychology. The study concluded that
noun phrases accounted for 92.5–99% of the technical terms
found, with about 70% of them having more than one word;
there were a few cases where they accompanied adjec-
tives and to a lesser degree, prepositions; but there was no
instance which involved verbs. Table 2 summaries their find-
ings. Most of the terms are made up of two words with an
exception of medical terms (for which the authors attempted
a linguistic explanation).

Not surprisingly, the authors were more into develop-
ing linguistics of keywords than engineering a solution,
as is manifest in questions they asked, such as ‘Why do
technical terms resist the use of conjunctions, preposi-
tions, and adverbs?’ Their answer to that was that tech-
nical terms take shape under two opposing linguistic
forces, one that pushes them to become shorter and the
other pulling them towards more transparency. Because
none of the excluded types (terms which include verbs,
conjuncts, and prepositions) are able to accommo-
date the demand of either of the two forces, they are
disfavored.

The authors further suggested the following two tests to
identify technical terms: (1) whether a term is two word

long; and (2) whether it matches a regular expression of
the form:

‘A’ denotes an adjective, ‘P’ a preposition, and ‘N’ a noun.
For details on linguistics notions, refer to Manning and
Schütze [31].

Daille et al. [15] generally echoed what was found in
Justeson and Katz [26], though they argued that techni-
cal terms were something built out of basic multi-word
units (MWU) via compositional operations, and went on
to say that a complex multi-word term such as geostation-
ary communication satellite was the result of combining
two MWUs, geostationary satellite and communication
satellite. Salton [53] took a step further, suggesting that
we should include discontiguous terms, i.e., those made
up of elements separated by some intervening words, such
as ‘building dictionary’ from ‘a building of a dictionary.’

Park et al. [45] took on the issue from a somewhat differ-
ent angle. Their primary interest was in glossary extraction,
where a main goal was to locate and extract terms related
to a specific domain. What made their work different was
a set of syntactic patterns they used to identify candidate
terms, examples of which are shown in Table 3. Of a par-
ticular interest is the use of conjuncts (i.e., and, or in ACAN,
AACAN and ACAAN) which Justeson and Katz [26]
explicitly argued against. The motivation for using a particu-
lar set of syntactic patterns primarily came from their need
to work for a specific domain. To improve a sensitivity to
the domain, the authors further proposed a scoring function
that favored those of high relevance to a specific domain.

Another interesting idea came from Barker and Cor-
nacchia [4], who promoted a notion of ‘head-driven key-
word extraction.’ The idea was to define keywords as NPs

(17)((A|N) + |((A|N)NP)?)(A|N) ∗)N,

Table 2   Frequencies of terminological terms (Table 1 in Justeson and
Katz [26])

Term length (in words)

domain 1-gram 2-gram 3-gram 4-gram
fiber optics 43 109 36 12
medicine 88 80 22 10
physics & math 41 125 29 5
psychology 64 120 12 4

Table 3   Potential glossary items (Table 1 in Park et al. [45])

syntactic Pattern Example

AN Genuine part
NN Sport utilities
AAN Heavy commercial use
ANN Rear wiper blade
NNN Emission control system
AANN Other qualified service technician
ACAN Unpaved or dusty roads
ANNN Automatic transmission fluid level
NNNN Engine oil fluid level
AANNN New personalized oil reset percentage
AACAN Certain frontal or near-frontal collision
ACAAN Ambient and wide open trouble
NNNNN Steering wheel fan speed control

	 SN Computer Science (2023) 4:9292  Page 6 of 19

SN Computer Science

(noun phrases) containing most frequent heads. The authors
reported a modest improvement over baselines. The work
deserves mention because of their unique effort to relate a
syntactic theory (then current) to keyword extraction.3

New Perspectives

PageRank Inspired Approaches

Mihalcea and Tarau [40], on the heels of the success of Pag-
eRank, set off on a project they called TextRank. They were
interested in finding a way to exploit PageRank in their effort
to find keywords in the text. In their adaptation of PageRank,
a text is broken into a set of nodes, and edges, with nodes
representing words and edges connections among them. The
importance of a word is given by the following formula:

i, j, k are all words. A(i) represents a set of words that appear
in the proximity of i. w(j, i) represents the strength of the
bond between j and i based on their co-occurrence. d is what
is known as a damping factor.

Imagine that you are at word i, thinking about whether to
jump to somewhere else in the text. The equation describes
the probability of moving to some other word, which is given
as the sum of the probability of jumping to some random
word and that of moving to some popular word. Intuitively,
TextRank reflects an idea that a word you are looking at is
important if you see important words around it. TextRank
could also be viewed as a modern-day reincarnation of
graph-based approaches discussed earlier [36, 43]. Recall

(18)S(i) = (1 − d) +
�

j∈A(i)

w(j, i)
∑

k∈A(j) w(j, k)
S(j).

that they defined the importance of a word by how often
it co-occurs with surrounding words. The only difference
is that TextRank takes into account weights of contextual
(surrounding) words, which the latter do not.

There is, however, one area where TextRank completely
breaks ranks with the conventional widsom. Kageura and
Umino [27] argued that the frequency of a term is an impor-
tant component of an index term. The past work in Auto-
matic Term Indexing tends to agree that a word that occurs
frequently often works as an index term. The fact that Tex-
tRank has no way of accessing the word frequency implies
that words TextRank favors do not necessarily coincide with
those that the traditional indexing would find important.

Hasan and Ng [23] conducted a series of experiments in
an effort to find whether TextRank, along with other like-
minded approaches such as SingleRank and ExpandRank
[62],4 has any advantage over TFIDF.5 (See Table 4 for some
details on the datasets they used.6)

Table 5 shows results. What is striking is that graph-
based approaches failed to perform at a level comparable to
TFIDF, a finding which took Hasan and Ng [23] by surprise.
However, we view it as an inevitable consequence of not
paying attention to the term frequency and in particular the
length of a candidate phrase (we demonstrate that this is the
case later in the paper). In this light, Matsuo and Ishizuka
[36] and Ohsawa et al. [43], both graph-based, may have
worked better if Hasan and Ng had tried them, as they have
a means to access frequency information.

Table 4   Details of the corpora
(Table 1 in Hasan and Ng [23])

datasets

duc inspect nus icsi

Type news News Technical abstracts Technical papers Meeting
tran-
scripts

Documents 308 500 211 161
Words document 876 134 8291 1611
Avg. len. keywords 2.1 2.3 2.1 1.3

3  As a side note, there is another version of the approach recently
explored by You et al. [66], which finds candidates via a two-stage
process: locate frequent words in the document, and add neighboring
words until we hit either a phrase boundary or a word which has the
frequency below some threshold.

4  Wan et al. [63] are an earlier attempt to explore the utility of an
affinity (adjacency) matrix to keyword extraction, where the impor-
tance of word w is determined by how many words there are in a text
that are similar to w, and how many sentences the text contains that
are similar to ones that include w.
5  SingleRank is identical to TextRank except for some small differ-
ences in the way they acquire keyword candidates. ExpandRank is
another derivative of TextRank, which builds up a word graph from
multiple documents (in contrast to the latter which works with a sin-
gle document).
6  https://​github.​com/​LIAAD/​Keywo​rdExt​ractor-​Datas​ets.​git.

https://github.com/LIAAD/KeywordExtractor-Datasets.git

SN Computer Science (2023) 4:92	 Page 7 of 19  92

SN Computer Science

Using External Knowledge

Using external information has been one of the popular top-
ics in keyword extraction. MAUI [37] is a keyword extractor
which has an option to produce keywords from a custom
vocabulary. It does this by replacing ngrams with matching
descriptors in the vocabulary. One may view the process
as a term normalization via external knowledge. Medelyan
[37] reported that MAUI, when tested on three datasets, each
with a different vocabulary, was able to recover about 40
to 80% of human assigned keywords. The work went on to
explore the use of Wikipedia as an external source, which
eventually evolved into an approach that treats a Wikipedia
title as a keyword. The author suggests the following for-
mula to find a title that matches a given word:

w represents a term we want to project into Wikipedia. C
represents a context of w, a set of ngrams that co-occur with
w in a given page. T denotes a Wikipedia title. P(T ∣ w) is
the probability of seeing T given w. R(x, y) measures how
closely x and y are related. The greater the value, the closer
the association between x and y. The formula looks like the
following:

x and y are ngrams, X (or Y) a set of incoming links to a page
to which x (or y) is mapped, and |X| its size. N is the total
number of articles in Wikipedia. Clearly, R(x, y) = R(y, x) .
We may interpret Eq. 19 as saying: if you have an ngram w
which relates to multiple Wikipedia pages, pick one which
is contextually relevant to w and moreover which occurs
frequently with w. For example, apple could mean a number
of things; an edible fruit, a place, an American computer
company. Equation 19 is intended to disambiguate a term
based on a context in which it occurs and on how frequently
each of the associated senses is used. Thus, if it is found
with words like orange, banana, juice, and mango, it is more

(19)S(w,T) = P(T ∣ w)

∑
c∈C R(T , c)

�C� .

