
Vol.:(0123456789)

SN Computer Science (2023) 4:83
https://doi.org/10.1007/s42979-022-01475-5

SN Computer Science

ORIGINAL RESEARCH

Efficient Path and Action Planning Method for Multi‑Agent Pickup
and Delivery Tasks under Environmental Constraints

Tomoki Yamauchi1  · Yuki Miyashita1 · Toshiharu Sugawara1

Received: 31 January 2022 / Accepted: 25 October 2022 / Published online: 8 December 2022
© The Author(s) 2022

Abstract
We propose a method called path and action planning with orientation (PAPO) that efficiently generates collision-free paths
to satisfy environmental constraints, such as restricted path width and node size, for the multi-agent pickup and delivery in
non-uniform environment (N-MAPD) problem. The MAPD problem, wherein multiple agents repeatedly pick up and carry
materials without collisions, has attracted considerable attention; however, conventional MAPD algorithms assume a specially
designed environment and thus use simple, uniform models with few environmental constraints. Such conventional algo-
rithms cannot be applied to realistic applications where agents need to move in more complex and restricted environments.
For example, the actions and orientations of agents are strictly restricted by the sizes of agents and carrying materials and
the width of the passages at a construction site and a disaster area. In our N-MAPD formulation, which is an extension of
the MAPD problem to apply to non-uniform environments with constraints, PAPO considers not only the path to the desti-
nation but also the agents’ direction, orientation, and timing of rotation. It is costly to consider all these factors, especially
when the number of nodes is large. Our method can efficiently generate acceptable plans by exploring the search space via
path planning, action planning, and conflict resolution in a phased manner. We experimentally evaluated the performance
of PAPO by comparing it with our previous method, which is the preliminary version of PAPO, the baseline method in a
centralized approach, and fundamental meta-heuristic algorithms. Finally, we demonstrate that PAPO can efficiently generate
sub-optimal paths for N-MAPD instances.

Keywords  Multi-agent pickup and delivery problem · Multi-agent path finding · Multi-agent planning · Robot planning ·
Environmental constraints

Introduction

In recent years, multi-agent system (MAS) technology has
exhibited remarkable promise for automating complex and
enormous tasks in real-world applications using coordinated
and cooperative actions and combinations of heterogene-
ous abilities and skills. For example, transport robots in
automated warehouses (Wurman et al. [35]), autonomous
aircraft-towing vehicles in airports (Morris et al. [22]), ride-
sharing services (Li et al. [15]; Yoshida et al. [40]), office
robots (Veloso et al. [32]), and multiple-drone delivery sys-
tems (Krakowczyk et al. [12]). However, because of resource
conflicts between agents, such as collisions and redundant
actions by multiple agents, the simple increase in the number
of agents often leads to inefficiency. Therefore, to improve
performance and avoid negative mutual effects, coopera-
tive and/or coordinated actions are essential for actual use.
Resolving conflicts between agents, i.e., collision avoidance,

Yuki Miyashita and Toshiharu Sugawara have contributed equally
to this work.

This article is part of the topical collection “Advances in Multi-
Agent Systems Research: EUMAS 2021 Extended Selected Papers”
guest edited by Davide Grossi, Ariel Rosenfeld and Nimrod Talmon.

 *	 Tomoki Yamauchi
	 t.yamauchi@isl.cs.waseda.ac.jp

	 Yuki Miyashita
	 y.miyashita@isl.cs.waseda.ac.jp

	 Toshiharu Sugawara
	 sugawara@isl.cs.waseda.ac.jp

1	 Department of Computer Science and Communications
Engineering, Waseda University, 3‑4‑1 Okubo, Shinjuku‑ku,
Tokyo 1698555, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01475-5&domain=pdf
http://orcid.org/0000-0001-5577-3703

	 SN Computer Science (2023) 4:8383  Page 2 of 20

SN Computer Science

is particularly essential in our envisioned pickup and deliv-
ery system with robots that carry heavy and large materials
in a constrained environment.

Therefore, the corresponding problems are often for-
mulated as multi-agent pickup and delivery (MAPD) prob-
lems, where multiple carrying tasks are assigned to multiple
agents with each task one after the other. Once an agent is
assigned a task, it is required to travel to the material stor-
age area, load the required material, carry it to the speci-
fied location, and unload it. From a planning viewpoint, the
MAPD problem can be regarded as an iteration of multi-
agent path finding (MAPF), wherein each agent generates a
collision-free path from the starting to the ending location.
Unfortunately, MAPF is regarded as a non-deterministic
polynomial-time hardness (NP-hard) problem for generating
optimal paths (Ma et al. [17]). Moreover, the MAPD prob-
lem is challenging and time-consuming because it requires a
large number of carrying tasks. Nevertheless, it is necessary
to efficiently create acceptable paths for the movement of
multiple agents in the MAPD problem.

Several studies have focused on the MAPF/MAPD
problem (Liu et al. [16]; Ma et al. [19]; Sharon et al. [26]).
Although their proposed methods were applied to actual
systems, they often assumed a specially designed environ-
ment with few constraints on agent operations. Most of these
studies formulated the environments as grids without con-
sidering the different path widths, agent sizes, and material
sizes. Therefore, agents can move without considering their
rotation and moving direction. However, in our application,
we have envisioned a transportation task in a construction
site or a rescue-with-robot task in a disaster area. In con-
trast to the aforementioned studies, our environments are
more complicated and have more constraints. For example,
let us consider autonomous forklift-type carrier agents with
a picker or rescue robots with an arm. In addition to the
passages with various widths at a construction site, agents
typically have to transport large materials that are wider than
themselves. Therefore, an agent with a large material can
only pass through a narrow path in a certain orientation,
and in some places, an agent may not be able to rotate due
to obstacles. This implies that each location and path may
have their own constraints in their environment; thus, agents
should generate different routes depending on whether they
are transporting materials. Furthermore, at a construction
site, the passage width and the topology can easily change;
for example, a new wall is built which was not there the day
before, or a pile of materials is placed as an obstacle in a
passage and removed the next day. This indicates that learn-
ing methods that require a large amount of training data are
not preferred.

In this study, first, we formulate the multi-agent pickup
and delivery in non-uniform environment (N-MAPD) prob-
lem, an extension of the MAPD problem, to model the

aforementioned complex situations. For example, in a con-
struction site, agents may be prohibited from actions in cer-
tain locations and passages due to constraints on their size
and width. Therefore, the agents are required to consider
their sizes (including the size of the materials if they carry).
Instead, we assume that the agent can move in any direction
(left, right, up, down) without changing its orientation. In
such an environment, the agent needs to decide on a travel
path that reflects collision avoidance and environmental con-
straints. For example, the simple shortest path without con-
sidering constraints may be inappropriate because if a part of
the path is narrow, the agent with the material has to change
its orientation before passing through to move sideways, but
such additional rotate action may require additional time. We
believe that N-MAPD formulation can also be exploited in
other scenarios where physical constraints have to be consid-
ered, such as a multi-agent disaster rescue problem.

Considering this issue, we propose path and action plan-
ning with orientation (PAPO), which is an algorithm for
solving an N-MAPD problem. It constructs collision-free
paths and the associated sequence of actions in two phases:
two-stage action planning (TSAP), wherein the agent builds
several short paths to its destination and then generates the
set of action sequences along each path, and conflict resolu-
tion with candidate action sequences (CRCAS), wherein the
agent generates a conflict-free (so approved) action sequence
by observing the previously approved plans of other agents
in the synchronized block of information (SBI) to avoid con-
flicts. The PAPO algorithm considers not only the direc-
tion and timing of movement but also the orientation of
the agent and the time required for each action (i.e., time
cost) for solving an N-MAPD problem. Furthermore, our
PAPO algorithm also considers sophisticated processes for
resolving conflicts and satisfying environmental constraints,
because agents have to make appropriate decisions to avoid
conflicts, such as waiting (for synchronization), detouring,
or changing the order of actions. PAPO can efficiently gen-
erate plans by exploring the search space for the N-MAPD
problem via path planning, action planning, and conflict
resolution in a phased manner. We have already reported
the effectiveness of the preliminary version of PAPO (called
preliminary PAPO) for the N-MAPD problem in our previ-
ous study (Yamauchi et al. [37]). However, in this study, we
have further improved it using a more effective strategy for
modifying plans.

Later, we experimented with the performance of the new
PAPO by comparing its results with those of (a) a naive
centralized method as a baseline method, (b) preliminary
PAPO, (c) ant colony optimization (ACO), and (d) simulated
annealing (SA) in a variety of N-MAPD experimental set-
tings. Experimental results indicate that PAPO can generate
sub-optimal but sufficiently acceptable paths more efficiently
compared to other methods. We also conducted experimental

SN Computer Science (2023) 4:83	 Page 3 of 20  83

SN Computer Science

evaluation with various parameter settings to understand the
features of the proposed algorithm. Finally, we comprehen-
sively discuss with comparing the experimental results with
the preliminary PAPO and the baseline method.

Related Work

The MAPF/MAPD problem has been studied from a vari-
ety of perspectives (Felner et al. [7]; Ma et al. [18]; Salz-
man and Stern [25]). Based on the coordinated and coop-
erative structures among agents, we can classify them as
centralized and decentralized approaches. Examples of
the centralized approach include the conflict-based search
algorithm (CBS) (Sharon et al. [26]) of MAPF and its exten-
sions (Bellusci et al. [4]; Boyarski et al. [5]; Boyrasky et al.
[6]; Zhang et al. [41]; Huang et al. [10]). CBS is a planning
algorithm comprising two stages: low-level search, wherein
agents individually determine their paths, and high-level
search, wherein a centralized planner generates sequences
of actions while checking for conflicts between agents and
resolving them. The decentralized approaches include those
that guarantee completeness under certain restrictions (Ma
et al. [19]; Okumura et al. [23]; Wang and Rubenstein [33];
Wang and Botea [34]; Okumura et al. [24]). For example,
Ma, Li, Kumar, and Koenig (Ma et al. [19]) proposed a well-
known decentralized MAPD algorithm called token passing
(TP). Here, each agent can refer to the token, which is a
synchronized shared memory block; it individually chooses
a task that satisfies the certain conditions and generates col-
lision-free paths. However, these studies assume a simplified
environment and ignore constraints, such as individual agent
speed, path width, agent size, and duration of each action.
As a result, real-world applications are limited.

