
Vol.:(0123456789)

SN Computer Science (2022) 3:502 
https://doi.org/10.1007/s42979-022-01423-3

SN Computer Science

ORIGINAL RESEARCH

Designing a RESTful Northbound Interface for Incompatible Software 
Defined Network Controllers

Abdullah Alghamdi1   · David Paul1   · Edmund Sadgrove1 

Received: 17 March 2022 / Accepted: 16 September 2022 / Published online: 1 October 2022 
© Crown 2022

Abstract
In Software Defined Networking, applications often need to communicate with network controllers to query or modify the 
current state of the network. However, there is currently no standard northbound interface that allows this communication 
to occur. Instead, each Software Defined Networking implementation defines its own interface, meaning applications typi-
cally need to be modified to allow them to work with different controllers. In this paper we present a high-level design for 
a REST-like reactive northbound interface which would allow applications to be written once and then work with multiple 
otherwise-incompatible controllers.

Keywords  Software defined networking · Northbound interface · RESTful

Introduction

Traditional methods for managing computer networks do not 
allow enough flexibility to support modern network require-
ments. With more devices connected to larger networks, 
configuration errors are widespread, but often difficult to 
resolve [1]. Further, security issues are more recognised and 
can require special attention, placing significant burden on 
network administrators [2].

Software Defined Networking (SDN) provides a solu-
tion by allowing computer networks to be designed and 
controlled programmatically. Administrators can centrally 
control networks with software. SDNs are relatively sim-
ple to implement, do not incur a great cost over traditional 
networks, and allow innovation through the design of new 

network applications [3]. Support from multiple vendors, 
including Cisco, Google, and HP, further cements SDN as 
the future for computer networks [4].

For applications on an SDN to be able to program the 
network, it is necessary for them to be able to access and 
potentially modify the current state of the network. Since 
network applications can have vastly different functionalities 
(e.g. from traffic management to improvements in security), 
the method to achieve this must be flexible. SDNs allow 
this by having forwarding devices interact with a (logically) 
centralised controller.

This centralised controller, which effectively separates 
control functions from the forwarding devices, sends instruc-
tions that specify how to process incoming packets to for-
warding devices, via an API called the Southbound Interface 
(SBI). The Open Network Foundation (ONF) [5], which 
offers open standards to help popularise SDN technology, 
presents OpenFlow [6] as the standard SBI.

However, for SDN to reach its full potential, network 
applications require the ability to communicate directly with 
the SDN controller as well. They can do this via an SDN 
network’s Northbound Interface (NBI). The NBI allows 
applications to both query the current state of the network, 
and to modify its behaviour by passing commands to be 
applied over the forwarding devices. SDN applications can 
either react solely to events that occur on the network (inter-
nal applications), or proactively interact with the network, 
potentially based on external events (external applications).

This article is part of the topical collection “Web Information 
Systems and Technologies 2021” guest edited by Joaquim Filipe, 
Francisco Domínguez Mayo and Massimo Marchior.

 *	 David Paul 
	 dpaul4@une.edu.au

	 Abdullah Alghamdi 
	 aalgham9@myune.edu.au

	 Edmund Sadgrove 
	 esadgro2@une.edu.au

1	 School of Science and Technology, University of New 
England, Armidale, NSW 2351, Australia

http://orcid.org/0000-0003-0616-4121
http://orcid.org/0000-0002-2428-5667
http://orcid.org/0000-0002-8710-9900
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01423-3&domain=pdf


	 SN Computer Science (2022) 3:502502  Page 2 of 7

SN Computer Science

Whilst the NBI is vital to obtain all the advantages SDN 
offers, there is no standard NBI that can be used by different 
SDN implementations [7]. Instead, different SDN controllers 
implement their own interface, meaning applications writ-
ten for one SDN controller typically require redevelopment 
to use on a different controller. This porting of applications 
to different controllers can be expensive in both time and 
resources.

In our previous work [8], we have described some require-
ments necessary to design and implement an open RESTful 
NBI for SDN implementations to allow network applications 
to be written once and used with multiple controllers. This 
paper extends our previous work by describing a high-level 
design for a system that meets these requirements.

The motivation for our paper is to contribute to efforts 
to standardise the NBI of SDNs to improve both portabil-
ity of applications and interoperability of controllers. The 
remainder of this paper is structured as follows. Section 
“Background Information” describes SDN, and especially 
the NBI, in more detail, culminating with the requirements 
we determined necessary for the development of an open 
RESTful interface between network applications and SDN 
controllers. Section “Design of a Reactive/Proactive NBI” 
then details how we plan to develop such a system, and the 
design is examined in section “Discussion”. Section “Con-
clusion” then concludes the paper and presents ideas for 
future work.

