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Abstract
Malwares are a major threat in the evolving global cyberspace. The different techniques for anti-virus software, in which 
presently there is insufficiency in detecting metamorphic malwares as they can change their internal structure of the code, 
keeping the flow of the program equivalent to the virus. Commercial Antivirus software depends on signature detection 
algorithms to identify viruses, but code obfuscation techniques can circumvent the above algorithms successfully. The objec-
tive of this research is to analyze the different detection techniques of such metamorphic malware. We also propose a novel 
methodology of detecting them via use of different machine learning algorithms, such as KNN, Support Vector Machine 
(SVM), RF (random forest), and naive Bayes. We also establish multiple semantic preserving transformation techniques for 
code obfuscation. Analysis regarding the same has been presented too.

Keywords Metamorphic malwares · Semantic preservation transformation · Code obfuscation

Introduction

Malware is a software program deliberately designed to 
cause harm to computer networks, servers, clients or com-
puter systems with no user consent. The main motive of 
these malware is to get important information from one’s 
system and also to use resources with no user consent. These 
malware can slow down users’ computer systems, crash 
computers, steal private information, send spam through 
and to inbox, infect computers, and use it to transfer various 
files or attacks.

Malware is an evolving and ever-growing threat for the 
global cyber space. The number of malwares detected each 
year is constantly increasing and so is their ability to circum-
vent detection techniques. New forms of morphic malwares 
are emerging that are capable of changing their signatures 
and evading detection by signature-based algorithms.

The figure highlights the constant growth in malware 
production in the past decade. While in 2020, the number 
of malwares reported was 1273 million [1], the numbers of 
“never-seen-before” malwares were only 268,000 [2], and 
total number of new malwares was also around

146 million [1]. The research by Camponi et al. [3] also 
reveals that over 66% of the malwares are morphed from 
previously known threats. This highlights the fact that the 
maximum number of malwares in circulation is either old 
malwares or morphed versions of the same. While we have 
techniques to easily detect the older variants using signature-
based mechanisms and some newer ones using emulators or 
DFA-based techniques, the morphed variants are the most 
troublesome of all due to their slippery nature.

Further, the research report by Ponemon institute on 
2018 state of endpoint security risk, has also concluded that 
at least 76% of the organizations are totally dependent on 
commercial anti-virus programs that use signature detec-
tion technique to detect any intrusion or vulnerability. This 
in turn, makes the organizations weak against metamorphic 
malwares, and makes a compelling argument for research 
and development in the detection of same.

These malware have a mutation engine that takes in the 
code as input and return a morphed version of the code in 
each iteration. The morphing is done on the basis of seman-
tic preservation techniques, which ensures that while the 
code signature changes, the effect of the code essentially 
remains the same. It can alternatively be said that, in meta-
morphic viruses, the physical appearance of the source code 
is morphed, keeping the logical flow the same. This in turn 
changes the hash of the signature code of the code. Hence, 
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it is difficult to detect these metamorphic viruses using sig-
nature detection algorithms.

Different techniques have been found for the detection 
of malwares. Most commonly used technique is signature-
based algorithms and used by most of the commercially 
available anti-virus software. Signature-based algorithms 
use the physical structure of malwares to distinguish mal-
wares. They use a database of malware signatures to detect 
potential malwares. Metamorphic malwares can change their 
physical structure keeping the same control flow, thereby 
making it difficult to detect with the signature-based tech-
niques. Some other techniques for detection are:

Behavioral Detection

It uses the dynamic nature of the malware rather than the 
conventional static way of signature detection. Extraction 
of dynamic behavior is done by executing a malware file in 
isolated surroundings [4]. The main advantage of the behav-
ioral detection is when a computer virus looks similar to a 
benign program, but its functional aspect can describe it  as 
harmful program. Here the above technique along with the 
machine learning algorithms can be used to classify a record 
into harmful malware or a normal program. A research by 
P. Desai, concludes that a metamorphic malware code can 
be similar to a benign application by nearly 93%, making it 
way more close to benign files than malwares [5].

