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Abstract
We propose a method called path and action planning with orientation (PAPO) that efficiently generates collision-free paths 
to satisfy environmental constraints, such as restricted path width and node size, for the multi-agent pickup and delivery in 
non-uniform environment (N-MAPD) problem. The MAPD problem, wherein multiple agents repeatedly pick up and carry 
materials without collisions, has attracted considerable attention; however, conventional MAPD algorithms assume a specially 
designed environment and thus use simple, uniform models with few environmental constraints. Such conventional algo-
rithms cannot be applied to realistic applications where agents need to move in more complex and restricted environments. 
For example, the actions and orientations of agents are strictly restricted by the sizes of agents and carrying materials and 
the width of the passages at a construction site and a disaster area. In our N-MAPD formulation, which is an extension of 
the MAPD problem to apply to non-uniform environments with constraints, PAPO considers not only the path to the desti-
nation but also the agents’ direction, orientation, and timing of rotation. It is costly to consider all these factors, especially 
when the number of nodes is large. Our method can efficiently generate acceptable plans by exploring the search space via 
path planning, action planning, and conflict resolution in a phased manner. We experimentally evaluated the performance 
of PAPO by comparing it with our previous method, which is the preliminary version of PAPO, the baseline method in a 
centralized approach, and fundamental meta-heuristic algorithms. Finally, we demonstrate that PAPO can efficiently generate 
sub-optimal paths for N-MAPD instances.

Keywords  Multi-agent pickup and delivery problem · Multi-agent path finding · Multi-agent planning · Robot planning · 
Environmental constraints

Introduction

In recent years, multi-agent system (MAS) technology has 
exhibited remarkable promise for automating complex and 
enormous tasks in real-world applications using coordinated 
and cooperative actions and combinations of heterogene-
ous abilities and skills. For example, transport robots in 
automated warehouses (Wurman et al. [35]), autonomous 
aircraft-towing vehicles in airports (Morris et al. [22]), ride-
sharing services (Li et al. [15]; Yoshida et al. [40]), office 
robots (Veloso et al. [32]), and multiple-drone delivery sys-
tems (Krakowczyk et al. [12]). However, because of resource 
conflicts between agents, such as collisions and redundant 
actions by multiple agents, the simple increase in the number 
of agents often leads to inefficiency. Therefore, to improve 
performance and avoid negative mutual effects, coopera-
tive and/or coordinated actions are essential for actual use. 
Resolving conflicts between agents, i.e., collision avoidance, 
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is particularly essential in our envisioned pickup and deliv-
ery system with robots that carry heavy and large materials 
in a constrained environment.

Therefore, the corresponding problems are often for-
mulated as multi-agent pickup and delivery (MAPD) prob-
lems, where multiple carrying tasks are assigned to multiple 
agents with each task one after the other. Once an agent is 
assigned a task, it is required to travel to the material stor-
age area, load the required material, carry it to the speci-
fied location, and unload it. From a planning viewpoint, the 
MAPD problem can be regarded as an iteration of multi-
agent path finding (MAPF), wherein each agent generates a 
collision-free path from the starting to the ending location. 
Unfortunately, MAPF is regarded as a non-deterministic 
polynomial-time hardness (NP-hard) problem for generating 
optimal paths (Ma et al. [17]). Moreover, the MAPD prob-
lem is challenging and time-consuming because it requires a 
large number of carrying tasks. Nevertheless, it is necessary 
to efficiently create acceptable paths for the movement of 
multiple agents in the MAPD problem.

Several studies have focused on the MAPF/MAPD 
problem (Liu et al. [16]; Ma et al. [19]; Sharon et al. [26]). 
Although their proposed methods were applied to actual 
systems, they often assumed a specially designed environ-
ment with few constraints on agent operations. Most of these 
studies formulated the environments as grids without con-
sidering the different path widths, agent sizes, and material 
sizes. Therefore, agents can move without considering their 
rotation and moving direction. However, in our application, 
we have envisioned a transportation task in a construction 
site or a rescue-with-robot task in a disaster area. In con-
trast to the aforementioned studies, our environments are 
more complicated and have more constraints. For example, 
let us consider autonomous forklift-type carrier agents with 
a picker or rescue robots with an arm. In addition to the 
passages with various widths at a construction site, agents 
typically have to transport large materials that are wider than 
themselves. Therefore, an agent with a large material can 
only pass through a narrow path in a certain orientation, 
and in some places, an agent may not be able to rotate due 
to obstacles. This implies that each location and path may 
have their own constraints in their environment; thus, agents 
should generate different routes depending on whether they 
are transporting materials. Furthermore, at a construction 
site, the passage width and the topology can easily change; 
for example, a new wall is built which was not there the day 
before, or a pile of materials is placed as an obstacle in a 
passage and removed the next day. This indicates that learn-
ing methods that require a large amount of training data are 
not preferred.

In this study, first, we formulate the multi-agent pickup 
and delivery in non-uniform environment (N-MAPD) prob-
lem, an extension of the MAPD problem, to model the 

aforementioned complex situations. For example, in a con-
struction site, agents may be prohibited from actions in cer-
tain locations and passages due to constraints on their size 
and width. Therefore, the agents are required to consider 
their sizes (including the size of the materials if they carry). 
Instead, we assume that the agent can move in any direction 
(left, right, up, down) without changing its orientation. In 
such an environment, the agent needs to decide on a travel 
path that reflects collision avoidance and environmental con-
straints. For example, the simple shortest path without con-
sidering constraints may be inappropriate because if a part of 
the path is narrow, the agent with the material has to change 
its orientation before passing through to move sideways, but 
such additional rotate action may require additional time. We 
believe that N-MAPD formulation can also be exploited in 
other scenarios where physical constraints have to be consid-
ered, such as a multi-agent disaster rescue problem.

Considering this issue, we propose path and action plan-
ning with orientation (PAPO), which is an algorithm for 
solving an N-MAPD problem. It constructs collision-free 
paths and the associated sequence of actions in two phases: 
two-stage action planning (TSAP), wherein the agent builds 
several short paths to its destination and then generates the 
set of action sequences along each path, and conflict resolu-
tion with candidate action sequences (CRCAS), wherein the 
agent generates a conflict-free (so approved) action sequence 
by observing the previously approved plans of other agents 
in the synchronized block of information (SBI) to avoid con-
flicts. The PAPO algorithm considers not only the direc-
tion and timing of movement but also the orientation of 
the agent and the time required for each action (i.e., time 
cost) for solving an N-MAPD problem. Furthermore, our 
PAPO algorithm also considers sophisticated processes for 
resolving conflicts and satisfying environmental constraints, 
because agents have to make appropriate decisions to avoid 
conflicts, such as waiting (for synchronization), detouring, 
or changing the order of actions. PAPO can efficiently gen-
erate plans by exploring the search space for the N-MAPD 
problem via path planning, action planning, and conflict 
resolution in a phased manner. We have already reported 
the effectiveness of the preliminary version of PAPO (called 
preliminary PAPO) for the N-MAPD problem in our previ-
ous study (Yamauchi et al. [37]). However, in this study, we 
have further improved it using a more effective strategy for 
modifying plans.

Later, we experimented with the performance of the new 
PAPO by comparing its results with those of (a) a naive 
centralized method as a baseline method, (b) preliminary 
PAPO, (c) ant colony optimization (ACO), and (d) simulated 
annealing (SA) in a variety of N-MAPD experimental set-
tings. Experimental results indicate that PAPO can generate 
sub-optimal but sufficiently acceptable paths more efficiently 
compared to other methods. We also conducted experimental 
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evaluation with various parameter settings to understand the 
features of the proposed algorithm. Finally, we comprehen-
sively discuss with comparing the experimental results with 
the preliminary PAPO and the baseline method.

Related Work

The MAPF/MAPD problem has been studied from a vari-
ety of perspectives (Felner et al. [7]; Ma et al. [18]; Salz-
man and Stern [25]). Based on the coordinated and coop-
erative structures among agents, we can classify them as 
centralized and decentralized approaches. Examples of 
the centralized approach include the conflict-based search 
algorithm (CBS) (Sharon et al. [26]) of MAPF and its exten-
sions (Bellusci et al. [4]; Boyarski et al. [5]; Boyrasky et al. 
[6]; Zhang et al. [41]; Huang et al. [10]). CBS is a planning 
algorithm comprising two stages: low-level search, wherein 
agents individually determine their paths, and high-level 
search, wherein a centralized planner generates sequences 
of actions while checking for conflicts between agents and 
resolving them. The decentralized approaches include those 
that guarantee completeness under certain restrictions (Ma 
et al. [19]; Okumura et al. [23]; Wang and Rubenstein [33]; 
Wang and Botea [34]; Okumura et al. [24]). For example, 
Ma, Li, Kumar, and Koenig (Ma et al. [19]) proposed a well-
known decentralized MAPD algorithm called token passing 
(TP). Here, each agent can refer to the token, which is a 
synchronized shared memory block; it individually chooses 
a task that satisfies the certain conditions and generates col-
lision-free paths. However, these studies assume a simplified 
environment and ignore constraints, such as individual agent 
speed, path width, agent size, and duration of each action. 
As a result, real-world applications are limited.

