
Vol.:(0123456789)

SN Computer Science (2023) 4:92 
https://doi.org/10.1007/s42979-022-01481-7

SN Computer Science

SURVEY ARTICLE

Keyword Extraction: A Modern Perspective

Tadashi Nomoto1 

Received: 30 August 2021 / Accepted: 27 October 2022 / Published online: 15 December 2022 
© The Author(s) 2022

Abstract
The goal of keyword extraction is to extract from a text, words, or phrases indicative of what it is talking about. In this work, 
we look at keyword extraction from a number of different perspectives: Statistics, Automatic Term Indexing, Information 
Retrieval (IR), Natural Language Processing (NLP), and the emerging Neural paradigm. The 1990s have seen some early 
attempts to tackle the issue primarily based on text statistics [13, 17]. Meanwhile, in IR, efforts were largely led by DARPA’s 
Topic Detection and Tracking (TDT) project [2]. In this contribution, we discuss how past innovations paved a way for more 
recent developments, such as LDA, PageRank, and Neural Networks. We walk through the history of keyword extraction 
over the last 50 years, noting differences and similarities among methods that emerged during the time. We conduct a large 
meta-analysis of the past literature using datasets from news media, science, and medicine to business and bureaucracy, to 
draw a general picture of what a successful approach would look like.

Keywords  Historical survey · Meta-analysis · Keyword extraction · Automatic indexing · Natural language processing · 
Information extraction · Text generation

Introduction

The notion of ‘keyword’ has long defied a precise definition. 
Boyce et al. [7] called it a surrogate that represents the topic 
or content of a document, which in turn gives rise to another 
question: What is a topic or content? Which is equally elu-
sive. History witnessed the rise of two major schools of 
thought, one in terminology science (TS) and the other in 
information retrieval (IR). The two have crisscrossed each 
other as they progressed in their scientific endeavor. Termi-
nologists are generally concerned with finding terms that are 
specific to a particular technical domain, useful to organize 
knowledge relating to that domain, while people in informa-
tion retrieval are focused more on identifying terms (which 
they call indexing terms) capable of distinguishing among 
documents to improve document retrieval.

Despite some fundamental differences, there is one prin-
ciple that cuts across TS and IR: that keywords are terms 
that reside in the document. Hulth [24] reported, however, 
that people, when asked to provide keywords for their own 

scientific writings, picked words not only from their work, 
but also drew upon their own personal knowledge, suggest-
ing that keywords may not be confined to the text alone. In 
Sect. 4, we show that this is indeed the case, drawing on evi-
dence from data from online sources. We argue that there is 
more to keywords than indexing and technical terms (Fig. 1).

In this work, we use term keyword as an overarching term 
to refer to linguistic expressions that take on one or more of 
the following roles.

–	 Terminology: words or phrases that are used in a spe-
cific domain to denote a particular technical idea; e.g., 
phosphogypsum, progressive taxation, return on equity, 
Planck constant, sarcoma, carcinogen.

–	 Topics: terms and labels that are part of a set of concepts 
systematically assembled under a particular classification 
policy; e.g., Wikipedia category names, Dewey Decimal 
Classification.

–	 Index terms: terms indicating major concepts, ideas, 
events, and people, referred to in a document or book; 
e.g., JFK, Martin Luther King, Jr., Malcolm X.

–	 Summary terms: words or phrases that are meant to 
serve as a quick description of the content; e.g., global 
warming, deforestation, extreme weather.
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This work is intended as an introduction to major ideas that 
have evolved and shaped the field for the last 50 years, which 
retain relevance to this day. Some of them came from TS, 
others from IR or from computational linguistics. One may 
ask why we need another survey of keyword extraction, 
given that there have been a number of efforts out there with 
an aim similar to ours, in particular Firoozeh et al. [19].1 
The reason has to do with one problem they all share: the 
failure to recognize the limits of extractive methods. Key-
words arise not only from inside the document but also from 
outside, i.e., an external source the author has access to. To 
be able to address keyword extraction requires delivering 
solutions to both types of keywords. We will see how some 
of the recent developments such as a generative paradigm 
based on deep learning, can address the challenge with their 
unique ability to ‘invent’ keywords as needed.

Another aspect of a keyword, often dismissed as less 
important in the past literature, including UNESCO [59]—
which forms a moral foundation for Firoozeh et al. [19] 2—is 
the length: we will demonstrate empirically that it plays an 
important role in defining what it takes to be a keyword, 
and argue that this recognition of  a role the length plays 
provides a key to solving what Hasan and Ng [23] called 
‘conundrums in keyword extraction.’

Our overall contribution lies in putting in a new light 
aspects of a keyword that have been left largely unexplored 
and untouched in previous like-minded surveys. In the final 
section, we will line up major methods that emerged over the 
past 50 years, and compare them against one another, giving 
some idea of where they stand in terms of performance and 
design choices.

History

Automatic Term Indexing

Term indexing, described by Boyce et al. [7] as a field of 
study concerned with finding surrogates that represent the 
topic or content of documents, remains as relevant as ever 
in information retrieval today. TFIDF, a widely acclaimed 
method for finding important words, came into being in the 
early 1970s when Salton and Yang [51] proposed to measure 
the importance of a word using the following formula:

It marks a huge break from approaches prevalent at the time 
that were mostly focused on the frequency of terms in and 
across documents. TFIDF takes the importance of a word in 
document as consisting of two components. The first com-
ponent f (wij) is the frequency of a word i in the document 
j, also known as TF. The second component log2(⋅) , known 
as the inverse document frequency or IDF, is to indicate how 
uncommon the word is. g(wij) = 1 if wij appears in document 
j; otherwise 0. Therefore, 

∑
j g(wij) equals the number of 

documents containing wi . n(D) is the total number of docu-
ments in a collection.

The discovery of TFIDF was followed a year later by 
another formulation [52], which expanded and refurbished 
the idea to deal with two-term keywords:

Note that this can be transformed into

where we are able to see the TF and IDF components more 
clearly. I(ik)j denotes the importance of a two-word term wi wk 
in document j.

(1)Iij = f (wij) log2
n(D)∑
j g(wij)

.

(2)
I(ik)j =

f (wij) f (wkj)

2�
log2 n(D) −

log2
∑

j g(wij) + log2
∑

j g(wkj)

2

�
.

(3)

I(ik)j =
1

2

�
f (wij) f (wkj)

�
log2

n(D)∑
j g(wij)

+ log2
n(D)∑
j g(wkj)

��
,

indexing terms

technical terms

keywords

Fig. 1   Keywords, technical terms, and indexing terms

1  Apart from their perfunctory treatment of topics that drove the field 
up until the early 2010s, much of their contribution centers around 
a re-classification of metrics long established in the community such 
as TFIDF and word co-occurrence, following a somewhat vague style 
guideline set forth by UNESCO [59] whose scientific value may be 
open to debate (see Firoozeh et al. [19], Fig. 4).
2  UNESCO [59] states that (1) keywords people use for a document 
should collectively cover major points of its content and (2) be dis-
tinctive enough to set it apart from other documents, which Firoozeh 
et  al. [19] extended with a few more axioms, including minimal-
ity, impartiality, and representability, none of which concerned the 
length of a keyword. Their recommendation comes down to: ‘a key-
word needs to be non-redundant, free of bias, descriptive, unambigu-
ous, and in line with a communal practice.’
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Meanwhile, Robertson and Jones [48] defined the term 
importance in terms of how well it served the document 
search. The importance of term wij was given by

where for a given query q

The problem with the approach, from a standpoint of 
keyword extraction, is that to determine the term impor-
tance, one needs to find relevant documents for  query q, 
which can be challenging, because this would require asking 
humans to make a judgement on relevance for each of the 
documents collected. Another issue is that a term will no 
longer have a unique score as it is made relative to a query: 
the use of a different query may result in a different score 
even for the same term. This is troublesome, as it implies 
that the importance of a word cannot be determined with-
out a reference to a query. These issues inherent to the idea 
make it unlikely that a relevance-based term indexing would 
meaningfully contribute to keyword extraction.

