
Vol.:(0123456789)

SN Computer Science (2023) 4:10
https://doi.org/10.1007/s42979-022-01433-1

SN Computer Science

ORIGINAL RESEARCH

A Novel Framework for Metamorphic Malware Detection

Animesh Kumar Jha1 · Abhishek Vaish1 · Sairaj Patil1

Received: 28 November 2021 / Accepted: 25 September 2022 / Published online: 15 October 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Malwares are a major threat in the evolving global cyberspace. The different techniques for anti-virus software, in which
presently there is insufficiency in detecting metamorphic malwares as they can change their internal structure of the code,
keeping the flow of the program equivalent to the virus. Commercial Antivirus software depends on signature detection
algorithms to identify viruses, but code obfuscation techniques can circumvent the above algorithms successfully. The objec-
tive of this research is to analyze the different detection techniques of such metamorphic malware. We also propose a novel
methodology of detecting them via use of different machine learning algorithms, such as KNN, Support Vector Machine
(SVM), RF (random forest), and naive Bayes. We also establish multiple semantic preserving transformation techniques for
code obfuscation. Analysis regarding the same has been presented too.

Keywords Metamorphic malwares · Semantic preservation transformation · Code obfuscation

Introduction

Malware is a software program deliberately designed to
cause harm to computer networks, servers, clients or com-
puter systems with no user consent. The main motive of
these malware is to get important information from one’s
system and also to use resources with no user consent. These
malware can slow down users’ computer systems, crash
computers, steal private information, send spam through
and to inbox, infect computers, and use it to transfer various
files or attacks.

Malware is an evolving and ever-growing threat for the
global cyber space. The number of malwares detected each
year is constantly increasing and so is their ability to circum-
vent detection techniques. New forms of morphic malwares
are emerging that are capable of changing their signatures
and evading detection by signature-based algorithms.

The figure highlights the constant growth in malware
production in the past decade. While in 2020, the number
of malwares reported was 1273 million [1], the numbers of
“never-seen-before” malwares were only 268,000 [2], and
total number of new malwares was also around

146 million [1]. The research by Camponi et al. [3] also
reveals that over 66% of the malwares are morphed from
previously known threats. This highlights the fact that the
maximum number of malwares in circulation is either old
malwares or morphed versions of the same. While we have
techniques to easily detect the older variants using signature-
based mechanisms and some newer ones using emulators or
DFA-based techniques, the morphed variants are the most
troublesome of all due to their slippery nature.

Further, the research report by Ponemon institute on
2018 state of endpoint security risk, has also concluded that
at least 76% of the organizations are totally dependent on
commercial anti-virus programs that use signature detec-
tion technique to detect any intrusion or vulnerability. This
in turn, makes the organizations weak against metamorphic
malwares, and makes a compelling argument for research
and development in the detection of same.

These malware have a mutation engine that takes in the
code as input and return a morphed version of the code in
each iteration. The morphing is done on the basis of seman-
tic preservation techniques, which ensures that while the
code signature changes, the effect of the code essentially
remains the same. It can alternatively be said that, in meta-
morphic viruses, the physical appearance of the source code
is morphed, keeping the logical flow the same. This in turn
changes the hash of the signature code of the code. Hence,

 * Animesh Kumar Jha
 animesh0906@gmail.com

1 Indian Institute of Information Technology Allahabad,
Prayagraj 211012, India

http://orcid.org/0000-0002-5333-2645
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01433-1&domain=pdf

 SN Computer Science (2023) 4:1010 Page 2 of 12

SN Computer Science

it is difficult to detect these metamorphic viruses using sig-
nature detection algorithms.

Different techniques have been found for the detection
of malwares. Most commonly used technique is signature-
based algorithms and used by most of the commercially
available anti-virus software. Signature-based algorithms
use the physical structure of malwares to distinguish mal-
wares. They use a database of malware signatures to detect
potential malwares. Metamorphic malwares can change their
physical structure keeping the same control flow, thereby
making it difficult to detect with the signature-based tech-
niques. Some other techniques for detection are:

Behavioral Detection

It uses the dynamic nature of the malware rather than the
conventional static way of signature detection. Extraction
of dynamic behavior is done by executing a malware file in
isolated surroundings [4]. The main advantage of the behav-
ioral detection is when a computer virus looks similar to a
benign program, but its functional aspect can describe it as
harmful program. Here the above technique along with the
machine learning algorithms can be used to classify a record
into harmful malware or a normal program. A research by
P. Desai, concludes that a metamorphic malware code can
be similar to a benign application by nearly 93%, making it
way more close to benign files than malwares [5].