(20)R(x, y) = 1 −
log(max(|X|, |Y|)) − log(|X ∩ Y|)

log(N) − log(min(|X|, |Y|)) .

likely to be mapped into a page representing an apple as an
edible fruit.7

It is worth noting that MAUI draws upon a technique
known as wikification [39]. Wikification is yet another key-
word extraction method, which leverages Wikipedia to iden-
tify potential keywords. To test if a given word is a keyword,
it goes to Wikipedia to see if it is used as an anchor. If it is,
then the word will be stored in a set of candidates before
they are scored according to a metric it calls keywordness, a
measure indicating how likely a particular word occurs as an
anchor in Wikipedia. The more frequently a word appears as
an anchor, the higher it is ranked as a keyword. One draw-
back is that a newly minted word or a word that entered
the public conversation recently is likely to be undervalued,
because it has little presence in Wikipedia. This means that
to avoid a failure, MAUI needs to keep ‘knowledge-lean’
methods like �2 , or TFIDF as a backup.8

Classificatory Keyword Extraction

Classificatory keyword extraction (CKE) represents a class
of approaches that work by scanning contiguous spans of
a text for keyword, where we visit each word, determining
whether or not to include it in a pool of potential keywords.
Much of the past and present work, supervised or unsuper-
vised, falls under this category.

In their short paper published in 2018 for AAAI, Florescu
and Jin [20] introduced an approach based on a random
walk. Like Ohsawa et al. [43], Matsuo and Ishizuka [36],
and Mihalcea and Tarau [40], it treated a text as a network
of words, with the strength of an association represented by
how often they occur together. A major difference between
Florescu and Jin [20] and what preceded them lies in their
use of latent representations acquired from random walks
[46] to determine the strength of connections. The authors
reported an improvement over past methods that relied on a
word-based representation.

Zhang et al. [1] conceived an approach which combined
CRF (Conditional Random Fields) [28] with deep learning
machinery (CRF/DL, hereafter). They optimized the model
along dual targets. One, given in an IOB format (‘inside-
outside-begin’), specifies where a keyword begins and
ends. The other indicates whether a particular token is part
of a keyword, in a binary format. The idea resulted in a

Table 5   Performance of TextRank and its variants (Table 2 in Hasan
and Ng [23])

F1

duc inspect nus icsi

TextRank 9.7 33.0 3.2 2.7
SingleRank 25.6 35.3 3.8 4.4
ExpandRank 26.9 35.3 3.8 4.3
TFIDF 27.0 36.3 6.6 12.1

7  The idea of normalizing terms with Wikipedia can be extended
beyond a word sense disambiguation to socially induced associations
such as weapon → terrorism, covid-19 → lockdown, and gas emission
→ global warming.
8  A keyword is not to be confused with a summary or an abstract
which is essentially an abridgment of the associated document.
Any discussion on topics in automatic text summarization such as
ROUGE (Lin, 2004), therefore, is of little relevance here.

	 SN Computer Science (2023) 4:9292  Page 8 of 19

SN Computer Science

performance better than R-CRF [64], a more faithful imple-
mentation of CRF in RNN (Recurrent Neural Networks).9 It
was unfortunate that Zhang et al. [1], despite their focus on
the tweet domain, did not consider problems particular to
tweets, e.g., (in-group) abbreviations, slang words, and mis-
spellings, in contrast to Marujo et al. [35], who put these
issues at the forefront.10

The idea of Wang et al. [60] centered around how to
transfer a keyword model over to a domain for which there is
no ground truth available. The authors pursued an extractive
approach guided by what is generally known as ‘Generative
Adversarial Networks’ or Jensen–Shannon GANs [21]. The
idea was to move latent representations of data in an unan-
notated domain as close to those acquired from a domain
for which we know the ground truth, as possible. The model
was set up in a way reminiscent of the unsupervised mul-
tilingual translation, where multiple independent networks
work together to achieve diverse objectives (reconstruction
loss, IOB loss, discriminator loss, and the like). The work
reported a substantial gain over strong baselines, which
included a model similar to CRF/DL [33, 50, 68]. (Figs. 4
and 5 give a high-level picture of how it works.)

Generative Keyword Extraction

While the external knowledge allows us to move beyond the
confine of document, another possibility emerged recently
thanks to advances in deep learning (DL), where the focus is

more on generating keywords. If successful, it may deliver
a one-shot solution to acquiring out-of-document and in-
document keywords, an issue that plagued the past research.
This section introduces a line of work that embraced this
particular strategy [12, 38, 67], while giving a cursory look
at other DL-based approaches that are essentially extractive
in nature [1, 60].11

We start with Meng et al. [38]. Assume that we have two
RNNs (recurrent neural networks): one encodes the source
text (Encoder) and the other generates keywords (Decoder).
The input is transformed into hidden representations through
the Encoder, which the Decoder takes over to construct
an output. While decoding the output, a beam search is
typically applied to select candidate keywords. An innova-
tion that Meng et al. [38] bring to the table is a particular
objective (loss function) the authors proposed to train the
network, namely

The notion of concordance is central to multiple criteria techniques

O O O O O O B I ES

input

labels

Fig. 4   Classificatory DL Extractor (CDL) maps each token in
the input into a pre-defined label space, for instance one with
{O, S,B, I,E} , where ‘S’ indicates a single-token keyword, ‘B’ a
beginning of a multi-part keyword (MPK), ‘I’ an in-between ele-
ment and ‘E’ an end of an MPK. CDL builds a model in a way

that maximizes a quantity S =
∑

i log p(�� ∣ ��) , where �� denotes
t+, with t ∈ {O, S,B, I,E} , �� a natural language text. CDL typi-
cally makes use of an encoder/decoder architecture of the sort shown
in Fig. 5

Word Embedding

Character Embedding

Position Embedding

Encoder

Decoder

label/token distribution

W

C

P

LSTM

LSTM

Fig. 5   A schematic view of an encoder/decoder neural (sequence to
sequence) model. An encoder rolls out a sequence of a recurrent neu-
ral network (LSTM), each feeding on a composite representation of a
token, and sends the result to a decoder which converts it to probabil-
ity distributions of labels/tokens, with the output built from labels/
tokens with highest probabilities

10  The way Marujo et al. [35] addressed the issue was to leverage
Brown clustering (BC) [9], which enabled them to normalize corrupt
spellings such as Joooohn yesssss, Jonras of music, or coooooollll,
the likes of which abound in tweets. Brown clustering is a form of
clustering that builds a clustering bottom–up, merging at each step
clusters in a way that would maximize mutual information (MI). To
normalize word Joooohn involves finding a cluster that when com-
bined with the word, gives a maximum MI. BC has an important side
effect of reducing vocabulary. Marujo et al. [35] found that MAUI,
when trained on a BC-induced representation, saw an improvement
by 25 percentage points over the default model (which does not apply
normalization).

11  We mean by ‘extractive’ a class of approaches that aim at spotting
interesting words within a text, and by ‘classificatory’ those that find
keywords by classifying the text.

9  Except for their focus on scientific articles, the difference between
Yao et al. [64] and Zhang et al. [1] is mostly cosmetic from a techni-
cal point of view, and does not represent a significant departure from
the previous work. A more recent effort in DL to adopt CRF can be
found in Alzaidy et al. [3].

SN Computer Science (2023) 4:92	 Page 9 of 19  92

SN Computer Science

x is an input text. ps(yt ∣ ⋯) denotes the probability that
a token yt is generated using the general vocabulary and
pc(yt ∣ ⋯) the probability that yt is generated using the
vocabulary from the input text. L adds a functionality to
the network to be able to reuse part of the input as it creates
a keyword. This feature is critical for keyword extraction,
because without it, it would be impossible to extract ele-
ments from the source. Equally important, it provides the
model with the capability to build out-of-document key-
words (via ps ). It implicitly replicates what MAUI achieved
through Wikipedia and a set of mapping rules. Yuan et al.
[67] extended Meng et al. [38] by adding a capability to
output multiple keywords simultaneously.12 In addition, they
introduced a learnable switch which allowed them to decide
whether to use ps or pc during the generation. By contrast,
Meng et al. [38] had no control over which one to emit as
they relied on the combined probability, ps + pc.