Meanwhile, there are several studies that use the 
model including rotation, size, and movement speed of 
the agent (Barték et al. [3]; Ho et al. [8]; Hönig et al. [9]; 
Kou et al. [11]; Li et al. [13]; Ma et al. [20]; Machida [21]; 
Surynek. [29]; Yakovlev et  al. [36]). For instance, Ma 
et al. ([20]) proposed TP-safe interval path planning with 
reservation table (TP-SIPPwRT) to include the agent’s rota-
tion and movement direction into their model. However, this 
study assumed a custom-designed environment with normal-
ized/fixed path width and length. Therefore, its application 
in our target environment is not feasible. Although some 
studies in the area of trajectory planning have focused on 
kinematic constraints during planning (Alonso-Mora et al. 
[1]; Bareiss and van den Berg [2]; Li et al. [14]; Tang and 
Kumar [30]), our study differs in that it aims to efficiently 
complete the MAPD iterative task in tight and cluttered 
environments.

Certainly, conventional algorithms can be applied to our 
N-MAPD problem by adding orientations to agent states and 

considering environmental constraints. Since path planning 
using conventional algorithms requires a two-dimensional 
space comprising temporal and spatial dimensions, the 
search space for the N-MAPD problem becomes immense 
when the orientation dimensions related to various path 
widths and agent sizes are added. Therefore, if the optimal 
path must be found using naive search as in conventional 
algorithms, the computational cost increases in this three-
dimensional search space. To the best of our knowledge, 
no study exists on path planning with conflict resolution on 
discrete graphs under behavioral constraints due to the shape 
and size of agents, spaces, and materials being carried.

Background and Problem Formulation

We have extended the conventional MAPD problem and for-
mulated the N-MAPD problem by introducing path widths, 
material and agent sizes, and the required time for agent 
actions. To enhance the readability, we list a summary of 
notations in Tables 2 and 3 in Appendix A.

Problem Formulation for N‑MAPD

The N-MAPD problem represented by tuple ( A, T,G) , where 
A = {1,… ,M} is a set of M agents, T = {�1,… , �N} is a 
set of N tasks, and G = (V ,E) is an undirected connected 
graph that can be embedded in a two-dimensional Euclid-
ean space described by x- and y-coordinates. Node v ∈ V  
and edge (u, v) ∈ E ( u, v ∈ V  ) represent a location and path 
that an agent can travel between u and v in the environment, 
respectively. Lv and Wv are the length and width of the node 
v, respectively. Moreover, the edge (u, v) has width Wuv and 
distance dist(u, v) , which is defined as the length between 
the centers of u and v in the Euclidean space. Our agent 
is, for example, a forklift-type robot with a picker in front 
and can carry heavy material. We assume that a material 
(or a pile of materials) is on a rack base, and the agent can 
load it (pick it up) or unload it (put it down) at one of the 
specified nodes using its picker towards a particular direc-
tion. We introduce discrete-time t ∈ ℤ+ (where ℤ+ is the set 
of non-negative integers) and assume that certain durations 
are required for agent actions, such as wait action, move 
action toward a neighbor node, rotate action, and the load 
and unload actions of a material. Figure 2 indicates exam-
ples of our environments.

For agent i ∈ A , let us denote the (moving) direction 
dt
i
> 0 and the orientation ot

i
> 0 of i at time t, where 

0 ≤ dt
i
, ot

i
< 360 in D increments. For example, if we 

set D = 90 , there are four directions and orientations: 
dt
i
, ot

i
= 0, 90, 180, 270 . Although D can be any number 

depending on environmental features, for the sake of sim-
plicity, we assume D = 90 in this study. We set the north 
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orientation/direction in the environment G to 0, i.e., ot
i
= 0 

and dt
i
= 0 . Therefore, the set of possible orientations can be 

expressed by D = {0, 90, 180, 270} since D = 90 . We also 
express the size of agent i ∈ A by its width Wi and length (or 
depth) Li . Thereafter, the x-axis length wt

i
 and y-axis length 

lt
i
 of i at time t are obtained as follows:

The material that is requested to carry by task �k also has 
a size whose width and length are denoted by W�k

 and L�k , 
respectively. While i carries the material associated with �k , 
i’s size will change to

where the non-negative number � (� ≤ 1) is the ratio of the 
agent’s length to the length of its fork part. We have indi-
cated the size and orientation of agents with and without 
materials for � = 0.5 in Fig. 1.

Agents need to determine their action sequences for car-
rying materials while considering the constraints on the 
path width and node size configured in the environment, 
and agent size calculated using Formulae 1 and 2. Hence-
forth, the constraints defined in the environment, such as the 
width and size of routes, nodes, and agents, will be termed 
as environmental constraints.

Agents execute the following actions: rotate , move , load , 
unload , and wait . The durations of actions, rotate , move , 
load , unload , and wait are denoted by Tro(�) , Tmo(l) , Tld , Tul , 
and Twa(t) , respectively, where � ∈ ℤ+ is the rotation angle, 
l = dist(u, v) is the moving distance between nodes u and v, 
and t is the waiting time. For example, Tmo(1) = 10 when 
l = 1 . Suppose at time t, agent i ∈ A is on a node v ∈ V  ; 
then, agent i can move along edge (u, v) ∈ E to u with the 
move action without changing the orientation of ot

i
 if the 

edge is sufficiently wide. The rotate action makes i rotate D 
degrees clockwise (D) or counter-clockwise ( −D ) from ot

i
 , 

i.e., ot+Tro(D)
i

← ot
i
± D , staying at v, if the node size is suf-

ficient. A parking location parki ∈ V  , which is the starting 

(1)
wt
i
= ∣ Li sin o

t
i
∣ + ∣ Wi cos o

t
i
∣,

lt
i
= ∣ Wi sin o

t
i
∣ + ∣ Li cos o

t
i
∣ .

(2)
Wi ← max(Wi,W�k

),

Li ← max(Li, �Li + L�k ),

location at t = 0 , is uniquely allocated to each agent i (Liu 
et al. [16]). Agents may return to their parking locations 
unless they have a task to perform. In Fig. 2, parking loca-
tions are indicated by red squares.

We  s p e c i f y  t h e  t a s k  �j  by  t h e  t u p l e 
�j = (�ld

�j
, �ul

�j
,W�j

, L�j ,��j
) , where �ld

�j
= (vld

�j
, old

�j
) ( ∈ V ×D ) is 

the location and orientation of the loading material ��j
 , 

�ul
�j
= (vul

�j
, oul

�j
) ( ∈ V ×D ) is the location and orientation of 

the unloading ��j
 , and W�j

 and L�j are the width and length of 
��j

 , respectively. Considering the direction of the picker and 
the shape of the material, an agent needs to be oriented in a 
specific direction when loading and unloading the material. 
Agents have to complete all the tasks in T  with no collision 
and no violation of environmental constraints. Agent i 
returns to parki for recharging when it completes all tasks in 
T .

Well‑Formed N‑MAPD Problem Instance

Not all MAPD instances may be able to be solved. For exam-
ple, if the environment is not connected, agents cannot reach 
some nodes. Therefore, Ma et al. ([19]) introduced well-
formed MAPD problem instances.

An MAPD instance is well formed if and only if the fol-
lowing three conditions are satisfied: 

(1)	 The number of requested tasks T  is finite.
(2)	 Parking locations are different from all the pickup and 

delivery locations specified by tasks.
(3)	 At least one path exists between any two start/goal loca-

tions such that it does not traverse any other start/goal 
locations.

We modify condition (3) to reflect the environmental con-
straints in N-MAPD as follows:

(3′ ) At least one feasible path exists between any two 
start/goal locations such that it does not traverse any other 
start/goal locations. A “feasible” path implies that a solu-
tion for the MAPF instance would meet the environmen-
tal constraints.

