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Abstract
Many real-world mobile or robotic vision systems encounter the problem of occlusion or unfavorable viewpoint in performing 
their tasks. A remedy to this issue is active vision, i.e. physically moving the camera or employ another camera to provide 
other viewpoints that hopefully provide more information for the task at hand. In the case of object recognition, an active 
vision system can help by offering classification decisions from another viewpoint when the current recognition confidence 
is low. A natural question, however, would be which next viewpoint is more effective in improving the object recognition 
performance. To determine the next best view, previous approaches either need multiple captures of the same object in speci-
fied poses, training datasets of 3D objects, or construction of occupancy grids. These methods are consequently computation, 
data, or observation intensive. In this paper, we propose a next best view method for object recognition that does not need 
any information about objects in other viewpoints, their 3D shape, or multiple prior observations to function properly. The 
proposed approach analyzes the object’s appearance and foreshortening in the current view to rapidly decide where to look 
next. Test results show its efficacy in correctly selecting the viewpoints that improve the object recognition performance more.

Keywords Active vision · Next best view · Object recognition · View planning · Foreshortening · Classification 
dissimilarity · Robotics

Introduction

Mobile intelligent systems depend on sensing their envi-
ronment to act informed. Among the sensing modalities, 
vision plays a crucial role. However, for a vision system 

there can be difficulties in real-world situations where cap-
turing the most useful information is deterred in the absence 
of a good viewpoint. Insufficient discriminative features due 
to poor lighting, insufficient image resolution, or unfavorable 
viewpoints of the object, as well as presence of occlusion 
are some of the characteristics of a suboptimal viewpoint. 
A workaround to this issue is active vision, wherein new 
visual sensory information are obtained to enhance the per-
formance of a vision system. More details about the idea 
of active vision can be found in [1]. Active vision has two 
major domains of application: three-dimensional (3D) object 
reconstruction and object recognition. Active object recogni-
tion (AOR) routines, which are the focus of our work, gen-
erally encompass uncertainty evaluation, physical camera 
repositioning, and information fusion [2]. In the case of an 
uncertain recognition of an object in the current viewpoint, 
an AOR system moves the camera to a new position and 
orientation with respect to the object of interest to fuse the 
recognition outputs in the new perspective with the ones 
from the earlier viewpoint. An example of an AOR system 
can be found in our previous paper [3], in which a humanoid 
robot uses an arm-mounted camera to capture new views 
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of objects that it cannot discern initially through its head 
camera.

In order to move the camera, an active vision system 
needs to first evaluate the effectiveness of the new view-
point from the new camera pose. Accordingly, a viewpoint 
that provides more useful information is preferred. Finding 
next best view (NBV) in a single shot, however, is an ill-
posed task as an active vision system needs to decide where 
to look next based on only the current viewpoint, which is 
insufficient for deterministically inferring that. The goal of 
the vision defines the way a NBV method is designed. For 
3D reconstruction, next viewpoint is desired to reveal unob-
served surfaces of an object, thus their typical goal is not to 
plan for a single new viewpoint, but to plan for a sequence 
of NBVs to completely observe the volume of an object. In 
contrast, for object detection and recognition applications, 
obtaining new discriminative features to enhance the recog-
nition performance, while keeping the time and energy costs 
of camera movements lower by fewer camera relocations, are 
intended. In this work, we propose and evaluate a next best 
view method for active object recognition that plans for only 
a single new frame to be captured.

As detailed in “Previous Work”, earlier work related to 
finding the next best view can be grouped into two classes: 
space occupancy-based and object estimation-based tech-
niques. Computing occupancy of 3D space through ray 
tracing and subsequently evaluating information gain in 
various possible viewpoints is inherently advantageous for 
3D reconstruction purposes, because it attempts to discover 
more surface voxels than discriminative features for clas-
sification. On the other hand, object estimation techniques 
try to assume the 3D shape of the current object based on the 
current viewpoint, or compare the current object appearance 
and/or shape to the ones seen in the training time to deduce 
the best course of action by comparing various hypothetical 
viewpoints. The basic drawback to these methods, however, 
is that they either require several observations or rely heav-
ily on the existence of large datasets of object volumes or 
images taken around the objects in predefined viewpoints. 
The errors induced by the inaccuracies in predicting the 
object shape or appearance from unseen directions also con-
stitute another set of problems with these methods.

In this paper, a single-shot next best view method 
for object recognition is presented. It plans for one new 
viewpoint based on the shape and appearance cues of the 
currently visible object to enhance the object recognition 
performance when necessary. The proposed NBV method 
does not depend on a prior dataset of 3D object volumes 
or any particular set of images taken around the object for 
training. Instead, it employs conventional datasets (i.e. a 
collection of random images of objects) merely for the 
training of the classifiers. To save time and energy for 
camera motion, the proposed NBV also does not require a 

chain of camera movements toward or around the object. 
To accommodate these characteristics, an ensemble of 
shape and appearance criteria is utilized in our work to 
analyze the current viewpoint and suggest a new view-
point. The criteria take into account foreshortening, clas-
sification dissimilarity between the current view and a part 
of it, and texture variance. Additionally, we gathered a 
dataset to test the proposed method in a systematic and 
reproducible fashion. In our tests, the proposed NBV 
method proves to be effective in predicting next best view 
among a set of pre-selected test-time poses around the 
object.

Here, we describe an extension of our earlier work [4, 5] 
with enhancements in the employed techniques and improve-
ments in the performance. The main contributions of the 
current work are: 

1. A novel next best system is proposed exclusively for the 
task of object recognition.

2. The proposed NBV depends only on the current object 
shape and appearance, hence no prior knowledge of 
objects is necessary.

3. No specially designed datasets are needed for the next 
best view determination. Only traditional object classi-
fiers are trained.