Meanwhile, there are several studies that use the
model including rotation, size, and movement speed of
the agent (Barték et al. [3]; Ho et al. [8]; Hönig et al. [9];
Kou et al. [11]; Li et al. [13]; Ma et al. [20]; Machida [21];
Surynek. [29]; Yakovlev et al. [36]). For instance, Ma
et al. ([20]) proposed TP-safe interval path planning with
reservation table (TP-SIPPwRT) to include the agent’s rota-
tion and movement direction into their model. However, this
study assumed a custom-designed environment with normal-
ized/fixed path width and length. Therefore, its application
in our target environment is not feasible. Although some
studies in the area of trajectory planning have focused on
kinematic constraints during planning (Alonso-Mora et al.
[1]; Bareiss and van den Berg [2]; Li et al. [14]; Tang and
Kumar [30]), our study differs in that it aims to efficiently
complete the MAPD iterative task in tight and cluttered
environments.

Certainly, conventional algorithms can be applied to our
N-MAPD problem by adding orientations to agent states and

considering environmental constraints. Since path planning
using conventional algorithms requires a two-dimensional
space comprising temporal and spatial dimensions, the
search space for the N-MAPD problem becomes immense
when the orientation dimensions related to various path
widths and agent sizes are added. Therefore, if the optimal
path must be found using naive search as in conventional
algorithms, the computational cost increases in this three-
dimensional search space. To the best of our knowledge,
no study exists on path planning with conflict resolution on
discrete graphs under behavioral constraints due to the shape
and size of agents, spaces, and materials being carried.

Background and Problem Formulation

We have extended the conventional MAPD problem and for-
mulated the N-MAPD problem by introducing path widths,
material and agent sizes, and the required time for agent
actions. To enhance the readability, we list a summary of
notations in Tables 2 and 3 in Appendix A.

Problem Formulation for N‑MAPD

The N-MAPD problem represented by tuple ( A, T,G) , where
A = {1,… ,M} is a set of M agents, T = {�1,… , �N} is a
set of N tasks, and G = (V ,E) is an undirected connected
graph that can be embedded in a two-dimensional Euclid-
ean space described by x- and y-coordinates. Node v ∈ V
and edge (u, v) ∈ E ( u, v ∈ V  ) represent a location and path
that an agent can travel between u and v in the environment,
respectively. Lv and Wv are the length and width of the node
v, respectively. Moreover, the edge (u, v) has width Wuv and
distance dist(u, v) , which is defined as the length between
the centers of u and v in the Euclidean space. Our agent
is, for example, a forklift-type robot with a picker in front
and can carry heavy material. We assume that a material
(or a pile of materials) is on a rack base, and the agent can
load it (pick it up) or unload it (put it down) at one of the
specified nodes using its picker towards a particular direc-
tion. We introduce discrete-time t ∈ ℤ+ (where ℤ+ is the set
of non-negative integers) and assume that certain durations
are required for agent actions, such as wait action, move
action toward a neighbor node, rotate action, and the load
and unload actions of a material. Figure 2 indicates exam-
ples of our environments.

For agent i ∈ A , let us denote the (moving) direction
dt
i
> 0 and the orientation ot

i
> 0 of i at time t, where

0 ≤ dt
i
, ot

i
< 360 in D increments. For example, if we

set D = 90 , there are four directions and orientations:
dt
i
, ot

i
= 0, 90, 180, 270 . Although D can be any number

depending on environmental features, for the sake of sim-
plicity, we assume D = 90 in this study. We set the north

	 SN Computer Science (2023) 4:8383  Page 4 of 20

SN Computer Science

orientation/direction in the environment G to 0, i.e., ot
i
= 0

and dt
i
= 0 . Therefore, the set of possible orientations can be

expressed by D = {0, 90, 180, 270} since D = 90 . We also
express the size of agent i ∈ A by its width Wi and length (or
depth) Li . Thereafter, the x-axis length wt

i
 and y-axis length

lt
i
 of i at time t are obtained as follows:

The material that is requested to carry by task �k also has
a size whose width and length are denoted by W�k

 and L�k ,
respectively. While i carries the material associated with �k ,
i’s size will change to

where the non-negative number � (� ≤ 1) is the ratio of the
agent’s length to the length of its fork part. We have indi-
cated the size and orientation of agents with and without
materials for � = 0.5 in Fig. 1.

Agents need to determine their action sequences for car-
rying materials while considering the constraints on the
path width and node size configured in the environment,
and agent size calculated using Formulae 1 and 2. Hence-
forth, the constraints defined in the environment, such as the
width and size of routes, nodes, and agents, will be termed
as environmental constraints.

Agents execute the following actions: rotate , move , load ,
unload , and wait . The durations of actions, rotate , move ,
load , unload , and wait are denoted by Tro(�) , Tmo(l) , Tld , Tul ,
and Twa(t) , respectively, where � ∈ ℤ+ is the rotation angle,
l = dist(u, v) is the moving distance between nodes u and v,
and t is the waiting time. For example, Tmo(1) = 10 when
l = 1 . Suppose at time t, agent i ∈ A is on a node v ∈ V  ;
then, agent i can move along edge (u, v) ∈ E to u with the
move action without changing the orientation of ot

i
 if the

edge is sufficiently wide. The rotate action makes i rotate D
degrees clockwise (D) or counter-clockwise ( −D ) from ot

i
 ,

i.e., ot+Tro(D)
i

← ot
i
± D , staying at v, if the node size is suf-

ficient. A parking location parki ∈ V  , which is the starting

(1)
wt
i
= ∣ Li sin o

t
i
∣ + ∣ Wi cos o

t
i
∣,

lt
i
= ∣ Wi sin o

t
i
∣ + ∣ Li cos o

t
i
∣ .

(2)
Wi ← max(Wi,W�k

),

Li ← max(Li, �Li + L�k),

location at t = 0 , is uniquely allocated to each agent i (Liu
et al. [16]). Agents may return to their parking locations
unless they have a task to perform. In Fig. 2, parking loca-
tions are indicated by red squares.

We s p e c i f y t h e t a s k �j by t h e t u p l e
�j = (�ld

�j
, �ul

�j
,W�j

, L�j ,��j
) , where �ld

�j
= (vld

�j
, old

�j
) ( ∈ V ×D ) is

the location and orientation of the loading material ��j
 ,

�ul
�j
= (vul

�j
, oul

�j
) ( ∈ V ×D ) is the location and orientation of

the unloading ��j
 , and W�j

 and L�j are the width and length of
��j

 , respectively. Considering the direction of the picker and
the shape of the material, an agent needs to be oriented in a
specific direction when loading and unloading the material.
Agents have to complete all the tasks in T with no collision
and no violation of environmental constraints. Agent i
returns to parki for recharging when it completes all tasks in
T .

Well‑Formed N‑MAPD Problem Instance

Not all MAPD instances may be able to be solved. For exam-
ple, if the environment is not connected, agents cannot reach
some nodes. Therefore, Ma et al. ([19]) introduced well-
formed MAPD problem instances.

An MAPD instance is well formed if and only if the fol-
lowing three conditions are satisfied:

(1)	 The number of requested tasks T is finite.
(2)	 Parking locations are different from all the pickup and

delivery locations specified by tasks.
(3)	 At least one path exists between any two start/goal loca-

tions such that it does not traverse any other start/goal
locations.

We modify condition (3) to reflect the environmental con-
straints in N-MAPD as follows:

(3′ ) At least one feasible path exists between any two
start/goal locations such that it does not traverse any other
start/goal locations. A “feasible” path implies that a solu-
tion for the MAPF instance would meet the environmen-
tal constraints.

Fig. 1   Definition of agent orientation and size (including the material being carried)

SN Computer Science (2023) 4:83	 Page 5 of 20  83

SN Computer Science

Agents can return and stay at the parking locations for as
long as they need at any time, in order to avoid conflicts
(collisions) with other agents in the well-formed N-MAPD
instances. With this return action, the number of agents in
an excessively crowded environment can be reduced to miti-
gate congestion. As most real-world MAPD problems can
be well-formed instances, including MAPD in a construc-
tion site, they belong to a realistic subclass of all MAPD
instances. However, we need to discuss the condition ( 3′ ) of
our N-MAPD below.

Proposed Method

PAPO, which is our proposed algorithm for N-MAPD
instances, generates collision-free plans, i.e., sequences of
actions to reach destinations without conflict in non-uniform
environments. In PAPO, the agent detects and resolves con-
flicts by utilizing and maintaining a shared SBI. The SBI
comprises two tables, a task execution status table (TEST)
and a reservation table (RT) (Silver [27]). A TEST is a set
whose elements are tuples (�, v, i) , wherein � is the task cur-
rently being executed by agent i and v is the node of the
i’s destination, which is the loading or unloading location
specified by � . Therefore, every time an agent with no task
selects a task from the set of requested tasks, two tuples are
stored in the TEST. The details of the TEST and the RT are
explained later. The SBI is stored in centralized shared mem-
ory, and one agent can exclusively access this memory at a
time, similar to a token in the TP method (Ma et al. [19]).
Synchronized shared memory may become a bottleneck for
performance, but we can assume that the movement of the
robot is relatively slow; thus, the overhead time caused by
mutual exclusion control can be ignored if the number of
agents in an environment is not unrealistically high (e.g.,
less than 100 agents).

The PAPO algorithm comprises the following two phases.
The first phase is TSAP, wherein the agent builds several
short paths to its destination and then generates the set of
action sequences along each path. Second, in the phase of
CRCAS, the agent generates a conflict-free action sequence
by observing the previously approved plans of other agents
in the SBI to avoid conflicts.

TSAP

Agent i ∈ A constructs the first NK ∈ ℤ+ shortest path from
its current location vi

s
 to its destination vi

d
 in the first stage

of TSAP, where vi
d
 is typically the loading, unloading, or

parking location, depending on the progress of the perform-
ing task. Here, we formally define a path as a finite node
sequence r = {v0(= vi

s
), v1,…} where any pair of adjacent

nodes has an edge (vj, vj+1) ∈ E . The distance of path r is
given by

We use Yen’s algorithm (Yen [38]) with the Dijkstra method
among several algorithms for generating the first NK shortest
path. Notably, at this stage, agents only refer to the topologi-
cal structure of G = (V ,E) and do not consider environmen-
tal constraints.