Salton et al. [52] takes somewhat a different route, explor-
ing what they call the discrimination value analysis. The idea 
is based on the intuition that one can determine the importance 
of a term by looking at how well it is able to discriminate 
documents in a collection: a good indexing term is one that 
would separate documents from one another, making a col-
lection sparse.

Assume that we have a document represented as a vector 
which keeps track of the frequency of every term we find in 
the document. Averaging the in-document frequency of each 
term will give us a centroid vector, C = (c1, c2, c3 ⋯ ci ⋯ cn) , 
where each element ci looks like

n is a number representing how many unique terms we have 
in the collection, and f(w) the in-document frequency of w. 
Define the density of a collection by

where cos(⋅, ⋅) denotes the cosine similarity, C a centroid, 
and Di a document vector, where

(4)Iij = log

(
r

R − r

)

(
n − r

N − n − R + r

) ,

N = the number of documents,

R = the number of relevant documents for q,

n = the number of documents containing term wij,

r = the number of relevant documents with wij.

(5)ci =
1

n

∑

j=1

f (wij),

(6)Q =

M∑

i=1

cos(C,Di),

M indicates the number of documents the collection con-
tains. Define a function DVk for wk as

For a given term wk , Qk is a Q score one gets by setting 
f (wki) = 0 for every Di . DVk > 0 means that w has the abil-
ity to discriminate documents (because its removal from the 
collection causes an increase in density, making documents 
more similar). Salton et al. [52] define the discriminative 
value of term wk in document j by

The authors reported that their approach, when applied to 
three datasets, CRANFIELD [47], MEDLARS [16], and 
TIME [52], led to an improvement by 10% over an approach 
which only makes use of the term frequency.

Nagao et al. [41], inspired by �2 statistic, came up with 
an interesting alternative

where

X2
i
 represents the importance of term i. The idea is that if its 

frequency f (wij) deviates from its expected frequency mij , we  
take it as worthy. One caveat is that one must have a large 
collection of documents, to guarantee that an estimated X2 
follows �2 the distribution.

The idea was further explored by Matsuo and Ishizuka 
[36], who proposed to replace Eq. 10 with

f �(w, g) indicates how many sentences there are that con-
tain w and g together. f(w) is the count of sentences in a 
document which contains w and p(⋅, g) the probability that 
any given term appears together with g (in a sentence), i.e., ∑V

i
p(wi, g) , with V indicating the total number of uniques 

words in a collection. f (w)p(⋅, g) thus corresponds to the 
expected frequency of w co-occurring with g. G is a pre-
defined set of frequent terms in a document (with stopwords 
and other minor words removed). The authors’ goal was to 
find how far the observed co-occurrence frequency of w and 
g deviates from its expected frequency. The further it veers 
off, the greater its significance. Matsuo and Ishizuka [36] 
went on to suggest using the following in place of Eq. 12:

(7)Di =
(
f (w1i), f (w2i), f (w3i),… , f (wni)

)
.

(8)DVk = Qk − Q.

(9)Ikj = f (wkj) ⋅ DVk.

(10)X2 =
∑

j

f (wij) − mij

mij

,

(11)mij =

∑
j f (wij)

∑
ij f (wij)

�

i

f (wij).

(12)�2(w) =
∑

g∈G

(f �(w, g) − f (w)p(⋅, g))2

f (w)p(⋅, g)
.
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The formula penalizes a term if  its chi-squared value  
is backed by  only a small number of high frequency 
terms. Thus, if we have two terms A and B ( ∈ G ), and if A 
occurs only with B and not any other member of G, �2(�) 
will get a high score, but � �(�) will get 0.

Table 1 gives some sense of how well it works. The test  
was done using 20 scientific papers. We observe that � ′ 
is doing almost as good as TFIDF, without relying on the 
document frequency, which the latter requires. Every mate-
rial that � ′ makes use of comes from inside the document. 
The table also shows the performance of keygraph, another 
method based on a co-occurrence metric, described below. 
TF is the simplest of all, relying only on the term frequency.

Ohsawa et al. [43] are the earliest attempt (to our knowl-
edge) to leverage the notion of word graph to extract key-
words, an approach they termed ‘keygraph.’ A word graph 
is an interconnected network of words built by linking words 
based on how closely a pair of words are associated, e.g., the 
number of times the pair co-occurs in a sentence. Ohsawa 
et al. [43] defined the strength of association A  between a 
pair of words, w1 and w2 , using the formula

D is a set of sentences in the document, |wi|s represents the 
number of times wi occurs in sentence s, and similarly for 
|wj|s . min(x, y) = x if x ≤ y; otherwise y . A  was meant to 
ignore weakly connected pairs.

Figure 2 shows a word graph consisting of five nodes, 
each corresponding to a word, and a link between nodes, 
indicating that corresponding words occur together in some 
of the sentences in D. The width of a link indicates the 
strength of association as given by Eq. 14.

The approach further divides a word graph into a set 
of subgraphs which the authors claimed to correspond to 
distinct topics the writer may have had in mind when pen-
ning the document. Figure 3 gives some idea of what they 
are like. Each node (or vertex) represents a word, with an 
edge (solid line) signaling the presence of a co-occurrence 
relation between words, indicating  that there are sen-
tences in which they appear together. A subgraph is a set 
of nodes (words) where every member of the set is linked 
to every other. Ohsawa et al. [43] assume that a keyword 

(13)� �(w) = �2(w) −max
g∈G

(f �(w, g) − f (w)p(⋅, g))2

f (w)p(⋅, g)
.

(14)A(wi,wj) =
∑

s∈D

min(|wi|s, |wj|s).

is a word that participates in multiple subgraphs,  such 
as words denoted by  k1 and k2 in Fig. 3. The following is a 
formal definition of the importance of word w that encap-
sulates the idea:

where

and

g stands for a subgraph in document D. G = {g1, g2,… , gm} . 
Note that

B(w, g) indicates how many times w co-occurred with a 
member of a subgraph g. N(g) is a normalizing factor. Intui-
tively, I(w) says that the greater the number of subgraphs is 
that contain w, the more important it will be, a proposition 

(15)I(w) = 1 −
∏

g∈G

(
1 −

B(w, g)

N(g)

)
,

B(w, g) =
∑

s∈D

|w|s ⋅ |g − w|s,

N(g) =
∑

s∈D

∑

w∈s

|w|s ⋅ |g − w|s,

(16)|g − w|s =
{

|g|s − |w|s if w ∈ g

|g|s otherwise.

|g|s = |{w ∣ w ∈ g} ∩ {w ∣ w ∈ s}|.

Table 1   Performance of � ′ vs. baselines

TF � ′ TFIDF Keygraph

Precision 0.53 0.51 0.55 0.42
Recall 0.48 0.62 0.61 0.44

w4

w1

w2

w3 w5

Fig. 2    A word graph

g2

g1

g3

k1

k2

Fig. 3   Subgraphs
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which could be interpreted as saying that important words 
are those whose occurrence is widespread across the docu-
ment. According to Ohsawa et al. [43], the approach per-
formed on par with TFIDF in document retrieval.

We conclude the section by pointing out that the past 
approaches to term indexing share a particular view about its 
nature [27]: an indexing term is something that resides in a 
document, occurs frequently across documents, and exhibits 
a distinct distributional pattern. Term weighting schemes 
proposed in the Automatic Indexing literature all reflect this 
principle one way or another.