Anomaly Detection Technique

Anomaly detection chips away at the methodology of iden-
tifying if the document present follows a typical behavioral
aspect. It beats the restrictions created by signature-based
detection algorithms utilizing heuristic-based ways to deal
with recognizing ordinary behavior. If a file is not classi-
fied as a normal file, then it is classified as a harmful mal-
ware. Here the notion of anomalous and normal behavior is
expounded by the user. Hence, it does not give accuracy in
classification. Malware detection emulator was created to
distinguish the input programs into different classes based
on the appearance of the record. Once the classification is
done, then it is reviewed whether it is harmful malware or an
exceptional false positive case of being a malware.

In this research, we try to morph malware codes and
later create a classifier using machine learning algorithms
to detect these morphed malware files. We also go on to
discuss various morphing techniques that can be employed
to bypass the detection and analyze accuracy drop for the
same. The subsequent sections deal with existing work and
literature review, followed by a proposed novel methodology
for detecting metamorphic malwares.

Literature Review

Campion et al. [1] have proposed an analysis on the
schema and working of Metamorphic malwares by
attempting to develop a framework that can produce the
original variant of the malware by analyzing different
samples of the same malware and detecting the semantic
preserving transformation rules applied to obtain original
malware code. This exercise also helps bring in insights
about the Metamorphic malware engine, or the Mutation
engine. The research reveals that on an average, over 90%
of the code in the metamorphic malwares is that of the
engine itself. The engine serves the entire code as its input,
and a morphed version is thrown as output, using various
transformations that essentially keep the semantics same.
The engine also has a definite structure with various parts:

(1) Dissembler–converts code to assembly instructions.
(2) Code Transformer–Applies code obfuscation tech-

niques.
(3) Assembler–converts mutated code to binary instruc-

tions.

The research by Kakisim et al. [4] revolves around gen-
erating a framework for detection of metamorphic mal-
wares using automata principles. It establishes that every
version of metamorphic malware is different from all oth-
ers, and the possible number of versions is so huge that
a database cannot be maintained, thereby removing the
possibility of using a commercial anti-virus software or
using any pattern matching algorithm. The authors have
suggested using the control flow of the program rather
than the code itself. They attempt to develop an opcode
(instruction machine code) graph and then superimpose
different versions of it to detect similarities between
different malware to find the engine code. They use the
assumption that different variants formed out of the same
malware will have a common engine-specific pattern. The
problem in this methodology that was observed was that
they needed to have multiple samples of the same malware
variants and then would be able to predict the malwares
that had the same engine-specific variants. The possibil-
ity of detecting a totally new variant is not prevailing in
this research.

William B. Andreopoulos [3] has used the assumption
that a program is basically a set of instructions that are
executed in a sequence and has therefore used sequence-
based Machine learning to derive insights to detect mal-
wares. The proposed framework has been established to
work in case of morphic malwares too, i.e., polymorphic
and metamorphic malwares. They have also used Hidden
Markov Models (HMM) principles and Long Short-Term

SN Computer Science (2023) 4:10 Page 3 of 12 10

SN Computer Science

Memory (LSTM) networks. The proposed model is a
dynamic approach that can be incorporated in the anti-
virus systems to provide real-time detection of viruses.
Sequential features extracted from malware source code
analysis have been used for the classification of malware
with deep learning approaches.

A novel approach has been proposed by Javaheri et al. [6]
to use genetic algorithms for detecting future variations of
targeted and metamorphic malwares. The researchers have
extracted a sequence of system API calls using various fil-
ters. The authors created a sandbox environment and unpack
and execute the files and go for a sophisticated behavioral
analysis to ascertain the classification of the file as harm-
ful or benign. Dynamic unpacking was performed which is
based on kernel-level memory dumping. Once unpacked,
the malware features were extracted by parsing it, to find
relevant sequence flows of instructions to model the malware
behavior. The malware is further executed in a virtual box
environment and its activity, tracked and recorded. Finally,
Genetic Algorithm (GA) was employed, taking in each
behavior as a chromosome and each system call mapped
to a gene. They used linear regression to model both the
behavior and chromosome formation. The research suffered
a major drawback in the form that it needed 2 + samples for
generating variants and performing crossovers. Also, recent
metamorphic malwares have been shown to hide original
behaviors in a contained environment and therefore feature
extraction can fail.