In the second stage, i generates the first NP ∈ ℤ+
lowest-cost action sequences to move along the path
∀rk ∈ {r1,… , rNK

} obtained in the first stage without violat-
ing environmental constraints. Here, cost implies the dura-
tion to complete the action sequences and thus wait action
is not included. We elaborate on the second stage in detail
here. First, to build the action sequences along the path rk ,
agent i generates the weighted state graph Gi = (Vi, Ei) (sub-
scripts are omitted below) from G for the path rk . Its nodes
V ( ⊂ V ×D ) is the set of state nodes � = (v, o) ∈ V and its
edges (�, �) ∈ E ( �, � ∈ V ) is called the transition edge cor-
responding to action, move or rotate , for the transition from �
to � . We have also introduced the edge weight �(�, �) , which
is the required duration of the corresponding action. We have
denoted the search space by (�, t�) using the time t� when i
will reach the state � , and then apply Yen’s algorithm using
A∗ search to build the first NP lowest-cost action sequences.
Furthermore, using distance l = dist(vi

d
, vi

s
) between vi

d
 and

the current node vi
s
 and the difference � between the orienta-

tion required by vi
d
 and current orientation oi

s
 , we define the

heuristic function h for A* search as

Expectedly, the heuristic function h is admissible, as the
costs of actions and environmental constraints are not con-
sidered. Furthermore, since the final node vi

d
 is typically the

loading or unloading node of the material, the required ori-
entation at vi

d
 is typically determined by the task of i. If vi

d

is the parking location, any orientation may be possible or
restricted depending on the shape of the location.

In the second stage, agent i can prune several state nodes
that violate the environmental constraints related to the size
of the material being carried, path width, and its size. Sup-
pose that i, whose state is � = (v, o) at t1 , schedules a state
transition to � = (u, o�) at t2 = t1 + �(�,�) by (�,�) . There-
after, if lt2

i
> Lu or wt2

i
> Wu is satisfied, � will be pruned

because the constraint between the node and agent sizes is
violated. Similarly, if Wuv <∣ l

t1
i
sin d

t1
i
∣ + ∣ w

t1
i
cos d

t1
i
∣ is

satisfied by direction d and orientation o, then move , (�,�)
(i.e., (u, v) ∈ E and o = o� ), is impossible; thus, � after � is
also pruned. Finally, if (�,�) is rotate (i.e., v = u but o ≠ o′ ),

r =

∣r∣∑

l=1

dist(vl−1, vl).

(3)h(l, �) = Tmo(l) + Tro(�).

	 SN Computer Science (2023) 4:8383  Page 6 of 20

SN Computer Science

� may also be pruned, since the insufficient size of v, Lv
and/or Wv , make the corresponding action impossible as
a violation of the rotation constraint. We can identify this
situation by comparing Lv and Wv with lt

i
 and wt

i
 between t1

and t2 . For example, these values are maximum if the agent
shape is square and the orientation of i is 45, 135, 225, or
315 (Fig. 1).

After TSAP, the ordered set of at most NK ⋅ NP action
sequences that are sorted in ascending order by total dura-
tion, Pi = {p1,… , pNK ⋅NP

} , is obtained. Expectedly, its first
action sequence is the minimum cost plan and the best can-
didate. However, it might be selected due to conflicts with
other plans. This kind of conflict is verified in the next phase,
CRCAS. When the obtained plan pi is generated along a path
rk , we denote this relationship as rk = r(pi).

CRCAS

The purpose of CRCAS is that, by accessing the SBI, agent
i selects the plan at the first of Pi and attempts to detect
conflicts between it and the already approved plans being
executed by other agents. Thereafter, i modifies the plan to
resolve the detected conflicts, replaces it with the modified
one, and sorts Pi again. Note that the basic policy for our
strategy of planning is not to modify the already executed
plans. If no conflict is detected in the first element of Pi , it is
the result of CRCAS. The reservation data associated with
the selected plan is then added to the SBI’s RT and the plan
is approved for execution. We have described the structure
of the RT below.

Algorithm 1 Conflict resolution part of PAPO

1: // Pi is the list of the plan generated by TSAP(NK , NP).
2: function CRCAS(Pi)
3: Cmax ← Maximal duration of the plan in Pi

4: while true do
5: if Pi = ∅ then return false // no plan is found.
6: end if
7: Pi is sorted by duration
8: p1 ← the first (shortest duration) plan in Pi

9: C1 ← duration of p1 // Shortest duration in Pi

10: c1 ← (i, j [ts, te], v) // The first conflict in p1 by comparing with
the entries in the RT.

11: if c1 = null then return p1 // Plan p1 will be executed.
12: end if
13: C ← all conflicts occurring at v // so c1 ∈ C
14: cf ← final element (i, k , [ts, te], v) in C after being sorted by the

occurrence order.
15: u ← ekv −siv +1 // where u is the wait length required to resolve cf .
16: if p1 includes wait at v then
17: C1 ← C1 − uv // where uv is the wait length of wait at v .
18: Action wait at v is removed from p1.
19: else
20: w(p1) ← 0 // w(p) may be defined for ∀p ∈ Pi.
21: end if
22: w(p1) ← max{w(p1), u}, umax ← w(p1), C1 ← C1 + umax

23: if C1 ≥ Cmax + β then // where β is the tolerance parameter.
24: Pi ← Pi \ {p1} // abandon p1
25: end if
26: wait(umax) is inserted in p1 before reaching v with the modification

strategy.
27: p1 in Pi is replaced with the modified p1.
28: end while
29: end function

SN Computer Science (2023) 4:83	 Page 7 of 20  83

SN Computer Science

We define conflict as a situation where the same node v ∈ V
is simultaneously occupied by multiple agents. If i starts move
from v to the neighboring node u at time si

v
 , and the occupied

intervals by i for v and u are denoted as [si
v
, ei

v
] and [si

u
, ei

u
] , we

assume ei
v
= si

v
+ Tmo(dist(v, u))∕2 and si

u
= ei

v
 . In the same

way, if i begins rotate , load, unload or wait , at time si
v
 on v, we

can denote the occupied interval of the corresponding action
by [si

v
, ei

v
= si

v
+ T∗] , wherein T∗ is the duration of the corre-

sponding action. Additionally, we add a fixed margin � ≥ 0 to
these intervals for safety, as every agent has a physical size.
For example, si

v
 and ei

v
 are changed using si

v
← si

v
− � and

ei
v
← ei

v
+ � . Thereafter, i creates the following list related to

the node occupancy from plan pk ∈ Pi,

where r(pk) = {v0, v1,… , vi
d
} is the sorted set. This list is

called the occupancy list.
We define that a conflict occurs at node v when two

occupied intervals for v by two agents i, j ∈ A have an
intersection [ts, te] . This conflict is represented by tuple
c = (⟨i, j⟩, [ts, te], v) . RT in the SBI stores the occupancy lists
of the approved plans of other agents. The plan of agent i may
cause a conflict with the plan of another agent k, approved at
the same node v, but since the plans stored in the SBI have
already been approved, the intersection indicating a conflict
will only appear between the two agents. Therefore, for two
conflicts c1 = (⟨i, j⟩, [t1

s
, t1
e
], v) and c2 = (⟨i, k⟩, [t2

s
, t2
e
], v) , they

are always disjoint, i.e., [t1
s
, t1
e
] ∩ [t2

s
, t2
e
] = ∅.

RT is the set of (v, [si
v
, ei

v
], i) in the occupancy list gener-

ated from the approved plans and has not yet expired. There-
fore, the element is removed from RT when ei

v
< tc , where tc

is the current time. Agent i stores all elements of the occu-
pancy list in RT when i’s plan p is approved.

The pseudocode in Algorithm 1 is the overall flow of the
CRCAS algorithm. During the execution of this function,
we assume that an agent has exclusive access to RT in the
SBI. First, agent i calculates the occupancy list for the first
element p1 in Pi generated by TSAP. Thereafter, according
to the order of visiting nodes r(p1) = {v1, v2,… , } , i retrieves
from RT a list whose first element is vl and attempts to
detect conflicts by comparing these lists. If no conflicts are
detected, i will register p1 , which is the result of CRCAS, as
the approved plan into RT (Line 11). Let c = (⟨i, j⟩, [tc

s
, tc
e
], v�)

be the first conflict that is detected at v′ in the visit order,
where j is the agent with the approved plan that conflicts
with p1 and [tc

s
, tc
e
] is the intersection of the time of staying at

v′ for both agents i and j. We define the set of all conflicts at
v′ as C since another conflict with another agent at v′ can also
occur. Subsequently, i sorts C in order of occurrence time
and sets the last element of C as cf (Line 14). Later, i inserts
wait into p1 using the strategy to modify plans as described

((v0, [sv0 , ev0], i), (v1, [sv1 , ev1], i),… , (vi
d
, [svi

d
, evi

d
], i)),

next to ensure that i arrives at v′ after another agent k leaves
v′ (Lines 15, 22, and 26), where ek

v′
 is the leaving time of k

from v′ . Thus, i can avoid at least the detected conflicts.
However, the addition of wait may cause another con-

flict and therefore we have modified the preliminary
PAPO (Yamauchi et al. [37]) to improve the overall effi-
ciency. If wait has already been inserted at v′ in p1 , i elimi-
nates it; otherwise, it initializes w(p1) = 0 , where w(p1)
( = umax ) is the maximal length of wait required to resolve
the conflicts in p1 . Thereafter, i adds wait(umax) because umax
is the smaller but sufficient waiting length required to resolve
cf  ; thus, i can prevent an unnecessarily long wait. However,
with the addition of wait , p1 is abandoned if the duration
of the modified plan is too large for the implementation
(Lines 23 and 24). Note that � is the tolerance parameter for
retaining the selected plan. Next, i sorts Pi again in ascend-
ing order by duration and repeats the same operation until
the first element of Pi , p1 , contains no conflict.

This process will eventually stop; otherwise, if it contin-
ues forever, the duration of plan implementation becomes
larger than Cmax + � , the plan is eliminated from Pi , and
eventually, Pi will become empty. If Pi is empty, i.e., a col-
lision-free plan cannot be generated from the Pi using the
parameters � , NK , and NP , then the function CRCAS returns
a false value. In this case, agent i invokes CRCAS again
with a relaxed condition, i.e., using Pi that is generated by
increasing the values of � , NK , and NP.