Background Information

Software Defined Networking

SDN is a programmable control network approach designed 
to overcome limitations of traditional networks, such as 
complex network management and lack of scalability [9]. 
In SDN, network control functions are moved from the data 
plane to software called a controller. This splits control tasks 
from forwarding devices to ease network management, offer 
flexibility in packet routing, and centralise configuration of 
the data layer. The controller manages the higher control 
plane to determine how to route packets and sends appropri-
ate instructions to the forwarding devices. The forwarding 
devices in the data plane then simply forward packets based 
on rules specified by the network controller. Network nodes 
can communicate with other nodes via the control plane, 
using protocols, such as BGP [10], OSPF [11], or MPLS 
[12].

Figure 1 provides a high-level overview of a typical 
SDN structure. The Data Layer and Control Layer com-
municate via the SBI, typically using OpenFlow [13]. The 
NBI is used to allow Applications and the Control Layer to 

communicate, though the exact protocol used depends on 
the SDN implementation [14].

When a packet arrives at a forwarding device, the device 
consults its rules (called flows), along with information from 
the packet (e.g. the packet’s header) to determine how the 
packet should be handled. If the device does not know how 
to handle a packet, it communicates with the control layer 
to determine what it should do. These forwarding devices 
can be traditional hardware switches, but are often software 
switches, such as Open vSwitch [15].

In charge of the Control Layer is a centralised network 
operating system known as the controller. The controller 
uses the SBI (typically implemented using OpenFlow) to 
provide forwarding devices with instructions on whether 
they should modify, drop, or forward packets. Forwarding 
devices drop packets by default, unless there is an instruc-
tion that specifies otherwise. The SBI is also used to provide 
statistical information, and to notify of packet arrivals or any 
change in status (e.g. if a new forwarding device is attached 
to the network).

The core services of a controller typically include:

•	 Topology service: maintains a network topology graph, 
using forwarding devices to track changes in the network 
structure

•	 Inventory service: Records basic information about SDN 
resources connected to the network

•	 Host tracking service: Discovers IP and MAC addresses 
of hosts connected to the network

•	 Statistics service: Uses counter information in switches 
to provide network statistics

To allow Applications to access these controller services, 
an NBI is used. Unfortunately, there is no standard protocol 
for the NBI, with each SDN implementation using its own 
incompatible interface [16]. For example, some controllers 

Fig. 1   SDN Architecture (from [8])



SN Computer Science (2022) 3:502	 Page 3 of 7  502

SN Computer Science

only provide an interface in their implementation language 
(e.g. Java). In any case, the interface typically only works 
with one particular controller [17]. Table 1 lists incompat-
ible SDN controllers with links to their northbound inter-
faces, none of which are compatible.

Regardless of the implementation, the NBI provides an 
abstracted view of the network to any applications. The NBI 
often represents the entire network as if it were implemented 
with a single large switch, rather than matching the actual 
physical layout of the network, though this abstracted view 
can be probed to discover details of all existing switches, 
ports, links, hosts, flows, actions, and data models used in 
the network.

The NBI is used by the controller to notify applications 
of events in the network. This could be a major event, such 
as a change in the network’s topology, or something more 
minor, such as the controller receiving a packet. Applica-
tions can also call functions on the controller to modify 
details of the network, such as whether packets should be 
accepted or rejected.

SDN Applications

Applications in an SDN network can be classed as either 
internal (or reactive), or external (or proactive). Internal 
applications respond when a packet is received by a for-
warding device and the forwarding device passes it to the 
controller because it does not know what to do with it. The 
internal application can then notify the controller how such 
packets should be handled in the future, and the controller 
enforces this new policy over its forwarding devices. Exter-
nal applications are not required to wait for an event (such 
as the arrival of a packet) before contacting the controller 
to modify the network’s policy and can do so at any time.

One main difference between internal and external appli-
cations is that internal applications often create new net-
work resources that can be utilised by other applications. 
This means that internal applications become part of the 
programmable network, whereas external applications can 
only be controlled from the outside. For example, an inter-
nal load balancer may allow other applications to query or 
modify its behaviour through the NBI.

The NBI can be broken up into two main components: 
the Response API and the Listener API. The Response API 
allows applications to use the controller to modify the net-
work. The Listener API allows applications to register event 
listeners that get notified when a relevant event occurs (e.g. 
a relevant packet arrives at the controller). Figure 2 shows 
the generic design of an internal application which processes 
packets it receives through the Listener API and then uses 
the Response API to modify the network based on the packet 
contents. External applications use the Response API based 
on external triggering, rather than on the contents of packets 
received through the Listener API.