Data mining techniques have been used for detection and
classification problems from a long time, and Souri et al. [7],
in this research work, have tried to summarize different data
mining techniques used to predict malwares and presented
an analysis on the same. The paper only looks to classify
approaches as signature-based or behavior-based, and has
not dealt with evolving technologies, such as Genetic algo-
rithm, Sequence-based models, Hidden Markov Models and
Graph-based approaches, making the scope of the analysis
limited.

Hidden Markov Models' use for malware detection has
evolved as a popular research domain. It is because of the
fact that any computer program can be represented as a
sequence of instructions, thereby treating a program as a
time series, an ideal condition for usage of Hidden Markov
Models [8].

Annachhatre et al. [2] have applied HMMs and Cluster
Analysis to detect unknown variants of malware by analyz-
ing the control flow of the program. The HMM is trained
on the basis of given observation sequences. Initially,
HMM is trained for a variety of compilers and Malware
generators, training involves both, forward and backward
algorithms and scoring is done by the forward algorithm.
Finally, the clustering is done using K-means. The imple-
mentation is a straight-forward HMM scoring system, and

it is proven that for unknown samples on which HMM was
not trained, it was still able to identify and classify them
with decent accuracy. Modifications on this can be made to
increase the accuracy and usage of Fuzzy neural networks
as a future scope.

Toderici et al. [9] have shown that Metamorphic mal-
wares can evade detection by HMM if they use morphing
with instructions from benign files. They have alternatively
proposed a chi-squared-based solution coupled with HMM
to detect metamorphic malwares. The chi-squared distance is
calculated based on the differences in instruction opcode fre-
quency, which has shown a higher accuracy compared to [2].

Devendra et al. [10] have presented a detection tech-
nique for metamorphic malwares using machine learn-
ing techniques. They have proposed the use of a Support
Vector Machine (SVM) as a tool to detect such malware
variants, using a specialized kernel for the model, called
the Histogram intersection kernel. The kernel allows us to
fetch an optimal hyperplane for differentiating between the
malware variants and harmless files. The histogram genera-
tion is done on the basis of opcode frequencies and then is
normalized to minimize effects of obfuscation techniques.
The classifier tries to detect the base malware of which the
variant can be a part of. The main issue behind the problem
is that in case if the morphed variant is itself a variant from
a never-seen-before class of malware, it will not be possible
to detect it as the base malware is not known to us.

Kancherla et al. [11] have also proposed use of SVM for
malware classification. They have used the malware execut-
able to be transformed into an image called the bytecode
image, and then intensity-based and texture-based features
are extracted to predict the code signature. SVM is then
employed for bifurcation of the dataset into benign and
malware signatures. An accuracy of 95% is reported in the
paper. Code obfuscation and morphing have not been incor-
porated, therefore, limiting its applicability for metamorphic
malware detection.

In the proposed implementation of this research, we have
tried to work on a very diversified and extensive dataset.
Unlike the existing modules that work on a specific mal-
ware type and then detecting morphed variations of it, the
dataset used is composed of different malware and benign
files which ensures a higher degree of diversification, which
in turn leads to a better confidence for detecting zero-day
malwares. Also, the model is replicable for multiple post
processing algorithms for training and testing and analyzing
the detection accuracy.

Comparative Analysis Based on Literature Survey

In this section, we will be presenting an analysis table of
different detection techniques for metamorphic malwares.

 SN Computer Science (2023) 4:1010 Page 4 of 12

SN Computer Science

Proposed Architecture:

Our proposed system consists of three layer:

(1) The Morphing Engine Layer.
(2) Transformative Layer.
(3) Classification Layer.

We shall discuss all three layers separately in the fol-
lowing sections.

Morphing Engine Layer

The objective of this part of the system is to create a
dataset of the Morphed code which is fed to the detection
classifier, it can be seen in Fig. 2. We have used 150 k
benign files of Jscript records as a benign dataset [5]. Pre-
processing is done to reduce redundancy, after which fea-
ture extraction is performed. We have used these 40,000
malware records and the 40,000 records for the process of
training the machine learning models for the detection of
metamorphic malwares (Table 1).