Strategy to Modify Plan

Agent i has to determine where to insert wait(umax) before
the node v′ , where the first conflict is detected in plan pi . Let
r(pi) = {v0,… , vl(= v�),… , vn(= vi

d
)} denote the sequence of

visiting node. Agent i can add wait(umax) just before leaving
any node vk ( 0 ≤ ∀k ≤ l − 1 ) before vl . For example, it can
be added to vl−1 , but another conflict may occur somewhere
due to this modification. In particular, if a probability of a
new conflict at vl−1 is expected, a further wait before vl−1 is
needed to avoid it, resulting in a cascade of conflicts that
leads to significant performance reduction. Furthermore,
the required waiting time is likely to be longer because of
the basic policy of CRCAS (not to modify already executed
plans). Conversely, if i inserts wait(umax) when or before
i leaves v0 , i can avoid conflicts without failure. This is
because, according to the well-formed N-MAPD condition
( 3′ ), other agents do not pass through node v0 , and the load-
ing and unloading nodes of the current task � are already
stored in the TEST when i selects it in the task selection
process described below. However, this strategy implies
locking the actions of other agents for a while, which might
reduce the entire performance. This issue may require fur-
ther discussion, but we have tentatively adopted the strategy
of adding wait(umax) to vk , where k = max{l − 3, 0}.

	 SN Computer Science (2023) 4:8383  Page 8 of 20

SN Computer Science

Algorithm 2 Task selection

1: function SelectTask(i) // Called from i ∈ A
2: T ← {τ ∈ T | vldτ and vudτ do not contain in the TEST in the current

SBI.}
3: // Note that τ = (νldτ , νulτ ,Wτ , Lτ , φτ),
4: // νldτ = (vldτ , oldτ) and νulτ = (vulτ , oulτ)
5: if T = ∅ then
6: τ∗ ← arg minτ∈T h(l, θ) // h: heuristic function (Formula 3)
7: T ← T \ τ∗; return τ∗

8: else return false
9: end if

10: end function

Algorithm 3 Path and action planning with orientation

1: function PAPO(i, vs, vd) // Called from i ∈ A
2: // vd: i’s destination and vs: i’s current location
3: while true do
4: Pi ← TSAP(NK , NP)
5: p ← CRCAS(Pi)
6: if p = false then return p
7: end if
8: (β,NK , NP) ← RelaxParam(β,NK , NP)
9: end while

10: end function

Task Selection and Process of PAPO

Agent i returns to its parking location parki if T is empty;
otherwise, i performs the process for task selection. The out-
line of the task selection process in agent i is demonstrated
in Algorithm 2. During this process, i has exclusive access
to the TEST in the SBI. From condition ( 3′ ), i focuses only
on task � = (�ld

�
, �ul

�
,W� , L� ,��) where loading node vld

�
 and

unloading node vul
�

 do not contain in the TEST. Thereafter,
i chooses the task �∗ with the smallest value of the heuristic
function h(l, �) in the A∗-search (Formula 3), where l is the
distance between the loading node vld

�
 and the current node

vi
s
 ( l = dist(vld

�
, vi

s
) ). If there is no such task (Line 8), agent i

returns to parki and remains there for a short while. Later,
if another agent completes its task while i stays there, it is
probable that i can select a task that meets condition ( 3′ ) and
will leave parki.

Agent i calls the function PAPO to generate a collision-
free action sequence after selecting task �i . The pseudoc-
ode of PAPO is presented in Algorithm 3. Let us consider

that vs is the current node and vd is the current destination,
which is one of vld

�
 , vul

�
 , and parki , depending on the task

progress. First, if i succeeds in generating plan p using the
CRCAS and TSAP processes, i begins to move according
to p and removes (�, vd, i) ∈ T × V × A from the TEST. If
not, i invokes the relaxation function RelaxParam, which
modifies the parameter values � , NK , and NP to relax the
conditions for planning and then calls the planning process
again. However, if i has already called RelaxParam sev-
eral times to relax the parameter values, the function PAPO
gives up the execution of �i (i.e. �i is restored to T  ) and sets
vd = parki to make i return to the parking location. This situ-
ation is likely to occur when the number of agents is very
large compared to the current environment size.

There are several strategies to determine the initial val-
ues of � , NK , and NP and how we increment these values.
Smaller values of � , NK , and NP may generate more effective
plans but may fail in generating a plan. Therefore, initially,
it is better to set these parameters to small values and then
gradually increase them if the agent cannot generate a plan

SN Computer Science (2023) 4:83	 Page 9 of 20  83

SN Computer Science

without conflicts. Continuing to increase the parameter val-
ues results in the collision-free plan for i (i.e., completeness
is guaranteed) since the constraints are gradually removed
as the approved plan is executed by other agents and the
occupancy list in the RT is expired over time. Of course, we
also have to consider that the frequent increments of these
parameter values will lead to inefficient planning.

Properties of PAPO

We analyze the properties of PAPO from the viewpoints of
soundness, completeness, and complexity bounds. First of
all, the soundness of PAPO is trivial from Algorithms 1, 2,
and 3 because CRCAS returns the conflict-free path based
on one of the basic paths, which are generated by TSAP,
from the current location to the destinations for the given
task without changing the sequence order of the nodes that
pass through.

For the completeness of PAPO, we first note that the well-
formed N-MAPD condition ( 3′ ) guarantees the existence of
at least one solution in a N-MAPD instance that satisfies
the required environmental constraints. It is obvious that
this solution consists of the finite length of action sequence.
Then, TSAP in PAPO generates the first NK shortest path
and the first NP lowest-cost action sequences in path plan-
ning and then action planning (sequences of actions) to reach
the destination using Yen’s algorithm. Because the values of
the parameters � , NK , and NP are gradually increased by the
relaxation function RelaxParam, and TSAP with Yen’s algo-
rithm will output the paths that follow the nodes appearing
in the solution and CRCAS can find the collision-free action
sequence of the solution. Moreover, as aforementioned in
“Task selection and process of PAPO”, the parameter � is
continually increasing, so that the constraints are gradually
removed as the approved plan is executed by other agents
and the occupancy list in the RT is expired over time. The
well-formed N-MAPD conditions and task selection based
on them allow the agent to stay at its start location for any
finite amount of time so that even in the worst case, the
agent can generate a collision-free plan which moves after
all other agents have completed their movements. Therefore,
the completeness of PAPO is guaranteed.

Finally, we consider the complexity bounds of PAPO
per collision-free action sequence generation of one agent.
Since PAPO eventually covers all solutions by continu-
ally increasing the values of the parameters NK and NP via
RelaxParam, the complexity bounds is O(∣ V ×D ∣2) in the
worst case, as well as naive search in conventional studies.
However, because PAPO explores the search space for the
N-MAPD problem via path planning, action planning, and

conflict resolution in a phased manner, PAPO can signifi-
cantly improve planning efficiency compared to naive search
in many cases.

Experimental Evaluation and Discussion

Experimental Environment and Setting

We conducted many experiments to evaluate the per-
formance of our proposed method, PAPO, using several
N-MAPD instances. Agents carry either small or large mate-
rials that are specified in each N-MAPD task � ∈ T  . We
set the equal numbers of small and large materials to N/2.
The width and length of a large material are W� = 1.0 and
L� = 0.25 and those of a small material �� are W� = 0.5 and
L� = 0.25 , respectively. All agents have the same size that
is specified by Wi = 0.5 , Li = 0.5 . The ratio of the agent’s
length to the length of its fork part is set to � = 0.5.

For our experiments, we have prepared two environments,
Env. 1 and Env. 2, which have maze-like structures inspired
by the construction sites with obstacles such as spaces for
other work, columns, and walls; thus, they have environmen-
tal constraints such as paths widths and nodes sizes. Env. 1
is a maze-like environment wherein the nodes are set at the
ends of edges where agents may load and unload materials,
and at intersections (Fig. 2a). Nodes are divided into two
types: large nodes v with width Wv = 1.5 and length Lv = 1.5
and small nodes v with width Wv = 1.0 and length Lv = 1.0 .
These nodes are indicated as hollow green squares (large
nodes) and green-filled squares (small nodes) in Fig. 2. Simi-
larly, edges are divided into two types: wide edges (u, v) with
width Wuv = 1.0 , depicted by bold black edges, and narrow
edges (u, v) with width Wuv = 0.5 , depicted by gray edges.
The breaks in an edge indicate a length of 1 per one block.
We assume that agents can only wait and rotate at nodes,
but agents with large materials cannot rotate on small nodes
and may have to rotate before passing through narrow edges.

Env. 2 has essentially the same topology as that of Env. 1;
however, more nodes are added on some long edges, and so
it has more nodes that are not at the intersection. Typically,
the narrow and wide edges are connected by these nodes,
and agents carrying large materials may need to rotate at this
node to pass through the narrow edge (Fig. 2b). Rotation at
an intersection requires some time; thus, it might block the
movement of other agents. Initially, a hundred tasks T are
generated, and the pickup and delivery locations of each task
in T are randomly selected from the blue squares. Further-
more, we randomly allocate the initial position of each agent
to its parking location.

	 SN Computer Science (2023) 4:8383  Page 10 of 20

SN Computer Science

We measured four performance indicators, the success
rate for all runs, the total planning time (we call it the plan-
ning time) for all tasks in T  , makespan, i.e., the required
time to complete all tasks in T  , and operational time per
task, which is the average time to complete a task (we call
it the operational time), of our proposed method, and the
comparative methods. Success rate is mainly used for meta-
heuristic optimization methods. Planning time is used for the
evaluation of planning efficiency, makespan is used for the
evaluation of transportation efficiency, and operational time
is used for the evaluation of generated plan quality. Table 1
presents the other parameter values used in our experiments.
Our experiments were conducted on a machine with the fol-
lowing specifications: 3.20-GHz Intel 16-Core Xeon W with
112-GB RAM. The following experimental results are the
averages of 100 independent runs using 100 different ran-
dom seeds. Note that the experimental results are plotted as
the average of all successful runs, except for the success rate.