Chen et al. [12] share with Yuan et al. [67] a goal of gen-
erating multiple keywords in one fell sweep, but depart from
the latter in their emphasis on the diversity, which the former
realized using what they called a coverage mechanism (CM),
an idea originally from machine translation [56]. CM works
as a sort of a ledger to keep a record of how much atten-
tion was given to tokens during the encoding. The authors
reported that it had successfully prevented a repetitive gen-
eration of tokens. Yuan et al. [67], pursuing a somewhat
different line while aiming for the same objective, proposed
a loss function called orthogonal regularization (OR) [6]

H = ⟨hd
1
,… , hd

n
⟩ , where hi is a hidden representation (a

d-dimensional vector) used to derive the i-th keyword. || ⋅ ||F
is a squared Frobenius norm. n is the number of keywords.
Minimizing LOR has the effect of increasing the diversity
among hd

1
,… , hd

n
 , resulting in keywords that vary in form

and meaning.

(21)

L = − log

(
ps(yt ∣ y1 … yt−1, x) + pc(yt ∣ y1 … yt−1, x)

)
.

(22)LOR = ‖‖H⊤H‖‖
2

F
.

Being able to generate keywords on the fly is a double-
edged sword: while it allows you to ‘concoct’ a new word,
it may get you inadvertently assigning keywords that are not
remotely relevant to what a text is about (for instance, one
might end up with a keyword like ‘bible concordance’ from
the input given in Fig. 6), a problem that rarely affects the
classificatory regime.

Keyword Extraction as Text Classification

Text classification (TC) provides another interesting angle
from which to look at keyword extraction. One uses TC
mostly to associate a document with labels from some pre-
defined vocabulary. TC has a long history of research going
back many decades, with much of the current effort happen-
ing within the realm of DL [14, 29, 61]. While TC is con-
fined to a fixed set of topics, we can turn it into a keyword
extractor by enlarging the vocabulary it covers.

A most typical setup to use DL for TC is shown in Fig. 7
[14, 61]. We start with some word embeddings, possibly
along with character-level embeddings. We work through
convolutional layers (which could be many), and arrive at

The notion of concordance is central to multiple criteria techniquesinput

label multiple criteria analysis

Fig. 6   Generative DL Extractor (GDL) takes as input an entire
sequence of tokens and generates a keyword, using a training vocab-
ulary, which may or may not appear in the source sequence. The
learning proceeds in a way similar to CDL, with an aim to maximize

S =
∑

i log p(�� ∣ ��) , where �� denotes w+ ( w ∈ V ), �� a natural lan-
guage text. V represents a vocabulary (a set of words) derived from
training data. Note �� ∈ V+ . GDL typically uses the same architec-
ture as CDL (see Fig. 5)

Fig. 7   A typical setup to use DL as a text classifier. We project the
output of an embedding layer into a softmax layer via a convolutional
neural network (CNN), and get a probability distribution of potential
categories. The input will be labeled with one or more terms with the
highest probability

12  It represents quite a departure from Meng et al. [38] which cannot
handle more than one keyword at a time.

	 SN Computer Science (2023) 4:9292  Page 10 of 19

SN Computer Science

a condensed representation, which we use to label the text
(via a softmax layer). Lee et al. [29] pursued an alternative
strategy which made use of LSTM, a recurrent neural net-
work (RNN), in place of CNN, allowing them to incorporate
temporal information (Fig. 8). Yin et al. [65], wondering
about which approach works better, conducted experiments
on various classification tasks ranging from sentiment to
relation to entailment classification. They found no signifi-
cant differences in performance between RNN and CNN.

Yet, some people expressed a concern over applying TC
to keyword extraction, worried that the number of categories
it had been tested on in the literature was very small (some-
where around 4–10 [14]). There is no work so far, to our
knowledge, that addressed the concern. Its ultimate success
may hinge on whether it can be extended to work for a large
number of categories.

Working with Textual Cues

An observation that a keyword rarely contains a stop word
led Rose et al. [49] to a development of a widely used
method known as RAKE.13 It extracts keywords by dividing
a text into a set of contagious word sequences by stop words,
and choosing those that occur most often. Consider a sen-
tence ‘a volcanic explosion killed at least 8 people.’ Assume
that one has a list of stop words ‘an’, ‘killed’, ‘at’, ‘least’,
‘8’, and ‘.’. Delimiting the sentence with them gives us

and by eliminating the separators, we get

arriving at terms ‘volcanic explosion’ and ‘people.’ While
surprisingly simple, it was found to rival more sophisticated
approaches like TextRank and Hulth [24].

In a similar vein, KPM or KP-miner [18]13 takes anything
that occurs between stop words and punctuations as a key-
word candidate. A decision on which one to choose is made
based on where it occurs in the text and how often it appears.
Anything that appears beyond the initial 850-word block of
the document and/or those that occur less than three times
are discarded. The importance of a candidate is measured
by a version of TFIDF, which takes into account additional
textual features such as location, and the within-document
frequency of candidates.

YAKE [10, 11]13 is an outlier among unsupervised sys-
tems (which include RAKE and KPM) due to its treatment

(23)
∥ an ∥∥ volcanic explosion ∥∥ killed ∥∥ at ∥

∥ least ∥∥ 8 ∥∥ people ∥∥ . ∥,

‖ an ‖ ‖ volcanic explosion ‖ ‖ killed ‖ ‖ at ‖ ‖ least ‖ ‖ 8 ‖ ‖ people ‖ ‖ . ‖
(24)

of the context. The approach is motivated by an intuition
that any word that appears in company of many different
words is essentially a function word, and thus should be dis-
carded. The claim is an interesting one, because it attempts
to identify keywords not by how important they are, but by
how insignificant they are. They proposed the following to
measure the insignificance of a word:

where x is a word. R(x) indicates how many unique tokens
are found in company with x, P(x) the position of x’s first
occurrence. C(x) records how many times x occurs with its
initial letter capitalized or appears as an acronym. F(x) rep-
resents the frequency of x and D(x) the number of sentences
in which x appeared. The lower the value of S(x), the better.
The insignificance of a keyword K (which may involve more
than one word) is given as

where K = x1x2 ⋯ xn.

(25)S(x) =
R(x)P(x)

C(x) +
F(x)

R(x)
+

D(x)

R(x)

,

(26)S(K) =
∏

x∈K

S(x),

Fig. 8   An alternative design (of a kind pursued by Lee et al. [29])

13  https://​github.​com/​boudi​nfl/​pke.​git.

https://github.com/boudinfl/pke.git

SN Computer Science (2023) 4:92	 Page 11 of 19  92

SN Computer Science

Going Bayesian: LDA

LDA or Latent Dirichlet Allocation [5]14 is another favorite
method people turn to. LDA builds a language model, operat-
ing on the premise that there is an implicit set of topics that
dictate the distribution of words we observe in a document.
In LDA, a topic is not a single summary term that describes
some aspect of the document, but rather something that rep-
resents a probability distribution that spans the entire vocabu-
lary. Words (normally, uni-grams) that occur frequently with
a topic are given higher probabilities. In LDA, a topic takes
a form like: z1 = {opera, lyrics, hip-hop, jazz, ambient, ...}
or z2 = {market, fed, slump, recession, exchange, ...}, each
spanning the entire vocabulary, with associated probabilities
(suppressed here). You may interpret them as you please. How
to make sense of z1 or z2 is entirely left to the user.

In LDA, every word in the document is assigned to some
topic:

After a longz8 tiringz56
 weekz83

 , Housez43 Democratsz43
decidedz20

 to movez12 forwardz34
 with a requestz0 for the

two articlesz78 of the impeachmentz40 against the Presi-
dentz43 .

Here, zi is a topic index. One can have as many or as few
topics as he or she wants. There are basically two ways to
turn LDA into a keyword extractor. (1) one is to simply
take as keywords, words that are most likely to occur under
LDA; (2) the other is to select those associated with the most
prominent topic. The worthiness of a word under the first
approach can be given as

T is the number of topics that we assume cover documents. d
denotes a document. � , � are parameters responsible for gen-
erating probability distributions that determine how likely
w (word) and t (topic index) occur, or more precisely, �

(27)�
1(w) = p(w ∣ d, �, �) =

T∑

t=1

p(w ∣ t, �)p(t ∣ d, �),

represents a matrix of shape K × V with K = the size of topic
indices and K = the size of the vocabulary.