For the process of morphing of the dataset files, we
use techniques like inserting a dead code, renaming the
variable declarations, changing the position of the func-
tions, and the reordering of the instruction. This will get
us 40,000 files of morphed codes i.e., records of morphed
files.

Morphing Implementation Details

Abstract Syntax Tree Data Structure

Here input parameters are javascript code and output result
is Abstract Syntax Tree(AST). We transform code into
AST using Esprima nodeJS module [3].

Code Obfuscation

The AST obtained from the previous step is morphed with
the morphing techniques discussed later. We get the AST
from Esprima in the json format, and for the morphing
process we, change the key-value pair of json.

Convert AST to Code

The AST obtained from the previous step is again trans-
formed into the JS code using the escodegen module. The
main essence of escodegen is to reverse the function aspect
as it transforms the AST to code. For e.g.,

Following is the code and below and its Abstract syntax
Tree is given.

Figure 3 shows (AST) Abstract Syntax Tree of the above
JS code. In the process above, the tree is then transformed
into the machine language code. Our main intention here is
to morph the code using Abstract Syntax Tree as we have
a logical structure of the code. We can change the physical
appearance of the code keeping the same logical structure.

The final morphed dataset is tested to ensure the efficacy
of the Morphing Layer. Therefore, the morphed dataset is
tested using different ML techniques and results are com-
pared. A comparative study is done for 2 different datasets,
one with base malware files, and the other with morphed
files to check the accuracy of the drop.

Techniques used for Code Obfuscation

In this section, we will see some techniques for code obfus-
cation that allows semantic preservation while altering the
signature.

Renaming of Variable Declarations

Here, we can change the names assigned to the variable dec-
larations keeping the compilation parameters the same. In
Jscript notion, there can be function within function, i.e.,
inner function and they both can have same named [3] vari-
ables. Hence, we need to be careful to change variable [2]
names to solve this problem, we use stack as data structure
[12].

Insertion of Dead Code

Here, we try to insert the dead code into the original code.
Dead code here refers to codes that are not going to con-
tribute to the main working of the program, but are added
to increase the size of code and can often be parts of codes
from benign files, which in turn transforms the signature of
the source code without transforming the logical flow of the
program.

Code 4.1 (Original Code)

Here is an example, in our case, we insert no meaning
instructions like no return function no value function, etc.
explained in code 4.1, we can also add set timeout or console
log instructions. Above method does change the signature
of the original code.