Computational Linguistics

Justeson and Katz [26] were the first attempt to look into 
linguistic properties of technical terms. They examined 
the terminology used in technical dictionaries from vari-
ous domains, including fiber optics, physics and mathemat-
ics, medicine, and psychology. The study concluded that 
noun phrases accounted for 92.5–99% of the technical terms 
found, with about 70% of them having more than one word; 
there were a few cases where they accompanied adjec-
tives and to a lesser degree, prepositions; but there was no 
instance which involved verbs. Table 2 summaries their find-
ings. Most of the terms are made up of two words with an 
exception of medical terms (for which the authors attempted 
a linguistic explanation).

Not surprisingly, the authors were more into develop-
ing linguistics of keywords than engineering a solution, 
as is manifest in questions they asked, such as ‘Why do 
technical terms resist the use of conjunctions, preposi-
tions, and adverbs?’ Their answer to that was that tech-
nical terms take shape under two opposing linguistic 
forces, one that pushes them to become shorter and the 
other pulling them towards more transparency. Because 
none of the excluded types (terms which include verbs, 
conjuncts, and prepositions) are able to accommo-
date the demand of either of the two forces, they are 
disfavored.

The authors further suggested the following two tests to 
identify technical terms: (1) whether a term is two word 

long; and (2) whether it matches a regular expression of 
the form:

‘A’ denotes an adjective, ‘P’ a preposition, and ‘N’ a noun. 
For details on linguistics notions, refer to Manning and 
Schütze [31].

Daille et al. [15] generally echoed what was found in 
Justeson and Katz [26], though they argued that techni-
cal terms were something built out of basic multi-word 
units (MWU) via compositional operations, and went on 
to say that a complex multi-word term such as geostation-
ary communication satellite was the result of combining 
two MWUs, geostationary satellite and communication 
satellite. Salton [53] took a step further, suggesting that 
we should include discontiguous terms, i.e., those made 
up of elements separated by some intervening words, such 
as ‘building dictionary’ from ‘a building of a  dictionary.’

Park et al. [45] took on the issue from a somewhat differ-
ent angle. Their primary interest was in glossary extraction, 
where a main goal was to locate and extract terms related 
to a specific domain. What made their work different was 
a set of syntactic patterns they used to identify candidate 
terms, examples of which are shown in Table 3. Of a par-
ticular interest is the use of conjuncts (i.e., and, or in ACAN, 
AACAN and ACAAN)    which Justeson and Katz [26] 
explicitly argued against. The motivation for using a particu-
lar set of syntactic patterns primarily came from their need 
to work for a specific domain. To improve a sensitivity to 
the domain, the authors further proposed a scoring function 
that favored those of high relevance to a specific domain.

Another interesting idea came from Barker and Cor-
nacchia [4], who promoted a notion of ‘head-driven key-
word extraction.’ The idea was to define keywords as NPs 

(17)((A|N) + |((A|N)NP)?)(A|N) ∗)N,

Table 2   Frequencies of terminological terms (Table 1 in Justeson and 
Katz [26])

Term length (in words)

domain 1-gram 2-gram 3-gram 4-gram
fiber optics 43 109 36 12
medicine 88 80 22 10
physics & math 41 125 29 5
psychology 64 120 12 4

Table 3   Potential glossary items (Table 1 in Park et al. [45])

syntactic Pattern Example

AN Genuine part
NN Sport utilities
AAN Heavy commercial use
ANN Rear wiper blade
NNN Emission control system
AANN Other qualified service technician
ACAN Unpaved or dusty roads
ANNN Automatic transmission fluid level
NNNN Engine oil fluid level
AANNN New personalized oil reset percentage
AACAN Certain frontal or near-frontal collision
ACAAN Ambient and wide open trouble
NNNNN Steering wheel fan speed control
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(noun phrases) containing most frequent heads. The authors 
reported a modest improvement over baselines. The work 
deserves mention because of their unique effort to relate a 
syntactic theory (then current) to keyword extraction.3

New Perspectives

PageRank Inspired Approaches

Mihalcea and Tarau [40], on the heels of the success of Pag-
eRank, set off on a project they called TextRank. They were 
interested in finding a way to exploit PageRank in their effort 
to find keywords in the text. In their adaptation of PageRank, 
a text is broken into a set of nodes, and edges, with nodes 
representing words and edges connections among them. The 
importance of a word is given by the following formula:

i, j, k are all words. A(i) represents a set of words that appear 
in the proximity of i. w(j, i) represents the strength of the 
bond between j and i based on their co-occurrence. d is what 
is known as a damping factor.

Imagine that you are at word i, thinking about whether to 
jump to somewhere else in the text. The equation describes 
the probability of moving to some other word, which is given 
as the sum of the probability of jumping to some random 
word and that of moving to some popular word. Intuitively, 
TextRank reflects an idea that a word you are looking at is 
important if you see important words around it. TextRank 
could also be viewed as a modern-day reincarnation of 
graph-based approaches discussed earlier [36, 43]. Recall 

(18)S(i) = (1 − d) +
�

j∈A(i)

w(j, i)
∑

k∈A(j) w(j, k)
S(j).

that they defined the importance of a word by how often 
it co-occurs with surrounding words. The only difference 
is that TextRank takes into account weights of contextual 
(surrounding) words, which the latter do not.

There is, however, one area where TextRank completely 
breaks ranks with the conventional widsom. Kageura and 
Umino [27] argued that the frequency of a term is an impor-
tant component of an index term. The past work in Auto-
matic Term Indexing tends to agree that a word that occurs 
frequently often works as an index term. The fact that Tex-
tRank has no way of accessing the word frequency implies 
that words TextRank favors do not necessarily coincide with 
those that the traditional indexing would find important.

Hasan and Ng [23] conducted a series of experiments in 
an effort to find whether TextRank, along with other like-
minded approaches such as SingleRank and ExpandRank 
[62],4 has any advantage over TFIDF.5 (See Table 4 for some 
details on the datasets they used.6)

Table 5 shows results. What is striking is that graph-
based approaches failed to perform at a level comparable to 
TFIDF, a finding which took Hasan and Ng [23] by surprise. 
However, we view it as an inevitable consequence of not 
paying attention to the term frequency and in particular the 
length of a candidate phrase (we demonstrate that this is the 
case later in the paper). In this light, Matsuo and Ishizuka 
[36] and Ohsawa et al. [43], both graph-based, may have 
worked better if Hasan and Ng had tried them,  as they have 
a means to access frequency information.

Table 4   Details of the corpora 
(Table 1 in Hasan and Ng [23])

datasets

duc inspect nus icsi

Type news News Technical abstracts Technical papers Meeting 
tran-
scripts

# Documents 308 500 211 161
# Words document 876 134 8291 1611
Avg. len. keywords 2.1 2.3 2.1 1.3

3  As a side note, there is another version of the approach recently 
explored by You et  al. [66], which finds candidates via a two-stage 
process: locate frequent words in the document, and add neighboring 
words until we hit either a phrase boundary or a word which has the 
frequency below some threshold.