Anomaly Detection Technique

Anomaly detection chips away at the methodology of iden-
tifying if the document present follows a typical behavioral 
aspect. It beats the restrictions created by signature-based 
detection algorithms utilizing heuristic-based ways to deal 
with recognizing ordinary behavior. If a file is not classi-
fied as a normal file, then it is classified as a harmful mal-
ware. Here the notion of anomalous and normal behavior is 
expounded by the user. Hence, it does not give accuracy in 
classification. Malware detection emulator was created to 
distinguish the input programs into different classes based 
on the appearance of the record. Once the classification is 
done, then it is reviewed whether it is harmful malware or an 
exceptional false positive case of being a malware.

In this research, we try to morph malware codes and 
later create a classifier using machine learning algorithms 
to detect these morphed malware files. We also go on to 
discuss various morphing techniques that can be employed 
to bypass the detection and analyze accuracy drop for the 
same. The subsequent sections deal with existing work and 
literature review, followed by a proposed novel methodology 
for detecting metamorphic malwares.

Literature Review

Campion et  al. [1] have proposed an analysis on the 
schema and working of Metamorphic malwares by 
attempting to develop a framework that can produce the 
original variant of the malware by analyzing different 
samples of the same malware and detecting the semantic 
preserving transformation rules applied to obtain original 
malware code. This exercise also helps bring in insights 
about the Metamorphic malware engine, or the Mutation 
engine. The research reveals that on an average, over 90% 
of the code in the metamorphic malwares is that of the 
engine itself. The engine serves the entire code as its input, 
and a morphed version is thrown as output, using various 
transformations that essentially keep the semantics same. 
The engine also has a definite structure with various parts:

(1) Dissembler–converts code to assembly instructions.
(2) Code Transformer–Applies code obfuscation tech-

niques.
(3) Assembler–converts mutated code to binary instruc-

tions.

The research by Kakisim et al. [4] revolves around gen-
erating a framework for detection of metamorphic mal-
wares using automata principles. It establishes that every 
version of metamorphic malware is different from all oth-
ers, and the possible number of versions is so huge that 
a database cannot be maintained, thereby removing the 
possibility of using a commercial anti-virus software or 
using any pattern matching algorithm. The authors have 
suggested using the control flow of the program rather 
than the code itself. They attempt to develop an opcode 
(instruction machine code) graph and then superimpose 
different versions of it to detect similarities between 
different malware to find the engine code. They use the 
assumption that different variants formed out of the same 
malware will have a common engine-specific pattern. The 
problem in this methodology that was observed was that 
they needed to have multiple samples of the same malware 
variants and then would be able to predict the malwares 
that had the same engine-specific variants. The possibil-
ity of detecting a totally new variant is not prevailing in 
this research.

William B. Andreopoulos [3] has used the assumption 
that a program is basically a set of instructions that are 
executed in a sequence and has therefore used sequence-
based Machine learning to derive insights to detect mal-
wares. The proposed framework has been established to 
work in case of morphic malwares too, i.e., polymorphic 
and metamorphic malwares. They have also used Hidden 
Markov Models (HMM) principles and Long Short-Term 
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Memory (LSTM) networks. The proposed model is a 
dynamic approach that can be incorporated in the anti-
virus systems to provide real-time detection of viruses. 
Sequential features extracted from malware source code 
analysis have been used for the classification of malware 
with deep learning approaches.

A novel approach has been proposed by Javaheri et al. [6] 
to use genetic algorithms for detecting future variations of 
targeted and metamorphic malwares. The researchers have 
extracted a sequence of system API calls using various fil-
ters. The authors created a sandbox environment and unpack 
and execute the files and go for a sophisticated behavioral 
analysis to ascertain the classification of the file as harm-
ful or benign. Dynamic unpacking was performed which is 
based on kernel-level memory dumping. Once unpacked, 
the malware features were extracted by parsing it, to find 
relevant sequence flows of instructions to model the malware 
behavior. The malware is further executed in a virtual box 
environment and its activity, tracked and recorded. Finally, 
Genetic Algorithm (GA) was employed, taking in each 
behavior as a chromosome and each system call mapped 
to a gene. They used linear regression to model both the 
behavior and chromosome formation. The research suffered 
a major drawback in the form that it needed 2 + samples for 
generating variants and performing crossovers. Also, recent 
metamorphic malwares have been shown to hide original 
behaviors in a contained environment and therefore feature 
extraction can fail.