The Response API is often implemented as a RESTful 
[8] interface because REST offers the following advantages:

•	 Simplicity: Simple HTTP methods can be used by most 
programming languages.

•	 Flexibility: All resources are represented as URIs and 
accessed in the same way.

•	 Extensibility: New resources can be added by registering 
an appropriate URI.

•	 Security: HTTPS can be used to ensure communications 
are secure.

The Listener API, on the other hand, is typically pro-
vided as a native API on the controller [18]. One of the main 
reasons for this is that the Listener API is required to sup-
port asynchronous notifications, whilst RESTful APIs only 
support request-response interactions [17]. This means that 
the Listener API for different controllers often use different 
languages and technologies, making them incompatible.

Further, even the Response API is not standardised [17]. 
Thus, applications written for one controller cannot typically 
be used by another controller without modification, even for 
external applications. In some cases, SDN programming lan-
guages can be used to allow applications to be used by a few 
different controllers [19], but this approach is not scalable. 
Instead, we argue that the time is now right for a standard 
NBI to be developed [8].

Standardising a NBI is difficult because different applica-
tions may have very different requirements. Because of this, 
many different NBIs have been proposed [7], though they 

Table 1   Incompatible NBIs for 
different SDN controllers

SDN Controller Northbound interface link(s)

ONOS https://​api.​onosp​roject.​org/
https://​wiki.​onosp​roject.​org/​displ​ay/​ONOS/​Appen​dix+B%​3A+​REST-​APIs

OpenDaylight https://​docs.​opend​aylig​ht.​org/​en/​stable-​sulfur/​javad​oc.​html
https://​docs.​opend​aylig​ht.​org/​proje​cts/​netvi​rt/​en/​latest/​specs/​fluor​ine/​ovs_​

based_​na_​respo​nder_​for_​gw.​html?​highl​ight=​REST%​20API#​rest-​api
Floodlight https://​flood​light.​atlas​sian.​net/​wiki/​spaces/​flood​light​contr​oller/​pages/​13435​

39/​Flood​light+​REST+​API#​Flood​light​RESTA​PI-​Flood​light​RESTA​PI
RYA​ https://​ryu.​readt​hedocs.​io/​en/​latest/​app/​ofctl_​rest.​html

https://api.onosproject.org/
https://wiki.onosproject.org/display/ONOS/Appendix+B%3A+REST-APIs
https://docs.opendaylight.org/en/stable-sulfur/javadoc.html
https://docs.opendaylight.org/projects/netvirt/en/latest/specs/fluorine/ovs_based_na_responder_for_gw.html?highlight=REST%20API#rest-api
https://docs.opendaylight.org/projects/netvirt/en/latest/specs/fluorine/ovs_based_na_responder_for_gw.html?highlight=REST%20API#rest-api
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343539/Floodlight+REST+API#FloodlightRESTAPI-FloodlightRESTAPI
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343539/Floodlight+REST+API#FloodlightRESTAPI-FloodlightRESTAPI
https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html


	 SN Computer Science (2022) 3:502502  Page 4 of 7

SN Computer Science

often only cover a limited set of operations or technologies. 
However, studying many of the available NBIs has allowed 
us to determine a set of requirements for both the Response 
and Listener APIs that make up an NBI.

NBI API Requirements

To develop an open, flexible, and independent NBI API, 
we believe a REST-like interface is ideal. This will ensure 
interoperability and portability of applications using a light-
weight standard interface that could be used in practically 
any implementation. The design must follow the ONF guide-
lines [20] and cover the wide range of use cases necessary 
for an NBI. This section summarises the requirements of 
such an API from our previous work [8].

The Response API component should be implemented 
as a RESTful service on the controller. This will allow the 
development of a stable, extensible API that can be imple-
mented by multiple controllers. The Response API must 
support the entire SDN application lifecycle, meaning its 
available actions should include at least the following:

•	 Reading actions:

o	 Read topology
o	 Read statistics
o	 Read flows
o	 Read controller information
o	 Read incoming packet

•	 Writing actions:

o	 Insert flow
o	 Modify flow
o	 Delete flow

o	 Forward packet
o	 Set priority

The Listener API component of the NBI, which allows 
notification of events, should be flexible and extendable, 
with support for at least the following events:

•	 Packet arrived
•	 Flow added
•	 Flow removed
•	 New device added
•	 Device removed

Since the Listener API is required to support asynchro-
nous notification of events, it cannot be a RESTful service 
(since RESTful services only support request/response). 
However, we propose that a REST-like service be imple-
mented to allow listeners to register with a controller. That 
is, a typical REST-like request should be sent by an applica-
tion to register a listener, and, rather than being stateless, the 
controller should remember the listeners that are registered 
to it for certain events. Then, when a relevant event occurs, 
the controller should call a RESTful service implemented 
by the application, which can use a typical request/response 
pattern to reply to the controller.