Fig. 1   Definition of agent orientation and size (including the material being carried)
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Agents can return and stay at the parking locations for as 
long as they need at any time, in order to avoid conflicts 
(collisions) with other agents in the well-formed N-MAPD 
instances. With this return action, the number of agents in 
an excessively crowded environment can be reduced to miti-
gate congestion. As most real-world MAPD problems can 
be well-formed instances, including MAPD in a construc-
tion site, they belong to a realistic subclass of all MAPD 
instances. However, we need to discuss the condition ( 3′ ) of 
our N-MAPD below.

Proposed Method

PAPO, which is our proposed algorithm for N-MAPD 
instances, generates collision-free plans, i.e., sequences of 
actions to reach destinations without conflict in non-uniform 
environments. In PAPO, the agent detects and resolves con-
flicts by utilizing and maintaining a shared SBI. The SBI 
comprises two tables, a task execution status table (TEST) 
and a reservation table (RT) (Silver [27]). A TEST is a set 
whose elements are tuples (�, v, i) , wherein � is the task cur-
rently being executed by agent i and v is the node of the 
i’s destination, which is the loading or unloading location 
specified by � . Therefore, every time an agent with no task 
selects a task from the set of requested tasks, two tuples are 
stored in the TEST. The details of the TEST and the RT are 
explained later. The SBI is stored in centralized shared mem-
ory, and one agent can exclusively access this memory at a 
time, similar to a token in the TP method (Ma et al. [19]). 
Synchronized shared memory may become a bottleneck for 
performance, but we can assume that the movement of the 
robot is relatively slow; thus, the overhead time caused by 
mutual exclusion control can be ignored if the number of 
agents in an environment is not unrealistically high (e.g., 
less than 100 agents).

The PAPO algorithm comprises the following two phases. 
The first phase is TSAP, wherein the agent builds several 
short paths to its destination and then generates the set of 
action sequences along each path. Second, in the phase of 
CRCAS, the agent generates a conflict-free action sequence 
by observing the previously approved plans of other agents 
in the SBI to avoid conflicts.

TSAP

Agent i ∈ A constructs the first NK ∈ ℤ+ shortest path from 
its current location vi

s
 to its destination vi

d
 in the first stage 

of TSAP, where vi
d
 is typically the loading, unloading, or 

parking location, depending on the progress of the perform-
ing task. Here, we formally define a path as a finite node 
sequence r = {v0(= vi

s
), v1,…} where any pair of adjacent 

nodes has an edge (vj, vj+1) ∈ E . The distance of path r is 
given by

We use Yen’s algorithm (Yen [38]) with the Dijkstra method 
among several algorithms for generating the first NK shortest 
path. Notably, at this stage, agents only refer to the topologi-
cal structure of G = (V ,E) and do not consider environmen-
tal constraints.

In the second stage, i generates the first NP ∈ ℤ+ 
lowest-cost action sequences to move along the path 
∀rk ∈ {r1,… , rNK

} obtained in the first stage without violat-
ing environmental constraints. Here, cost implies the dura-
tion to complete the action sequences and thus wait action 
is not included. We elaborate on the second stage in detail 
here. First, to build the action sequences along the path rk , 
agent i generates the weighted state graph Gi = (Vi, Ei) (sub-
scripts are omitted below) from G for the path rk . Its nodes 
V ( ⊂ V ×D ) is the set of state nodes � = (v, o) ∈ V and its 
edges (�, �) ∈ E ( �, � ∈ V ) is called the transition edge cor-
responding to action, move or rotate , for the transition from � 
to � . We have also introduced the edge weight �(�, �) , which 
is the required duration of the corresponding action. We have 
denoted the search space by (�, t�) using the time t� when i 
will reach the state � , and then apply Yen’s algorithm using 
A∗ search to build the first NP lowest-cost action sequences. 
Furthermore, using distance l = dist(vi

d
, vi

s
) between vi

d
 and 

the current node vi
s
 and the difference � between the orienta-

tion required by vi
d
 and current orientation oi

s
 , we define the 

heuristic function h for A* search as

Expectedly, the heuristic function h is admissible, as the 
costs of actions and environmental constraints are not con-
sidered. Furthermore, since the final node vi

d
 is typically the 

loading or unloading node of the material, the required ori-
entation at vi

d
 is typically determined by the task of i. If vi

d
 

is the parking location, any orientation may be possible or 
restricted depending on the shape of the location.

In the second stage, agent i can prune several state nodes 
that violate the environmental constraints related to the size 
of the material being carried, path width, and its size. Sup-
pose that i, whose state is � = (v, o) at t1 , schedules a state 
transition to � = (u, o�) at t2 = t1 + �(�,�) by (�,�) . There-
after, if lt2

i
> Lu or wt2

i
> Wu is satisfied, � will be pruned 

because the constraint between the node and agent sizes is 
violated. Similarly, if Wuv <∣ l

t1
i
sin d

t1
i
∣ + ∣ w

t1
i
cos d

t1
i
∣ is 

satisfied by direction d and orientation o, then move , (�,�) 
(i.e., (u, v) ∈ E and o = o� ), is impossible; thus, � after � is 
also pruned. Finally, if (�,�) is rotate (i.e., v = u but o ≠ o′ ), 

r =

∣r∣∑

l=1

dist(vl−1, vl).

(3)h(l, �) = Tmo(l) + Tro(�).
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� may also be pruned, since the insufficient size of v, Lv 
and/or Wv , make the corresponding action impossible as 
a violation of the rotation constraint. We can identify this 
situation by comparing Lv and Wv with lt

i
 and wt

i
 between t1 

and t2 . For example, these values are maximum if the agent 
shape is square and the orientation of i is 45, 135, 225, or 
315 (Fig. 1).

After TSAP, the ordered set of at most NK ⋅ NP action 
sequences that are sorted in ascending order by total dura-
tion, Pi = {p1,… , pNK ⋅NP

} , is obtained. Expectedly, its first 
action sequence is the minimum cost plan and the best can-
didate. However, it might be selected due to conflicts with 
other plans. This kind of conflict is verified in the next phase, 
CRCAS. When the obtained plan pi is generated along a path 
rk , we denote this relationship as rk = r(pi).

CRCAS

The purpose of CRCAS is that, by accessing the SBI, agent 
i selects the plan at the first of Pi and attempts to detect 
conflicts between it and the already approved plans being 
executed by other agents. Thereafter, i modifies the plan to 
resolve the detected conflicts, replaces it with the modified 
one, and sorts Pi again. Note that the basic policy for our 
strategy of planning is not to modify the already executed 
plans. If no conflict is detected in the first element of Pi , it is 
the result of CRCAS. The reservation data associated with 
the selected plan is then added to the SBI’s RT and the plan 
is approved for execution. We have described the structure 
of the RT below.

Algorithm 1 Conflict resolution part of PAPO

1: // Pi is the list of the plan generated by TSAP(NK , NP ).
2: function CRCAS(Pi)
3: Cmax ← Maximal duration of the plan in Pi

4: while true do
5: if Pi = ∅ then return false // no plan is found.
6: end if
7: Pi is sorted by duration
8: p1 ← the first (shortest duration) plan in Pi

9: C1 ← duration of p1 // Shortest duration in Pi

10: c1 ← ( i, j [ts, te], v ) // The first conflict in p1 by comparing with
the entries in the RT.

11: if c1 = null then return p1 // Plan p1 will be executed.
12: end if
13: C ← all conflicts occurring at v // so c1 ∈ C
14: cf ← final element ( i, k , [ts, te], v ) in C after being sorted by the

occurrence order.
15: u ← ekv −siv +1 // where u is the wait length required to resolve cf .
16: if p1 includes wait at v then
17: C1 ← C1 − uv // where uv is the wait length of wait at v .
18: Action wait at v is removed from p1.
19: else
20: w(p1) ← 0 // w(p) may be defined for ∀p ∈ Pi.
21: end if
22: w(p1) ← max{w(p1), u}, umax ← w(p1), C1 ← C1 + umax