Data mining techniques have been used for detection and 
classification problems from a long time, and Souri et al. [7], 
in this research work, have tried to summarize different data 
mining techniques used to predict malwares and presented 
an analysis on the same. The paper only looks to classify 
approaches as signature-based or behavior-based, and has 
not dealt with evolving technologies, such as Genetic algo-
rithm, Sequence-based models, Hidden Markov Models and 
Graph-based approaches, making the scope of the analysis 
limited.

Hidden Markov Models' use for malware detection has 
evolved as a popular research domain. It is because of the 
fact that any computer program can be represented as a 
sequence of instructions, thereby treating a program as a 
time series, an ideal condition for usage of Hidden Markov 
Models [8].

Annachhatre et al. [2] have applied HMMs and Cluster 
Analysis to detect unknown variants of malware by analyz-
ing the control flow of the program. The HMM is trained 
on the basis of given observation sequences. Initially, 
HMM is trained for a variety of compilers and Malware 
generators, training involves both, forward and backward 
algorithms and scoring is done by the forward algorithm. 
Finally, the clustering is done using K-means. The imple-
mentation is a straight-forward HMM scoring system, and 

it is proven that for unknown samples on which HMM was 
not trained, it was still able to identify and classify them 
with decent accuracy. Modifications on this can be made to 
increase the accuracy and usage of Fuzzy neural networks 
as a future scope.

Toderici et al. [9] have shown that Metamorphic mal-
wares can evade detection by HMM if they use morphing 
with instructions from benign files. They have alternatively 
proposed a chi-squared-based solution coupled with HMM 
to detect metamorphic malwares. The chi-squared distance is 
calculated based on the differences in instruction opcode fre-
quency, which has shown a higher accuracy compared to [2].

Devendra et al. [10] have presented a detection tech-
nique for metamorphic malwares using machine learn-
ing techniques. They have proposed the use of a Support 
Vector Machine (SVM) as a tool to detect such malware 
variants, using a specialized kernel for the model, called 
the Histogram intersection kernel. The kernel allows us to 
fetch an optimal hyperplane for differentiating between the 
malware variants and harmless files. The histogram genera-
tion is done on the basis of opcode frequencies and then is 
normalized to minimize effects of obfuscation techniques. 
The classifier tries to detect the base malware of which the 
variant can be a part of. The main issue behind the problem 
is that in case if the morphed variant is itself a variant from 
a never-seen-before class of malware, it will not be possible 
to detect it as the base malware is not known to us.

Kancherla et al. [11] have also proposed use of SVM for 
malware classification. They have used the malware execut-
able to be transformed into an image called the bytecode 
image, and then intensity-based and texture-based features 
are extracted to predict the code signature. SVM is then 
employed for bifurcation of the dataset into benign and 
malware signatures. An accuracy of 95% is reported in the 
paper. Code obfuscation and morphing have not been incor-
porated, therefore, limiting its applicability for metamorphic 
malware detection.

In the proposed implementation of this research, we have 
tried to work on a very diversified and extensive dataset. 
Unlike the existing modules that work on a specific mal-
ware type and then detecting morphed variations of it, the 
dataset used is composed of different malware and benign 
files which ensures a higher degree of diversification, which 
in turn leads to a better confidence for detecting zero-day 
malwares. Also, the model is replicable for multiple post 
processing algorithms for training and testing and analyzing 
the detection accuracy.

Comparative Analysis Based on Literature Survey

In this section, we will be presenting an analysis table of 
different detection techniques for metamorphic malwares.
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Proposed Architecture:

Our proposed system consists of three layer:

(1) The Morphing Engine Layer.
(2) Transformative Layer.
(3) Classification Layer.

We shall discuss all three layers separately in the fol-
lowing sections.