SN Computer Science (2023) 4:10 Page 5 of 12 10

SN Computer Science

Ta
bl

e
1

 A
na

ly
si

s o
f d

et
ec

tio
n

te
ch

ni
qu

es
 fo

r m
et

am
or

ph
ic

 m
al

w
ar

es

D
et

ec
tio

n
te

ch
ni

qu
e

M
et

ho
do

lo
gy

A
dv

an
ta

ge
Sh

or
tc

om
in

gs

Si
gn

at
ur

e-
ba

se
d

de
te

ct
io

n
M

at
ch

es
 th

e
si

gn
at

ur
e

of
 p

re
se

nt
 fi

le
 fr

om
 a

 d
at

ab
as

e
of

 e
xp

ec
te

d
m

al
w

ar
e

si
gn

at
ur

es
 u

si
ng

(1
) U

si
ng

 re
gu

la
r e

xp
re

ss
io

ns
(2

) P
at

te
rn

 m
at

ch
in

g

(1
) S

im
pl

e,
 F

as
t a

nd
 E

ffi
ci

en
t

(2
) E

ffe
ct

iv
e

ag
ai

ns
t n

or
m

al
 v

iru
s

(3
) H

ig
he

r a
cc

es
si

bi
lit

y

(1
) N

ee
ds

 re
gu

la
r u

pd
at

es
 in

 th
e

da
ta

ba
se

(2
) Z

er
o

po
ss

ib
ili

ty
 o

f d
et

ec
tio

n
in

 c
as

e
of

 a
 n

ew
 v

iru
s

no
t p

re
se

nt
 in

 d
at

ab
as

e
(3

) G
en

er
al

ly
 c

an
no

t w
or

k
ag

ai
ns

t m
et

am
or

ph
ic

 v
iru

s
du

e
to

 c
on

st
an

tly
 c

ha
ng

in
g

si
gn

at
ur

e
(4

) D
at

ab
as

e
m

an
ag

em
en

t a
nd

 st
or

ag
e

ov
er

he
ad

H
eu

ris
tic

-b
as

ed
 m

et
ho

d
(1

) E
xa

m
in

es
 c

od
e

fo
r p

os
si

bi
lit

y
of

 su
sp

ic
io

us
 c

od
e

(2
) C

an
 b

e
us

ed
 in

 st
at

ic
, d

yn
am

ic
 o

r h
yb

rid
 m

et
ho

d
(1

) C
an

 d
et

ec
t n

ev
er

-s
ee

n-
be

fo
re

 m
al

w
ar

es
(2

) C
ap

ab
le

 o
f d

et
ec

tin
g

po
ly

m
or

ph
ic

 a
nd

 m
et

am
or

-
ph

ic
 v

iru
s

(1
) H

ig
h

ra
te

 o
f f

al
se

 p
os

iti
ve

s
(2

) C
an

 b
e

ci
rc

um
ve

nt
ed

 b
y

m
et

am
or

ph
ic

 m
al

w
ar

es
 if

ex

ec
ut

ed
 in

 c
on

tro
lle

d
en

vi
ro

nm
en

t
(3

) H
ig

h
tim

e
co

m
pl

ex
ity

 fo
r d

et
ec

tio
n

H
id

de
n

M
ar

ko
v

m
od

el
(1

) U
se

s p
ro

ba
bi

lit
y

of
 tr

an
si

tio
n

fro
m

 o
ne

 st
at

e
to

ot

he
r

(2
) I

t i
s t

ra
in

ed
 o

ve
r d

iff
er

en
t c

om
pi

le
rs

 a
nd

 g
en

er
a-

to
rs

 to
 o

bt
ai

n
st

at
e

tra
ns

iti
on

 in
fo

rm
at

io
n

(3
) S

co
rin

g
sy

ste
m

 is
 d

ev
el

op
ed

 to
 sc

or
e

an
d

fin
al

ly

cl
as

si
fy

 th
e

co
de

s a
s d

iff
er

en
t t

yp
es

 o
f m

al
- w

ar
es

(1
) T

he
 m

od
el

 is
 c

om
pe

te
nt

 to
 d

et
ec

t n
ev

er
-s

ee
n-

be
fo

re
 m

al
w

ar
es

(2
) S

co
rin

g
m

et
ho

do
lo

gy
 c

an
 b

e
va

rie
d

fo
r h

ig
he

r
ac

cu
ra

cy
 a

tta
in

m
en

t

(1
) C

om
pl

ex
ity

 is
 h

ig
h

(2
) A

cc
ur

ac
y

is
 n

ot
 h

ig
h

en
ou

gh
 fo

r c
om

m
er

ci
al

 u
sa

ge
(3

) F
ai

ls
 to

 d
et

ec
t m

et
am

or
ph

ic
 m

al
- w

ar
es

 if
 a

 tr
ai

n-
in

g
be

ni
gn

 fi
le

 is
 u

se
d

fo
r d

ea
d

co
de

 in
se

rti
on

Su
pp

or
t v

ec
to

r m
ac

hi
ne

s
(1

) S
V

M
 c

an
 b

e
ap

pl
ie

d
on

ce
 th

e
da

ta
se

t i
s m

or
ph

ed

in
to

 a
 m

ea
ni

ng
fu

l f
or

m
(2

) E
xe

cu
ta

bl
e

ca
n

be
 c

on
ve

rte
d

in
to

 b
yt

ec
od

e
im

ag
es

 o
r o

pc
od

e
fr

eq
ue

nc
y

hi
sto

gr
am

s

(1
) S

im
pl

e
to

 im
pl

em
en

t o
nc

e
pr

e-
pr

oc
es

si
ng

 is
 d

on
e

(2
) H

ig
h

ac
cu

ra
cy

 is
 a

ch
ie

ve
d

w
he

n
us

ed
 to

 c
la

ss
ify

(3
) D

iff
er

en
t k

er
ne

ls
 c

an
 b

e
us

ed
 to

 in
cr

ea
se

 a
cc

u-
ra

cy

(1
) P

re
-p

ro
ce

ss
in

g
is

 le
ng

th
y

(2
) I

t i
s a

 su
pe

rv
is

ed
 a

lg
or

ith
m

, n
ew

er
 v

ar
ia

nt
s m

ay
 g

o
un

de
te

ct
ed

Em
ul

at
or

s
(1

) C
od

e
em

ul
at

io
n

im
pl

em
en

ts
 a

 v
irt

ua
l m

ac
hi

ne
 to

si

m
ul

at
e

th
e

C
PU

 a
nd

 m
em

or
y

m
an

ag
em

en
t s

ys
te

m
(2

) I
t e

xe
cu

te
s m

al
ic

io
us

 c
od

e
in

si
de

 th
e

vi
rtu

al

m
ac

hi
ne

(1
) P

er
fo

rm
s d

yn
am

ic
 a

na
ly

si
s a

nd
 st

ud
ie

s e
ffe

ct
s o

f
m

al
w

ar
e

us
in

g
sa

nd
- b

ox
in

g
(2

) H
ig

h
ac

cu
ra

cy
 c

an
 b

e
se

en
 e

ve
n

fo
r m

or
ph

ic

m
al

w
ar

es

(1
) T

im
e

co
m

pl
ex

ity
 is

 v
er

y
hi

gh
(2

) N
ew

er
 m

ut
at

io
n

en
gi

ne
s a

re
 c

ap
ab

le
 o