23: if C1 ≥ Cmax + β then // where β is the tolerance parameter.
24: Pi ← Pi \ {p1} // abandon p1
25: end if
26: wait(umax) is inserted in p1 before reaching v with the modification

strategy.
27: p1 in Pi is replaced with the modified p1.
28: end while
29: end function
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We define conflict as a situation where the same node v ∈ V  
is simultaneously occupied by multiple agents. If i starts move 
from v to the neighboring node u at time si

v
 , and the occupied 

intervals by i for v and u are denoted as [si
v
, ei

v
] and [si

u
, ei

u
] , we 

assume ei
v
= si

v
+ Tmo(dist(v, u))∕2 and si

u
= ei

v
 . In the same 

way, if i begins rotate , load, unload or wait , at time si
v
 on v, we 

can denote the occupied interval of the corresponding action 
by [si

v
, ei

v
= si

v
+ T∗] , wherein T∗ is the duration of the corre-

sponding action. Additionally, we add a fixed margin � ≥ 0 to 
these intervals for safety, as every agent has a physical size. 
For example, si

v
 and ei

v
 are changed using si

v
← si

v
− � and 

ei
v
← ei

v
+ � . Thereafter, i creates the following list related to 

the node occupancy from plan pk ∈ Pi,

where r(pk) = {v0, v1,… , vi
d
} is the sorted set. This list is 

called the occupancy list.
We define that a conflict occurs at node v when two 

occupied intervals for v by two agents i, j ∈ A have an 
intersection [ts, te] . This conflict is represented by tuple 
c = (⟨i, j⟩, [ts, te], v) . RT in the SBI stores the occupancy lists 
of the approved plans of other agents. The plan of agent i may 
cause a conflict with the plan of another agent k, approved at 
the same node v, but since the plans stored in the SBI have 
already been approved, the intersection indicating a conflict 
will only appear between the two agents. Therefore, for two 
conflicts c1 = (⟨i, j⟩, [t1

s
, t1
e
], v) and c2 = (⟨i, k⟩, [t2

s
, t2
e
], v) , they 

are always disjoint, i.e., [t1
s
, t1
e
] ∩ [t2

s
, t2
e
] = ∅.

RT is the set of (v, [si
v
, ei

v
], i) in the occupancy list gener-

ated from the approved plans and has not yet expired. There-
fore, the element is removed from RT when ei

v
< tc , where tc 

is the current time. Agent i stores all elements of the occu-
pancy list in RT when i’s plan p is approved.

The pseudocode in Algorithm 1 is the overall flow of the 
CRCAS algorithm. During the execution of this function, 
we assume that an agent has exclusive access to RT in the 
SBI. First, agent i calculates the occupancy list for the first 
element p1 in Pi generated by TSAP. Thereafter, according 
to the order of visiting nodes r(p1) = {v1, v2,… , } , i retrieves 
from RT a list whose first element is vl and attempts to 
detect conflicts by comparing these lists. If no conflicts are 
detected, i will register p1 , which is the result of CRCAS, as 
the approved plan into RT (Line 11). Let c = (⟨i, j⟩, [tc

s
, tc
e
], v�) 

be the first conflict that is detected at v′ in the visit order, 
where j is the agent with the approved plan that conflicts 
with p1 and [tc

s
, tc
e
] is the intersection of the time of staying at 

v′ for both agents i and j. We define the set of all conflicts at 
v′ as C since another conflict with another agent at v′ can also 
occur. Subsequently, i sorts C in order of occurrence time 
and sets the last element of C as cf  (Line 14). Later, i inserts 
wait into p1 using the strategy to modify plans as described 

((v0, [sv0 , ev0 ], i), (v1, [sv1 , ev1 ], i),… , (vi
d
, [svi

d
, evi

d
], i)),

next to ensure that i arrives at v′ after another agent k leaves 
v′ (Lines 15, 22, and 26), where ek

v′
 is the leaving time of k 

from v′ . Thus, i can avoid at least the detected conflicts.
However, the addition of wait may cause another con-

flict and therefore we have modified the preliminary 
PAPO (Yamauchi et al. [37]) to improve the overall effi-
ciency. If wait has already been inserted at v′ in p1 , i elimi-
nates it; otherwise, it initializes w(p1) = 0 , where w(p1) 
( = umax ) is the maximal length of wait required to resolve 
the conflicts in p1 . Thereafter, i adds wait(umax) because umax 
is the smaller but sufficient waiting length required to resolve 
cf  ; thus, i can prevent an unnecessarily long wait. However, 
with the addition of wait , p1 is abandoned if the duration 
of the modified plan is too large for the implementation 
(Lines 23 and 24). Note that � is the tolerance parameter for 
retaining the selected plan. Next, i sorts Pi again in ascend-
ing order by duration and repeats the same operation until 
the first element of Pi , p1 , contains no conflict.

This process will eventually stop; otherwise, if it contin-
ues forever, the duration of plan implementation becomes 
larger than Cmax + � , the plan is eliminated from Pi , and 
eventually, Pi will become empty. If Pi is empty, i.e., a col-
lision-free plan cannot be generated from the Pi using the 
parameters � , NK , and NP , then the function CRCAS returns 
a false value. In this case, agent i invokes CRCAS again 
with a relaxed condition, i.e., using Pi that is generated by 
increasing the values of � , NK , and NP.

Strategy to Modify Plan

Agent i has to determine where to insert wait(umax) before 
the node v′ , where the first conflict is detected in plan pi . Let 
r(pi) = {v0,… , vl(= v�),… , vn(= vi

d
)} denote the sequence of 

visiting node. Agent i can add wait(umax) just before leaving 
any node vk ( 0 ≤ ∀k ≤ l − 1 ) before vl . For example, it can 
be added to vl−1 , but another conflict may occur somewhere 
due to this modification. In particular, if a probability of a 
new conflict at vl−1 is expected, a further wait before vl−1 is 
needed to avoid it, resulting in a cascade of conflicts that 
leads to significant performance reduction. Furthermore, 
the required waiting time is likely to be longer because of 
the basic policy of CRCAS (not to modify already executed 
plans). Conversely, if i inserts wait(umax) when or before 
i leaves v0 , i can avoid conflicts without failure. This is 
because, according to the well-formed N-MAPD condition 
( 3′ ), other agents do not pass through node v0 , and the load-
ing and unloading nodes of the current task � are already 
stored in the TEST when i selects it in the task selection 
process described below. However, this strategy implies 
locking the actions of other agents for a while, which might 
reduce the entire performance. This issue may require fur-
ther discussion, but we have tentatively adopted the strategy 
of adding wait(umax) to vk , where k = max{l − 3, 0}.
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Algorithm 2 Task selection

1: function SelectTask(i) // Called from i ∈ A
2: T ← {τ ∈ T | vldτ and vudτ do not contain in the TEST in the current

SBI.}
3: // Note that τ = (νldτ , νulτ ,Wτ , Lτ , φτ ),
4: // νldτ = (vldτ , oldτ ) and νulτ = (vulτ , oulτ )
5: if T = ∅ then
6: τ∗ ← arg minτ∈T h(l, θ) // h: heuristic function (Formula 3)
7: T ← T \ τ∗; return τ∗

8: else return false
9: end if

10: end function

Algorithm 3 Path and action planning with orientation

1: function PAPO(i, vs, vd) // Called from i ∈ A
2: // vd: i’s destination and vs: i’s current location
3: while true do
4: Pi ← TSAP(NK , NP )
5: p ← CRCAS(Pi)
6: if p = false then return p
7: end if
8: (β,NK , NP ) ← RelaxParam(β,NK , NP )
9: end while

10: end function

Task Selection and Process of PAPO

Agent i returns to its parking location parki if T  is empty; 
otherwise, i performs the process for task selection. The out-
line of the task selection process in agent i is demonstrated 
in Algorithm 2. During this process, i has exclusive access 
to the TEST in the SBI. From condition ( 3′ ), i focuses only 
on task � = (�ld

�
, �ul

�
,W� , L� ,��) where loading node vld

�
 and 

unloading node vul
�

 do not contain in the TEST. Thereafter, 
i chooses the task �∗ with the smallest value of the heuristic 
function h(l, �) in the A∗-search (Formula 3), where l is the 
distance between the loading node vld

�
 and the current node 

vi
s
 ( l = dist(vld

�
, vi

s
) ). If there is no such task (Line 8), agent i 

returns to parki and remains there for a short while. Later, 
if another agent completes its task while i stays there, it is 
probable that i can select a task that meets condition ( 3′ ) and 
will leave parki.

Agent i calls the function PAPO to generate a collision-
free action sequence after selecting task �i . The pseudoc-
ode of PAPO is presented in Algorithm 3. Let us consider 

that vs is the current node and vd is the current destination, 
which is one of vld

�
 , vul

�
 , and parki , depending on the task 

progress. First, if i succeeds in generating plan p using the 
CRCAS and TSAP processes, i begins to move according 
to p and removes (�, vd, i) ∈ T × V × A from the TEST. If 
not, i invokes the relaxation function RelaxParam, which 
modifies the parameter values � , NK , and NP to relax the 
conditions for planning and then calls the planning process 
again. However, if i has already called RelaxParam sev-
eral times to relax the parameter values, the function PAPO 
gives up the execution of �i (i.e. �i is restored to T  ) and sets 
vd = parki to make i return to the parking location. This situ-
ation is likely to occur when the number of agents is very 
large compared to the current environment size.