4. A small test dataset was gathered to efficiently and in a 
reproducible way test the proposed next best view sys-
tem. It contains images captured around various objects 
in different lighting and background situations and can 
be used by other researchers as a benchmark.

5. Experimental results verify the performance improve-
ment after fusion of views among a pre-defined set of 
possible camera poses.

Compared to our earlier work [4, 5], the current paper incor-
porates the following new features: 

1. We investigated the contribution of various criteria to 
the overall results in order to achieve the best trade-off 
between accuracy and computation time. In the current 
work, we reassessed the viewpoint criteria being used by 
our method and optimized the number of components in 
the current ensemble to three. For example, in the pre-
vious work the ensemble of criteria contained the third 
moment of histogram as a texture analysis criterion, 
which we found having least contribution to the over-
all results, partially due to the correlation to the texture 
variance criterion.

2. The classification dissimilarity criterion is updated in 
the new method to use Kullback–Leibler divergence 
instead of sum of squared differences, which we found 
to improve performance.
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3. In contrast to the hard voting mechanism of the previous 
method, where each criterion casts the most preferred 
tile as its single vote, the presented work employs soft 
voting to take into account the preference order of all 
tiles for each viewpoint criterion.

The remainder of the paper is organized as follows. Previ-
ous work in the literature on the topic of next best view is 
reviewed in the subsequent section. An overview of the steps 
in an active vision system for object recognition is discussed 
in “Active Vision for Object Recognition”. The proposed 
next best view system is presented in “The Next Best View 
Method”. “Experimental Results” describes the test bench-
marks and demonstrates the obtained results. Lastly, con-
cluding remarks are discussed in “Conclusion”.

Previous Work

Studying the literature portrays a few directions in the area 
of next best view. A deep belief network is presented in [6] 
to “hallucinate” the whole object shape and appearance in 
the presence of occlusion. For any hallucinated 3D shape, 
the uncertainty of recognition is computed in different pre-
defined camera poses via the conditional entropy of output 
classifier probabilities. The viewpoint with the least uncer-
tainty is then selected for the next view. Although interest-
ing, the idea of examining various hypothetical viewpoints 
of an object in [6] has a major flaw in depending heavily 
on the estimation of the object shape and appearance in the 
unobserved occluded areas, which can be a large source of 
errors. In another deep learning-based work [7], raw point 
cloud data and current view selection states are taken as 
input to subsequently predict the information gain of all 
candidate views. The work in [8] presents a meta-learning 
based few-shot learning model to decide on a set of glimpses 
around an object to determine the object category. It is an 
answer to the issues, such as large amount of data needed in 
methods like [6].

Rearranging depth camera positions based on a bio-
inspired approach by imitating barn owls’ head motions to 
actuate a depth camera installed on a robot is examined in 
[9] for 3D reconstruction of objects. Mimicking motions of 
active perception attempts of a biological being in [9] looks 
promising. Yet it finds NBV regardless of the object shape 
and appearance, which can cause missing some important 
clues in determining the next best view. In [10], an active 
pose estimation and object detection framework with 
dynamic camera location planning is described to balance 
the odds of object detection enhancement and the energy 
needed to move the camera. An Asus Xtion RGB-D camera 
mounted on the PR2 robot’s wrist was used as the sensor, 

while a sequence of captures are planned along the fast-
est way the camera is moved toward the object. The active 
vision system of [10], although multi-capture, does not con-
sider the object shape and appearance and merely moves 
the camera towards an object, hence it does not have any 
intelligent viewpoint selection component.

A trajectory planning technique for an eye-in-hand 
vision system on a PR2 robot is presented in [11] to boost 
the expected number of voxel observations by searching 
for maximum local information gain. In continuation to the 
work of [11], a next best view method for 3D reconstruction 
applications on the basis of predicting information gain from 
prospective viewpoints is proposed in [12]. To predict the 
information gain in unobserved areas, an occupancy grid 
is formed out of all the observations so far, and a Hidden 
Markov Model (HMM) is used to estimate the observation 
probability of unobserved cells in the grid. The NBV in [13] 
estimates desirability of any potential viewpoint by directly 
estimating the classification probabilities of different views 
instead of rendering their hypothetical object appearances 
to compute the information gain in each view. Despite over-
coming the problem of computationally expensive render-
ings of hypothetical 3D objects, this approach requires 3D 
training data for every test object and performing classifica-
tion and confidence estimation for every viewpoint of the 3D 
objects in the training. This prerequisite significantly affects 
the functionality of the technique due to the scarcity of such 
training data for many real-world objects.

In [14], the NBV algorithm simply chooses the viewpoint 
with most unknown voxels as the best one to explore for 
3D scanning. A path planning algorithm is used in [15] to 
construct a path tree to completely explore the area around 
an aerial vehicle. The nodes in the tree are poses in the free 
space. In each step, only the best node under the root of the 
tree is chosen for the movement. After any move, a new tree 
is constructed. The preference in selecting a node is based on 
the number of unobserved 3D volume that can be observed 
in the corresponding camera pose. An eye-in-hand vision 
system is proposed in [16] that uses multiple simultane-
ously-captured views, scene segmentation, and an objective 
function applied to each perspective to estimate a gradient, 
representing the direction of the next best view. Relevantly, 
a multi-sensor NBV method is presented in [17], which was 
tested for both 3D reconstruction and weld seam inspection.

A boosting technique is proposed in [18] to combine three 
criteria for determining the NBV around objects. The first 
criterion compares the similarity of the current object with 
prerecorded object appearances in different views and selects 
the one with the least similarity. The other two criteria for 
choosing NBV are the prior probability of a viewpoint in 
successfully determining the object class given either a cur-
rently detected object pose or a currently detected object 
category. Aside from the priors, which are application data 
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specific, using a similarity measure between the current 
viewpoint of an object and its other viewpoints requires a 
dataset made of images around the training objects with their 
known pose. This can be practically burdensome as there is a 
need to capture poses and appearances all around the objects 
that are to be detected at test time.