4  Wan et  al. [63] are an earlier attempt to explore the utility of an 
affinity (adjacency) matrix to keyword extraction, where the impor-
tance of word w is determined by how many words there are in a text 
that are similar to w, and how many sentences the text contains that 
are similar to ones that include w.
5  SingleRank is identical to TextRank except for some small differ-
ences in the way they acquire keyword candidates. ExpandRank is 
another derivative of TextRank, which builds up a word graph from 
multiple documents (in contrast to the latter which works with a sin-
gle document).
6  https://​github.​com/​LIAAD/​Keywo​rdExt​ractor-​Datas​ets.​git.

https://github.com/LIAAD/KeywordExtractor-Datasets.git
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Using External Knowledge

Using external information has been one of the popular top-
ics in keyword extraction. MAUI [37] is a keyword extractor 
which has an option to produce keywords from a custom 
vocabulary. It does this by replacing ngrams with matching 
descriptors in the vocabulary. One may view the process 
as a term normalization via external knowledge. Medelyan 
[37] reported that MAUI, when tested on three datasets, each 
with a different vocabulary, was able to recover about 40 
to 80% of human assigned keywords. The work went on to 
explore the use of Wikipedia as an external source, which 
eventually evolved into an approach that treats a Wikipedia 
title as a keyword. The author suggests the following for-
mula to find a title that matches a given word:

w represents a term we want to project into Wikipedia. C 
represents a context of w, a set of ngrams that co-occur with 
w in a given page. T denotes a Wikipedia title. P(T ∣ w) is 
the probability of seeing T given w. R(x, y) measures how 
closely x and y are related. The greater the value, the closer 
the association between x and y. The formula looks like the 
following:

x and y are ngrams, X (or Y) a set of incoming links to a page 
to which x (or y) is mapped, and |X| its size. N is the total 
number of articles in Wikipedia. Clearly, R(x, y) = R(y, x) . 
We may interpret Eq. 19 as saying: if you have an ngram w 
which relates to multiple Wikipedia pages, pick one which 
is contextually relevant to w and moreover which occurs 
frequently with w. For example, apple could mean a number 
of things; an edible fruit, a place, an American computer 
company. Equation 19 is intended to disambiguate a term 
based on a context in which it occurs and on how frequently 
each of the associated senses is used. Thus, if it is found 
with words like orange, banana, juice, and mango, it is more 

(19)S(w,T) = P(T ∣ w)

∑
c∈C R(T , c)

�C� .

(20)R(x, y) = 1 −
log(max(|X|, |Y|)) − log(|X ∩ Y|)

log(N) − log(min(|X|, |Y|)) .

likely to be mapped into a page representing an apple as an 
edible fruit.7

It is worth noting that MAUI draws upon a technique 
known as wikification [39]. Wikification is yet another key-
word extraction method, which leverages Wikipedia to iden-
tify potential keywords. To test if a given word is a keyword, 
it goes to Wikipedia to see if it is used as an anchor. If it is, 
then the word will be stored in a set of candidates before 
they are scored according to a metric it calls keywordness, a 
measure indicating how likely a particular word occurs as an 
anchor in Wikipedia. The more frequently a word appears as 
an anchor, the higher it is ranked as a keyword. One draw-
back is that a newly minted word or a word that entered 
the public conversation recently is likely to be undervalued, 
because it has little presence in Wikipedia. This means that 
to avoid a failure, MAUI needs to keep ‘knowledge-lean’ 
methods like �2 , or TFIDF as a backup.8

Classificatory Keyword Extraction

Classificatory keyword extraction (CKE) represents a class 
of approaches that work by scanning contiguous spans of 
a text for keyword, where we visit each word, determining 
whether or not to include it in a pool of potential keywords. 
Much of the past and present work, supervised or unsuper-
vised, falls under this category.

In their short paper published in 2018 for AAAI, Florescu 
and Jin [20] introduced an approach based on a random 
walk. Like Ohsawa et al. [43], Matsuo and Ishizuka [36], 
and Mihalcea and Tarau [40], it treated a text as a network 
of words, with the strength of an association represented by 
how often they occur together. A major difference between 
Florescu and Jin [20] and what preceded them lies in their 
use of latent representations acquired from random walks 
[46] to determine the strength of connections. The authors 
reported an improvement over past methods that relied on a 
word-based representation.

Zhang et al. [1] conceived an approach which combined 
CRF (Conditional Random Fields) [28] with deep learning 
machinery (CRF/DL, hereafter). They optimized the model 
along dual targets. One, given in an IOB format (‘inside-
outside-begin’), specifies where a keyword begins and 
ends. The other indicates whether a particular token is part 
of a keyword, in a binary format. The idea resulted in a 

Table 5   Performance of TextRank and its variants (Table 2 in Hasan 
and Ng [23])

F1

duc inspect nus icsi

TextRank 9.7 33.0 3.2 2.7
SingleRank 25.6 35.3 3.8 4.4
ExpandRank 26.9 35.3 3.8 4.3
TFIDF 27.0 36.3 6.6 12.1

7  The idea of normalizing terms with Wikipedia can be extended 
beyond a word sense disambiguation to socially induced associations 
such as weapon → terrorism, covid-19 → lockdown, and gas emission 
→ global warming.
8  A keyword is not to be confused with a summary or an abstract 
which is essentially an abridgment of the associated document. 
Any discussion on topics in automatic text summarization such as 
ROUGE (Lin, 2004), therefore, is of little relevance here.
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performance better than R-CRF [64], a more faithful imple-
mentation of CRF in RNN (Recurrent Neural Networks).9 It 
was unfortunate that Zhang et al. [1], despite their focus on 
the tweet domain, did not consider problems particular to 
tweets, e.g., (in-group) abbreviations, slang words, and mis-
spellings, in contrast to Marujo et al. [35], who put these 
issues at the forefront.10

The idea of Wang et al. [60] centered around how to 
transfer a keyword model over to a domain for which there is 
no ground truth available. The authors pursued an extractive 
approach guided by what is generally known as ‘Generative 
Adversarial Networks’ or Jensen–Shannon GANs [21]. The 
idea was to move latent representations of data in an unan-
notated domain as close to those acquired from a domain 
for which we know the ground truth, as possible. The model 
was set up in a way reminiscent of the unsupervised mul-
tilingual translation, where multiple independent networks 
work together to achieve diverse objectives (reconstruction 
loss, IOB loss, discriminator loss, and the like). The work 
reported a substantial gain over strong baselines, which 
included a model similar to CRF/DL [33, 50, 68]. (Figs. 4 
and 5 give a high-level picture of how it works.)

Generative Keyword Extraction

While the external knowledge allows us to move beyond the 
confine of document, another possibility emerged recently 
thanks to advances in deep learning (DL), where the focus is 

more on generating keywords. If successful, it may deliver 
a one-shot solution to acquiring out-of-document and in-
document keywords, an issue that plagued the past research. 
This section introduces a line of work that embraced this 
particular strategy [12, 38, 67], while giving a cursory look 
at other DL-based approaches that are essentially extractive 
in nature [1, 60].11

We start with Meng et al. [38]. Assume that we have two 
RNNs (recurrent neural networks): one encodes the source 
text (Encoder) and the other generates keywords (Decoder). 
The input is transformed into hidden representations through 
the Encoder, which the Decoder takes over to construct 
an output. While decoding the output, a beam search is 
typically applied to select candidate keywords. An innova-
tion that Meng et al. [38] bring to the table is a particular 
objective (loss function) the authors proposed to train the 
network, namely

The notion of concordance is central to multiple criteria techniques

O O O O O O B I ES

input

labels

Fig. 4   Classificatory DL Extractor (CDL) maps each token in 
the input into a pre-defined label space, for instance one with 
{O, S,B, I,E} , where ‘S’ indicates a single-token keyword, ‘B’ a 
beginning of a multi-part keyword (MPK), ‘I’ an in-between ele-
ment and ‘E’ an end of an MPK. CDL builds a model in a way 

that maximizes a quantity S =
∑

i log p(�� ∣ ��) , where �� denotes 
t+, with t ∈ {O, S,B, I,E} , �� a natural language text. CDL typi-
cally makes use of an encoder/decoder architecture of the sort shown 
in Fig. 5

Word Embedding

Character Embedding

Position Embedding

Encoder

Decoder

label/token distribution

W

C

P

LSTM

LSTM

Fig. 5   A schematic view of an encoder/decoder neural (sequence to 
sequence) model. An encoder rolls out a sequence of a recurrent neu-
ral network (LSTM), each feeding on a composite representation of a 
token, and sends the result to a decoder which converts it to probabil-
ity distributions of labels/tokens, with the output built from labels/
tokens with highest probabilities 

10  The way Marujo et  al. [35] addressed the issue was to leverage 
Brown clustering (BC) [9], which enabled them to normalize corrupt 
spellings such as Joooohn yesssss, Jonras of music, or coooooollll, 
the likes of which abound in tweets. Brown clustering is a form of 
clustering that builds a clustering bottom–up, merging at each step 
clusters in a way that would maximize mutual information (MI). To 
normalize word Joooohn involves finding a cluster that when com-
bined with the word, gives a maximum MI. BC has an important side 
effect of reducing vocabulary. Marujo et  al. [35] found that MAUI, 
when trained on a BC-induced representation, saw an improvement 
by 25 percentage points over the default model (which does not apply 
normalization).