Performance Comparison — Exp. 1

We have compared the performance of the proposed method,
PAPO, with those of preliminary PAPO (Yamauchi et al.
[37]), the naive centralized method (Yamauchi et al. [37]),
which will be called NAIVE henceforth, and ACO and SA
as the meta-heuristic algorithms, i.e., general incomplete
optimization methods in Env. 1 and Env. 2. NAIVE is a
centralized planner that assumes that the nodes reserved

by the plans of other agents are temporary obstacles for
a certain time interval and generates an optimal (short-
est) and collision-free action sequence whose elements are
{load, unload,move, rotate,wait} in turn. Therefore, each
state is denoted by tuple � = (v, o, t) of node v, agent ori-
entation o, and time t when the agent reaches node v with
orientation o. We describe the ACO and SA algorithms for
the N-MAPD in Appendix B. The values of the parameters
for ACO are N = 10 , I = 25 , S = 1000 , � = 0.9 , � = 0.2 ,
and � = 0.8 , and those for SA are Tini = 10−4 , Tter = 10−7 ,
� = 0.97 , � = 50 , and S = 1000 . We set these parameter val-
ues so that the planning times of ACO and SA were less than
or equal to that of NAIVE, and the number of iterations of
ACO and SA per agent’s plan were almost the same.

All durations of actions in preliminary PAPO, NAIVE,
ACO, and SA are identical to those in PAPO (Table 1).
Under the assumption that the plans already in execution
will not be modified, NAIVE generates an optimal plan.
The initial values of the parameters for PAPO and prelimi-
nary PAPO are � = 100 , NK = 3 , and NP = 3 , and for each
call to the relaxation function RelaxParam, the values of
the parameters increase to � ← � ∗ 2.0 , NK ← NK + 1 , and
NP ← NP . We have plotted the experimental results of Env. 1
in Fig. 3 and the results of Env. 2 in Fig. 4. In Figs. 3b and
4b, the makespan for NAIVE, preliminary PAPO, and PAPO
are too small to be seen graphically. Therefore, we have plot-
ted only the makespan for NAIVE, preliminary PAPO, and
PAPO in Figs. 3c and 4c. We have also plotted the opera-
tional time and planning time only for some of the methods
in Figs. 3e, 3g, 4e, and 4g to improve visibility. Because
the completion of all tasks using NAIVE, ACO, and SA
were very time-consuming, those results are an average of
10 runs.

First, we have compared the performance of the meta-
heuristic optimization methods, ACO and SA, with those
of other methods in N-MAPD. Figures 3a and 4a indicate
that the success rate of NAIVE, preliminary PAPO, and our
PAPO was always 1.0 for both Envs. 1 and 2, regardless of
the number of agents. However, the success rates of ACO
and SA decreased with increasing number of agents for both
Envs. 1 and 2, falling to 0.0 after M ≥ 15 (ACO and SA)

Table 1   Parameter values used in the experiments

Description Parameter Value

No. of agents M 1 to 40
No. of tasks N 100
Orientation/direction increments D 90
Duration of move per length 1 Tmo(1) 10
Duration of rotate Tro(D) 20
Durations of load and unload Tld ,Tul 20
Duration of wait Twa(t) t
Safety intervals � 5

Fig. 2   Two experimental envi-
ronments (blue cells: pickup
and delivery locations, red cells:
parking locations, hollow green
cells: large nodes, green-filled
cells: small nodes, black cells:
wide edges, and gray cells: nar-
row edges)

(a) Env. 1 (b) Env. 2

SN Computer Science (2023) 4:83	 Page 11 of 20  83

SN Computer Science

in Env. 1, and M ≥ 9 (ACO) or M ≥ 15 (SA) in Env. 2. In
ACO and SA, there was no guarantee that agents continued
to wait for conflict avoidance at the planning start location,
including the unique parking location of each agent because
they selected their next transition state probabilistically.
Therefore, even if the environment met the conditions for

well-formed N-MAPD, ACO and SA could not necessarily
solve the N-MAPD instance.

Figures 3b, 4b, 3d, and 4d indicate that the quality of
the generated plans by ACO and SA was lower than that of
the other methods, and that the transportation efficiencies
were also poorer. This is because the N-MAPD problem

Fig. 3   Performance comparison
for Env. 1

(a) Success rate

(b) Makespan (c) Makespan

(d) Operational time (e) Operational time

(f) Planning time (g) Planning time

	 SN Computer Science (2023) 4:8383  Page 12 of 20

SN Computer Science

adds orientation to agent states to account for environmental
constraints, so the number of states is enormous, and proba-
bilistic state transitions in ACO and SA may cause agents to
redundantly transition to the same state. This phenomenon
is also supported by a performance comparison of Envs. 1
and 2. As we will be discussed in more detail below, the
makespan and operational time tend to decrease in Env. 2

compared to Env. 1 in NAIVE, preliminary PAPO, and our
PAPO. In contrast, the makespan and operational time in
Env. 2 increased more than those in Env. 1 for ACO and
SA. This is because Env. 2 added more nodes to some of
the longer edges of Env. 1 to reduce the occurrence of con-
flicts, especially at intersections, and to improve transporta-
tion efficiency. However, the number of states was further

Fig. 4   Performance comparison
for Env. 2

(a) Success rate

(b) Makespan (c) Makespan

(d) Operational time (e) Operational time

(f) Planning time (g) Planning time

SN Computer Science (2023) 4:83	 Page 13 of 20  83

SN Computer Science

increased, resulting in an increased probability of agents
making unnecessary state transitions in ACO and SA.

We may be able to improve the quality of the generated
plans and the transportation efficiency of ACO and SA by
further increasing the parameter value of the number of iter-
ations. However, because there is a tradeoff between solution
quality and planning efficiency, from Figs. 3f and 4f, any
further deterioration in planning efficiency is impractical
for use in an actual environment. Finally, we have compared
the results of ACO and SA and found that the performance
of SA outperformed ACO in all evaluation indicators for
Envs. 1 and 2. This is because when generating the initial
solution, the agent uses heuristic values in SA, but in ACO
there are no pheromones, so the ants make state transitions
completely at random. With completely random transitions,
it is not easy to reach the goal state in an N-MAPD problem
with a large number of states, so the improvement in the
quality of the plan through iterations was limited.

We can observe from Figs. 3c and 4c, Figs. 3e and 4e that
the makespan and operational time of PAPO increased by
approximately 7% compared to those of NAIVE, while from
Figs. 3f and 4f, the planning time of PAPO in both Envs. 1
and 2 was significantly reduced compared to that of NAIVE.
The quality of the solution obtained using NAIVE was very
high because it could generate an optimal plan. However,
the planning time was immense, making its use impractical
in an actual environment. In contrast, PAPO can efficiently

generate sub-optimal but acceptable paths. We suppose that
the transportation efficiency of PAPO can be improved by
adjusting the parameter values, which we have comprehen-
sively discussed in the next section.

Subsequently, for further elucidation, we would like to
compare the improvement of PAPO against preliminary
PAPO. Figures. 3 and 4 indicate that PAPO generated plans
closer to the optimal solution obtained using NAIVE, in
terms of the makespan and operational time, compared
to those generated by preliminary PAPO. Furthermore, it
reduces the planning time compared to preliminary PAPO.
This is the contribution of the improved method of carefully
adding wait by determining the short wait time to resolve
a conflict as described in Sects. 4.2 and 4.3. Therefore, it
resulted in the improvement in both overall transportation
and planning efficiency. Actually, the number of conflicts
detected in Env. 1 was 86086.4 for preliminary PAPO and
75545.97 for PAPO when M = 25 , reducing the occurrence
of conflicts by approximately 12%.

Comparing the results of Env. 1 and Env. 2, the plan-
ning time of PAPO in Env. 2 was almost identical to that in
Env. 1; however, the makespan and operational time were
smaller than those in Env. 1. This is owing to the additional
nodes to some edges in Env. 2. Agents will stay at the current
node when executing rotate and wait ; therefore, if they exe-
cute these actions at intersection nodes, they may obstruct
the movement of other agents for a while. However, they

Fig. 5   Impact of the combina-
tions of the initial values of N

K

and N
P

(a) Makespan (b) Operational time

(c) Planning time (d) Number of conflicts

	 SN Computer Science (2023) 4:8383  Page 14 of 20

SN Computer Science

could reduce the number of such obstructive states by add-
ing nodes where they could rotate and wait. The PAPO with
25 agents ( M = 25 ) realized approximately 24% fewer pos-
sible conflicts 75545.97 in Env. 1 and 57466.89 in Env. 2.
This led to smoother movement of all agents. Moreover, in
Env. 2 when M = 25 , for example, the planning time only
increased by approximately 0.4 s (3%), while the makespan
and operational time were improved by approximately 670
(7%) and 100 (10%), respectively. Note that Tmo(1) = 10 ;
thus, an improvement of 100 in the operational time cor-
responds to a reduction of 10 blocks of movement per task.
This is a considerable improvement in performance.

When 25 agents used NAIVE ( M = 25 ), the makespan
was approximately 775 (9%) shorter (Figs. 3c and 4c) and the
operational time was approximately 73 (8%) shorter (Figs. 3e
and 4e) in Env. 2 than those in Env. 1, while the planning
time increased by approximately 746 s (39%) (Figs. 3f and
4f). Even if there were a few agents, such as M = 2 and 3,
the planning time increased significantly when using NAIVE.
This implies that an increase in the number of nodes has a
significant impact on planning efficiency. Since our N-MAPD
problem deals with a three-dimensional search space com-
prising temporal, spatial position, and orientation, the com-
putational cost rapidly becomes high if the environments
have more nodes. In contrast, we can say that PAPO has suf-
ficient robustness against the increase in the number of nodes

because PAPO could improve the makespan and operational
time with quite a small increase in the planning time.

Characteristics of PAPO — Exp. 2

The purpose of the second experiment (Exp. 2) is to inves-
tigate how the initial values of the three parameters � , NK ,
and NP affect the performance of PAPO. First, we measured
the performance when using the different combinations of
initial values for ( NK , NP ) whose multiplications NK × Np
are identical, such as (1, 4), (2, 2), and (4, 1). Note that the
relaxation function RelaxParam was identical to the one
used in Exp. 1, except that the initial value of � = 100 was
fixed.

Figure 5 presents the plots of makespan, operational time,
planning time, and the number of conflicts detected. From
these results, we observe that the best combination of ( NK ,
NP ) was (4, 1) in Env. 2. This reveals that parameter Nk has
more influence on performance compared to parameter NP .
When the agent is carrying no materials or small materials,
it is not under any environmental constraint even in Env. 2;
therefore, the only conflicts with the plans of other agents
are subject to investigation. Hence, if agents generate more
paths, they can prevent conflicts from occurring. Clearly, if
we fix the parameter value NP , the larger the NK , the smaller
the makespan and operational time.