In [19], next best view is used for calibrating and oper-
ating a multi-camera 3D hyperspectral scanner. In another 
work [20], NBV is incorporated for sketch shape retrieval to 
select the candidate projection of 3D shapes to extract their 
features and compare them to a sketch. In order to construct 
3D models of objects using depth images, captured by a 
team of robots, the NBV presented in [21] employs a utility 
function that scores sets of viewpoints and avoids overlap 
between multiple sensors. Improvement in robotic grasp 
detection by using NBV to provide informative viewpoints 
in cluttered scenes is reported in [22]. In [23] an unmanned 
aerial vehicle (UAV) equipped with NBV was reported for 
3D reconstruction of large structures. Likewise, in [24] an 
autonomous underwater vehicle (AUV) is programmed 
to choose its next viewpoint optimally to map or inspect 
complex underwater structures. The utility function in [23], 
considers four criterion categories to compute NBV: traveled 
distance, information theory, model density, and predictive 
measures based on symmetries in the structure.

Active Vision for Object Recognition

Active object recognition has been adopted in robotic, 
vision-based surveillance, and several other applications. 
Figure 1 demonstrates the flowchart of a typical AOR sys-
tem. After preprocessing operations, such as denoising, the 
process begins with an object recognition stage using the 
current point of view. Later, the confidence of the classifi-
cation results of the initial recognition round is evaluated. 
Whenever the recognition is deemed uncertain (i.e. a low 
confidence value), the active vision mechanism is set off. 
First, it plans the new camera pose based on the principles 
of a next best view method, which is the subject of the work 
proposed here. A camera is then moved to the specified posi-
tion and orientation. The camera being moved can be the 
same camera that captured the initial view, or it can be a 
secondary camera employed to achieve a concurrent capture 
mechanism.

With a camera now in place in the pose determined by 
the NBV system, the object recognition is performed once 
again. Henceforth, detected objects in the two camera views 
are matched to form pairs of object classification decisions 
for a later fusion step. Depending on the availability of 
frame transformations and the application, the matching 
can be achieved through a purely vision-based object/key-
point/pixel correspondence operation or through the 3D 

geometric transformation between the camera poses in a 
sensor-equipped robotic system.

To combine the classification results and obtain the 
final probability vector of the object categories, each 
matched object classification pair is proceeded into a 
decision fusion module. The fusion module then takes the 
class probabilities of the two classifiers and fuse them to 
yield the output class probabilities. For more information 
regarding active object recognition in a robotic platform, 
refer to our previous paper [3].

The Next Best View Method

The proposed method only assumes the availability of 
color and depth information of the initial camera view to 
find a candidate viewpoint in a single try after the initial 
capture. For rigorous testing purposes, the NBV method 
can select among a set of pre-specified poses that are ordi-
narily reachable for UAV or eye-in-hand platforms. In the 
current implementation, the poses around any object are 
grouped into eight clusters, all of them on the plane that 
passes through the object and is parallel to the image plane 
of the camera at the initial viewpoint. A camera in the pos-
sible poses in each group generally views the same part 
of the object. For instance, a next viewpoint can be one 
of the poses that are looking at the top left of an object, 
which means a camera on the aforementioned plane and in 
the top left of the object is looking at it. It is worth noting 
that the number of pose groups around an object can be 
increased if it is necessary depending on the application.

Viewpoints at the same depth as an object in the cam-
era coordinate of the initial view, which are considered 
in the proposed NBV, are reasonably accessible for many 
eye-in-hand arrangements, while at the same time can pro-
vide substantially new information from a view direction 
perpendicular to the initial one. A camera in a pose from 
a depth less than the object’s depth will probably have 
overlapping field of view on the object’s surface with the 
initial frontal view and see the same features of the object. 
In contrary, any pose with a depth farther than the object 
will see behind the object, hence offering a perspective 
with new features. Notwithstanding the desirability of that, 
this approach has two disadvantages. First, it is difficult to 
reach by a robotic system. Many robotic arms do not have 
the degrees of freedom to move an arm-mounted camera 
to an orientation facing back of an object, thus facing the 
robot itself, at a large distance from the robot. Since the 
object’s thickness is unknown in a single frontal shot, it is 
also challenging to plan for a pose behind an object for an 
unmanned aerial vehicle or a freely moving camera unit. 
The second reason is that for a single NBV based on the 
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current frontal view of an object, the viewpoint quality of 
the self-occluded area behind the object for active object 
recognition is not known. As a result of the aforemen-
tioned issues, viewpoints that try to observe behind an 
object are not considered as the next viewpoint candidates.

Pose Representation by Splitting the Initial 
Viewpoint

In the proposed method, the object bounding box, being 
generated by any desirable object detection procedure, is 

divided into different regions, tiles, that cover the entire 
area of the bounding box in a non-overlapping style. 
The splitting scheme in the proposed method is shown 
in Fig. 2. Every bounding box is divided into nine tiles 
in the current implementation, where each of the eight 
peripheral tiles corresponds to one of the pose groups of 
a camera around the object. For example, the top left tile 
represents a point of view when the camera is viewing 
the object from the object’s top left with the same depth 
with respect to the camera as the object itself in the cam-
era coordinate of the initial view. The camera in the new 

Fig. 1  Active object recognition 
steps
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orientation can be placed at any arbitrary distance from 
the object surface it is observing, given that the pose is 
feasible for the camera setup, object surface is entirely 
visible from that distance, and the image resolution of the 
camera is satisfactory for capturing a clear image of the 
object. Figure 3 illustrates this example situation.