Morphing Engine Layer

The objective of this part of the system is to create a 
dataset of the Morphed code which is fed to the detection 
classifier, it can be seen in Fig. 2. We have used 150 k 
benign files of Jscript records as a benign dataset [5]. Pre-
processing is done to reduce redundancy, after which fea-
ture extraction is performed. We have used these 40,000 
malware records and the 40,000 records for the process of 
training the machine learning models for the detection of 
metamorphic malwares (Table 1).

For the process of morphing of the dataset files, we 
use techniques like inserting a dead code, renaming the 
variable declarations, changing the position of the func-
tions, and the reordering of the instruction. This will get 
us 40,000 files of morphed codes i.e., records of morphed 
files.

Morphing Implementation Details

Abstract Syntax Tree Data Structure

Here input parameters are javascript code and output result 
is Abstract Syntax Tree(AST). We transform code into 
AST using Esprima nodeJS module [3].

Code Obfuscation

The AST obtained from the previous step is morphed with 
the morphing techniques discussed later. We get the AST 
from Esprima in the json format, and for the morphing 
process we, change the key-value pair of json.

Convert AST to Code

The AST obtained from the previous step is again trans-
formed into the JS code using the escodegen module. The 
main essence of escodegen is to reverse the function aspect 
as it transforms the AST to code. For e.g.,

Following is the code and below and its Abstract syntax 
Tree is given.

Figure 3 shows (AST) Abstract Syntax Tree of the above 
JS code. In the process above, the tree is then transformed 
into the machine language code. Our main intention here is 
to morph the code using Abstract Syntax Tree as we have 
a logical structure of the code. We can change the physical 
appearance of the code keeping the same logical structure.

The final morphed dataset is tested to ensure the efficacy 
of the Morphing Layer. Therefore, the morphed dataset is 
tested using different ML techniques and results are com-
pared.  A comparative study is done for 2 different datasets, 
one with base malware files, and the other with morphed 
files to check the accuracy of the drop.

Techniques used for Code Obfuscation

In this section, we will see some techniques for code obfus-
cation that allows semantic preservation while altering the 
signature.

Renaming of Variable Declarations

Here, we can change the names assigned to the variable dec-
larations keeping the compilation parameters the same. In 
Jscript notion, there can be function within function, i.e., 
inner function and they both can have same named [3] vari-
ables. Hence, we need to be careful to change variable [2] 
names to solve this problem, we use stack as data structure 
[12].

Insertion of Dead Code

Here, we try to insert the dead code into the original code. 
Dead code here refers to codes that are not going to con-
tribute to the main working of the program, but are added 
to increase the size of code and can often be parts of codes 
from benign files, which in turn transforms the signature of 
the source code without transforming the logical flow of the 
program.

Code 4.1 (Original Code)

Here is an example, in our case, we insert no meaning 
instructions like no return function no value function, etc. 
explained in code 4.1, we can also add set timeout or console 
log instructions. Above method does change the signature 
of the original code.
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Code 4.2

Changing the Order of the Instructions

Here, we try to search the definition of the variables which 
is declared using Abstract Syntax Tree (AST) and we try to 
ensure these instructions are independent and have no effect 
on the logical flow of the original code.

Code 4.3

Code 4.4

One of the examples of instruction reordering is we try to 
identify the variable declaration from (AST), then we inter-
change the statement described in code 4.3; once the above 
process, we get the changed code as in code 4.4 above process 
does not transform the logical flow of the original source code.

Changing the Position of the Function Declaration

In this method, we try to reorder the function as we did in 
instruction reordering. Let us suppose we have k no. of differ-
ent functions in a code we can permute them in k! as explained 
in code 4.5.

Code 4.5

Code 4.6

Arranged in 2! = 2 ways.
Hence, output after the function reordering would be seen 

as in code 4.6

Substitution of Instructions

In the above method, we try to substitute the arithmetic 
operators with other operators.

Below is the example:
When we try to sum 2 numbers, for example, let us 

take an expression vari = 1 + 1, it can be replaced with 
vari = 1 −  − 1, which will give us the same output. The 
source code is in code 4.7 and this code transforms to code 
in code 4.8.