Fig. 6   Impact of the initial
value of �

(a) Makespan (b) Operational time

(c) Planning time (d) Number of conflicts

SN Computer Science (2023) 4:83	 Page 15 of 20  83

SN Computer Science

The agent may not be able to generate a detour to the
destination even if NK is large. Perhaps, in specially designed
environments, such as automated warehouses, it makes sense
to set NK to be large because there are many detours to the
destination. However, such parameter setting is not always
appropriate because the detours are limited depending on
the environmental structure. As our experimental environ-
ment, inspired from a construction site, is a maze-like envi-
ronment with limited detours, we set NK = 4 , which is not
excessively large, to allow the agent to generate NK different
paths. Therefore, although there is an upper limit of NK that
depends on the environmental structure, a larger NK could
avoid the occurrence of conflicts and contribute to the reduc-
tion in makespan and operational time. Meanwhile, the agent
can generate a variety of action sequences along each path
generated in the first stage of TSAP by simply changing
its rotation timing, without taking the long waiting time or
detours if we set a large NP . Therefore, by setting a larger
NP , it is possible to obtain a shorter collision-free action
sequence. Note that this is dependent on the number of
nodes that agents can rotate/wait and the number of detours.

Moreover, we conducted similar experiments with ini-
tial values of � by setting to 50, 100, 200, 400, and 800;
however, the initial values N

P
= 3 and N

K
= 3 were fixed.

We used the same relaxation function RelaxParam as in
Exp. 1. It can be observed from Fig. 6 that the number of
conflicts and the planning time decrease as the value of �
increases. As � increases, the agents attempt to resolve con-
flicts by adding more wait to the candidate action sequences
generated by TSAP; therefore, the frequency of calls to the
relaxation function RelaxParam decreases. In Env. 2, the
agent is likely to wait at the start node of a plan (i.e., the
pickup or delivery location) or at the node that is added
for Env. 2 before the intersection at which conflicts may
occur because the wait is inserted before the node where
the conflict is detected. As we described in Exp. 1, waiting
at a node that is not an intersection reduces the possibility
of interfering with the actions of other agents. Therefore,
agents could reduce the occurrence of conflicts, resulting
in reduced planning time. However, the excessive use of
the synchronization strategy tends to increase the makespan
and operational time. Thus, we can weigh the importance of
the planning efficiency (planning time), the transportation
efficiency (makespan), and the quality of the generated plans
(operational time) by changing the initial value of �.

Discussion

From these experiments, we found that the proposed method
could significantly improve planning efficiency compared
to NAIVE and transportation and planning efficiency com-
pared to preliminary PAPO, ACO, and SA. In our N-MAPD

problem, which deals with a three-dimensional search space
of temporal, spatial, and orientation, the computational cost
of obtaining a solution is very high, especially when the
number of nodes in the environment is large. However,
unlike NAIVE, which naively explores the search space,
PAPO can efficiently explore the search space by performing
path planning, action planning, and conflict resolution in a
phased manner; therefore, very high planning efficiency was
achieved. Furthermore, if we observe the results in Figs. 3
and 4 when the number of agents M = 15 and the makes-
pan is minimum, PAPO achieved almost the same makespan
and operational time as those of NAIVE, with a significant
reduction in planning time. Therefore, depending on the
structure and size of the environment and the number of
agents, PAPO can achieve similar high transportation effi-
ciency as that of NAIVE, which obtain the optimal solution,
in situations where excessive congestion does not occur.

Moreover, unlike preliminary PAPO, PAPO prevents
excessively long waits by carefully adding waits to the plan.
This not only improves the quality of the generated plans
for the agent in the planning process but also has a positive
impact on subsequent planning for other agents. This implies
that if an agent resolves conflicts with a minimum waiting
time, it can prevent the occurrence of conflicts during the
planning of other agents subsequently, and the increase in
the waiting time to resolve them, in advance. As a result,
PAPO could better improve the overall performance com-
pared to preliminary PAPO.

Conclusion

We first introduced a model, the MAPD in non-uniform envi-
ronment (N-MAPD) problem, inspired by our target appli-
cations at construction sites. An N-MAPD problem is quite
complicated because the orientations and actions of agents
are strictly restricted by the sizes of agents, materials, and
nodes (locations), as well as the width of paths; therefore,
it requires a high computational cost to generate optimal
paths. Thereafter, we developed a planning method, called
path and action planning with orientation (PAPO), which
can efficiently build a non-optimal but acceptable collision-
free plan for N-MAPD problems. The proposed method was
compared with a naive centralized method, meta-heuristic
optimization methods, and preliminary PAPO, our previous
version of the PAPO algorithm (Yamauchi et al. [37]), and
evaluated. Experimentally, we demonstrated that the pro-
posed method can efficiently generate sub-optimal paths of
moderate lengths for real-world applications, and that it has
sufficient robustness to the increase in the number of nodes.
Furthermore, by analyzing the characteristics of the pro-
posed method, we observed that it can determine the weight

	 SN Computer Science (2023) 4:8383  Page 16 of 20

SN Computer Science

of the planning and transportation efficiencies and the qual-
ity of the generated plans by appropriately setting the initial
values of parameters.

To further improve transportation efficiency, we plan to
study the relaxation of the well-formed N-MAPD condi-
tion ( 3′ ). Because of condition ( 3′ ), agents cannot traverse
any other start/goal locations in the N-MAPD problem;
therefore, the upper bound on the number of agents that can
simultaneously execute tasks in an environment depends on
the number of nodes that can be the pickup and delivery
locations of tasks. Furthermore, real-world transport robot
agents occasionally need to recharge or replace their batter-
ies. Therefore, we need to consider that agents have limited-
capacity batteries (i.e., time limit for movement) in future

N-MAPD studies, as in the studies on the multi-agent coop-
erative patrolling problem (Yoneda et al. [39]; Sugiyama
et al. [28]). Finally, our proposed method utilizes and main-
tains a shared SBI to detect and resolve conflicts, similar to a
token in the TP method (Ma et al. [19]) which can be easily
extended to a fully distributed version; a more detailed study
of a fully distributed design is planned for future work.

Appendix A Summary of Notations

To enhance the readability, we list a summary of notations
in Tables 2 and 3.

Table 2   Summary of notations
used in this paper (No. 1)

Notations Meanings

A Set of M agents i, A = {1,… ,M}

T Set of N tasks �j , T = {�1,… , �N}

V, E Set of nodes v and set of edges (u, v), u, v ∈ V

G Undirected connected graph, G = (V ,E)

Wv , Lv Width and length of the node v
Wuv Width of the edge (u, v)
dist(u, v) Length between the centers of u and v in the Euclidean space
t Discrete-time, t ∈ ℤ+ (where ℤ+ is the set of non-negative integers)
dt
i
 , ot

i
(Moving) direction and orientation of agent i at time t

D Orientation/direction increments
D Set of possible orientations
Wi , Li Width and length (or depth) of agent i
wt
i
 , lt

i
x-axis length and y-axis length of agent i at time t

� Ratio of the agent’s length to the length of its fork part
Tro(�) Duration of rotate per rotation angle � ∈ ℤ+

Tmo(l) Duration of move per length l = dist(u, v)

Tld , Tul Durations of load and unload
Twa(t) Duration of wait per waiting time t
parki Parking location of agent i, parki ∈ V

��j
Material that is requested to carry by task �j

vld
�j

 , old
�j

Location and orientation of the loading material ��j

vul
�j

 , oul
�j

Location and orientation of the unloading material ��j

W�j
 , L�j Width and length of material ��j

�j Task specified by (�ld
�j
, �ul

�j
,W�j

,L�j ,��j
) , where �ld

�j
= (vld

�j
, old

�j
) , �ul

�j
= (vul

�j
, oul

�j
)

(�, v, i) Task data being executed by agent i, where v is the i’s destination specified by task �
vi
s
 , oi

s
Current location and orientation of agent i

vi
d

Destination of agent i
NK No. of shortest path from vi

s
 to vi

d

r Path, which is a finite node sequence r = {v0(= vi
s
), v1,…}

NP No. of lowest-cost action sequences to move along the path ∀rk ∈ {r1,… , rNK
}

Vi , Ei Set of state nodes � = (v, o) and set of transition edges (�, �) , �, � ∈ Vi

Gi Weighted state graph generated from G for the path rk by agent i, Gi = (Vi, Ei)

�(�, �) Transition edge weight, which is the required duration of the corresponding action
t� Time when agent i will reach the state �
(�, t�) Search space, where t� is the time when agent i will reach the state �

SN Computer Science (2023) 4:83	 Page 17 of 20  83

SN Computer Science

Appendix B Meta‑Heuristic Algorithms Used
in the Experiments

Ant Colony Optimization for N‑MAPD

We describe the ACO algorithm used for path and action
planning for agent i ∈ A in N-MAPD in this appendix sec-
tion. We define a set of N ants as A = {a1,… , aN} . Agent
i generates the weighted state graph Gi = (Vi, Ei) from a
graph G = (V ,E) . Note that in ACO, unlike PAPO (Sec-
tion. 4.1), i does not use a path to generate Gi ; thus, gener-
ates state nodes for all nodes in V. Ant aj ∈ A moves on Gi

to generate a plan from the current state �i
s
= (vi

s
, oi

s
) ∈ Vi

of i to the destination state �i
d
= (vi

d
, oi

d
) ∈ Vi . We denote

the amount of pheromone on the state node � ∈ Vi as ��
( ≥ 0 ). For ∀� ∈ Vi , �� is initialized with 0. We denote the
total duration by dur(pj) =

∑∣pj∣

l=1
�(�l−1, �l) for the plan

pj = (�0(= �i
s
), �1,… , �i

d
) generated by ant aj . For ∀� ∈ Vi ,

the amount of pheromone �� is updated by

�� ← � ⋅ �� + Δ�, and Δ�j

=

{
1

dur(pj)
(pj ≠ false and � ∈ pj)

0 (otherwise),

Table 3   Summary of notations
used in this paper (No. 2)

Notations Meanings

h(l, �) Heuristic function using distance l and angle � for A* search
Pi Ordered set of at most NK ⋅ NP action sequences, Pi = {p1,… , pNK ⋅NP