With the splitting scheme comes the opportunity of ana-
lyzing each tile of the current view separately in the hope of 

revealing clues to a more informative NBV, corresponding 
to the same side of the object it is representing, that conse-
quently contributes to a better overall recognition performance. 
In contrast to methods of [12–15] that simply try to look at 
unobserved voxels, the proposed approach attempts to further 
qualify its decision based on what is currently being observed. 
Moreover, the proposed method differs from techniques of [6, 
13] that hypothesize the object shape as a part of their NBV 
prediction process, because instead of requiring inference of 
explicit information about the entire shape, appearance, and 
relative pose of the objects, it only utilizes limited cues directly 
available in the initial view.

The Ensemble of Viewpoint Criteria

A weighted voting mechanism among three criteria in the 
proposed method selects the peripheral tile with the highest 
votes. Each of the three criteria cast their votes according to 
the preference they give to the tiles. The lowest ranked tile 
gets no votes, while others get one more vote than their less 
preferred one. One criterion statistically analyzes the texture 
of a tile. Another one considers the classification dissimilarity 
between a tile and the entire object, whereas the third criterion 
evaluates the foreshortening of the object to estimate how vis-
ible its surface is in the initial view. The three voting criteria 
are explained in detail in the following three subsections.

Second Moment (Variance) of Histogram

Among other cases, active object recognition may prove help-
ful when the object being observed is not clearly recogniz-
able due to occlusion, lighting conditions, object shape, etc. 
One way to confront these situations can be to shift the view 
toward poses that are likely to provide better quality images. 
To this end, the second moment (variance) texture analysis 
tool is utilized. In this work, it is computed from the intensity 
histograms of each tile’s image to facilitate its faster process-
ing. A high-contrast image has a higher chance of contain-
ing more features than a uniform one. The second moment or 
variance of intensity histogram is a measure of contrast of an 
image [25]. The variance of an intensity histogram is defined 
in (1) [25].

In the equation, �2(z) is the variance of intensity levels (z), 
which is identical to the second moment, �2(z) . In Addi-
tion, L represents the total number of intensity levels in the 
histogram, i is the index of the current intensity level, p(zi) 
is the probability of an intensity level, and m is the mean of 
intensities, computed as follows:

(1)�2(z) = �2(z) =

L−1∑
i=0

(zi − m)2p(zi)

Fig. 2  Tiling pattern in the proposed next best view system

Fig. 3  An example next viewpoint selection situation, where the top 
left tile is selected and consequently the secondary viewpoint is look-
ing at the object from its top left



SN Computer Science (2023) 4:51 Page 7 of 20 51

SN Computer Science

The second moment should be ideally high, because a 
greater �2(z) means higher contrast and perhaps more fea-
tures, with which a tile can be a cue to a feature-rich side-
ways surface for a good next viewpoint. It is also worth 
mentioning that, because the second moment and the third 
moment-based criteria result in similar scoring of tiles in a 
bounding box, in contrast to the earlier version of the pro-
posed method [4, 5] we only use second moment of histo-
gram to prevent overemphasizing statistical texture analysis 
in the voting ensemble of criteria.

Foreshortening Score

By taking into consideration that we examine all criteria on 
the periphery tiles of an object’s bounding box, an object 
surface that is nearly parallel to the image plane of the cam-
era in the initial viewpoint will probably be easily visible to 
the sensor. Oppositely, a peripheral surface with a perspec-
tive to the current view, exhibits foreshortening and is likely 
to be less visible in the current view as its surface is tilted. 
Based on this idea, the foreshortening score measures how 
much foreshortening is present, or in other words how par-
allel the object surface being seen in a tile is to the image 
plane of the 3D camera observing the object. Assuming the 
depth map of a tile is segmented, and the object surface 
constitutes the foreground pixels, the foreshortening score 
is defined in the following:

where P is the foreshortening score, p is a pixel in the cur-
rent tile, F is the set of foreground pixels, |F| shows the num-
ber of pixels in the tile that are designated as foreground, N() 
is a vector normalization function, and z⃗ is the depth axis 
in the camera coordinate of the initial view. The derivatives 
of depth (z) with respect to x and y axes for a certain pixel 
(xp, yp) in the pixel coordinate of the initial view are calcu-
lated in the following way:

In (4) and (5), z(., .) denotes the depth at a pixel of the depth 
map. To compute the score, the camera capturing the initial 

(2)m =

L−1∑
i=0

zip(zi)

(3)

⎧⎪⎨⎪⎩
P = 1 −

∑
p∈F N

�
�������������⃗(
dz

dxp
,
dz

dyp
,1)

�
.⃗z

�F� �F� ≠ 0

P = 0 �F� = 0

(4)
dz

dx

|||x=xp= z(xp + 1, yp) − z(xp − 1, yp)

(5)
dz

dy

|||y=yp= z(xp, yp + 1) − z(xp, yp − 1)

view should provide 3D depth data to make it possible to 
obtain a depth map. It is common for ordinary 3D cameras 
to produce small spots of unknown values spread over their 
generated depth map, for which the camera is not able to 
compute the depth. To overcome this issue, the unknown 
values are replaced with the maximum known depth in the 
current tile. Because we are presuming the background 
has more depth than the object surface, the substitution of 
unknown values with maximum depth effectively marks 
them as background. Usually, actual object surfaces do not 
completely fill their bounding boxes, which means object 
bounding boxes contain areas showing other unintended 
entities, i.e. background. To prevent the background areas 
from affecting the foreshortening score, an input depth map 
passes through a segmentation step before being considered 
for its surface foreshortening. In our work, we opted for 
Otsu’s segmentation [25], but any well-performing binary 
segmentation method might be used. The foreground areas 
(F) that are obtained through Otsu’s segmentation are then 
assumed to represent the object surface and are used in (3).