f s
up

pr
es

si
ng

da

ng
er

ou
s b

eh
av

io
r i

f c
lo

se
d

en
vi

ro
nm

en
t i

s d
et

ec
te

d

 SN Computer Science (2023) 4:1010 Page 6 of 12

SN Computer Science

Code 4.2

Changing the Order of the Instructions

Here, we try to search the definition of the variables which
is declared using Abstract Syntax Tree (AST) and we try to
ensure these instructions are independent and have no effect
on the logical flow of the original code.

Code 4.3

Code 4.4

One of the examples of instruction reordering is we try to
identify the variable declaration from (AST), then we inter-
change the statement described in code 4.3; once the above
process, we get the changed code as in code 4.4 above process
does not transform the logical flow of the original source code.

Changing the Position of the Function Declaration

In this method, we try to reorder the function as we did in
instruction reordering. Let us suppose we have k no. of differ-
ent functions in a code we can permute them in k! as explained
in code 4.5.

Code 4.5

Code 4.6

Arranged in 2! = 2 ways.
Hence, output after the function reordering would be seen

as in code 4.6

Substitution of Instructions

In the above method, we try to substitute the arithmetic
operators with other operators.

Below is the example:
When we try to sum 2 numbers, for example, let us

take an expression vari = 1 + 1, it can be replaced with
vari = 1 − − 1, which will give us the same output. The
source code is in code 4.7 and this code transforms to code
in code 4.8.

Code 4.7

Code 4.8

SN Computer Science (2023) 4:10 Page 7 of 12 10

SN Computer Science

Transformative Layer

We have used Rhino for this layer. Rhino is a project created
by Netscape which is a Java writer JScript engine. Rhino is
commonly used to transform the JS code to classes based
on java language and it can be executed in either compiler
mode or interpreter mode. The rhino software helps us get
the bytecode of these.js files. This in turn helps us get the
opcode sequence files from the bytecode, opcode will spec-
ify the arithmetic to be done for the program. We get the
sequence file for all the dataset. After this, we try to extract
features for the training ML classifiers.

Classification Layer

The main role of this layer is to classify metamorphic mal-
ware from a lot of given records. Our aim is to classify such
metamorphic malware records that are classified benign. In
other words, to detect the code which is morphed from the
first source code is a malware file.

Dataset

As already indicated, we are proposing a three layer architec-
ture. The output of the first layer i.e., the Morphing Engine
Layer is fed to the classification layer. This can be seen in
Fig. 1, and the data specification can be referred from Mor-
phing Engine Layer.

Extraction of the Features

In the above section, we provide a sequence file as input. Our
aim is to extract features and train these features in machine
learning algorithms. We use the n-grams technique to extract

features from the sequence file (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14).

N‑gram Extraction

In the above method, we keep a window of words of arbi-
trary length and we try to find the frequency of the coexist-
ing words. We move the window to get the frequency of
words which are occurring in the same window. This tech-
nique is used in the NLP and data mining context.

Below is the snippet of the N-gram from the sequence
file where N = 5.

Following are the steps involved in the N-gram feature
extraction:

In our research, we have used the 100 length vector
for feature extraction and training the machine learning
classifiers.

Training with N‑gram

Once we are done with the process of the extraction of
the features. We try to train these features using machine
learning classifiers. We used 80–20 splits for cross valida-
tion. Here our input parameters are N-gram vectors for the
purpose of training. We are using supervised learning tech-
niques like Support Vector Machine, Random Forest, KNN
and Naive Bayes.