The second approach can be written as

where K is a set of topic indices zi,… , zk.
Liu et al. [30] were the first in a line of research [25, 54,

55] working on TopicalPageRank (TPR) to combine PageR-
ank and LDA. TPR takes a form almost identical to Eq. 27

where

g indicates how strongly words u and w are associated, A(w)
a set of words that sit in the proximity of w (see Sect. 3.1 for
further details). The authors reported the composite system
performed competitively against LDA and PageRank.

Where Do They All Stand?: A Meta‑Analysis
at Scale

In this section, we examine the effectiveness of approaches
we discussed above, comparing them side by side on a large
number of datasets. We also look at whether performance is
affected by a degree to which keywords are indigenous to the
text. Table 6 provides a sense of what they look like.15 The

(28)�
2(w) = max

t∈K
p(w ∣ t, �),

(29)p(w ∣ d, �, �) =

T∑

t=1

R(w ∣ t, �)p(t ∣ d, �),

(30)

R(w ∣ t, �) =

�
�

u∈A(w)

g(u,w)
∑

k∈A(j) g(u, k)
R(u ∣ t, �)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
PAGERANK

+ (1 − �)p(w ∣ t, �)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
LDA WORD SIMPLEX

.

Table 6   ‘Native’ versus ‘foreign’ keywords in a PubMed article. ‘Native’ keywords are ones found in the text (like those marked with an under-
score), whereas ‘foreign’ keywords are those that are not. In the keywords section, we find keywords supplied by humans for the abstract.

abstract The notion of concordance is central to many multiple criteria techniques relying on ordinal information, e.g., out-
ranking methods. It leads to compare alternatives by pairs on the basis of a comparison of coalitions of attributes
in terms of importance. This paper proposes a characterization of the binary relations that can be obtained using
such comparisons within a general framework for conjoint measurement that allows for intransitive preferences.
We show that such relations are mainly characterized by the very rough differentiation of preference differences
that they induce on each attribute.

keywords ‘concordance’, ‘outranking methods’, ‘conjoint measurement’, ‘multiple criteria analysis’, ‘nontransitive preferences’
native ‘concordance’, ‘outranking methods’, ‘conjoint measurement’
foreign ‘multiple criteria analysis’, ‘nontransitive preferences’

14  https://​radim​rehur​ek.​com/​gensim/​models/​ldamo​del.​html.

15  Other than what we have in Table 6, native keywords include tech-
nical and indexing terms (Sect. 2.1) and foreign keywords, annotation
tags used in the news media (‘business,’ ‘politics,’ ‘world’), and cate-
gories in Wikipedia (‘Living People,’ ‘Nobel Peace Prize Laureates’).

https://radimrehurek.com/gensim/models/ldamodel.html

	 SN Computer Science (2023) 4:9292  Page 12 of 19

SN Computer Science

indigeneity varies from one dataset to another. We want to
know if or how it impacts keyword extraction.

A success of an extractive approach depends on how
many of the target keywords come from inside, because
if most of them are from outside, there is no way for it to
be able to find them. We highlight the issue by introducing
three measures: IDP (ratio of in-document keywords), ODP
(ratio of out-of-document keywords), and RIO (ratio of IDP
over ODP)

RIO indicates the extent to which a given corpus depends
on keywords of an internal origin: the greater the value, the
more likely a keyword is found within the text. We focus on
how RIO interacts with systems that employ extraction as a
primary means to acquire keywords.

Datasets

Part of the data came from the Guardian, the New York
Times, PubMed Central, Reuters, Amazon, and [38]. The

IDP =
of keywords found in document

of keywords humans assigned to document

ODP =
of keywords not found in document

of keywords humans assigned to document

RIO =IDP∕ODP.

Guardian contained 40,000 online stories from January to
late September 2014. The New York Times (NYT), approxi-
mately the size of Guardian, contained stories from January
to December 2011. PubMed Central was another corpus
based on abstracts in various domains found in the PubMed
Central Open Access repository.16Reuters was a news corpus
containing online articles that appeared on Reuters’ website
from 2011 to 2015. The Meng dataset came from Meng et al.
[38], which was made up of papers in computer science.
Amazon was part of what is generally known as ‘Amazon-
12K,’ a large corpus of product descriptions, each of which
comes with categories or tags. In contrast to much of the
previous work, which was based on documents numbered in
the hundreds to thousands, we work here with considerably
larger and more diverse datasets.

In addition, we made use of some 15 publicly available
datasets, including 500N-KPCrowd [34], citeulike180 [37],

Table 7   Datasets. train
(and test) = the number of
documents; d.len = the average
length of documents in words;
keys = the average number
of keywords per document;
k.len = the average length
of keywords in words. sup
indicates datasets that contain a
training block. unsup indicates
those that do not (used only for
unsupervised systems).

dataset train test d.len keys k.len idp odp rio

sup Amazon 30,000 10,000 204.25 7.36 1.83 0.22 0.78 0.28
Guardian 20,000 10,000 791.15 7.37 1.72 0.44 0.56 0.79
Meng 530,809 20,000 147.75 5.37 1.93 0.51 0.49 1.04
NYT 29,986 10,000 750.85 4.41 2.46 0.50 0.50 1.00
PubMed Central 30,000 10,000 221.90 5.26 1.80 0.60 0.40 1.50
Reuters 14,956 10,000 672.00 10.56 1.72 0.70 0.30 2.33

unsup kdd – 755 74.08 5.19 1.75 0.47 0.53 0.89
Nguyen2007 – 209 5121.67 12.09 2.10 0.82 0.18 4.51
Schutz2008 – 1231 3550.98 46.25 1.50 0.87 0.13 6.45
fao780 – 779 4863.16 7.98 1.62 0.59 0.41 1.43
SemEval2010 - 243 8032.55 15.58 2.16 0.88 0.12 7.04
PubMed – 2000 4429.41 14.24 1.90 0.32 0.68 0.48
Inspec – 2000 124.36 14.11 2.22 0.59 0.41 1.44
500N-KPCrowd – 500 393.91 49.23 1.39 0.84 0.16 5.19
Krapivin2009 – 2304 7855.62 5.36 2.05 0.81 0.19 4.22
wiki20 – 20 6018.35 35.50 1.96 0.46 0.54 0.84
fao30 – 30 4792.70 32.23 1.62 0.57 0.43 1.31
SemEval2017 – 493 168.92 17.30 2.89 0.98 0.02 45.11
citeulike180 – 183 4597.80 17.42 1.26 0.64 0.36 1.81
www – 1330 82.04 5.19 1.83 0.38 0.62 0.61
theses100 – 100 4677.57 6.67 1.96 0.45 0.55 0.81

16  We bulk-downloaded data from ftp://​ftp.​ncbi.​nlm.​nih.​gov/​pub/​
pmc/​oa_​bulk/. We retained only keywords, abstracts, and DOI
descriptors.

ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/
ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/

SN Computer Science (2023) 4:92	 Page 13 of 19  92

SN Computer Science

Nguyen2007 [42].17 Table 7 provides a statistical profile of
each of the corpora we used for this study.18

Methods

In addition to TextRank (TEXTR) (Sect. 3.1), KP-miner
(KPM) (Sect. 3.6), YAKE (Sect. 3.6), TopicalPageRank
(TPR) (Sect. 3.7), and RAKE (Sect. 3.6), we also conducted
tests for TFIDF, MAUI and ONMT-k. MAUI and ONMT-k
were supervised systems.

A particular version of TFIDF19 we used here extracts from
a document, n-grams with the length up to n, which do not con-
tain punctuations, and scores them based on the TFIDF metric:
TF multiplied by IDF, where TF is the term frequency and IDF
is defined as log(n∕df) , with df representing the document fre-
quency, the number of documents in which a term appears, and
n, the number of documents. TFIDF favors words that occur
frequently in a small number of documents.