The term N
(
���������������������⃗(

dz

dxp
,

dz

dyp
, 1
))

 in (3) computes the surface 

normal for every foreground pixel in the depth map. The inner 
product of the surface normal and the z axis of the camera 
coordinate measures how parallel are the object surface and 
the image plane of the camera in the initial view, effectively 
quantifying inverse foreshortening of the object. Ultimately, 
to find the average foreshortening of the object surface to the 
camera, the results of the inner products are averaged over all 
the foreground pixels and later negated. The proposed score 
prefers a tile when its score is higher. In the case of no fore-
ground pixels in a tile (i.e. no object surface), the score is set 
to the least possible value, zero, as the foreshortening criterion 
would not have any clue of the object surface in the tile.

Classification Dissimilarity

In the event of an uncertain recognition by an AOR system, 
locating the tiles that contribute more to the uncertainty of the 
initial view by not confirming the initial view’s recognition can 
constitute a promising NBV strategy. Incidentally, if a tile’s 
recognition is in agreement with the recognition results of the 
whole initial view, the prospect of finding new information is 
less compared to an opposing classification. Therefore, the 
classification dissimilarity opts for the contradicting tiles to 
take a new look from their respective direction. Accordingly, 
we adopted Kullback–Leibler divergence of class probabilities 
to calculate the classification dissimilarity (6).

(6)DKLj
=
∑
i∈G

pc
o
(i) × log pc

o
(i) −

∑
i∈G

pc
o
(i) × log p

cj

tj
(i)
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where DKLj
 is the dissimilarity score (Kullback–Leibler 

divergence) between the tile j and the complete object image, 
G represents the set of object classes, and pcj

tj
(i) and pc

o
(i) are 

probabilities of a class i after classifying the tile j and the 
whole object image by the classifiers trained for tile j ( cj ) 
and the whole object (c), respectively. The c and cj are con-
ventional classifiers, trained with color images of objects, 
with the difference that cj only uses the portion of images 
related to tile j, while c considers the whole object images 
in the training. The existence of separate classifiers for every 
tile makes the tile classification more accurate compared to 
the case of only using a single classifier for all the tiles.

The proposed dissimilarity score is an improvement over 
our previous work [4, 5], where sum of squared differences 
(SAD) of the classification probabilities of a tile and the 
whole object image was used for scoring the classification 
dissimilarity. SAD is defined in the following.

Experimental Results

To test next best view techniques, and more generally active 
object recognition methods, standard test benchmarks are 
necessary for comparison purposes. However, due to the 
robotic nature of these approaches, many methods resort to 
situation-specific test environments with different objects, 
backgrounds, viewpoint choices, lighting conditions, etc. 
To address this problem and to set a standard way of testing 
NBV methods for object recognition, we gathered a dataset, 
particularly for benchmarking of active object recognition 
techniques, with which the proposed next best view method 
was evaluated. It should be noted that there are other use-
ful datasets, such as those presented in [6] and [26] in the 
literature that are not suitable to test our method since such 
evaluation necessitates availability of both color and depth 
images of objects taken from the front and sides. For exam-
ple, the dataset in [6] does not offer real world colors of 
objects to provide the texture clues needed in our work. To 
imitate real-world conditions, the initial views of objects 
were intentionally distorted in parts of the tests. This ensures 
occurrence of uncertain initial recognition situations that 
cause an AOR system to trigger. In addition, the tests were 
performed on AOR systems with different classifiers and 
fusion methods to ensure the results are not biased for a 
specific type of AOR system.

(7)SADj =
∑
i∈G

|pcj
tj
(i) − pc

o
(i)|

Test Dataset for Active Object Recognition

We collected 240 test situations, generally for evaluating 
active recognition systems, especially next best view meth-
ods. There are 10 objects in the dataset, each one being 
shown in 24 situations. Figure 4 shows the 10 objects in 
the dataset. The objects in each of their 24 test situations 
were placed in various poses (4 random faces of the object), 
lighting conditions (2 modes: darker and brighter), and back-
ground textures (3 modes: dark tabletop, light carpet, and 
colorful rug). There are seven images and their correspond-
ing depth maps in each situation: one for a frontal initial 
view, another for an initial view with a slightly higher alti-
tude, and five others for the images/depth maps taken from 
the sides of objects as follows: left, top left, top, top right, 
and right. Figure 5 illustrates a sample situation for one of 
the objects in the dataset. A calibrated Microsoft Kinect v1 
3D camera, with a resolution of 640 × 480 pixels was used 
to capture both the color images and depth maps of objects 
and their immediate surrounding. The objects were then 

Fig. 4  The 10 objects in the dataset
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labeled and cropped from the scenes. The quality of all the 
captures, their cropping and labeling, and heterogeneity of 
test samples according to the above-mentioned distribution 
of pose, lighting condition, and background texture were 
separately verified. Because the objects were placed on the 
ground or on opaque hard surfaces during the photo shoot 
it was not possible to take images from the lower views. 
It is, nevertheless, not a significant limitation as in many 
real-world conditions, objects are placed on opaque surfaces. 
Furthermore, the existence of five choices for each of the 
two frontal views offers enough range of options in the test. 
The dataset is published along with the current paper1.

Emulating AOR Triggering Conditions

The initial views in the test dataset are clear and unob-
structed. Nonetheless, active object recognition systems 
are typically employed when the classifiers suffer reduced 
performance due to occlusion or unfavorable perspective of 
objects. For this reason, to emulate such conditions that trig-
ger AOR and mix it with the cases that the object image is 
clear, in our test benchmarks, we used each test situation in 
the dataset once with severe distortions, next with milder 
alterations, and lastly without any changes. In the following, 
these alterations are described: 

1. A corner of the image is superimposed by a patch of 
another randomly selected object image. The depth 
information of the superimposed object part is also 
replaced in the respective location of the depth map. In 
the tests, we chose corner patches of size 60% (for severe 
alteration) and 40% (for mild alteration) of the length 
and width, totaling 36% (for severe alteration) and 16% 
(for mild alteration) of the area of the original image.