11  We mean by ‘extractive’ a class of approaches that aim at spotting 
interesting words within a text, and by ‘classificatory’ those that find 
keywords by classifying the text.

9  Except for their focus on scientific articles, the difference between 
Yao et al. [64] and Zhang et al. [1] is mostly cosmetic from a techni-
cal point of view, and does not represent a significant departure from 
the previous work. A more recent effort in DL to adopt CRF can be 
found in Alzaidy et al. [3].
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x is an input text. ps(yt ∣ ⋯) denotes the probability that 
a token yt is generated using the general vocabulary and 
pc(yt ∣ ⋯) the probability that yt is generated using the 
vocabulary from the input text. L  adds a functionality to 
the network to be able to reuse part of the input as it creates 
a keyword. This feature is critical for keyword extraction, 
because without it, it would be impossible to extract ele-
ments from the source. Equally important, it provides the 
model with the capability to build out-of-document key-
words (via ps ). It implicitly replicates what MAUI achieved 
through Wikipedia and a set of mapping rules. Yuan et al. 
[67] extended Meng et al. [38] by adding a capability to 
output multiple keywords simultaneously.12 In addition, they 
introduced a learnable switch which allowed them to decide 
whether to use ps or pc during the generation. By contrast, 
Meng et al. [38] had no control over which one to emit as 
they relied on the combined probability, ps + pc.

Chen et al. [12] share with Yuan et al. [67] a goal of gen-
erating multiple keywords in one fell sweep, but depart from 
the latter in their emphasis on the diversity, which the former 
realized using what they called a coverage mechanism (CM), 
an idea originally from machine translation [56]. CM works 
as a sort of a ledger to keep a record of how much atten-
tion was given to tokens during the encoding. The authors 
reported that it had successfully prevented a repetitive gen-
eration of tokens. Yuan et al. [67], pursuing a somewhat 
different line while aiming for the same objective, proposed 
a loss function called orthogonal regularization (OR) [6]

H = ⟨hd
1
,… , hd

n
⟩ , where hi is a hidden representation (a 

d-dimensional vector) used to derive the i-th keyword. || ⋅ ||F 
is a squared Frobenius norm. n is the number of keywords. 
Minimizing LOR has the effect of increasing the diversity 
among hd

1
,… , hd

n
 , resulting in keywords that vary in form 

and meaning.

(21)

L = − log

(
ps(yt ∣ y1 … yt−1, x) + pc(yt ∣ y1 … yt−1, x)

)
.

(22)LOR = ‖‖H⊤H‖‖
2

F
.

Being able to generate keywords on the fly is a double-
edged sword: while it allows you to ‘concoct’ a new word, 
it may get you inadvertently assigning keywords that are not 
remotely relevant to what a text is about (for instance, one 
might end up with a keyword like ‘bible concordance’ from 
the input given in Fig. 6), a problem that rarely affects the 
classificatory regime.

Keyword Extraction as Text Classification

Text classification (TC) provides another interesting angle 
from which to look at keyword extraction. One uses TC 
mostly to associate a document with labels from some pre-
defined vocabulary. TC has a long history of research going 
back many decades, with much of the current effort happen-
ing within the realm of DL [14, 29, 61]. While TC is con-
fined to a fixed set of topics, we can turn it into a keyword 
extractor by enlarging the vocabulary it covers.

A most typical setup to use DL for TC is shown in Fig. 7 
[14, 61]. We start with some word embeddings, possibly 
along with character-level embeddings. We work through 
convolutional layers (which could be many), and arrive at 

The notion of concordance is central to multiple criteria techniquesinput

label multiple criteria analysis

Fig. 6   Generative DL Extractor (GDL) takes as input an entire 
sequence of tokens and generates a keyword, using a training vocab-
ulary, which may or may not appear in the source sequence. The 
learning proceeds in a way similar to CDL, with an aim to maximize 

S =
∑

i log p(�� ∣ ��) , where �� denotes w+ ( w ∈ V ), �� a natural lan-
guage text. V represents a vocabulary (a set of words) derived from 
training data. Note �� ∈ V+ . GDL typically uses the same architec-
ture as CDL (see Fig. 5)

Fig. 7   A typical setup to use DL as a text classifier. We project the 
output of an embedding layer into a softmax layer via a convolutional 
neural network (CNN), and get a probability distribution of potential 
categories. The input will be labeled with one or more terms with the 
highest probability

12  It represents quite a departure from Meng et al. [38] which cannot 
handle more than one keyword at a time.
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a condensed representation, which we use to label the text 
(via a softmax layer). Lee et al. [29] pursued an alternative 
strategy which made use of LSTM, a recurrent neural net-
work (RNN), in place of CNN, allowing them to incorporate 
temporal information (Fig. 8). Yin et al. [65], wondering 
about which approach works better, conducted experiments 
on various classification tasks ranging from sentiment to 
relation to entailment classification. They found no signifi-
cant differences in performance between RNN and CNN.

Yet, some people expressed a concern over applying TC 
to keyword extraction, worried that the number of categories 
it had been tested on in the literature was very small (some-
where around 4–10 [14]). There is no work so far, to our 
knowledge, that addressed the concern. Its ultimate success 
may hinge on whether it can be extended to work for a large 
number of categories.

Working with Textual Cues

An observation that a keyword rarely contains a stop word 
led Rose et  al. [49] to a development of a widely used 
method known as RAKE.13 It extracts keywords by dividing 
a text into a set of contagious word sequences by stop words, 
and choosing those that occur most often. Consider a sen-
tence ‘a volcanic explosion killed at least 8 people.’ Assume 
that one has a list of stop words ‘an’, ‘killed’, ‘at’, ‘least’, 
‘8’, and ‘.’. Delimiting the sentence with them gives us

and by eliminating the separators, we get

arriving at terms ‘volcanic explosion’ and ‘people.’ While 
surprisingly simple, it was found to rival more sophisticated 
approaches like TextRank and Hulth [24].

In a similar vein, KPM or KP-miner [18]13 takes anything 
that occurs between stop words and punctuations as a key-
word candidate. A decision on which one to choose is made 
based on where it occurs in the text and how often it appears. 
Anything that appears beyond the initial 850-word block of 
the document and/or those that occur less than three times 
are discarded. The importance of a candidate is measured 
by a version of TFIDF, which takes into account additional 
textual features such as location, and the within-document 
frequency of candidates.

YAKE [10, 11]13 is an outlier among unsupervised sys-
tems (which include RAKE and KPM) due to its treatment 

(23)
∥ an ∥∥ volcanic explosion ∥∥ killed ∥∥ at ∥

∥ least ∥∥ 8 ∥∥ people ∥∥ . ∥,

‖ an ‖ ‖ volcanic explosion ‖ ‖ killed ‖ ‖ at ‖ ‖ least ‖ ‖ 8 ‖ ‖ people ‖ ‖ . ‖
(24)

of the context. The approach is motivated by an intuition 
that any word that appears in company of many different 
words is essentially a function word, and thus should be dis-
carded. The claim is an interesting one, because it attempts 
to identify keywords not by how important they are, but by 
how insignificant they are. They proposed the following to 
measure the insignificance of a word:

where x is a word. R(x) indicates how many unique tokens 
are found in company with x, P(x) the position of x’s first 
occurrence. C(x) records how many times x occurs with its 
initial letter capitalized or appears as an acronym. F(x) rep-
resents the frequency of x and D(x) the number of sentences 
in which x appeared. The lower the value of S(x), the better. 
The insignificance of a keyword K (which may involve more 
than one word) is given as

where K = x1x2 ⋯ xn.