There are several strategies to determine the initial val-
ues of � , NK , and NP and how we increment these values. 
Smaller values of � , NK , and NP may generate more effective 
plans but may fail in generating a plan. Therefore, initially, 
it is better to set these parameters to small values and then 
gradually increase them if the agent cannot generate a plan 
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without conflicts. Continuing to increase the parameter val-
ues results in the collision-free plan for i (i.e., completeness 
is guaranteed) since the constraints are gradually removed 
as the approved plan is executed by other agents and the 
occupancy list in the RT is expired over time. Of course, we 
also have to consider that the frequent increments of these 
parameter values will lead to inefficient planning.

Properties of PAPO

We analyze the properties of PAPO from the viewpoints of 
soundness, completeness, and complexity bounds. First of 
all, the soundness of PAPO is trivial from Algorithms 1, 2, 
and 3 because CRCAS returns the conflict-free path based 
on one of the basic paths, which are generated by TSAP, 
from the current location to the destinations for the given 
task without changing the sequence order of the nodes that 
pass through.

For the completeness of PAPO, we first note that the well-
formed N-MAPD condition ( 3′ ) guarantees the existence of 
at least one solution in a N-MAPD instance that satisfies 
the required environmental constraints. It is obvious that 
this solution consists of the finite length of action sequence. 
Then, TSAP in PAPO generates the first NK shortest path 
and the first NP lowest-cost action sequences in path plan-
ning and then action planning (sequences of actions) to reach 
the destination using Yen’s algorithm. Because the values of 
the parameters � , NK , and NP are gradually increased by the 
relaxation function RelaxParam, and TSAP with Yen’s algo-
rithm will output the paths that follow the nodes appearing 
in the solution and CRCAS can find the collision-free action 
sequence of the solution. Moreover, as aforementioned in 
“Task selection and process of PAPO”, the parameter � is 
continually increasing, so that the constraints are gradually 
removed as the approved plan is executed by other agents 
and the occupancy list in the RT is expired over time. The 
well-formed N-MAPD conditions and task selection based 
on them allow the agent to stay at its start location for any 
finite amount of time so that even in the worst case, the 
agent can generate a collision-free plan which moves after 
all other agents have completed their movements. Therefore, 
the completeness of PAPO is guaranteed.

Finally, we consider the complexity bounds of PAPO 
per collision-free action sequence generation of one agent. 
Since PAPO eventually covers all solutions by continu-
ally increasing the values of the parameters NK and NP via 
RelaxParam, the complexity bounds is O(∣ V ×D ∣2) in the 
worst case, as well as naive search in conventional studies. 
However, because PAPO explores the search space for the 
N-MAPD problem via path planning, action planning, and 

conflict resolution in a phased manner, PAPO can signifi-
cantly improve planning efficiency compared to naive search 
in many cases.

Experimental Evaluation and Discussion

Experimental Environment and Setting

We conducted many experiments to evaluate the per-
formance of our proposed method, PAPO, using several 
N-MAPD instances. Agents carry either small or large mate-
rials that are specified in each N-MAPD task � ∈ T  . We 
set the equal numbers of small and large materials to N/2. 
The width and length of a large material are W� = 1.0 and 
L� = 0.25 and those of a small material �� are W� = 0.5 and 
L� = 0.25 , respectively. All agents have the same size that 
is specified by Wi = 0.5 , Li = 0.5 . The ratio of the agent’s 
length to the length of its fork part is set to � = 0.5.

For our experiments, we have prepared two environments, 
Env. 1 and Env. 2, which have maze-like structures inspired 
by the construction sites with obstacles such as spaces for 
other work, columns, and walls; thus, they have environmen-
tal constraints such as paths widths and nodes sizes. Env. 1 
is a maze-like environment wherein the nodes are set at the 
ends of edges where agents may load and unload materials, 
and at intersections (Fig. 2a). Nodes are divided into two 
types: large nodes v with width Wv = 1.5 and length Lv = 1.5 
and small nodes v with width Wv = 1.0 and length Lv = 1.0 . 
These nodes are indicated as hollow green squares (large 
nodes) and green-filled squares (small nodes) in Fig. 2. Simi-
larly, edges are divided into two types: wide edges (u, v) with 
width Wuv = 1.0 , depicted by bold black edges, and narrow 
edges (u, v) with width Wuv = 0.5 , depicted by gray edges. 
The breaks in an edge indicate a length of 1 per one block. 
We assume that agents can only wait and rotate at nodes, 
but agents with large materials cannot rotate on small nodes 
and may have to rotate before passing through narrow edges.

Env. 2 has essentially the same topology as that of Env. 1; 
however, more nodes are added on some long edges, and so 
it has more nodes that are not at the intersection. Typically, 
the narrow and wide edges are connected by these nodes, 
and agents carrying large materials may need to rotate at this 
node to pass through the narrow edge (Fig. 2b). Rotation at 
an intersection requires some time; thus, it might block the 
movement of other agents. Initially, a hundred tasks T  are 
generated, and the pickup and delivery locations of each task 
in T  are randomly selected from the blue squares. Further-
more, we randomly allocate the initial position of each agent 
to its parking location.
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We measured four performance indicators, the success 
rate for all runs, the total planning time (we call it the plan-
ning time) for all tasks in T  , makespan, i.e., the required 
time to complete all tasks in T  , and operational time per 
task, which is the average time to complete a task (we call 
it the operational time), of our proposed method, and the 
comparative methods. Success rate is mainly used for meta-
heuristic optimization methods. Planning time is used for the 
evaluation of planning efficiency, makespan is used for the 
evaluation of transportation efficiency, and operational time 
is used for the evaluation of generated plan quality. Table 1 
presents the other parameter values used in our experiments. 
Our experiments were conducted on a machine with the fol-
lowing specifications: 3.20-GHz Intel 16-Core Xeon W with 
112-GB RAM. The following experimental results are the 
averages of 100 independent runs using 100 different ran-
dom seeds. Note that the experimental results are plotted as 
the average of all successful runs, except for the success rate.

Performance Comparison — Exp. 1

We have compared the performance of the proposed method, 
PAPO, with those of preliminary PAPO (Yamauchi et al. 
[37]), the naive centralized method (Yamauchi et al. [37]), 
which will be called NAIVE henceforth, and ACO and SA 
as the meta-heuristic algorithms, i.e., general incomplete 
optimization methods in Env. 1 and Env. 2. NAIVE is a 
centralized planner that assumes that the nodes reserved 

by the plans of other agents are temporary obstacles for 
a certain time interval and generates an optimal (short-
est) and collision-free action sequence whose elements are 
{load, unload,move, rotate,wait} in turn. Therefore, each 
state is denoted by tuple � = (v, o, t) of node v, agent ori-
entation o, and time t when the agent reaches node v with 
orientation o. We describe the ACO and SA algorithms for 
the N-MAPD in Appendix B. The values of the parameters 
for ACO are N = 10 , I = 25 , S = 1000 , � = 0.9 , � = 0.2 , 
and � = 0.8 , and those for SA are Tini = 10−4 , Tter = 10−7 , 
� = 0.97 , � = 50 , and S = 1000 . We set these parameter val-
ues so that the planning times of ACO and SA were less than 
or equal to that of NAIVE, and the number of iterations of 
ACO and SA per agent’s plan were almost the same.

All durations of actions in preliminary PAPO, NAIVE, 
ACO, and SA are identical to those in PAPO (Table 1). 
Under the assumption that the plans already in execution 
will not be modified, NAIVE generates an optimal plan. 
The initial values of the parameters for PAPO and prelimi-
nary PAPO are � = 100 , NK = 3 , and NP = 3 , and for each 
call to the relaxation function RelaxParam, the values of 
the parameters increase to � ← � ∗ 2.0 , NK ← NK + 1 , and 
NP ← NP . We have plotted the experimental results of Env. 1 
in Fig. 3 and the results of Env. 2 in Fig. 4. In Figs. 3b and 
4b, the makespan for NAIVE, preliminary PAPO, and PAPO 
are too small to be seen graphically. Therefore, we have plot-
ted only the makespan for NAIVE, preliminary PAPO, and 
PAPO in Figs. 3c and 4c. We have also plotted the opera-
tional time and planning time only for some of the methods 
in Figs. 3e, 3g, 4e, and 4g to improve visibility. Because 
the completion of all tasks using NAIVE, ACO, and SA 
were very time-consuming, those results are an average of 
10 runs.