2. A half (for severe alteration) or 30% (for mild alteration) 
of the image is whited or blacked out. A top and a bot-
tom whiteout plus a left and a right blackout generate 
four new alterations of the original image.

3. Gaussian blurring in two levels: one with a 5 × 5 (for 
severe alteration) or 3 × 3 (for mild alteration) kernel 
and the other with a 9 × 9 (for severe alteration) or 7 × 7 
(for mild alteration) kernel.

4. Added noise with standard deviations of 20 and 30 (for 
severe alteration) or 15 and 25 (for mild alteration) in 
the 8-bit color images.

5. Image darkening and brightening by 150 (for severe 
alteration) or 100 (for mild alteration) levels.

The tests were performed on the original images and their 
altered versions as well as their corresponding depth maps, 
totaling 29 test scenarios for any test situation in the dataset, 
of which 14 cases experience severe alterations, another 14 
undergo mild changes, and the last one, with an arbitrary 
weight factor of 17, is unaltered. Figure 6 shows the 14 
severe alterations of the initial view for an object, plus the 
unaltered one, in a sample situation.

Test Benchmarks

Since there are two initial images in each test situation in 
the dataset, two experiments can be performed for a single 
situation. As mentioned in the former section, for each initial 
image 29 test scenarios with various alterations are possible. 
Therefore, 58 tests are performed for any test situation. With 
the existence of 240 test situations in the dataset, 13,920 
situations were evaluated for any single vision system in 
the tests.

Fig. 5  A sample situation in the dataset

Fig. 6  Initial view distortions. a  Original image, b,  c  top/bottom 
whiteout, d, e  left/right blackout, f, g  lighter/heavier noise, h–k cor-
ner superimpose, l, m lighter/heavier blur, n bright, o dark

1 Dataset available at https:// github. com/ poury ahose ini/ Next- Best- 
View- Datas et.

https://github.com/pouryahoseini/Next-Best-View-Dataset
https://github.com/pouryahoseini/Next-Best-View-Dataset
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To ensure that the proposed NBV is independent of any 
specific classifier or fusion algorithm in the AOR system, six 
different classifiers and three fusion techniques were exam-
ined in order to take their average results. No matter which 
classifier or fusion technique is selected, each of them may 
be used in the context of the proposed next best view sys-
tem through the flow described in Fig. 1. Averaging, Naïve 
Bayes [3], and Dempster-Shafer (DS) [2] fusion algorithms 
are used in the tests. The classifiers are:

• ResNet 101, a residual neural network with 101 layers. 
The convolutional layers are reused by transfer learning 
with weights pre-trained on the ImageNet dataset. After 
the convolutional layers, we added a global average pool-
ing and two dense layers that are trained with the small 
training dataset of objects we had gathered.

• CNN 1: A convolutional neural network (CNN). 
By naming the convolution, dropout, fully con-
nected, and pooling layers as C, D, F, and P 
respectively, the network structure is written as 
(C → D → C → P → D → C → D → C → P → D →
F → D → F → F) . All the activation functions, except 
the last layer, are Rectified Linear Unit (ReLU). The acti-
vation function of the last layer is Softmax. The pooling 
layers take the maximum of the inputs (max pooling). 
The dropout rate is set to 0.1. All the layers, with the 
exception of the last one, have an ensuing L2 activity 
regularization function. The learning rate is 0.01 in the 
beginning of training and is reduced over the epochs. 
The number of epochs is 200, while batch size is 500. 
The loss function is categorical cross-entropy, which is 
optimized by the Adam optimizer.

• A one-versus-rest non-linear Support Vector Machine 
(SVM) classifier with the feature vector comprised of 
Hu moment invariants of the three RGB (red-green-blue) 
planes, besides the reduced Histogram of Oriented Gra-
dients (HOG) of the gray level image of the input. The 
SVM kernel was selected to be Radial Basis Function 
(RBF), while the feature reduction for the HOG com-
ponent of the feature vector is Principal Component 
Analysis (PCA) with a reduced feature number of 60. 
The regularization parameter and the kernel coefficient 
are determined through a five-fold cross-validation grid 
search.

• A similar SVM classifier as above, but instead with a 
sigmoid kernel and without Hu moment invariants as 
features.

• A Random Forest (RF) with 150 decision trees and a split 
criterion of the Gini impurity that uses a bag of 150 vis-
ual words of Scale-Invariant Feature Transform (SIFT) 
keypoint descriptors. The bag of words uses L2 distance 
and k-means algorithm in its clustering procedure. A 
five-fold cross-validation grid search is also utilized to 

decide the max depth of a tree, minimum samples for a 
split to happen, and minimum samples in a leaf node.

• A random forest classifier as above, but with KAZE key-
point descriptor instead of SIFT.

Considering the possible combinations of the classifica-
tion and fusion approaches, 18 benchmarks were evaluated, 
each with 13920 situations tested. In the tests, the confi-
dence threshold of the AOR was set to 20, except for those 
tests needing a sweep of the threshold value. That means 
the second viewpoint is retrieved if the highest class prob-
ability of the initial view is less than 20 times of the second 
highest one.

Obtained Results

We evaluated the proposed NBV by comparing its suggested 
selections with the other viewing poses in each test case. 
The results obtained by the ensemble method are also com-
pared to its constituting members and a few other methods. 
Among the other methods being compared with, negative 
entropy (8) of intensity histogram and classifications can 
be mentioned. For negative entropy of intensity histogram, 
zi in (8) represents a random variable denoting an intensity 
and p(zi) is the probability of that in the intensity histogram 
with L bins. Similarly, for negative entropy of tile classifica-
tions, L in (8) is the number of object classes, zi means an 
object class, and p(zi) is the probability of that class that is 
generated by a classifier.