MAUI [37] goes through two phases to acquire keywords:
candidate acquisition and ranking. In the acquisition phase,
it focuses on collecting and normalizing n-grams of up to a
given length. It has an option to use a controlled vocabulary.
If enabled, it will work with entries in a pre-defined vocabu-
lary in place of words found in a document. In the ranking
phase, it activates features related to the text statistics, such

as TFIDF, how much of the text a word covers, the location,
and keywordness, to determine how good each candidate is.
MAUI is trained with bagged decision trees [8].20

ONMT-k [67] is a deep learning algorithm equipped to
create keywords not just from words within the document
but also words from a general vocabulary found in the train-
ing data. It has the ability to generate a novel phrase which
neither appeared in documents nor in gold standard labels.21

Table 8 summarizes major differences and similarities
among the approaches discussed above.

Results

Table 9 shows results in F1@k averaged over test docu-
ments. F1@k represents an F1 score determined on the basis
of top k candidates the system returned [32]. In this experi-
ment, we set k to 5. Regardless of how many candidates
were returned, we assumed that k candidates were always
available: if we got less than 5, say, 3, we pretended that
there were 5, with two of them being empty or zero-length
keywords. We called a prediction correct only if it exactly

Table 8   Candidate acquisition
and weighting. ‘Contiguity’
indicates whether or not a
model requires candidates to
be contiguous. deg(w) = the
number of times w occurs with
other words in document d.
freq(w) = the frequency of w
in d.  

model contiguity candidate acquisition candidate weighting

RAKE + Anything between stop words deg(w)∕freq(w)

YAKE + n-grams Eq. 26
TFIDF + n-grams TFIDF
KPM + anything between punctuations and stop words

with a minimal frequency of 3
TFIDF× boost × position

TEXTR + n-grams with no limit on the length Eq. 18
TPR + n-grams with no limit on the length Eq. 30
MAUI ± up to 3-grams, can use controlled vocabulary. Decision Tree
ONMT-k – variable length Eq. 31

17  https://​github.​com/​LIAAD/​Keywo​rdExt​ractor-​Datas​ets.​git.
18  There is a peculiar divide among the datasets, one between SUPs
and UNSUPs. The former tend to have RIOs significantly lower than
the latter. Some may argue that the former have in-text and out-of-
text keywords more in balance in comparison to the latter, which are
skewed towards in-text keywords. This may get some people to ques-
tion the validity of the datasets, wondering whether the latter data-
sets are natural. In this connection, Turney [57] makes an interesting
observation. He reported that in-text keywords accounted for 73% in
Journal of the International Academy of Hospital Research, 74.9% in
Psycoloquy, 91.7% in The Neuroscientist, 78.8% in The Journal of
Computer-Aided Molecular Design, and 87.4% in Behavioral & Brain
Sciences Preprint Archive. The corresponding RIOs are: 2.70 (Hospi-
tal Research), 3.0 (Psycoloquy), 11.5 (Neuroscientist), 3.76 (Molec-
ular Design), and 6.64 (Brain Sciences), which show that ‘naturally
occurring’ datasets can also have high RIOs.
19  https://​github.​com/​boudi​nfl/​pke.​git.

20  Turney [57, 58] introduced an idea similar to MAUI (called
GenEX, based on a genetic algorithm), 5 to 7 years prior to the lat-
ter’s appearance. It used textual cues such as the location of a key-
word (whether it appeared early or late in the text), and its in-text
frequency. GenEX returns a set of values which are used to score a
candidate.
21  ONMT-k is a derivative of Gu et al. [22], who proposed an idea
of ‘copying mechanism,’ where the decoder is allowed to peek into
the input to decide whether to reuse part of it as it generates an out-
put. An innovation of ONMT-k lies with the simple idea of training
the model on a concatenation of ground truth keywords as a target,
enabling the model to cope with keywords which come in varying
numbers. ONMT-k measures the quality of an output (a sequence of
keywords k1,… , kn ) by

w is a word token. pf (w ∣ x, �) is the probability of emitting w under
model pf (a neural network representing ONMT-k) with parameters �.

P(k1,… , kn ∣ x, �) =
∑

w∈k1,…,kn

log pf (w ∣ x, �). (31);

https://github.com/LIAAD/KeywordExtractor-Datasets.git
https://github.com/boudinfl/pke.git

	 SN Computer Science (2023) 4:9292  Page 14 of 19

SN Computer Science

matched one of the associated answers. Word stemming was
not performed apart from MAUI. All the tokens in the cor-
pora were uncased.

Found under UNSUP in Table 9 are a set of extractive
systems which do not rely on supervision, and under SUP
are ones that require it. For UNSUPs, F1 figures are based
on their performance on the test sets, while those for SUPs
are based on their performance on the same test sets after
being trained on the training data.

Figure 9 shows a relationship between RIO and perfor-
mance. The x-axis represents RIO and the y-axis F1@5. A
solid line in each panel denotes a regression line indicat-
ing how performance is affected by a change in RIO. One

interesting pattern that we see in the figure is that systems
on the left exhibit a behavior that consistently diverges from
those on the right: the left group improves with RIO, but
those on the right are not as responsive, with their perfor-
mance showing no sign of improvement as RIO increases.

Table 10 shows how many words the keywords returned
by a given method contained on average. RAKE has as many
as 9, followed by TEXTR and TPR whose outputs are on
average 3.4 words long, all of which as we observed ear-
lier, deviated from the left group in Fig. 9, whose keywords
averaged around 1 to 2 in length. The divergence in perfor-
mance is most likely caused by the difference in length of
keywords that they returned.

Table 9   Performance in F1@5

class model Amazon Guardian Meng NYT PubMed C. Reuters

UNSUP RAKE 0.0008 0.0006 0.0202 0.0022 0.0067 0.0005
YAKE 0.0131 0.0747 0.0642 0.0848 0.0884 0.0462
TFIDF 0.0174 0.0510 0.0715 0.0353 0.0312 0.0290
KPM 0.0113 0.0636 0.0429 0.0443 0.0803 0.0449
TEXR 0.0083 0.0146 0.0570 0.0173 0.0452 0.0060
TPR 0.0053 0.0067 0.0684 0.0106 0.0610 0.0072

SUP MAUI 0.0330 0.2060 0.1034 0.1360 0.1771 0.1306
ONMT-k 0.3011 0.3661 0.1424 0.3012 0.1829 0.3406

RIO 0.28 0.79 1.04 1.00 1.50 2.33

class model kdd Nguyen Schutz fao780 SemEval10 PubMed

UNSUP RAKE 0.0385 0.0000 0.0000 0.0000 0.0000 0.0000
YAKE 0.0822 0.1129 0.1012 0.1180 0.0776 0.0400
TFIDF 0.0861 0.0794 0.1003 0.0856 0.0480 0.0375
KPM 0.0477 0.1319 0.0188 0.1135 0.0674 0.0494
TEXR 0.0345 0.0081 0.0030 0.0012 0.0018 0.0009
TPR 0.0705 0.0146 0.0068 0.0027 0.0081 0.0020

RIO 0.89 4.51 6.45 1.43 7.04 0.48

class model Inspec theses Krapivin wiki20 SemEval17 fao30

UNSUP RAKE 0.0975 0.0000 0.0000 0.0000 0.0727 0.0000
YAKE 0.0952 0.0976 0.0790 0.0642 0.0836 0.0772
TFIDF 0.0821 0.0591 0.0594 0.0488 0.0967 0.0601
KPM 0.0444 0.0860 0.1148 0.0574 0.0503 0.0600
TEXR 0.0919 0.0027 0.0023 0.0000 0.0872 0.0000
TPR 0.1738 0.0026 0.0080 0.0000 0.1660 0.0022

RIO 1.44 0.81 4.22 0.84 45.11 1.31

class model citeulike www KPCrowd

UNSUP RAKE 0.0000 0.0401 0.0179
YAKE 0.1427 0.0876 0.0704
TFIDF 0.1052 0.0927 0.1024
KPM 0.1388 0.0498 0.0687
TEXR 0.0030 0.0477 0.0279
TPR 0.0037 0.0758 0.0418

RIO 1.81 0.61 5.19

SN Computer Science (2023) 4:92	 Page 15 of 19  92

SN Computer Science

Fig. 9   RIO vs. F1 in unsuper-
vised systems

Fig. 10   Impact of a shortening
of keywords on TextRank and
TopicalPageRank

Table 10   Average lengths of
keywords

RAKE YAKE TFIDF KPM TEXTR TPR TEXTR_N2 TPR_N2 MAUI ONMT-k

9.0 1.5 1.2 1.2 3.4 3.4 1.9 1.9 1.4 2.0

	 SN Computer Science (2023) 4:9292  Page 16 of 19

SN Computer Science

One simple way to see that this is the case is to look at
what happens when TEXTR and TPR are forced to keep
keywords less than 2 word long.22

The results are shown in Fig. 10. TEXR_N2 and TPR_N2
are tweaked versions of respective methods (whose key-
words averaged around 1.9) (Table 10). This arrangement
led to a visible improvement as seen in the figure, confirm-
ing that it is the average length of keywords that separates
TEXTR and TPR from YAKE, TFIDF, and KPM.