First, we have compared the performance of the meta-
heuristic optimization methods, ACO and SA, with those 
of other methods in N-MAPD. Figures 3a and 4a indicate 
that the success rate of NAIVE, preliminary PAPO, and our 
PAPO was always 1.0 for both Envs. 1 and 2, regardless of 
the number of agents. However, the success rates of ACO 
and SA decreased with increasing number of agents for both 
Envs. 1 and 2, falling to 0.0 after M ≥ 15 (ACO and SA) 

Table 1   Parameter values used in the experiments

Description Parameter Value

No. of agents M 1 to 40
No. of tasks N 100
Orientation/direction increments D 90
Duration of move per length 1 Tmo(1) 10
Duration of rotate Tro(D) 20
Durations of load and unload Tld ,Tul 20
Duration of wait Twa(t) t
Safety intervals � 5

Fig. 2   Two experimental envi-
ronments (blue cells: pickup 
and delivery locations, red cells: 
parking locations, hollow green 
cells: large nodes, green-filled 
cells: small nodes, black cells: 
wide edges, and gray cells: nar-
row edges)

(a) Env. 1 (b) Env. 2
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in Env. 1, and M ≥ 9 (ACO) or M ≥ 15 (SA) in Env. 2. In 
ACO and SA, there was no guarantee that agents continued 
to wait for conflict avoidance at the planning start location, 
including the unique parking location of each agent because 
they selected their next transition state probabilistically. 
Therefore, even if the environment met the conditions for 

well-formed N-MAPD, ACO and SA could not necessarily 
solve the N-MAPD instance.

Figures 3b, 4b, 3d, and 4d indicate that the quality of 
the generated plans by ACO and SA was lower than that of 
the other methods, and that the transportation efficiencies 
were also poorer. This is because the N-MAPD problem 

Fig. 3   Performance comparison 
for Env. 1

(a) Success rate

(b) Makespan (c) Makespan

(d) Operational time (e) Operational time

(f) Planning time (g) Planning time
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adds orientation to agent states to account for environmental 
constraints, so the number of states is enormous, and proba-
bilistic state transitions in ACO and SA may cause agents to 
redundantly transition to the same state. This phenomenon 
is also supported by a performance comparison of Envs. 1 
and 2. As we will be discussed in more detail below, the 
makespan and operational time tend to decrease in Env. 2 

compared to Env. 1 in NAIVE, preliminary PAPO, and our 
PAPO. In contrast, the makespan and operational time in 
Env. 2 increased more than those in Env. 1 for ACO and 
SA. This is because Env. 2 added more nodes to some of 
the longer edges of Env. 1 to reduce the occurrence of con-
flicts, especially at intersections, and to improve transporta-
tion efficiency. However, the number of states was further 

Fig. 4   Performance comparison 
for Env. 2

(a) Success rate

(b) Makespan (c) Makespan

(d) Operational time (e) Operational time

(f) Planning time (g) Planning time
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increased, resulting in an increased probability of agents 
making unnecessary state transitions in ACO and SA.

We may be able to improve the quality of the generated 
plans and the transportation efficiency of ACO and SA by 
further increasing the parameter value of the number of iter-
ations. However, because there is a tradeoff between solution 
quality and planning efficiency, from Figs. 3f and 4f, any 
further deterioration in planning efficiency is impractical 
for use in an actual environment. Finally, we have compared 
the results of ACO and SA and found that the performance 
of SA outperformed ACO in all evaluation indicators for 
Envs. 1 and 2. This is because when generating the initial 
solution, the agent uses heuristic values in SA, but in ACO 
there are no pheromones, so the ants make state transitions 
completely at random. With completely random transitions, 
it is not easy to reach the goal state in an N-MAPD problem 
with a large number of states, so the improvement in the 
quality of the plan through iterations was limited.

We can observe from Figs. 3c and 4c, Figs. 3e and 4e that 
the makespan and operational time of PAPO increased by 
approximately 7% compared to those of NAIVE, while from 
Figs. 3f and 4f, the planning time of PAPO in both Envs. 1 
and 2 was significantly reduced compared to that of NAIVE. 
The quality of the solution obtained using NAIVE was very 
high because it could generate an optimal plan. However, 
the planning time was immense, making its use impractical 
in an actual environment. In contrast, PAPO can efficiently 

generate sub-optimal but acceptable paths. We suppose that 
the transportation efficiency of PAPO can be improved by 
adjusting the parameter values, which we have comprehen-
sively discussed in the next section.

Subsequently, for further elucidation, we would like to 
compare the improvement of PAPO against preliminary 
PAPO. Figures. 3 and 4 indicate that PAPO generated plans 
closer to the optimal solution obtained using NAIVE, in 
terms of the makespan and operational time, compared 
to those generated by preliminary PAPO. Furthermore, it 
reduces the planning time compared to preliminary PAPO. 
This is the contribution of the improved method of carefully 
adding wait by determining the short wait time to resolve 
a conflict as described in Sects. 4.2 and 4.3. Therefore, it 
resulted in the improvement in both overall transportation 
and planning efficiency. Actually, the number of conflicts 
detected in Env. 1 was 86086.4 for preliminary PAPO and 
75545.97 for PAPO when M = 25 , reducing the occurrence 
of conflicts by approximately 12%.

Comparing the results of Env. 1 and Env. 2, the plan-
ning time of PAPO in Env. 2 was almost identical to that in 
Env. 1; however, the makespan and operational time were 
smaller than those in Env. 1. This is owing to the additional 
nodes to some edges in Env. 2. Agents will stay at the current 
node when executing rotate and wait ; therefore, if they exe-
cute these actions at intersection nodes, they may obstruct 
the movement of other agents for a while. However, they 

Fig. 5   Impact of the combina-
tions of the initial values of N

K
 

and N
P

(a) Makespan (b) Operational time

(c) Planning time (d) Number of conflicts
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could reduce the number of such obstructive states by add-
ing nodes where they could rotate and wait. The PAPO with 
25 agents ( M = 25 ) realized approximately 24% fewer pos-
sible conflicts 75545.97 in Env. 1 and 57466.89 in Env. 2. 
This led to smoother movement of all agents. Moreover, in 
Env. 2 when M = 25 , for example, the planning time only 
increased by approximately 0.4 s (3%), while the makespan 
and operational time were improved by approximately 670 
(7%) and 100 (10%), respectively. Note that Tmo(1) = 10 ; 
thus, an improvement of 100 in the operational time cor-
responds to a reduction of 10 blocks of movement per task. 
This is a considerable improvement in performance.

When 25 agents used NAIVE ( M = 25 ), the makespan 
was approximately 775 (9%) shorter (Figs. 3c and 4c) and the 
operational time was approximately 73 (8%) shorter (Figs. 3e 
and 4e) in Env. 2 than those in Env. 1, while the planning 
time increased by approximately 746 s (39%) (Figs. 3f and 
4f). Even if there were a few agents, such as M = 2 and 3, 
the planning time increased significantly when using NAIVE. 
This implies that an increase in the number of nodes has a 
significant impact on planning efficiency. Since our N-MAPD 
problem deals with a three-dimensional search space com-
prising temporal, spatial position, and orientation, the com-
putational cost rapidly becomes high if the environments 
have more nodes. In contrast, we can say that PAPO has suf-
ficient robustness against the increase in the number of nodes 

because PAPO could improve the makespan and operational 
time with quite a small increase in the planning time.

Characteristics of PAPO — Exp. 2

The purpose of the second experiment (Exp. 2) is to inves-
tigate how the initial values of the three parameters � , NK , 
and NP affect the performance of PAPO. First, we measured 
the performance when using the different combinations of 
initial values for ( NK , NP ) whose multiplications NK × Np 
are identical, such as (1, 4), (2, 2), and (4, 1). Note that the 
relaxation function RelaxParam was identical to the one 
used in Exp. 1, except that the initial value of � = 100 was 
fixed.

Figure 5 presents the plots of makespan, operational time, 
planning time, and the number of conflicts detected. From 
these results, we observe that the best combination of ( NK , 
NP ) was (4, 1) in Env. 2. This reveals that parameter Nk has 
more influence on performance compared to parameter NP . 
When the agent is carrying no materials or small materials, 
it is not under any environmental constraint even in Env. 2; 
therefore, the only conflicts with the plans of other agents 
are subject to investigation. Hence, if agents generate more 
paths, they can prevent conflicts from occurring. Clearly, if 
we fix the parameter value NP , the larger the NK , the smaller 
the makespan and operational time.