Further, the energy-efficiency of the proposed method and 
changes to the Receiver Operating Characteristic (ROC) 
curves are evaluated in the following. As mentioned in 
“Classification Dissimilarity”, to gauge classification dis-
similarity we used dedicated classifiers for each tile. Yet, 
we report the same metric with a shared classifier for all the 
classifications.

Tile Preference Ranking

The five prospective next viewpoints are examined in every 
test situation for the scores they get from every criterion. 
In Fig. 7, the tiles are sorted on the horizontal axis in an 
ascending order of the scores, and therefore preference of 
each designated criterion. The height of the bars for any tile 
shows the average rank of the tile in attaining better prob-
ability for the ground truth classes after the decision fusion 
stage. The lower the rank and the closer it is to 1, the better 
it is. Hence, it is desirable to have lower height of the bars 
in the right sides of the plots in Fig. 7. For example, for the 

(8)n(z) =

L−1∑
i=0

p(zi) log p(zi)
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proposed method, the mean rank of the third highest scoring 
tiles (represented by the middle bar) is 3.016 and the average 
rank of the highest scoring tiles (the rightmost bar) is 2.705, 
which is comparatively lower and better.

It can be seen from the results that the proposed NBV 
method attains better ranks for the tiles it emphasizes more 
and scores higher. It shows that it is effectual in selecting 
the viewpoints that offer the best improvement in probabil-
ity of the true class in the AOR system’s output. Figure 7 
also shows the performance of randomly selecting the next 

view and the individual criteria that are part of the ensemble. 
All the participating criteria in the ensemble almost prefer 
better tiles and tend to bring the height of their very right 
bar down. Despite the efficacy of each single proposed cri-
terion, the combination of them still yields better outcome 
that causes sharper decline in the height of the right bars.

Fig. 7  Average ranked improvement of tiles in ascending order of scores
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Performance Per Criterion

We evaluated the proposed system by measuring accuracy, 
precision, recall, and F1 score it obtains. Figure 8 shows 
the results, along with those obtained from individual cri-
teria in the ensemble, random next view selection, and the 
other measures for comparison. In addition, Fig. 9 delin-
eates the performance improvement ratio of each meas-
ure compared to their initial values with no active vision. 

It is obvious that the proposed method achieves higher 
improvements than the other methods in the figure, includ-
ing random selection of next viewpoint.

Performance Improvement Per Tile

The accuracy, precision, recall, and F1 score improvement 
of the AOR system by using any of the five possible tiles 
in the tests are shown in Fig. 10. The tiles are sorted in the 
horizontal axis based on the scores they receive from each 

Fig. 8  Performance metrics per measure
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measure. Greater performance improvements are expected 
for the tiles the NBV system emphasizes more, i.e. the ones 
with higher scores at the right side of each plot. The results 
prove that the proposed NBV is successful in obtaining 
higher performance indices in its top picks. The individual 
measures participating in the ensemble also demonstrate a 

trend of increasing accuracy, precision, recall, and F1 score 
with the higher preference they indicate.

Receiver Operating Characteristic (ROC) Curve

For the 18 benchmarks in the tests with different classifiers 
and information fusion techniques, the ROC curves and 
their area under the curve (AUC) with micro-averaging 
over the mildly altered test situations are shown in Fig. 11. 

Fig. 9  Improvement ratio to the initial performance metrics per measure
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The blue curves in the figure, represent the recognition 
results of the initial view only, while the green curves 
indicate the effect of fusing with a randomly selected 
view. The red curves also show the results of utilizing the 
proposed method. Comparing the three sets of the curves 
verifies the efficacy of the AOR system in ameliorating 
the ROC curve and of the NBV method in further enhanc-
ing it.

Performance Per Confidence Threshold

Confidence threshold defines the sensitivity of an AOR 
system to uncertainties in its initial viewpoint recogni-
tion. Higher confidence thresholds indicate the tendency 
of the active vision system to retrieve new viewpoints. It 
is an influencing parameter of the AOR system, that bal-
ances the effort to fetch new viewpoints of objects with the 
improvement in recognition. Figure 12 illustrates the per-
formance metrics improvement over different confidence 

Fig. 10  Performance metrics improvement of tiles in ascending order of scores



SN Computer Science (2023) 4:51 Page 15 of 20 51

SN Computer Science

Fig. 11  ROC curves of different 
test benchmarks
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thresholds. Accuracy, precision, recall, and F1 score were 
originally 0.55, 0.53, 0.52, and 0.52, respectively at the 
0% improvement point in Fig. 12. From the figure, it is 
obvious that the performance does not improve by increas-
ing over an already high confidence threshold. This can 
be explained that due to the high confidence threshold, 
even relatively high quality initial recognition outputs are 

not regarded good enough and would require a decision 
fusion after an active vision procedure. This overreach 
probably does not contribute to improved classifications 
as they were performing well from the beginning, but only 
increasing the energy and time costs of physical camera 
movements. In contrast, in the lower confidence thresh-
olds, we observe larger enhancements in the performance. 

Fig. 12  Performance metrics improvement over different confidence thresholds

Table 1  Summary of 
differences of the proposed 
method with random next 
viewpoint selection and no 
active vision

Method Improvement % over no active vision Average AUC 

Accuracy (%) Precision (%) Recall (%) F
1
 Score (%)

Proposed NBV 20.2 19.7 19.5 19.6 0.923
Random selection 15.1 15.7 14.7 15.2 0.910
No active vision N/A N/A N/A N/A 0.849
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This underpins the importance of active object recognition 
and next best view as crucial improvement steps for the 
smaller group of classifications with high uncertainty.