Finally, we move to a question of whether RIO impacts
supervised systems (SUPs) as well. The result is shown
in Fig. 11. The effect is more pronounced in MAUI than
in ONMT-k. This is something we would have expected
because of the way MAUI identifies its candidates: it
looks for n-grams of up to 3 words in length, just like
TFIDF and KPM. ONMT-k is largely unresponsive to
RIO, which again comes as no surprise, because it ‘gen-
erates’ rather than extracts keywords from the source
document. It does not care how many of the keywords
originate in a source document. It is interesting that key-
words ONMT-k generates are generally two word long
(Table 10), indicating that the neural model implicitly
learned how long they should be.

In this section, we broadly reviewed ideas that emerged
over the years, with a reference to RIO. One important
takeaway is that setting the length at around 2 is a critical
part of making an UNSUP predictor a success. We showed
that cutting the length of keywords from 3.4 to 2 improved
performance of TextRank (TEXTR) and TopicalTextRank

(TPR) (Fig. 10 and Table 10).23 Now, we know why RAKE
will not and should not work as well as YAKE: keywords
the former looks for average around 9, while those by the
latter about 1.2–1.5.

Conclusion

In this work, we surveyed major ideas in keyword extraction
that emerged over the last 50 years, from the early 1970s,
when the field was mainly led by information retrieval, to
the present day which sees an escalating dominance by deep
learning. The experiment has brought to light strengths and
weaknesses of the methods. The fact that TFIDF and KPM
ranked higher among UNSUPs suggests that a weighting
scheme based on some form of TFIDF is effective, which
in turn vindicates Justeson and Katz [26], who argued that
there were some specific conditions for terms to qualify
as an indexing term. In addition, we saw that Justeson and
Katz [26]’s prediction about the length of a term: that impor-
tant terms are generally two-word long, holds true across a
wide range of datasets from science to business to media
to bureaucracy, as well as for the corpora in Table 7 [23].24
The evidence is so strong that some may consider giving
it a status of ‘universal constant.’ We found through RIO
that some of the underperforming approaches can be fixed
by forcing them to shorten keywords they generate. Setting
keywords at the right length is as important as other design
choices such as a weighting scheme, an observation whose
significance has been underappreciated in the past literature.

Taken together, this should point to what an ideal
approach in the unsupervised regime should look like: it
would seek n-grams that are at most two word long, and
determine their importance according to a weighting scheme
more or less like TFIDF, possibly together with linguistically
and statistically motivated schemes like those employed by
KPM. If one wants to go beyond that, it would be wise to
move to the generative regime, as it offers a capability to
build keywords from within as well as from outside.

In their 2010 paper, Hasan and Ng [23] puzzled over an
unexpected failure of TextRank, the state of the art at the

Fig. 11   F1 vs. RIO in supervised systems

22  RAKE was excluded here as there was no way to tweak it to
accommodate the length restriction.

23  Another possible use scenario of RIO would be to use it as a
device to estimate how likely one would succeed with an unsuper-
vised method (UNSUP) on a given dataset. If the value is low, one
may be better off not to use it. From what we see in Figs. 9 and 10,
it would not be a stretch to say that the dividing line lies somewhere
around 1 (i.e., IDP and ODP are in balance): if RIO is above 1, there
will be some chance that an UNSUP may work; otherwise, the use of
SUPs is advised.
24  We found that the average length of keywords in 20 most com-
monly used datasets (https://​github.​com/​LIAAD/​Keywo​rdExt​ractor-​
Datas​ets.​git) was at 1.82, fairly close to what we found in Table 7.

https://github.com/LIAAD/KeywordExtractor-Datasets.git
https://github.com/LIAAD/KeywordExtractor-Datasets.git

SN Computer Science (2023) 4:92	 Page 17 of 19  92

SN Computer Science

time, to perform on par with TFIDF.25 The results we saw
from the previous section are consistent with their findings,
suggesting that their failure was most likely caused by overly
long keywords that it produced.

An interesting area of research that has yet to be explored
is an exploration of conditions under which unsupervised
methods work most effectively. Granted that they lag
miles behind supervised systems in terms of accuracy, that
would not diminish their value: they run faster, require
less resources, and are easier to deploy and adapt to novel
domains. We hope to see increased research activities in this
important subfield in coming years.

Declarations 

Conflict of Interest  The author declares that there is no conflict of in-
terest in any part of the work presented here.

Compliance with Ethical Standards  The study reported here does not
involve participation by humans or animals, of any form.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 : Zhang Q, Wang Y, Gong Y, Huang X. Keyphrase extraction
using deep recurrent neural networks on twitter. In: Proceedings
of the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing, Association for Computational Linguistics,
Austin, Texas; 2016, p. 836–45. https://​doi.​org/​10.​18653/​v1/​
D16-​1080, https://​www.​aclweb.​org/​antho​logy/​D16-​1080.

	 2.	 Allen J, editor. Topic detection and tracking: event-based informa-
tion organization. Springer; 2002.

	 3.	 Alzaidy R, Caragea C, Giles CL. Bi-lstm-crf sequence labeling
for keyphrase extraction from scholarly documents. In: The World
Wide Web Conference, Association for Computing Machinery,
New York, NY, USA, WWW ’19. 2019; p. 2551–7. https://​doi.​
org/​10.​1145/​33085​58.​33136​42.

	 4.	 Barker K, Cornacchia N. Using noun phrase heads to extract docu-
ment keyphrases. In: Proceedings of the 13th biennial conference
of the Canadian society on computational studies of intelligence:
advances in artificial intelligence. 2000; p. 40–52.

	 5.	 Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach
Learn Res. 2003;3:993–1022.

	 6.	 Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D.
Domain separation networks. 2016. CoRR abs/1608.06019, arXiv:​
1608.​06019

	 7.	 Boyce BR, Meadow CT, Kraft DH. Measuring information: an
information services perspective. Jean Tague-Sutcliffe; 1994.

	 8.	 Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
	 9.	 Brown PF, Della Pietra VJ, deSouza PV, Lai JC, Mercer RL.

Class-based n-gram models of natural language. Computat Lin-
guist 1992;18(4):467–80. https://​www.​aclweb.​org/​antho​logy/​
J92-​4003.

	10.	 Campos R, Mangaravite V, Pasquali A, Jorge A, Nunes C, Jatowt
A. Yake! collection-independent automatic keyword extractor.
2018. https://​doi.​org/​10.​1007/​978-3-​319-​76941-7_​80

	11.	 Campos R, Mangaravite V, Pasquali A, Jorge A, Nunes C, Jatowt
A. Yake! keyword extraction from single documents using mul-
tiple local features. Inf Sci. 2020;509:257–89. https://​doi.​org/​10.​
1016/j.​ins.​2019.​09.​013. https://​www.​scien​cedir​ect.​com/​scien​ce/​
artic​le/​pii/​S0020​02551​930858

	12.	 Chen J, Zhang X, Wu Y, Yan Z, Li Z. Keyphrase generation with
correlation constraints. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, Associa-
tion for Computational Linguistics, Brussels, Belgium; 2018, p.
4057–66. https://​doi.​org/​10.​18653/​v1/​D18-​1439, https://​www.​
aclweb.​org/​antho​logy/​D18-​1439

	13.	 Church K, Gale W, Hanks P, Hindle D. Using statistics in lexical
analysis. In: Zernik U, editor. Lexical acquisition: exploiting on-
line resources to build a Lexicon, Lawrence Erlbaum Associates.
Hillsdale; 1991.

	14.	 Conneau A, Schwenk H, Barrault L, Lecun Y. Very deep convo-
lutional networks for text classification. In: Proceedings of the
15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers, Association
for Computational Linguistics, Valencia, Spain; 2017, p. 1107–16.
https://​aclan​tholo​gy.​org/​E17-​1104.

	15.	 Daille B, Gaussier E, Lange JM. Towards automatic extraction
of monolingual and bilingual terminology. In: COLING 1994
Volume 1: The 15th International Conference on Computational
Linguistics, 1994. https://​www.​aclweb.​org/​antho​logy/​C94-​1084

	16.	 Dee CR. The development of the medical literature analysis and
retrieval system (medlars). J Med Library Assoc. 2007. https://​
doi.​org/​10.​3163/​1536-​5050.​95.4.​416.