Fig. 6   Impact of the initial 
value of �

(a) Makespan (b) Operational time

(c) Planning time (d) Number of conflicts
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The agent may not be able to generate a detour to the 
destination even if NK is large. Perhaps, in specially designed 
environments, such as automated warehouses, it makes sense 
to set NK to be large because there are many detours to the 
destination. However, such parameter setting is not always 
appropriate because the detours are limited depending on 
the environmental structure. As our experimental environ-
ment, inspired from a construction site, is a maze-like envi-
ronment with limited detours, we set NK = 4 , which is not 
excessively large, to allow the agent to generate NK different 
paths. Therefore, although there is an upper limit of NK that 
depends on the environmental structure, a larger NK could 
avoid the occurrence of conflicts and contribute to the reduc-
tion in makespan and operational time. Meanwhile, the agent 
can generate a variety of action sequences along each path 
generated in the first stage of TSAP by simply changing 
its rotation timing, without taking the long waiting time or 
detours if we set a large NP . Therefore, by setting a larger 
NP , it is possible to obtain a shorter collision-free action 
sequence. Note that this is dependent on the number of 
nodes that agents can rotate/wait and the number of detours.

Moreover, we conducted similar experiments with ini-
tial values of � by setting to 50, 100, 200, 400, and 800; 
however, the initial values N

P
= 3 and N

K
= 3 were fixed. 

We used the same relaxation function RelaxParam as in 
Exp. 1. It can be observed from Fig. 6 that the number of 
conflicts and the planning time decrease as the value of � 
increases. As � increases, the agents attempt to resolve con-
flicts by adding more wait to the candidate action sequences 
generated by TSAP; therefore, the frequency of calls to the 
relaxation function RelaxParam decreases. In Env. 2, the 
agent is likely to wait at the start node of a plan (i.e., the 
pickup or delivery location) or at the node that is added 
for Env. 2 before the intersection at which conflicts may 
occur because the wait is inserted before the node where 
the conflict is detected. As we described in Exp. 1, waiting 
at a node that is not an intersection reduces the possibility 
of interfering with the actions of other agents. Therefore, 
agents could reduce the occurrence of conflicts, resulting 
in reduced planning time. However, the excessive use of 
the synchronization strategy tends to increase the makespan 
and operational time. Thus, we can weigh the importance of 
the planning efficiency (planning time), the transportation 
efficiency (makespan), and the quality of the generated plans 
(operational time) by changing the initial value of �.

Discussion

From these experiments, we found that the proposed method 
could significantly improve planning efficiency compared 
to NAIVE and transportation and planning efficiency com-
pared to preliminary PAPO, ACO, and SA. In our N-MAPD 

problem, which deals with a three-dimensional search space 
of temporal, spatial, and orientation, the computational cost 
of obtaining a solution is very high, especially when the 
number of nodes in the environment is large. However, 
unlike NAIVE, which naively explores the search space, 
PAPO can efficiently explore the search space by performing 
path planning, action planning, and conflict resolution in a 
phased manner; therefore, very high planning efficiency was 
achieved. Furthermore, if we observe the results in Figs. 3 
and  4 when the number of agents M = 15 and the makes-
pan is minimum, PAPO achieved almost the same makespan 
and operational time as those of NAIVE, with a significant 
reduction in planning time. Therefore, depending on the 
structure and size of the environment and the number of 
agents, PAPO can achieve similar high transportation effi-
ciency as that of NAIVE, which obtain the optimal solution, 
in situations where excessive congestion does not occur.

Moreover, unlike preliminary PAPO, PAPO prevents 
excessively long waits by carefully adding waits to the plan. 
This not only improves the quality of the generated plans 
for the agent in the planning process but also has a positive 
impact on subsequent planning for other agents. This implies 
that if an agent resolves conflicts with a minimum waiting 
time, it can prevent the occurrence of conflicts during the 
planning of other agents subsequently, and the increase in 
the waiting time to resolve them, in advance. As a result, 
PAPO could better improve the overall performance com-
pared to preliminary PAPO.

Conclusion

We first introduced a model, the MAPD in non-uniform envi-
ronment (N-MAPD) problem, inspired by our target appli-
cations at construction sites. An N-MAPD problem is quite 
complicated because the orientations and actions of agents 
are strictly restricted by the sizes of agents, materials, and 
nodes (locations), as well as the width of paths; therefore, 
it requires a high computational cost to generate optimal 
paths. Thereafter, we developed a planning method, called 
path and action planning with orientation (PAPO), which 
can efficiently build a non-optimal but acceptable collision-
free plan for N-MAPD problems. The proposed method was 
compared with a naive centralized method, meta-heuristic 
optimization methods, and preliminary PAPO, our previous 
version of the PAPO algorithm (Yamauchi et al. [37]), and 
evaluated. Experimentally, we demonstrated that the pro-
posed method can efficiently generate sub-optimal paths of 
moderate lengths for real-world applications, and that it has 
sufficient robustness to the increase in the number of nodes. 
Furthermore, by analyzing the characteristics of the pro-
posed method, we observed that it can determine the weight 
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of the planning and transportation efficiencies and the qual-
ity of the generated plans by appropriately setting the initial 
values of parameters.

To further improve transportation efficiency, we plan to 
study the relaxation of the well-formed N-MAPD condi-
tion ( 3′ ). Because of condition ( 3′ ), agents cannot traverse 
any other start/goal locations in the N-MAPD problem; 
therefore, the upper bound on the number of agents that can 
simultaneously execute tasks in an environment depends on 
the number of nodes that can be the pickup and delivery 
locations of tasks. Furthermore, real-world transport robot 
agents occasionally need to recharge or replace their batter-
ies. Therefore, we need to consider that agents have limited-
capacity batteries (i.e., time limit for movement) in future 

N-MAPD studies, as in the studies on the multi-agent coop-
erative patrolling problem (Yoneda et al. [39]; Sugiyama 
et al. [28]). Finally, our proposed method utilizes and main-
tains a shared SBI to detect and resolve conflicts, similar to a 
token in the TP method (Ma et al. [19]) which can be easily 
extended to a fully distributed version; a more detailed study 
of a fully distributed design is planned for future work.

Appendix A Summary of Notations

To enhance the readability, we list a summary of notations 
in Tables 2 and 3.

Table 2   Summary of notations 
used in this paper (No. 1)

Notations Meanings

A Set of M agents i, A = {1,… ,M}

T Set of N tasks �j , T = {�1,… , �N}

V, E Set of nodes v and set of edges (u, v), u, v ∈ V

G Undirected connected graph, G = (V ,E)

Wv , Lv Width and length of the node v
Wuv Width of the edge (u, v)
dist(u, v) Length between the centers of u and v in the Euclidean space
t Discrete-time, t ∈ ℤ+ (where ℤ+ is the set of non-negative integers)
dt
i
 , ot

i
(Moving) direction and orientation of agent i at time t

D Orientation/direction increments
D Set of possible orientations
Wi , Li Width and length (or depth) of agent i
wt
i
 , lt

i
x-axis length and y-axis length of agent i at time t

� Ratio of the agent’s length to the length of its fork part
Tro(�) Duration of rotate per rotation angle � ∈ ℤ+

Tmo(l) Duration of move per length l = dist(u, v)

Tld , Tul Durations of load and unload
Twa(t) Duration of wait per waiting time t
parki Parking location of agent i, parki ∈ V

��j
Material that is requested to carry by task �j

vld
�j

 , old
�j

Location and orientation of the loading material ��j

vul
�j

 , oul
�j

Location and orientation of the unloading material ��j

W�j
 , L�j Width and length of material ��j

�j Task specified by (�ld
�j
, �ul

�j
,W�j

,L�j ,��j
) , where �ld

�j
= (vld

�j
, old

�j
) , �ul

�j
= (vul

�j
, oul

�j
)

(�, v, i) Task data being executed by agent i, where v is the i’s destination specified by task �
vi
s
 , oi

s
Current location and orientation of agent i

vi
d

Destination of agent i
NK No. of shortest path from vi

s
 to vi

d

r Path, which is a finite node sequence r = {v0(= vi
s
), v1,…}

NP No. of lowest-cost action sequences to move along the path ∀rk ∈ {r1,… , rNK
}

Vi , Ei Set of state nodes � = (v, o) and set of transition edges (�, �) , �, � ∈ Vi

Gi Weighted state graph generated from G for the path rk by agent i, Gi = (Vi, Ei)

�(�, �) Transition edge weight, which is the required duration of the corresponding action
t� Time when agent i will reach the state �
(�, t�) Search space, where t� is the time when agent i will reach the state �
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Appendix B Meta‑Heuristic Algorithms Used 
in the Experiments