Experiments

In the above section, we look into the experiments that are
done for the research. The setup is made in a virtual box for
feature extraction and pre-processing on the malware files.
Later the computing is done on host system.

Fig. 1 Overall development of
new malware programs over last
10 years

 SN Computer Science (2023) 4:1010 Page 8 of 12

SN Computer Science

Results

Our first aim is to decrease the precision of the detection of
malware systems by introducing morphing. Here we used
the N-gram feature extraction technique. First aim can be
fulfilled using morphing done to the source code as dis-
cussed in earlier sections.

Following are the results based on the algorithms used.

Random Forest

AUC − ROC = 93%
Trees Used For our algorithms = 100.

K Nearest Neighbors

AUC − ROC = 94%
Value of k is 5.

Support Vector Machine

AUC − ROC = 96%
We use linear models for classification.

Naïve Bayes

AUC − ROC = 94%
In the above comparison, SVM technique shows the best

results for detection of the malwares i.e., 96% after applying
the morphing techniques, it reduced to 74%, following is
the comparison after introducing the morphing techniques.

Results with Different Input Parameters

Fig. 2 Proposed Architecture

Fig. 3 Abstract Syntax Tree of given code

SN Computer Science (2023) 4:10 Page 9 of 12 10

SN Computer Science

Fig. 4 Code Obfuscation tech-
niques in Morphing Engine

Fig. 5 Java bytecode

Fig. 6 N-gram from the
sequence file keeping N = 5

Fig. 7 Steps involved in N-gram
Feature extraction

 SN Computer Science (2023) 4:1010 Page 10 of 12

SN Computer Science

Fig. 8 Testing and training
models used

Fig. 9 Random Forest

Fig. 10 K Nearest Neighbors

Fig. 11 Support vector machine

Fig. 12 Naïve Bayes

SN Computer Science (2023) 4:10 Page 11 of 12 10

SN Computer Science

Conclusion

In our research, our aim was to detect the metamorphic
malwares and analyze existing techniques for the same.
We have presented a framework for metamorphic malware
detection using different classifiers and have done so by
developing a novel framework involving java bytecode.
Although the final accuracy is not higher than existing

works, the model is scalable and other algorithms can be
studied for better results. The main aim of the research is
to imitate the morphing technique for metamorphic mal-
wares and make a much larger and diverse dataset that
ensures a better result against zero-day viruses. In future
scope, we can use HMM features with specialized scoring
techniques or Genetic Algorithms or even Fuzzy neural
networks.

Fig. 13 KNN where K = 3, 7, 11 respectively

 SN Computer Science (2023) 4:1010 Page 12 of 12

SN Computer Science

Funding The authors did not receive support from any organization
for the submitted work. The authors have no relevant financial or non-
financial interests to disclose. All authors certify that they have no
affiliations with or involvement in any organization or entity with any
financial interest or non-financial interest in the subject matter or mate-
rials discussed in this manuscript.

Declaration

Conflict of interest The Authors declare they have no conflict of inter-
est.

References

 1. Campion M, Dalla Preda M, Giacobazzi R. Learning metamorphic
malware signatures from samples. J Comput Virol Hacking Techn.
2021;17(3):167–83. https:// doi. org/ 10. 1007/ s11416- 021- 00377-z.

 2. Annachhatre C, Austin TH, Stamp M. Hidden Markov mod-
els for malware classification. J Comput Virol Hacking Techn.
2014;11(2):59–73. https:// doi. org/ 10. 1007/ s11416- 014- 0215-x.

 3. Andreopoulos WB. Malware detection with sequence- based
machine learning and deep learning. Malware Anal Artif Intell
Deep Learn. 2020. https:// doi. org/ 10. 1007/ 978-3- 030- 62582- 52.

 4. Kakisim AG, Nar M, Sogukpinar I. Metamor- phic malware
identification using engine-specific patterns based on co-opcode
graphs. Comput Stand Interfaces. 2020;71: 103443. https:// doi.
org/ 10. 1016/j. csi. 2020. 103443.

 5. Musale M, Austin TH, Stamp M. Hunting for metamor- phic
JavaScript malware. Journal of Computer Virology and Hack-
ing Techniques. 2014;11(2):89–102. https:// doi. org/ 10. 1007/
s11416- 014- 0225-8.