	17.	 Dunning T. Accurate methods for the statistics of surprise and
coincidence. Comput Linguist. 1993;19(1):61–74. https://​www.​
aclweb.​org/​antho​logy/​J93-​1003

	18.	 El-Beltagy SR, Rafea A. KP-miner: Participation in SemEval-2.
In: Proceedings of the 5th International Workshop on Semantic
Evaluation, Association for Computational Linguistics, Uppsala,
Sweden; 2010, p. 90–193. https://​www.​aclweb.​org/​antho​logy/​
S10-​1041.

	19.	 Firoozeh N, Nazarenko A, Alizon F, Daille B. Keyword extraction:
issues and methods. Nat Lang Eng. 2020;26(3):259–91. https://​
doi.​org/​10.​1017/​S1351​32491​90004​57.

	20.	 Florescu C, Jin W Learning feature representations for keyphrase
extraction. 2018. CoRR abs/1801.01768, arXiv:​1801.​01768

	21.	 Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,
Ozair S, Courville A, Bengio Y. Generative Adversarial Networks
2014. arXiv:​1406.​2661

	22.	 Gu J, Lu Z, Li H, Li VO. Incorporating copying mechanism
in sequence-to-sequence learning. In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Association for Computational Linguis-
tics, Berlin, Germany; 2016, p. 1631–40, https://​doi.​org/​10.​18653/​
v1/​P16-​1154, https://​www.​aclweb.​org/​antho​logy/​P16-​1154.

	23.	 Hasan KS, Ng V. Conundrums in unsupervised keyphrase extrac-
tion: making sense of the state-of-the-art. In: COLING 2010,

25  See ibid., Table 2 and Fig. 1.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18653/v1/D16-1080
https://doi.org/10.18653/v1/D16-1080
https://www.aclweb.org/anthology/D16-1080
https://doi.org/10.1145/3308558.3313642
https://doi.org/10.1145/3308558.3313642
http://arxiv.org/abs/1608.06019
http://arxiv.org/abs/1608.06019
https://www.aclweb.org/anthology/J92-4003
https://www.aclweb.org/anthology/J92-4003
https://doi.org/10.1007/978-3-319-76941-7_80
https://doi.org/10.1016/j.ins.2019.09.013
https://doi.org/10.1016/j.ins.2019.09.013
https://www.sciencedirect.com/science/article/pii/S002002551930858
https://www.sciencedirect.com/science/article/pii/S002002551930858
https://doi.org/10.18653/v1/D18-1439
https://www.aclweb.org/anthology/D18-1439
https://www.aclweb.org/anthology/D18-1439
https://aclanthology.org/E17-1104
https://www.aclweb.org/anthology/C94-1084
https://doi.org/10.3163/1536-5050.95.4.416
https://doi.org/10.3163/1536-5050.95.4.416
https://www.aclweb.org/anthology/J93-1003
https://www.aclweb.org/anthology/J93-1003
https://www.aclweb.org/anthology/S10-1041
https://www.aclweb.org/anthology/S10-1041
https://doi.org/10.1017/S1351324919000457
https://doi.org/10.1017/S1351324919000457
http://arxiv.org/abs/1801.01768
http://arxiv.org/abs/1406.2661
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://www.aclweb.org/anthology/P16-1154

	 SN Computer Science (2023) 4:9292  Page 18 of 19

SN Computer Science

August; 2010, p. 365–373. http://​dl.​acm.​org/​citat​ion.​cfm?​id=​
19446​08.

	24.	 Hulth A. Improved automatic keyword extraction given more
linguistic knowledge. In: Proceedings of the 2003 Conference
on Empirical Methods in Natural Language Processing; 2003, p.
216–23. https://​www.​aclweb.​org/​antho​logy/​W03-​1028.

	25.	 Jardine J, Teufel S. Topical pagerank: a model of scientific exper-
tise for bibliographic search. 14th Conference of the European
Chapter of the Association for Computational Linguistics 2014.
EACL. 2014;2014:501–10. https://​doi.​org/​10.​3115/​v1/​E14-​1053.

	26.	 Justeson JS, Katz SM. Technical terminology: some linguistic
properties and an algorithm for identification in text. Nat Lan-
guage Process. 1995;8(6):9–27.

	27.	 Kageura K, Umino B. Method of automatic term recognition. Ter-
minology. 1996;3(2):259–90.

	28.	 Lafferty J, MacCallum A, Pereira F. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data.
In: Proceedings of the 18th International Conference on Machine
Learning (ICML-2001), 2001.

	29.	 Lee SE, Kim KM, Ryu WJ, Park J, Lee S. From text classification
to keyphrase extraction for short text. In: 2019 IEEE International
Conference on Big Data (Big Data); 2019, p. 1137–42. https://​doi.​
org/​10.​1109/​BigDa​ta470​90.​2019.​90064​09.

	30.	 Liu Z, Huang W, Zheng Y, Sun M. Automatic keyphrase extrac-
tion via topic decomposition. In: Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, Cambridge, MA;
2010, p. 366–76. https://​www.​aclweb.​org/​antho​logy/​D10-​1036.

	31.	 Manning CD, Schütze H. Foundations of statistical natural lan-
guage processing. The MIT Press; 1999.

	32.	 Manning CD, Raghavan P, Schütze H. Introduction to information
retrieval. Cambridge University Press; 2008.

	33.	 Martinc M, Škrlj B, Pollak S. Tnt-kid: transformer-based neu-
ral tagger for keyword identification. Nat Language Eng. 2021.
https://​doi.​org/​10.​1017/​s1351​32492​10001​27.

	34.	 Marujo L, Gershman A, Carbonell J, Frederking R, Neto JP.
Supervised topical key phrase extraction of news stories using
crowdsourcing, light filtering and co-reference normalization. In:
Proceedings of the LREC 2012, 2012.

	35.	 Marujo L, Ling W, Trancoso I, Dyer C, Black AW, Gershman
A, Martins de Matos D, Neto J, Carbonell J. Automatic keyword
extraction on twitter. In: Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), Association for Computational Linguis-
tics, Beijing, China; 2015, p. 637–43. https://​doi.​org/​10.​3115/​v1/​
P15-​2105, https://​www.​aclweb.​org/​antho​logy/​P15-​2105.

	36.	 Matsuo Y, Ishizuka M. Keyword extraction from a single docu-
ment using word co-occurrence statistical information. Int J Artif
Intell Tools. 2003;13.

	37.	 Medelyan O. Human-competitive automatic topic indexing. PhD
thesis, Department of Computer Science, The University of Wai-
kato, 2009.

	38.	 Meng R, Zhao S, Han S, He D, Brusilovsky P, Chi Y. Deep key-
phrase generation. In: Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long
Papers), Association for Computational Linguistics, Vancouver,
Canada; 2017, p. 582–92. https://​doi.​org/​10.​18653/​v1/​P17-​1054,
https://​www.​aclweb.​org/​antho​logy/​P17-​1054.

	39.	 Mihalcea R, Csomai A. Wikify!: linking documents to encyclope-
dic knowledge. In: Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management, ACM;
2007, p. 233–42

	40.	 Mihalcea R, Tarau P. Textrank: Bringing order into texts. Assoc
Comput Linguist. 2004.

	41.	 Nagao M, Mizutani M, Ikeda H. An automatic method of the
extraction of important words from scientific documents. Trans
Inf Soc Jpn. 1976;17(2).

	42.	 Nguyen TD, Kan MY. Keyphrase extraction in scientific publi-
cations. In: Goh DH, HCao T, Sølvberg IT, Rasmussen E (eds)
Asian Digital. Libraries Looking Back 10 Years and Forging New
Frontiers. Springer, Berlin; 2007.

	43.	 Ohsawa Y, Benson NE, Ikeda H. Keygraph: Automatic indexing
by co-occurrence graph based on building construction metaphor.
In: Proceedings of the advances in digital libraries conference,
Washington; 1998, p. 12.

	44.	 Papagiannopoulou E, Tsoumakas G. A review of keyphrase
extraction. 2019. CoRR abs/1905.05044. arXiv:​1905.​05044

	45.	 Park Y, Byrd RJ, Boguraev BK. Automatic glossary extraction:
beyond terminology identification. In: COLING 2002: The 19th
International Conference on Computational Linguistics. 2002.
https://​www.​aclweb.​org/​antho​logy/​C02-​1142.