(25)S(x) =
R(x)P(x)

C(x) +
F(x)

R(x)
+

D(x)

R(x)

,

(26)S(K) =
∏

x∈K

S(x),

Fig. 8   An alternative design (of a kind pursued by Lee et al. [29])

13  https://​github.​com/​boudi​nfl/​pke.​git.

https://github.com/boudinfl/pke.git
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Going Bayesian: LDA

LDA or Latent Dirichlet Allocation [5]14 is another favorite 
method people turn to. LDA builds a language model, operat-
ing on the premise that there is an implicit set of topics that 
dictate the distribution of words we observe in a document. 
In LDA, a topic is not a single summary term that describes 
some aspect of the document, but rather something that rep-
resents a probability distribution that spans the entire vocabu-
lary. Words (normally, uni-grams) that occur frequently with 
a topic are given higher probabilities. In LDA, a topic takes 
a form like: z1 = {opera, lyrics, hip-hop, jazz, ambient, ...} 
or z2 = {market, fed, slump, recession, exchange, ...}, each 
spanning the entire vocabulary, with associated probabilities 
(suppressed here). You may interpret them as you please. How 
to make sense of z1 or z2 is entirely left to the user.

In LDA, every word in the document is assigned to some 
topic:

After a longz8 tiringz56
 weekz83

 , Housez43 Democratsz43 
decidedz20

 to movez12 forwardz34
 with a requestz0 for the 

two articlesz78 of the impeachmentz40 against the Presi-
dentz43 .

Here, zi is a topic index. One can have as many or as few 
topics as he or she wants. There are basically two ways to 
turn LDA into a keyword extractor. (1) one is to simply 
take as keywords, words that are most likely to occur under 
LDA; (2) the other is to select those associated with the most 
prominent topic. The worthiness of a word under the first 
approach can be given as

T is the number of topics that we assume cover documents. d 
denotes a document. � , � are parameters responsible for gen-
erating probability distributions that determine how likely 
w (word) and t (topic  index) occur, or more precisely, � 

(27)�
1(w) = p(w ∣ d, �, �) =

T∑

t=1

p(w ∣ t, �)p(t ∣ d, �),

represents a matrix of shape K × V with K = the size of topic 
indices and K = the size of the vocabulary.

The second approach can be written as

where K is a set of topic indices zi,… , zk.
Liu et al. [30] were the first in a line of research [25, 54, 

55] working on TopicalPageRank (TPR) to combine PageR-
ank and LDA. TPR takes a form almost identical to Eq. 27

where

g indicates how strongly words u and w are associated, A(w) 
a set of words that sit in the proximity of w (see Sect. 3.1 for 
further details). The authors reported the composite system 
performed competitively against LDA and PageRank.

Where Do They All Stand?: A Meta‑Analysis 
at Scale

In this section, we examine the effectiveness of approaches 
we discussed above, comparing them side by side on a large 
number of datasets. We also look at whether performance is 
affected by a degree to which keywords are indigenous to the 
text. Table 6 provides a sense of what they look like.15 The 

(28)�
2(w) = max

t∈K
p(w ∣ t, �),

(29)p(w ∣ d, �, �) =

T∑

t=1

R(w ∣ t, �)p(t ∣ d, �),

(30)

R(w ∣ t, �) =

�
�

u∈A(w)

g(u,w)
∑

k∈A(j) g(u, k)
R(u ∣ t, �)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
PAGERANK

+ (1 − �)p(w ∣ t, �)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
LDA WORD SIMPLEX

.

Table 6   ‘Native’ versus ‘foreign’ keywords in a PubMed article. ‘Native’ keywords are ones found in the text (like those marked with an under-
score), whereas ‘foreign’ keywords are those that are not. In the keywords  section, we find keywords supplied by humans for the abstract.

abstract The notion of concordance is central to many multiple criteria techniques relying on ordinal information, e.g., out-
ranking methods. It leads to compare alternatives by pairs on the basis of a comparison of coalitions of attributes 
in terms of importance. This paper proposes a characterization of the binary relations that can be obtained using 
such comparisons within a general framework for conjoint measurement that allows for intransitive preferences. 
We show that such relations are mainly characterized by the very rough differentiation of preference differences 
that they induce on each attribute.

keywords ‘concordance’, ‘outranking methods’, ‘conjoint measurement’, ‘multiple criteria analysis’, ‘nontransitive preferences’
native ‘concordance’, ‘outranking methods’, ‘conjoint measurement’
foreign ‘multiple criteria analysis’, ‘nontransitive preferences’

14  https://​radim​rehur​ek.​com/​gensim/​models/​ldamo​del.​html.

15  Other than what we have in Table 6, native keywords include tech-
nical and indexing terms (Sect. 2.1) and foreign keywords, annotation 
tags used in the news media (‘business,’ ‘politics,’ ‘world’), and cate-
gories in Wikipedia (‘Living People,’ ‘Nobel Peace Prize Laureates’).

https://radimrehurek.com/gensim/models/ldamodel.html
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indigeneity varies from one dataset to another. We want to 
know if or how it impacts keyword extraction.

A success of an extractive approach depends on how 
many of the target keywords come from inside, because 
if most of them are from outside, there is no way for it to 
be able to find them. We highlight the issue by introducing 
three measures: IDP (ratio of in-document keywords), ODP 
(ratio of out-of-document keywords), and RIO (ratio of IDP 
over ODP)

RIO indicates the extent to which a given corpus depends 
on keywords of an internal origin: the greater the value, the 
more likely a keyword is found within the text. We focus on 
how RIO interacts with systems that employ extraction as a 
primary means to acquire keywords.

Datasets

Part of the data came from the Guardian, the New York 
Times, PubMed Central, Reuters, Amazon, and [38]. The 

IDP =
# of keywords found in document

# of keywords humans assigned to document

ODP =
# of keywords not found in document

# of keywords humans assigned to document

RIO =IDP∕ODP.

Guardian contained 40,000 online stories from January to 
late September 2014. The New York Times (NYT), approxi-
mately the size of Guardian, contained stories from January 
to December 2011. PubMed Central was another corpus 
based on abstracts in various domains found in the PubMed 
Central Open Access repository.16Reuters was a news corpus 
containing online articles that appeared on Reuters’ website 
from 2011 to 2015. The Meng dataset came from Meng et al. 
[38], which was made up of papers in computer science. 
Amazon was part of what is generally known as ‘Amazon-
12K,’ a large corpus of product descriptions, each of which 
comes with categories or tags. In contrast to much of the 
previous work, which was based on documents numbered in 
the hundreds to thousands, we work here with considerably 
larger and more diverse datasets.