Discussion

Table 1 summarizes the improvements in accuracy, recall, 
precision, and F1 score compared to no active vision. It also 
shows the average AUC difference of the proposed NBV 
with random selection of next viewpoint and no active 

vision. By observing the experimental results it is clear that 
the proposed NBV is applicable for improving accuracy, 
recall, precision, and thus F1 score of the active object rec-
ognition systems. In the results, we observe that the active 
object recognition systems with a random selection of next 
viewpoint attain 15.1% and 15.2% accuracy and F1 score 
improvement on average compared to their initial perfor-
mance values. It denotes the effectiveness of AOR in gen-
eral. With the proposed next best view method, the same 
AOR systems fulfill 20.2% and 19.6% relative accuracy 

Fig. 13  Improvement ratio to the performance metrics of initial viewpoints with severe adverse artifacts per measure
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and F1 score enhancements, which amounts for 5.1% and 
4.4% further improvement over a random AOR. It is also 
worth mentioning that in the case of severe occlusions and 
other adverse artifacts in the initial view, which are usu-
ally the reason an AOR system seeks a new viewpoint, the 
proposed NBV method improves the performance metrics 
even more. While Fig. 9 illustrates the improvement ratios 
per each criterion, averaged over non-altered clear initial 
views, along with mildly or severely altered ones, Fig. 13 
shows improvement ratios only in the case of initial views 
with severe adverse artifacts (i.e. stronger alterations). From 
the figure, we see 32.2% and 30.9% relative improvement in 
accuracy and F1 score.

An interesting aspect of the tile ranking using the fore-
shortening score in Fig. 7 is that sometimes the tiles with the 
penultimate score reach better ranks than the highest scor-
ing ones. Those cases occur perhaps when the higher scor-
ing tile has a very steep object surface with respect to the 
image plane of the camera in the initial view. Compared to 
less steep surfaces, a very steep one may impede the proper 
view of the respective object side from the perspective of 
the initial view.

It should be also noted that although the classification dis-
similarity technique uses dedicated classifiers for each tile, 
it is also possible to employ only one classifier to perform 
all the classification tasks, thus making the training stage 
simpler. Examining Figs. 7 and 10 reveals that it is possible 
to alternatively use a single-classifier classification dissimi-
larity, but at the expense of a slightly reduced performance. 
Moreover, from the two figures, it can be inferred that the 
proposed KL divergence method works better compared to 
the ones based on negative entropy or sum of squared dif-
ferences of classifications. However, it is evident from the 
results (Figs. 7 and 10) that the classification dissimilar-
ity has lesser impact in the ensemble in deciding the bet-
ter views. Although the proposed NBV technique is fairly 
simple and lightweight, for speedier NBV deductions, one 
can drop the classification dissimilarity, which is comprised 
of classifying the peripheral tiles and computing KL diver-
gence for them, from the ensemble as it is less influential in 
determining the more successful views than other member 
methods and is probably the heaviest one computationally.

The proposed NBV relies on splitting bounding boxes 
in the initial viewpoint into several tiles. The tiling scheme 
controls the granularity of the next viewpoint options. The 
tiling strategy is also founded on the supposition that any 
object surface is visible in the tiles around the object bound-
ing boxes. Even though, it is a fairly reasonable assumption, 
there is no guarantee for that in every tile.

In comparison to a single recognition stage, the recog-
nition performance improvements of the proposed NBV 
method come with some computational overhead. This is 
common trait among all active object recognition systems, 

since an active vision system conducts more observations 
than a traditional single-frame vision system. Nevertheless, 
the proposed NBV method is computationally light com-
pared to many other active vision systems [6, 10, 12, 13, 
15, 18]. It performs merely one more move to complete the 
task of object recognition, while to decide for that single 
next best move it does not demand a series of images taken 
beforehand; it uses just the current view. The three criteria 
of the ensemble method to analyze the current view are also 
not computation intensive relatively. Histogram variance 
(second moment), which processes the histogram of a tile 
instead of its whole image, is intrinsically faster than local 
image processing methods. Foreshortening criterion is also 
a combination of simple geometric surface normal computa-
tion and gray-scale depth map segmentation. As mentioned 
before, classification dissimilarity is slightly heavier than the 
other two criteria. It consists of a combination of classifica-
tions that are performed very fast in modern computers. It 
should be noted that, depending on the robotic system being 
employed and the application, the most time-consuming part 
of an active vision system is probably the physical camera 
movement.

Conclusion

In this paper a next best view approach for active object rec-
ognition systems was presented. It divides an initial image of 
an object into several areas to analyze each one for clues of 
better next views. An ensemble of three different techniques 
is used to examine each area: foreshortening, histogram vari-
ance, and classification dissimilarity. The proposed method 
suggests the next viewpoint after taking the appearance and 
3D shape information of merely a single initial view. It also 
does no need a training set of specific views of objects or 
their 3D models.

In order to evaluate the proposed approach in standard 
and reproducible way, a dataset was gathered, which can 
be used by other researchers in the future to test their active 
object recognition systems. The experimental results verified 
efficacy of the presented next best view approach in improv-
ing accuracy, recall, precision, and F1 score. On average, 
20.2% and 19.6% improvement in accuracy and F1 score 
compared to classifications of the initial view was achieved. 
As a part of an active vision system, the proposed next best 
view technique becomes more powerful in improving the 
object recognition performance in the presence of heavy 
occlusions and other unfavorable conditions in the initial 
view. In comparable initial view conditions, we report 32.2% 
and 30.9% average accuracy and F1 score improvements 
compared to the initial performance values.
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Future efforts can be directed toward investigating alter-
native tiling modes of the initial view. In addition, to make 
sure that every tile in the ensemble contains the object’s sur-
face, it is possible to detect presence of the object’s surface 
in a tile and dismiss those candidate tiles without any object 
surface from the computations of the proposed ensemble. 
Another promising area of work in this direction can be 
exploring other ensemble methods in lieu of the current 
weighted voting strategy. A potentially interesting way to 
combine the tile scores would be a meta-learning approach 
to automatically digest the scores from the proposed crite-
ria and weight them on the basis of different environmental 
factors.
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