}

rk = r(pi) Relationship that the obtained plan pi is generated along a path rk
[si

v
, ei

v
] Occupied intervals from time si

v
 to ei

v
 of node v by agent i

� Safety intervals due to the physical size of agent
[ts, te] Intersection of occupied intervals by two agents
c Conflict of intersection [ts, te] at node v between agents i and j, c = (⟨i, j⟩, [ts, te], v)
(v, [si

v
, ei

v
], i) Reservation data of interval [si

v
, ei

v
] for node v by agent i

tc Current time
Cmax Maximal duration of the plan in the ordered set Pi

p1 First (shortest duration) plan in the ordered set Pi

C1 Shortest duration of the plan in the ordered set Pi

c1 First conflict in plan p1
C Set of all conflicts at node v
cf Last element of the set C sorted in order of occurrence time
u Wait length required to resolve conflict cf
uv Wait length of wait at node v
w(p1) Maximal length of wait required to resolve the conflicts in plan p1 , w(p1) = umax

wait(umax) Waiting action for length umax
� Tolerance parameter for retaining the selected plan
T′ Set of candidate tasks for selection by agent i, T′ ⊂ T

A Set of N ants, A = {a1,… , aN}

�� Amount of pheromone on the state node � ∈ Vi

dur(pj) Total duration of pj
� Pheromone evaporation rate
V� Set of states to which ant aj (or agent j) can transition from state �

p
j
�

Probability that aj (or j) selects � ∈ V� as the next transition state

�� Heuristic value of state �
� , � Parameters that weights the pheromone and heuristic value
I No. of iterations of path and action planning in ACO
S Maximam No. of state transitions
T ,Tini,Tter Current, initial, and terminate temperature
� Cooling rate
f(p) Evaluation function for the solution (plan) p
� Maximum No. of times for generating initial solution in SA
pbst Best solution (plan) of agent in SA

	 SN Computer Science (2023) 4:8383  Page 18 of 20

SN Computer Science

where Δ� =
∑

aj∈A
Δ�j and � ( 0 < 𝜌 < 1 ) is the pheromone

evaporation rate. Note that pj = false means that aj failed to
generate a plan.

Let V𝜈 ⊂ Vi be the set of states to which ant aj can transition
from state � , considering environmental constraints and conflicts
with other agents. The probability pj� that aj selects � ∈ V� as the
next transition state is denoted by

where �� is the heuristic value of state � and � , � are non-
negative real number parameters that weights the pheromone
and heuristic value. We use as heuristic value the inverse of
Formula 3, using the Manhattan distance as the distance l
in terms of computational cost. Ants perform the following
process for plan generation:

pj
�
=

(��)
� (��)

�

∑
��∈V� (���)� (���)�

,

(1)	 Initialize the amount of pheromone on Vi and set the initial
state �i

s
 and the destination state �i

d
 for each ant. Then, repeat

(2) to (4) following I ( > 0 ) times.
(2)	 ∀aj ∈ A selects the next transition state � from V� according

to probability pj� and sets � to the current state of aj.
(3)	 Repeat (2) for all ants until the destination state �i

d
 is reached,

V� = ∅ , or the number of state transitions reaches S, where S
is a threshold parameter to prevent ants from endlessly select-
ing the same state. This means that if ant aj cannot reach �i

d

in S times transitions, then false is set to pj . Furthermore, let
pj = false also for V� = ∅.

(4)	 Update the amount of pheromone �� in ∀� ∈ Vi based on the
plan pj of ∀aj ∈ A.

(5)	 Among all the generated plans, the shortest duration plan p is
output as the plan to be executed by agent i. If all plans fail to
generate, the run is counted as a failure (i.e., the success rate
is reduced).

Algorithm 4 Simulated Annealing for N-MAPD

1: function SA(i, νs, νd) // Called from i ∈ A
2: // νs: i’s current state and νd: i’s destination state
3: // Tini : initial temperature and Tter : terminate temperature
4: // ζ: Maximum number of times for generating initial solution
5: T ← Tini , p ← false, pbst ← false, b ← 0
6: while p = false and b < ζ do
7: p ← GenSolution(i, νs, νd)
8: b ← b+ 1
9: end while

10: if p = false then return false // plan generation failure
11: end if
12: while T > Tter do
13: p ← GenNeighbor(i, νd, p) // p is a neighborhood solution
14: if p = false then
15: ∆E ← f(p)− f(p) // where f is the evaluate function.
16: if ∆E > 0 then
17: p ← p // Update current solution
18: if f(p) ≥ f(pbst) then
19: pbst ← p // Update best solution
20: end if
21: else if rand(1) ≤ exp(∆E/T) then // where rand(1) is a

uniform random number from 0 to 1.
22: p ← p
23: end if
24: end if
25: T ← Schedule(T) // Annealing Schedule
26: end while
27: return pbst
28: end function

SN Computer Science (2023) 4:83	 Page 19 of 20  83

SN Computer Science

Simulated Annealing for N‑MAPD

We describe path and action planning using SA in N-MAPD.
Agent i ∈ A generates the weighted state graph Gi = (Vi, Ei)
from a graph G without using a path similar to ACO, and
generates a plan from the current state �i

s
= (vi

s
, oi

s
) ∈ Vi to

the destination state �i
d
= (vi

d
, oi

d
) ∈ Vi on Gi . The pseudocode

of SA is presented in Algorithm 4. We describe the GenSo-
lution function (Line 7). Let V𝜈 ⊂ Vi be the set of states to
which agent i can transition from state � , considering envi-
ronmental constraints and conflicts with other agents, then i
selects � ∈ V� as its next transition state according to prob-
ability pi

�
= ��∕

∑
��∈V� ��� , where �� is the heuristic value

of the state � and is obtained in the same way as in ACO.
Similarly to ACO, a threshold parameter S is introduced
for the number of state transitions, so that if �i

d
 cannot be

reached after S times transitions, the GenSolution function
returns false as plan generation failure. If the GenSolution
function returns false when generating the initial solution
(plan), the run is considered a failure (i.e., the success rate
is reduced). We use f (p) = 1∕dur(p) as the evaluation func-
tion f for the solution p if p ≠ false ; otherwise, f (p) = −1 .
Agent i performs the following genneighbor function to
generate a neighborhood solution p′

i
 for the current solution

pi = (�0(= �i
s
), �1,… , �i

d
) (Line 13).

(1)	 Using a uniform random number k ∈ ℤ+ from 0 to
∣ pi ∣ −1 , generate p1

i
= (�0, �1,… , �k−1) from pi.

(2)	 Generate a plan p2
i
= (�0(= �k),�1,… , �i

d
) from �k ∈ pi

to �i
d
 by the GenSolution function.

(3)	 Combine p2
i
 at the tail of p1

i
 to generate a neighborhood

solution p�
i
= (�

0
(= �i

s
), �

1
,… , �k−1,�0

(= �k),�1
,… , �i

d
).

Among the many methods available for the schedule func-
tion to schedule annealing (Tsuzuki et al. [31]), we apply
the geometric cooling. Therefore, using the cooling rate �
( 0 < 𝛼 < 1 ), the temperature T is updated by the expression
T ← �T (Line 25).

Funding  This study was funded by JSPS KAKENHI Grant Numbers
20H04245 and 17KT0044.

Availability of Data and Materials  All data presented here are generated
from the simulated environment.

Code Availability  Not applicable.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

	 1.	 Alonso-Mora J, Beardsley P, Siegwart R. Cooperative Colli-
sion Avoidance for Nonholonomic Robots. IEEE Trans Rob.
2018;34(2):404–20. https://​doi.​org/​10.​1109/​TRO.​2018.​27938​90.

	 2.	 Bareiss D, van den Berg J. Generalized reciprocal collision avoid-
ance. Int J Robot Res. 2015;34(12):1501–14. https://​doi.​org/​10.​
1177/​02783​64915​576234.

	 3.	 Barták R, Švancara J, Škopková V, et al. Multi-agent path finding
on real robots. AI Commun. 2019;32(3):175–89. https://​doi.​org/​
10.​3233/​AIC-​190621.

	 4.	 Bellusci M, Basilico N, Amigoni F. Multi-Agent Path Finding in
Configurable Environments. In: Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiAgent Sys-
tems, 2020;pp 159–167.

	 5.	 Boyarski E, Felner A, Stern R, et al. ICBS: improved conflict-
based search algorithm for multi-agent pathfinding. In: Twenty-
Fourth International Joint Conference on Artificial Intelligence
2015.

	 6.	 Boyrasky E, Felner A, Sharon G, et al. Don’t split, try to work it
out: bypassing conflicts in multi-agent pathfinding. In: Twenty-
Fifth International Conference on Automated Planning and Sched-
uling 2015.

	 7.	 Felner A, Stern R, Shimony SE, et al. Search-based optimal solv-
ers for the multi-agent pathfinding problem: Summary and chal-
lenges. In: Tenth Annual Symposium on Combinatorial Search
2017.

	 8.	 Ho F, Salta A, Geraldes R, et al. Multi-agent path finding for
UAV traffic management. In: Proceedings of the 18th interna-
tional conference on autonomous agents and multiagent systems,
international foundation for autonomous agents and multiagent
systems, 2019;pp 131–139.

	 9.	 Hönig W, Kumar TS, Cohen L, et al. Multi-agent path finding with
kinematic constraints. In: Twenty-sixth international conference
on automated planning and scheduling 2016.

	10.	 Huang T, Dilkina B, Koenig S. Learning Node-Selection Strat-
egies in Bounded-Suboptimal Conflict-Based Search for Multi-
Agent Path Finding. In: Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems,
2021;pp 611–619.

	11.	 Kou NM, Peng C, Yan X, et al. Multi-agent Path Planning with
Non-constant Velocity Motion. In: Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems, International Foundation for Autonomous Agents and
Multiagent Systems, 2019;pp. 2069–2071.

	12.	 Krakowczyk D, Wolff J, Ciobanu A, et al. Developing a distributed
drone delivery system with a hybrid behavior planning system.
In: Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), Springer, 2018;pp 107–114.