In addition, we made use of some 15 publicly available 
datasets, including 500N-KPCrowd [34], citeulike180 [37], 

Table 7   Datasets. train 
(and test) = the number of 
documents; d.len = the average 
length of documents in words; 
keys = the average number 
of keywords per document; 
k.len = the average length 
of keywords in words. sup 
indicates datasets that contain a 
training block. unsup indicates 
those that do not (used only for 
unsupervised systems).

dataset train test d.len keys k.len idp odp rio

sup Amazon 30,000 10,000 204.25 7.36 1.83 0.22 0.78 0.28
Guardian 20,000 10,000 791.15 7.37 1.72 0.44 0.56 0.79
Meng 530,809 20,000 147.75 5.37 1.93 0.51 0.49 1.04
NYT 29,986 10,000 750.85 4.41 2.46 0.50 0.50 1.00
PubMed Central 30,000 10,000 221.90 5.26 1.80 0.60 0.40 1.50
Reuters 14,956 10,000 672.00 10.56 1.72 0.70 0.30 2.33

unsup kdd – 755 74.08 5.19 1.75 0.47 0.53 0.89
Nguyen2007 – 209 5121.67 12.09 2.10 0.82 0.18 4.51
Schutz2008 – 1231 3550.98 46.25 1.50 0.87 0.13 6.45
fao780 – 779 4863.16 7.98 1.62 0.59 0.41 1.43
SemEval2010 - 243 8032.55 15.58 2.16 0.88 0.12 7.04
PubMed – 2000 4429.41 14.24 1.90 0.32 0.68 0.48
Inspec – 2000 124.36 14.11 2.22 0.59 0.41 1.44
500N-KPCrowd – 500 393.91 49.23 1.39 0.84 0.16 5.19
Krapivin2009 – 2304 7855.62 5.36 2.05 0.81 0.19 4.22
wiki20 – 20 6018.35 35.50 1.96 0.46 0.54 0.84
fao30 – 30 4792.70 32.23 1.62 0.57 0.43 1.31
SemEval2017 – 493 168.92 17.30 2.89 0.98 0.02 45.11
citeulike180 – 183 4597.80 17.42 1.26 0.64 0.36 1.81
www – 1330 82.04 5.19 1.83 0.38 0.62 0.61
theses100 – 100 4677.57 6.67 1.96 0.45 0.55 0.81

16  We bulk-downloaded data from ftp://​ftp.​ncbi.​nlm.​nih.​gov/​pub/​
pmc/​oa_​bulk/. We retained only keywords, abstracts, and DOI 
descriptors.

ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/
ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/
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Nguyen2007 [42].17 Table 7 provides a statistical profile of 
each of the corpora we used for this study.18

Methods

In addition to TextRank (TEXTR) (Sect. 3.1), KP-miner 
(KPM) (Sect. 3.6), YAKE (Sect. 3.6), TopicalPageRank 
(TPR) (Sect. 3.7), and RAKE (Sect. 3.6), we also conducted 
tests for TFIDF, MAUI and ONMT-k. MAUI and ONMT-k 
were supervised systems.

A particular version of TFIDF19 we used here extracts from 
a document, n-grams with the length up to n, which do not con-
tain punctuations, and scores them based on the TFIDF metric: 
TF multiplied by IDF, where TF is the term frequency and IDF 
is defined as log(n∕df) , with df representing the document fre-
quency, the number of documents in which a term appears, and 
n, the number of documents. TFIDF favors words that occur 
frequently in a small number of documents.

MAUI [37] goes through two phases to acquire keywords: 
candidate acquisition and ranking. In the acquisition phase, 
it focuses on collecting and normalizing n-grams of up to a 
given length. It has an option to use a controlled vocabulary. 
If enabled, it will work with entries in a pre-defined vocabu-
lary in place of words found in a document. In the ranking 
phase, it activates features related to the text statistics, such 

as TFIDF, how much of the text a word covers, the location, 
and keywordness, to determine how good each candidate is. 
MAUI is trained with bagged decision trees [8].20

ONMT-k [67] is a deep learning algorithm equipped to 
create keywords not just from words within the document 
but also words from a general vocabulary found in the train-
ing data. It has the ability to generate a novel phrase which 
neither appeared in documents nor in gold standard labels.21

Table 8 summarizes major differences and similarities 
among the approaches discussed above.

Results

Table 9 shows results in F1@k averaged over test docu-
ments. F1@k represents an F1 score determined on the basis 
of top k candidates the system returned [32]. In this experi-
ment, we set k to 5. Regardless of how many candidates 
were returned, we assumed that k candidates were always 
available: if we got less than 5, say, 3, we pretended that 
there were 5, with two of them being empty or zero-length 
keywords. We called a prediction correct only if it exactly 

Table 8   Candidate acquisition 
and weighting. ‘Contiguity’ 
indicates whether or not a 
model requires candidates to 
be contiguous. deg(w) = the 
number of times w occurs with 
other words in document d. 
freq(w) = the frequency of w 
in d.  

model contiguity candidate acquisition candidate weighting

RAKE + Anything between stop words deg(w)∕freq(w)

YAKE + n-grams Eq. 26
TFIDF + n-grams TFIDF
KPM + anything between punctuations and stop words 

with a minimal frequency of 3
TFIDF× boost × position

TEXTR + n-grams with no limit on the length Eq. 18
TPR + n-grams with no limit on the length Eq. 30
MAUI ± up to 3-grams, can use controlled vocabulary. Decision Tree
ONMT-k – variable length Eq. 31

17  https://​github.​com/​LIAAD/​Keywo​rdExt​ractor-​Datas​ets.​git.
18  There is a peculiar divide among the datasets, one between SUPs 
and UNSUPs. The former tend to have RIOs significantly lower than 
the latter. Some may argue that the former have in-text and out-of-
text keywords more in balance in comparison to the latter, which are 
skewed towards in-text keywords. This may get some people to ques-
tion the validity of the datasets, wondering  whether the latter data-
sets are natural. In this connection, Turney [57] makes an interesting 
observation. He reported that in-text keywords accounted for 73% in 
Journal of the International Academy of Hospital Research, 74.9% in 
Psycoloquy, 91.7% in The Neuroscientist, 78.8% in The Journal of 
Computer-Aided Molecular Design, and 87.4% in Behavioral & Brain 
Sciences Preprint Archive. The corresponding RIOs are: 2.70 (Hospi-
tal Research), 3.0 (Psycoloquy), 11.5 (Neuroscientist), 3.76 (Molec-
ular Design), and 6.64 (Brain Sciences), which show  that ‘naturally 
occurring’ datasets can also have high RIOs.
19  https://​github.​com/​boudi​nfl/​pke.​git.

20  Turney [57, 58] introduced an idea similar to MAUI (called 
GenEX, based on a genetic algorithm), 5 to 7 years prior to the lat-
ter’s appearance.  It used textual cues such as the location of a key-
word (whether it appeared early or late in the text), and its in-text 
frequency. GenEX returns a set of values which are used to score a 
candidate.
21  ONMT-k is a derivative of Gu et  al. [22], who proposed an idea 
of ‘copying mechanism,’ where the decoder is allowed to peek into 
the input to decide whether to reuse part of it as it generates an out-
put. An innovation of ONMT-k lies with the simple idea of training 
the model on a concatenation of ground truth keywords as a target, 
enabling the model to cope with keywords which come in varying 
numbers. ONMT-k measures the quality of an output (a sequence of 
keywords k1,… , kn ) by

w is a word token. pf (w ∣ x, �) is the probability of emitting w under 
model pf  (a neural network representing ONMT-k) with parameters �.

P(k1,… , kn ∣ x, �) =
∑

w∈k1,…,kn

log pf (w ∣ x, �). (31);

https://github.com/LIAAD/KeywordExtractor-Datasets.git
https://github.com/boudinfl/pke.git
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matched one of the associated answers. Word stemming was 
not performed apart from MAUI. All the tokens in the cor-
pora were uncased.

Found under UNSUP in Table 9 are a set of extractive 
systems which do not rely on supervision, and under SUP 
are ones that require it. For UNSUPs, F1 figures are based 
on their performance on the test sets, while those for SUPs 
are based on their performance on the same test sets after 
being trained on the training data.

Figure 9 shows a relationship between RIO and perfor-
mance. The x-axis represents RIO and the y-axis F1@5. A 
solid line in each panel denotes a regression line indicat-
ing how performance is affected by a change in RIO. One 

interesting pattern that we see in the figure is that systems 
on the left exhibit a behavior that consistently diverges from 
those on the right: the left group improves with RIO, but 
those on the right are not as responsive, with their perfor-
mance showing no sign of improvement as RIO increases.

Table 10 shows how many words the keywords returned 
by a given method contained on average. RAKE has as many 
as 9, followed by TEXTR and TPR whose outputs are on 
average 3.4 words long, all of which as we observed ear-
lier, deviated from the left group in Fig. 9, whose keywords 
averaged around 1 to 2 in length. The divergence in perfor-
mance is most likely caused by the difference in length of 
keywords that they returned.