Ant Colony Optimization for N‑MAPD

We describe the ACO algorithm used for path and action 
planning for agent i ∈ A in N-MAPD in this appendix sec-
tion. We define a set of N  ants as A = {a1,… , aN} . Agent 
i generates the weighted state graph Gi = (Vi, Ei) from a 
graph G = (V ,E) . Note that in ACO, unlike PAPO (Sec-
tion. 4.1), i does not use a path to generate Gi ; thus, gener-
ates state nodes for all nodes in V. Ant aj ∈ A moves on Gi 

to generate a plan from the current state �i
s
= (vi

s
, oi

s
) ∈ Vi 

of i to the destination state �i
d
= (vi

d
, oi

d
) ∈ Vi . We denote 

the amount of pheromone on the state node � ∈ Vi as �� 
( ≥ 0 ). For ∀� ∈ Vi , �� is initialized with 0. We denote the 
total duration by dur(pj) =

∑∣pj∣

l=1
�(�l−1, �l) for the plan 

pj = (�0(= �i
s
), �1,… , �i

d
) generated by ant aj . For ∀� ∈ Vi , 

the amount of pheromone �� is updated by

�� ← � ⋅ �� + Δ�, and Δ�j

=

{
1

dur(pj)
(pj ≠ false and � ∈ pj)

0 (otherwise),

Table 3   Summary of notations 
used in this paper (No. 2)

Notations Meanings

h(l, �) Heuristic function using distance l and angle � for A* search
Pi Ordered set of at most NK ⋅ NP action sequences, Pi = {p1,… , pNK ⋅NP

}

rk = r(pi) Relationship that the obtained plan pi is generated along a path rk
[si

v
, ei

v
] Occupied intervals from time si

v
 to ei

v
 of node v by agent i

� Safety intervals due to the physical size of agent
[ts, te] Intersection of occupied intervals by two agents
c Conflict of intersection [ts, te] at node v between agents i and j, c = (⟨i, j⟩, [ts, te], v)
(v, [si

v
, ei

v
], i) Reservation data of interval [si

v
, ei

v
] for node v by agent i

tc Current time
Cmax Maximal duration of the plan in the ordered set Pi

p1 First (shortest duration) plan in the ordered set Pi

C1 Shortest duration of the plan in the ordered set Pi

c1 First conflict in plan p1
C Set of all conflicts at node v
cf Last element of the set C sorted in order of occurrence time
u Wait length required to resolve conflict cf
uv Wait length of wait at node v
w(p1) Maximal length of wait required to resolve the conflicts in plan p1 , w(p1) = umax

wait(umax) Waiting action for length umax
� Tolerance parameter for retaining the selected plan
T′ Set of candidate tasks for selection by agent i, T′ ⊂ T

A Set of N  ants, A = {a1,… , aN}

�� Amount of pheromone on the state node � ∈ Vi

dur(pj) Total duration of pj
� Pheromone evaporation rate
V� Set of states to which ant aj (or agent j) can transition from state �

p
j
�

Probability that aj (or j) selects � ∈ V� as the next transition state

�� Heuristic value of state �
� , � Parameters that weights the pheromone and heuristic value
I No. of iterations of path and action planning in ACO
S Maximam No. of state transitions
T ,Tini,Tter Current, initial, and terminate temperature
� Cooling rate
f(p) Evaluation function for the solution (plan) p
� Maximum No. of times for generating initial solution in SA
pbst Best solution (plan) of agent in SA
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where Δ� =
∑

aj∈A
Δ�j and � ( 0 < 𝜌 < 1 ) is the pheromone 

evaporation rate. Note that pj = false means that aj failed to 
generate a plan.

Let V𝜈 ⊂ Vi be the set of states to which ant aj can transition 
from state � , considering environmental constraints and conflicts 
with other agents. The probability pj� that aj selects � ∈ V� as the 
next transition state is denoted by

where �� is the heuristic value of state � and � , � are non-
negative real number parameters that weights the pheromone 
and heuristic value. We use as heuristic value the inverse of 
Formula 3, using the Manhattan distance as the distance l 
in terms of computational cost. Ants perform the following 
process for plan generation: 

pj
�
=

(��)
� (��)

�

∑
��∈V� (��� )� (��� )�

,

(1)	 Initialize the amount of pheromone on Vi and set the initial 
state �i

s
 and the destination state �i

d
 for each ant. Then, repeat 

(2) to (4) following I ( > 0 ) times.
(2)	 ∀aj ∈ A selects the next transition state � from V� according 

to probability pj� and sets � to the current state of aj.
(3)	 Repeat (2) for all ants until the destination state �i

d
 is reached, 

V� = ∅ , or the number of state transitions reaches S, where S 
is a threshold parameter to prevent ants from endlessly select-
ing the same state. This means that if ant aj cannot reach �i

d
 

in S times transitions, then false is set to pj . Furthermore, let 
pj = false also for V� = ∅.

(4)	 Update the amount of pheromone �� in ∀� ∈ Vi based on the 
plan pj of ∀aj ∈ A.

(5)	 Among all the generated plans, the shortest duration plan p is 
output as the plan to be executed by agent i. If all plans fail to 
generate, the run is counted as a failure (i.e., the success rate 
is reduced).

Algorithm 4 Simulated Annealing for N-MAPD

1: function SA(i, νs, νd) // Called from i ∈ A
2: // νs: i’s current state and νd: i’s destination state
3: // Tini : initial temperature and Tter : terminate temperature
4: // ζ: Maximum number of times for generating initial solution
5: T ← Tini , p ← false, pbst ← false, b ← 0
6: while p = false and b < ζ do
7: p ← GenSolution(i, νs, νd)
8: b ← b+ 1
9: end while

10: if p = false then return false // plan generation failure
11: end if
12: while T > Tter do
13: p ← GenNeighbor(i, νd, p) // p is a neighborhood solution
14: if p = false then
15: ∆E ← f(p )− f(p) // where f is the evaluate function.
16: if ∆E > 0 then
17: p ← p // Update current solution
18: if f(p) ≥ f(pbst) then
19: pbst ← p // Update best solution
20: end if
21: else if rand(1) ≤ exp(∆E/T ) then // where rand(1) is a

uniform random number from 0 to 1.
22: p ← p
23: end if
24: end if
25: T ← Schedule(T ) // Annealing Schedule
26: end while
27: return pbst
28: end function
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Simulated Annealing for N‑MAPD

We describe path and action planning using SA in N-MAPD. 
Agent i ∈ A generates the weighted state graph Gi = (Vi, Ei) 
from a graph G without using a path similar to ACO, and 
generates a plan from the current state �i

s
= (vi

s
, oi

s
) ∈ Vi to 

the destination state �i
d
= (vi

d
, oi

d
) ∈ Vi on Gi . The pseudocode 

of SA is presented in Algorithm 4. We describe the GenSo-
lution function (Line 7). Let V𝜈 ⊂ Vi be the set of states to 
which agent i can transition from state � , considering envi-
ronmental constraints and conflicts with other agents, then i 
selects � ∈ V� as its next transition state according to prob-
ability pi

�
= ��∕

∑
��∈V� ��� , where �� is the heuristic value 

of the state � and is obtained in the same way as in ACO. 
Similarly to ACO, a threshold parameter S is introduced 
for the number of state transitions, so that if �i

d
 cannot be 

reached after S times transitions, the GenSolution function 
returns false as plan generation failure. If the GenSolution 
function returns false when generating the initial solution 
(plan), the run is considered a failure (i.e., the success rate 
is reduced). We use f (p) = 1∕dur(p) as the evaluation func-
tion f for the solution p if p ≠ false ; otherwise, f (p) = −1 . 
Agent i performs the following genneighbor function to 
generate a neighborhood solution p′

i
 for the current solution 

pi = (�0(= �i
s
), �1,… , �i

d
) (Line 13). 

(1)	 Using a uniform random number k ∈ ℤ+ from 0 to 
∣ pi ∣ −1 , generate p1

i
= (�0, �1,… , �k−1) from pi.

(2)	 Generate a plan p2
i
= (�0(= �k),�1,… , �i

d
) from �k ∈ pi 

to �i
d
 by the GenSolution function.

(3)	 Combine p2
i
 at the tail of p1

i
 to generate a neighborhood 

solution p�
i
= (�

0
(= �i

s
), �

1
,… , �k−1,�0

(= �k),�1
,… , �i

d
).

Among the many methods available for the schedule func-
tion to schedule annealing (Tsuzuki et al. [31]), we apply 
the geometric cooling. Therefore, using the cooling rate � 
( 0 < 𝛼 < 1 ), the temperature T is updated by the expression 
T ← �T  (Line 25).
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