Code 4.7

Code 4.8
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Transformative Layer

We have used Rhino for this layer. Rhino is a project created 
by Netscape which is a Java writer JScript engine. Rhino is 
commonly used to transform the JS code to classes based 
on java language and it can be executed in either compiler 
mode or interpreter mode. The rhino software helps us get 
the bytecode of these.js files. This in turn helps us get the 
opcode sequence files from the bytecode, opcode will spec-
ify the arithmetic to be done for the program. We get the 
sequence file for all the dataset. After this, we try to extract 
features for the training ML classifiers.

Classification Layer

The main role of this layer is to classify metamorphic mal-
ware from a lot of given records. Our aim is to classify such 
metamorphic malware records that are classified benign. In 
other words, to detect the code which is morphed from the 
first source code is a malware file.

Dataset

As already indicated, we are proposing a three layer architec-
ture. The output of the first layer i.e., the Morphing Engine 
Layer is fed to the classification layer. This can be seen in 
Fig. 1, and the data specification can be referred from Mor-
phing Engine Layer.

Extraction of the Features

In the above section, we provide a sequence file as input. Our 
aim is to extract features and train these features in machine 
learning algorithms. We use the n-grams technique to extract 

features from the sequence file (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14).

N‑gram Extraction

In the above method, we keep a window of words of arbi-
trary length and we try to find the frequency of the coexist-
ing words. We move the window to get the frequency of 
words which are occurring in the same window. This tech-
nique is used in the NLP and data mining context.

Below is the snippet of the N-gram from the sequence 
file where N = 5.

Following are the steps involved in the N-gram feature 
extraction:

In our research, we have used the 100 length vector 
for feature extraction and training the machine learning 
classifiers.

Training with N‑gram

Once we are done with the process of the extraction of 
the features. We try to train these features using machine 
learning classifiers. We used 80–20 splits for cross valida-
tion. Here our input parameters are N-gram vectors for the 
purpose of training. We are using supervised learning tech-
niques like Support Vector Machine, Random Forest, KNN 
and Naive Bayes.

Experiments

In the above section, we look into the experiments that are 
done for the research. The setup is made in a virtual box for 
feature extraction and pre-processing on the malware files. 
Later the computing is done on host system.

Fig. 1  Overall development of 
new malware programs over last 
10 years
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Results

Our first aim is to decrease the precision of the detection of 
malware systems by introducing morphing. Here we used 
the N-gram feature extraction technique. First aim can be 
fulfilled using morphing done to the source code as dis-
cussed in earlier sections.

Following are the results based on the algorithms used.

Random Forest

AUC − ROC = 93%
Trees Used For our algorithms = 100.

K Nearest Neighbors

AUC − ROC = 94%
Value of k is 5.

Support Vector Machine

AUC − ROC = 96%
We use linear models for classification.

Naïve Bayes

AUC − ROC = 94%
In the above comparison, SVM technique shows the best 

results for detection of the malwares i.e., 96% after applying 
the morphing techniques, it reduced to 74%, following is 
the comparison after introducing the morphing techniques.

Results with Different Input Parameters

Fig. 2  Proposed Architecture

Fig. 3  Abstract Syntax Tree of given code
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Fig. 4  Code Obfuscation tech-
niques in Morphing Engine

Fig. 5  Java bytecode

Fig. 6  N-gram from the 
sequence file keeping N = 5

Fig. 7  Steps involved in N-gram 
Feature extraction
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Fig. 8  Testing and training 
models used

Fig. 9  Random Forest

Fig. 10  K Nearest Neighbors

Fig. 11  Support vector machine

Fig. 12  Naïve Bayes
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Conclusion

In our research, our aim was to detect the metamorphic 
malwares and analyze existing techniques for the same. 
We have presented a framework for metamorphic malware 
detection using different classifiers and have done so by 
developing a novel framework involving java bytecode. 
Although the final accuracy is not higher than existing 

works, the model is scalable and other algorithms can be 
studied for better results. The main aim of the research is 
to imitate the morphing technique for metamorphic mal-
wares and make a much larger and diverse dataset that 
ensures a better result against zero-day viruses. In future 
scope, we can use HMM features with specialized scoring 
techniques or Genetic Algorithms or even Fuzzy neural 
networks.

Fig. 13  KNN where K = 3, 7, 11 respectively
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