Table 9   Performance in F1@5

class model Amazon Guardian Meng NYT PubMed C. Reuters

UNSUP RAKE 0.0008 0.0006 0.0202 0.0022 0.0067 0.0005
YAKE 0.0131 0.0747 0.0642 0.0848 0.0884 0.0462
TFIDF 0.0174 0.0510 0.0715 0.0353 0.0312 0.0290
KPM 0.0113 0.0636 0.0429 0.0443 0.0803 0.0449
TEXR 0.0083 0.0146 0.0570 0.0173 0.0452 0.0060
TPR 0.0053 0.0067 0.0684 0.0106 0.0610 0.0072

SUP MAUI 0.0330 0.2060 0.1034 0.1360 0.1771 0.1306
ONMT-k 0.3011 0.3661 0.1424 0.3012 0.1829 0.3406

RIO 0.28 0.79 1.04 1.00 1.50 2.33

class model kdd Nguyen Schutz fao780 SemEval10 PubMed

UNSUP RAKE 0.0385 0.0000 0.0000 0.0000 0.0000 0.0000
YAKE 0.0822 0.1129 0.1012 0.1180 0.0776 0.0400
TFIDF 0.0861 0.0794 0.1003 0.0856 0.0480 0.0375
KPM 0.0477 0.1319 0.0188 0.1135 0.0674 0.0494
TEXR 0.0345 0.0081 0.0030 0.0012 0.0018 0.0009
TPR 0.0705 0.0146 0.0068 0.0027 0.0081 0.0020

RIO 0.89 4.51 6.45 1.43 7.04 0.48

class model Inspec theses Krapivin wiki20 SemEval17 fao30

UNSUP RAKE 0.0975 0.0000 0.0000 0.0000 0.0727 0.0000
YAKE 0.0952 0.0976 0.0790 0.0642 0.0836 0.0772
TFIDF 0.0821 0.0591 0.0594 0.0488 0.0967 0.0601
KPM 0.0444 0.0860 0.1148 0.0574 0.0503 0.0600
TEXR 0.0919 0.0027 0.0023 0.0000 0.0872 0.0000
TPR 0.1738 0.0026 0.0080 0.0000 0.1660 0.0022

RIO 1.44 0.81 4.22 0.84 45.11 1.31

class model citeulike www KPCrowd

UNSUP RAKE 0.0000 0.0401 0.0179
YAKE 0.1427 0.0876 0.0704
TFIDF 0.1052 0.0927 0.1024
KPM 0.1388 0.0498 0.0687
TEXR 0.0030 0.0477 0.0279
TPR 0.0037 0.0758 0.0418

RIO 1.81 0.61 5.19
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Fig. 9   RIO vs. F1 in unsuper-
vised systems

Fig. 10   Impact of a shortening 
of keywords on TextRank and 
TopicalPageRank

Table 10   Average lengths of 
keywords

RAKE YAKE TFIDF KPM TEXTR TPR TEXTR_N2 TPR_N2 MAUI ONMT-k

9.0 1.5 1.2 1.2 3.4 3.4 1.9 1.9 1.4 2.0
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One simple way to see that this is the case is to look at 
what happens when TEXTR and TPR are forced to keep 
keywords less than 2 word long.22

The results are shown in Fig. 10. TEXR_N2 and TPR_N2 
are tweaked versions of respective methods (whose key-
words averaged around 1.9) (Table 10). This arrangement 
led to a visible improvement as seen in the figure, confirm-
ing that it is the average length of keywords that separates 
TEXTR and TPR from YAKE, TFIDF, and KPM.

Finally, we move to a question of whether RIO impacts 
supervised systems (SUPs) as well. The result is shown 
in Fig. 11. The effect is more pronounced in MAUI than 
in ONMT-k. This is something we would have expected 
because of the way MAUI identifies its candidates: it 
looks for n-grams of up to 3 words in length, just like 
TFIDF and KPM. ONMT-k is largely unresponsive to 
RIO, which again comes as no surprise, because it ‘gen-
erates’ rather than extracts keywords from the source 
document. It does not care how many of the keywords 
originate in a source document. It is interesting that key-
words ONMT-k generates are generally two word long 
(Table 10), indicating that the neural model implicitly 
learned how long they should be.

In this section, we broadly reviewed ideas that emerged 
over the years, with a reference to RIO. One important 
takeaway is that setting the length at around 2 is a critical 
part of making an UNSUP predictor a success. We showed 
that cutting the length of keywords from 3.4 to 2 improved 
performance of TextRank (TEXTR) and TopicalTextRank 

(TPR) (Fig. 10 and Table 10).23 Now, we know why RAKE 
will not and should not work as well as YAKE: keywords 
the former looks for average around 9, while those by the 
latter about 1.2–1.5.

Conclusion

In this work, we surveyed major ideas in keyword extraction 
that emerged over the last 50 years, from the early 1970s, 
when the field was mainly led by information retrieval, to 
the present day which sees an escalating dominance by deep 
learning. The experiment has brought to light strengths and 
weaknesses of the methods. The fact that TFIDF and KPM 
ranked higher among UNSUPs suggests that a weighting 
scheme based on some form of TFIDF is effective, which 
in turn vindicates Justeson and Katz [26], who argued that 
there were some specific conditions for terms to qualify 
as an indexing term. In addition, we saw that Justeson and 
Katz [26]’s prediction about the length of a term: that impor-
tant terms are generally two-word long, holds true across a 
wide range of datasets from science to business to media 
to bureaucracy, as well as for the corpora in Table 7 [23].24 
The evidence is so strong that some may consider giving 
it a status of ‘universal constant.’ We found through RIO 
that some of the underperforming approaches can be fixed 
by forcing them to shorten keywords they generate. Setting 
keywords at the right length is as important as other design 
choices such as a weighting scheme, an observation whose 
significance has been underappreciated in the past literature.

Taken together, this should point to what an ideal 
approach in the unsupervised regime should look like: it 
would seek n-grams that are at most two word long, and 
determine their importance according to a weighting scheme 
more or less like TFIDF, possibly together with linguistically 
and statistically motivated schemes like those employed by 
KPM. If one wants to go beyond that, it would be wise to 
move to the generative regime, as it offers a capability to 
build keywords from within as well as from outside.

In their 2010 paper, Hasan and Ng [23] puzzled over an 
unexpected failure of TextRank, the state of the art at the 

Fig. 11   F1 vs. RIO in supervised systems

22  RAKE was excluded here as there was no way to tweak it to 
accommodate the length restriction.

23  Another possible use scenario of RIO would be to use it as a 
device to estimate how likely one would succeed with an unsuper-
vised method (UNSUP) on a given dataset. If the value is low, one 
may be better off not to use it. From what we see in Figs. 9 and 10, 
it would not be a stretch to say that the dividing line lies somewhere 
around 1 (i.e., IDP and ODP are in balance): if RIO is above 1, there 
will be some chance that an UNSUP may work; otherwise, the use of 
SUPs is advised.
24  We found that the average length of keywords in 20 most com-
monly used datasets (https://​github.​com/​LIAAD/​Keywo​rdExt​ractor-​
Datas​ets.​git) was at 1.82, fairly close to what we found in Table 7.

https://github.com/LIAAD/KeywordExtractor-Datasets.git
https://github.com/LIAAD/KeywordExtractor-Datasets.git
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time, to perform on par with TFIDF.25 The results we saw 
from the previous section are consistent with their findings, 
suggesting that their failure was most likely caused by overly 
long keywords that it produced.

An interesting area of research that has yet to be explored 
is an exploration of conditions under which unsupervised 
methods work most effectively. Granted that they lag 
miles behind supervised systems in terms of accuracy, that 
would not diminish their value: they run faster, require 
less resources, and are easier to deploy and adapt to novel 
domains. We hope to see increased research activities in this 
important subfield in coming years.
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