 6. Javaheri D, Lalbakhsh P, Hosseinzadeh M. A novel method for
detecting future generations of targeted and metamorphic mal-
ware based on genetic algorithm. IEEE Access. 2021;9:69951–70.
https:// doi. org/ 10. 1109/ access. 2021. 30772 95.

 7. Souri A, Hosseini R. A state-of-the-art survey of malware detec-
tion approaches using data mining techniques. Hum-Centric Com-
put Inf Sci. 2018. https:// doi. org/ 10. 1186/ s13673- 018- 0125-x.

 8. Stamp Mark. A revealing introduction to hidden markov models.
https:// www. cs. sjsu. edu/ ~stamp/ RUA/ HMM. pdf

 9. Toderici AH, Stamp M. Chi-squared distance and meta- morphic
virus detection. J Comput Virol Hacking Tech. 2012;9(1):1–14.
https:// doi. org/ 10. 1007/ s11416- 012- 0171-2.

 10. Mahawer DK, Nagaraju A. Metamorphic malware detection using
base malware identification approach. Secur Commun Netw.
2013;7(11):1719–33. https:// doi. org/ 10. 1002/ sec. 869.

 11. Kancherla K, Mukkamala S. Image visualization based malware
detection. IEEE Symp Comput Intell Cyber Secur (CICS). 2013.
https:// doi. org/ 10. 1109/ cicybs. 2013. 65972 04.

 12. Cook S. Malware statistics and facts for 2021. Comparitech. 2021.
https:// www. compa ritech. com/ antiv irus/ malwa re- stati stics- facts/.
Accessed 7 Oct 2022.

 13. Malware Statistics Trends Report—AV-TEST. AV-Test. 2021.
https:// www. av- test. org/ en/ stati stics/ malwa re/. Accessed 7 Oct
2022

 14. Nguyen VT A study of polymorphic virus detection. 2018. https://
doi. org/ 10. 13140/ RG.2. 2. 19853. 79842.

 15. Ponemon Institute. The 2018 State of End- point Security Risk.
2018. https:// www. ponem on. org/ news- updat es/ news- press- relea
ses/ news/ the- 2018- state- of- endpo int- secur ity- risk. html. Accessed
7 Oct 2022.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

Fig. 14 Random Forest where number of Trees = 200, 300

https://doi.org/10.1007/s11416-021-00377-z
https://doi.org/10.1007/s11416-014-0215-x
https://doi.org/10.1007/978-3-030-62582-52
https://doi.org/10.1016/j.csi.2020.103443
https://doi.org/10.1016/j.csi.2020.103443
https://doi.org/10.1007/s11416-014-0225-8
https://doi.org/10.1007/s11416-014-0225-8
https://doi.org/10.1109/access.2021.3077295
https://doi.org/10.1186/s13673-018-0125-x
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://doi.org/10.1007/s11416-012-0171-2
https://doi.org/10.1002/sec.869
https://doi.org/10.1109/cicybs.2013.6597204
https://www.comparitech.com/antivirus/malware-statistics-facts/
https://www.av-test.org/en/statistics/malware/
https://doi.org/10.13140/RG.2.2.19853.79842
https://doi.org/10.13140/RG.2.2.19853.79842
https://www.ponemon.org/news-updates/news-press-releases/news/the-2018-state-of-endpoint-security-risk.html
https://www.ponemon.org/news-updates/news-press-releases/news/the-2018-state-of-endpoint-security-risk.html

	A Novel Framework for Metamorphic Malware Detection
	Abstract
	Introduction
	Behavioral Detection
	Anomaly Detection Technique

	Literature Review
	Comparative Analysis Based on Literature Survey

	Proposed Architecture:
	Morphing Engine Layer
	Morphing Implementation Details
	Abstract Syntax Tree Data Structure
	Code Obfuscation
	Convert AST to Code

	Techniques used for Code Obfuscation
	Renaming of Variable Declarations
	Insertion of Dead Code
	Changing the Order of the Instructions
	Changing the Position of the Function Declaration
	Substitution of Instructions

	Transformative Layer
	Classification Layer
	Dataset
	Extraction of the Features
	N-gram Extraction
	Training with N-gram

	Experiments
	Results
	Random Forest
	K Nearest Neighbors
	Support Vector Machine
	Naïve Bayes
	Results with Different Input Parameters

	Conclusion
	References