	46.	 Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of
social representations. 2014. CoRR abs/1403.6652. arXiv:​1403.​
6652.

	47.	 Richmond PA. Review of the cranfield project. Am Document.
1963;14(4)

	48.	 Robertson SE, Jones SK. Relevance weighting of search terms. J
Am Soc Inf Sci. 1976;27(3):129–46.

	49.	 Rose S, Engel D, Cramer N, Cowley W. Automatic keyword
extraction from individual documents. In: Kogan MWBJ, edi-
tor. Text mining: applications and theory. John Wily & Sons Ltd;
2010.

	50.	 Sahrawat D, Mahata D, Kulkarni M, Zhang H, Gosangi R, Stent
A, Sharma A, Kumar Y, Shah RR, Zimmermann R. Keyphrase
extraction from scholarly articles as sequence labeling using con-
textualized embeddings. 2019. CoRR abs/1910.08840. arXiv:​
1910.​08840.

	51.	 Salton G, Yang CS. On the specification of term values in auto-
matic indexing. J Document. 1973;29(4):351–72.

	52.	 Salton G, Yang CS, Yu CT. A theory of term importance in auto-
matic text analysis. J Am Soc Inf Sci. 1974. https://​doi.​org/​10.​
1002/​asi.​46302​60106.

	53.	 Salton G. Syntactic approaches to automatic book indexing. In:
26th Annual Meeting of the Association for Computational Lin-
guistics, Association for Computational Linguistics, Buffalo, New
York, USA; 1988, p. 204–10. https://​doi.​org/​10.​3115/​982023.​
982048, https://​www.​aclweb.​org/​antho​logy/​P88-​1025.

	54.	 Sterckx L, Demeester T, Deleu J, Develder C. Topical word
importance for fast keyphrase extraction. In: Proceedings of the
24th International Conference on World Wide Web, Association
for Computing Machinery, New York, NY, USA, WWW ’15
Companion; 2015, p. 121–2. https://​doi.​org/​10.​1145/​27409​08.​
27427​30.

	55.	 Sung YY, Kim SB. Topical keyphrase extraction with hierarchi-
cal semantic networks. Decis Support Syst. 2020;128: 113163.
https://​doi.​org/​10.​1016/j.​dss.​2019.​113163. https://​www.​scien​cedir​
ect.​com/​scien​ce/​artic​le/​pii/​S0167​92361​93019​27.

	56.	 Tu Z, Lu Z, Liu Y, Liu X, Li H. Coverage-based neural machine
translation. 2016. CoRR abs/1601.04811. arXiv:​1601.​04811.

	57.	 Turney PD. Learning to extract keyphrases from text. 2002. arXiv:​
cs/​02120​13.

	58.	 Turney PD. Learning algorithms for keyphrase extraction. Inf
Retrieval. 2004;2:303–36.

	59.	 UNESCO UNESCO Indexing Principle. SC.75/WS/58, 1975.
	60.	 Wang Y, Liu Q, Qin C, Xu T, Wang Y, Chen E, Xiong H. Exploit-

ing topic-based adversarial neural network for cross-domain key-
phrase extraction. In: 2018 IEEE International Conference on
Data Mining (ICDM); 2018, p. 597–606.

	61.	 Wang J, Wang Z, Zhang D, Yan J. Combining knowledge with
deep convolutional neural networks for short text classification.

http://dl.acm.org/citation.cfm?id=1944608
http://dl.acm.org/citation.cfm?id=1944608
https://www.aclweb.org/anthology/W03-1028
https://doi.org/10.3115/v1/E14-1053
https://doi.org/10.1109/BigData47090.2019.9006409
https://doi.org/10.1109/BigData47090.2019.9006409
https://www.aclweb.org/anthology/D10-1036
https://doi.org/10.1017/s1351324921000127
https://doi.org/10.3115/v1/P15-2105
https://doi.org/10.3115/v1/P15-2105
https://www.aclweb.org/anthology/P15-2105
https://doi.org/10.18653/v1/P17-1054
https://www.aclweb.org/anthology/P17-1054
http://arxiv.org/abs/1905.05044
https://www.aclweb.org/anthology/C02-1142
http://arxiv.org/abs/1403.6652
http://arxiv.org/abs/1403.6652
http://arxiv.org/abs/1910.08840
http://arxiv.org/abs/1910.08840
https://doi.org/10.1002/asi.4630260106
https://doi.org/10.1002/asi.4630260106
https://doi.org/10.3115/982023.982048
https://doi.org/10.3115/982023.982048
https://www.aclweb.org/anthology/P88-1025
https://doi.org/10.1145/2740908.2742730
https://doi.org/10.1145/2740908.2742730
https://doi.org/10.1016/j.dss.2019.113163
https://www.sciencedirect.com/science/article/pii/S0167923619301927
https://www.sciencedirect.com/science/article/pii/S0167923619301927
http://arxiv.org/abs/1601.04811
http://arxiv.org/abs/cs/0212013
http://arxiv.org/abs/cs/0212013

SN Computer Science (2023) 4:92	 Page 19 of 19  92

SN Computer Science

In: Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17; 2017, p. 2915–21.
https://​doi.​org/​10.​24963/​ijcai.​2017/​406, https://​doi.​org/​10.​24963/​
ijcai.​2017/​406.

	62.	 Wan X, Xiao J. Single document keyphrase extraction using
neighborhood knowledge. In: Proceedings of the 23rd AAAI Con-
ference on Artificial Intelligence, vol 2; 2008, p. 855–60. http://​
www.​aaai.​org/​Papers/​AAAI/​2008/​AAAI08-​136.​pdf.

	63.	 Wan X, Yang J, Xiao J. Towards an iterative reinforcement
approach for simultaneous document summarization and keyword
extraction. In: Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, Association for Com-
putational Linguistics, Prague, Czech Republic; 2007, p. 552–9.
https://​aclan​tholo​gy.​org/​P07-​1070.

	64.	 Yao K, Peng B, Zweig G, Yu D, Li X, Gao F. Recurrent con-
ditional random fields. 2013. https://​doi.​org/​10.​13140/2.​1.​4852.​
4806

	65.	 Yin W, Kann K, Yu M, Schütze H. Comparative study of CNN and
RNN for natural language processing. 2017. arXiv:​1702.​01923

	66.	 You W, Fontaine D, Barthès JP. An automatic keyphrase
extraction system for scientific documents. Knowl Inf Syst.
2013;34(3):691–724.

	67.	 Yuan X, Wang T, Meng R, Thaker K, Brusilovsky P, He D,
Trischler A. One size does not fit all: Generating and evaluat-
ing variable number of keyphrases. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguis-
tics, Association for Computational Linguistics, Online; 2020, p.
7961–75. https://​www.​aclweb.​org/​antho​logy/​2020.​acl-​main.​710.

	68.	 Zhang Y, Li J, Song Y, Zhang C. Encoding conversation context
for neural keyphrase extraction from microblog posts. In: Pro-
ceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), Association for
Computational Linguistics, New Orleans, Louisiana; 2018, p.
1676–86,.https://​doi.​org/​10.​18653/​v1/​N18-​1151, https://​aclan​
tholo​gy.​org/​N18-​1151.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.24963/ijcai.2017/406
https://doi.org/10.24963/ijcai.2017/406
https://doi.org/10.24963/ijcai.2017/406
http://www.aaai.org/Papers/AAAI/2008/AAAI08-136.pdf
http://www.aaai.org/Papers/AAAI/2008/AAAI08-136.pdf
https://aclanthology.org/P07-1070
https://doi.org/10.13140/2.1.4852.4806
https://doi.org/10.13140/2.1.4852.4806
http://arxiv.org/abs/1702.01923
https://www.aclweb.org/anthology/2020.acl-main.710
https://doi.org/10.18653/v1/N18-1151
https://aclanthology.org/N18-1151
https://aclanthology.org/N18-1151

	Keyword Extraction: A Modern Perspective
	Abstract
	Introduction
	History
	Automatic Term Indexing
	Computational Linguistics

	New Perspectives
	PageRank Inspired Approaches
	Using External Knowledge
	Classificatory Keyword Extraction
	Generative Keyword Extraction
	Keyword Extraction as Text Classification
	Working with Textual Cues
	Going Bayesian: LDA

	Where Do They All Stand?: A Meta-Analysis at Scale
	Datasets
	Methods
	Results

	Conclusion
	References