	13.	 Li J, Surynek P, Felner A, et al. Multi-agent path finding for large
agents. Proc AAAI Conf Artif Intell. 2019;33(01):7627–34.
https://​doi.​org/​10.​1609/​aaai.​v33i01.​33017​627.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TRO.2018.2793890
https://doi.org/10.1177/0278364915576234
https://doi.org/10.1177/0278364915576234
https://doi.org/10.3233/AIC-190621
https://doi.org/10.3233/AIC-190621
https://doi.org/10.1609/aaai.v33i01.33017627

	 SN Computer Science (2023) 4:8383  Page 20 of 20

SN Computer Science

	14.	 Li J, Ran M, Xie L. Efficient trajectory planning for multiple non-
holonomic mobile robots via prioritized trajectory optimization.
IEEE Robot Autom Lett. 2021;6(2):405–12. https://​doi.​org/​10.​
1109/​LRA.​2020.​30448​34.

	15.	 Li M, Qin Z, Jiao Y, et al. Efficient Ridesharing Order Dispatching
with Mean Field Multi-Agent Reinforcement Learning. In: The
World Wide Web Conference, ACM, 2019b;pp 983–994, https://​
doi.​org/​10.​1145/​33085​58.​33134​33.

	16.	 Liu M, Ma H, Li J, et al. Task and Path Planning for Multi-Agent
Pickup and Delivery. In: Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems,
International Foundation for Autonomous Agents and Multiagent
Systems, 2019;pp 1152–1160

	17.	 Ma H, Tovey C, Sharon G, et al. Multi-agent path finding with
payload transfers and the package-exchange robot-routing prob-
lem. In: Thirtieth AAAI Conference on Artificial Intelligence
2016.

	18.	 Ma H, Koenig S, Ayanian N, et al. Overview: Generalizations of
multi-agent path finding to real-world scenarios. arXiv preprint
2017a arXiv:​1702.​05515.

	19.	 Ma H, Li J, Kumar T, et al. Lifelong multi-agent path finding
for online pickup and delivery tasks. In: Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems,
International Foundation for Autonomous Agents and Multiagent
Systems, 2017b;pp 837–845.

	20.	 Ma H, Hönig W, Kumar TS, et al. Lifelong Path Planning with
Kinematic Constraints for Multi-Agent Pickup and Delivery. In:
Proceedings of the AAAI Conference on Artificial Intelligence,
2019;pp 7651–7658, https://​doi.​org/​10.​1609/​aaai.​v33i01.​33017​
651.

	21.	 Machida M. Polynomial-Time Multi-Agent Pathfinding with
Heterogeneous and Self-Interested Agents. In: Proceedings of
the 18th International Conference on Autonomous Agents and
MultiAgent Systems, International Foundation for Autonomous
Agents and Multiagent Systems, 2019;pp 2105–2107.

	22.	 Morris R, Pasareanu CS, Luckow K, et al. Planning, scheduling
and monitoring for airport surface operations. In: Workshops at
the Thirtieth AAAI Conference on Artificial Intelligence 2016.

	23.	 Okumura K, Machida M, Défago X, et al. Priority Inheritance
with Backtracking for Iterative Multi-agent Path Finding. In: Pro-
ceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences
on Artificial Intelligence Organization, 2019;pp 535–542, https://​
doi.​org/​10.​24963/​ijcai.​2019/​76.

	24.	 Okumura K, Tamura Y, Défago X. Time-Independent Planning
for Multiple Moving Agents. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2021;pp 11,299–11,307.

	25.	 Salzman O, Stern R. Research Challenges and Opportunities in
Multi-Agent Path Finding and Multi-Agent Pickup and Deliv-
ery Problems. In: Proceedings of the 19th International Confer-
ence on Autonomous Agents and MultiAgent Systems, 2020;pp
1711–1715.

	26.	 Sharon G, Stern R, Felner A, et al. Conflict-based search for opti-
mal multi-agent pathfinding. Artif Intell. 2015;219:40–66. https://​
doi.​org/​10.​1016/j.​artint.​2014.​11.​006.

	27.	 Silver D. Cooperative Pathfinding. In: Proceedings of the First
AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment. AAAI Press, AIIDE’05, 2005;pp 117–122.

	28.	 Sugiyama A, Sea V, Sugawara T. Emergence of divisional
cooperation with negotiation and re-learning and evalua-
tion of flexibility in continuous cooperative patrol problem.

Knowl Inf Syst. 2019;60(3):1587–609. https://​doi.​org/​10.​1007/​
s10115-​018-​1285-8.

	29.	 Surynek P. On Satisfisfiability Modulo Theories in Continuous
Multi-Agent Path Finding: Compilation-based and Search-based
Approaches Compared. In: Proceedings of the 12th International
Conference on Agents and Artificial Intelligence - Volume 2:
ICAART, INSTICC. SciTePress, 2020;pp 182–193, https://​doi.​
org/​10.​5220/​00089​80101​820193.

	30.	 Tang S, Kumar V. Safe and complete trajectory generation for
robot teams with higher-order dynamics. In: 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
2016;pp 1894–1901, https://​doi.​org/​10.​1109/​IROS.​2016.​77593​00.

	31.	 Tsuzuki MdSG, de Castro Martins T, Takase FK. ROBOT PATH
PLANNING USING SIMULATED ANNEALING. IFAC Pro-
ceedings Volumes. 2006;39(3):175–80. https://​doi.​org/​10.​3182/​
20060​517-3-​FR-​2903.​00105, https://​www.​scien​cedir​ect.​com/​
scien​ce/​artic​le/​pii/​S1474​66701​53582​50, 12th IFAC Symposium
on Information Control Problems in Manufacturing.

	32.	 Veloso M, Biswas J, Coltin B, et al. CoBots: Robust Symbiotic
Autonomous Mobile Service Robots. In: Proceedings of the 24th
International Conference on Artificial Intelligence. AAAI Press,
IJCAI’15, 2015;pp 4423–4429.

	33.	 Wang H, Rubenstein M. Walk, Stop, Count, and Swap: Decen-
tralized Multi-Agent Path Finding With Theoretical Guarantees.
IEEE Robotics and Automation Letters. 2020;5(2):1119–26.
https://​doi.​org/​10.​1109/​LRA.​2020.​29673​17.

	34.	 Wang KHC, Botea A. MAPP: a scalable multi-agent path planning
algorithm with tractability and completeness guarantees. J Artif
Intell Res. 2011;42:55–90.

	35.	 Wurman PR, D’Andrea R, Mountz M. Coordinating hundreds
of cooperative, autonomous vehicles in warehouses. AI Magn.
2008;29(1):9–9. https://​doi.​org/​10.​1609/​aimag.​v29i1.​2082.

	36.	 Yakovlev. K, Andreychuk. A, Rybecký. T, et al. On the Applica-
tion of Safe-Interval Path Planning to a Variant of the Pickup
and Delivery Problem. In: Proceedings of the 17th International
Conference on Informatics in Control, Automation and Robotics
- Volume 1: ICINCO, INSTICC. SciTePress, 2020;pp 521–528,
https://​doi.​org/​10.​5220/​00098​88905​210528.

	37.	 Yamauchi T, Miyashita Y, Sugawara T. Path and Action Plan-
ning in Non-uniform Environments for Multi-agent Pickup
and Delivery Tasks. In: European Conference on Multi-Agent
Systems, Springer, 2021;pp 37–54, https://​doi.​org/​10.​1007/​
978-3-​030-​82254-5_3.

	38.	 Yen JY. Finding the k shortest loopless paths in a network. Manag
Sci. 1971;17(11):712–6. https://​doi.​org/​10.​1287/​mnsc.​17.​11.​712.

	39.	 Yoneda K, Sugiyama A, Kato C, et al. Learning and relearning
of target decision strategies in continuous coordinated cleaning
tasks with shallow coordination1. Web Intell. 2015;13(4):279–94.
https://​doi.​org/​10.​3233/​WEB-​150326.

	40.	 Yoshida N, Noda I, Sugawara T. Multi-agent Service Area Adap-
tation for Ride-Sharing Using Deep Reinforcement Learning. In:
International Conference on Practical Applications of Agents and
Multi-Agent Systems, Springer, 2020;pp 363–375, https://​doi.​org/​
10.​1007/​978-3-​030-​49778-1_​29.

	41.	 Zhang H, Li J, Surynek P, et al. Multi-Agent Path Finding with
Mutex Propagation. In: Proceedings of the International Confer-
ence on Automated Planning and Scheduling, 2020;pp. 323–332.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/LRA.2020.3044834
https://doi.org/10.1109/LRA.2020.3044834
https://doi.org/10.1145/3308558.3313433
https://doi.org/10.1145/3308558.3313433
http://arxiv.org/abs/1702.05515
https://doi.org/10.1609/aaai.v33i01.33017651
https://doi.org/10.1609/aaai.v33i01.33017651
https://doi.org/10.24963/ijcai.2019/76
https://doi.org/10.24963/ijcai.2019/76
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1007/s10115-018-1285-8
https://doi.org/10.1007/s10115-018-1285-8
https://doi.org/10.5220/0008980101820193
https://doi.org/10.5220/0008980101820193
https://doi.org/10.1109/IROS.2016.7759300
https://doi.org/10.3182/20060517-3-FR-2903.00105
https://doi.org/10.3182/20060517-3-FR-2903.00105
https://www.sciencedirect.com/science/article/pii/S1474667015358250
https://www.sciencedirect.com/science/article/pii/S1474667015358250
https://doi.org/10.1109/LRA.2020.2967317
https://doi.org/10.1609/aimag.v29i1.2082
https://doi.org/10.5220/0009888905210528
https://doi.org/10.1007/978-3-030-82254-5_3
https://doi.org/10.1007/978-3-030-82254-5_3
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.3233/WEB-150326
https://doi.org/10.1007/978-3-030-49778-1_29
https://doi.org/10.1007/978-3-030-49778-1_29

	Efficient Path and Action Planning Method for Multi-Agent Pickup and Delivery Tasks under Environmental Constraints
	Abstract
	Introduction
	Related Work
	Background and Problem Formulation
	Problem Formulation for N-MAPD
	Well-Formed N-MAPD Problem Instance

	Proposed Method
	TSAP
	CRCAS
	Strategy to Modify Plan
	Task Selection and Process of PAPO
	Properties of PAPO

	Experimental Evaluation and Discussion
	Experimental Environment and Setting
	Performance Comparison — Exp. 1
	Characteristics of PAPO — Exp. 2
	Discussion

	Conclusion
	References