Whilst the overall NBI design should be extensible, con-
sideration of existing implementations suggests the follow-
ing resources should be supported as a minimum:

•	 Hosts
•	 Switches
•	 Applications
•	 Messages
•	 Network topology
•	 Statistics

Fig. 2   Generic design of an 
internal SDN application (from 
[8], extended from [15])



SN Computer Science (2022) 3:502	 Page 5 of 7  502

SN Computer Science

•	 Events

Other resources may be required in particular imple-
mentations, which is why extensibility of the NBI API is 
important. Further, the exact details of each resource might 
differ between implementations, meaning that flexibility is 
imperative.

One of the advantages of this approach is that is that a 
shim implementation of the proposed NBI API could be 
implemented for any controller that supports the minimum 
functionality required. Applications could then interact with 
the controller via this shim implementation, which converts 
requests from the REST-like service defined here to the 
internal implementation of the controller. This would allow 
backwards compatibility, which will be especially useful 
when evaluating the new NBI API we are proposing. Fur-
ther, it eases the process of extending support for the new 
API to new controllers or applications.

Design of a Reactive NBI

Whilst there is currently no standard NBI, OpenFlow is con-
sidered the standard SBI [13]. To maximise compatibility, 
we believe that a standard NBI should be developed using 
OpenFlow as its base, mainly due to its standardisation as 
the SBI: whilst some changes will be required for the new 
functionality, utilising similar RESTful interfaces to the SBI 
should ensure familiarity for SDN practitioners. We have 
specified that an NBI should consist of both a Response API 
and a Listener API. In this work, we will concentrate on the 
Listener API.

We recommend that a REST-like Listener API be imple-
mented in each internal SDN application. Each Listener 
(i.e. internal application) receives a notification from the 
SDN controller when a particular event occurs. This will 
require controllers to expose a simple registration interface 
and to remember registered listeners so the controller can 
use their RESTful interfaces to notify whenever a relevant 
event occurs.

Our design of the Listener API component of the NBI 
consists of three modules: the Listener, the Packet Processor, 
and the Flow Manager.

Listener

The Listener module listens for particular events on the 
network. For this purpose, it implements the following 
submodules:

•	 Message listener: A listener that is notified whenever a 
packet meeting certain criteria arrives at the controller, 
or if a flow is modified or expires.

•	 Switch listener: A listener that is notified whenever a 
forwarding device joins or leaves a network, a port con-
figuration of a switch has changed, or a new inter-link 
between forwarding devices is discovered.

•	 Host listener: A listener that is notified whenever a host 
joins or leaves a network, or changes its information.

Packet Processor

The Packet Processor module is required to determine how 
packets that arrive at the internal application should be 
handled. The packet processor uses the header portion of 
an incoming packet to determine whether a packet should 
be dropped, forwarded, or passed to the Flow Manager to 
programme a new flow. At the very least, all unmatched 
packets that the application does not wish to handle should 
be returned to the controller.

Flow Manager

The Flow Manager interacts with the controller to create 
a new flow entry, which the controller can then pass on to 
forwarding devices. When passed a packet from the Packet 
Processor, it determines the new flow that is required and 
utilises the controller’s RESTful interface to distribute it 
through to forwarding devices.

Discussion

The most common event that causes an application to 
request the controller take action is the arrival of a packet, 
which typically leads to one of the following actions [15]:

• Packet-specific actions: instructing forwarding devices 
to delete, flood, or forward the packet to a certain port.

• Flow-specific actions: programming a new flow entry 
and installing it in a forwarding device to allow the device to 
handle such packets locally without contacting the controller.

To improve compatibility with OpenFlow, we propose 
that the Message listener submodule of the Listener module 
be implemented using the OpenFlow Message Listener [21], 
which is used to forward incoming packets to other mod-
ules. The controller could then forward necessary packets 
to registered applications to determine whether the packet 
should be forwarded, dropped, or cause a new flow to be 
programmed into the network. The Switch Listener and Host 
Listener could be based on a similar interface, borrowing 
from OpenFlow whenever possible, to maintain familiarity 
over the API.

The Listener module is the component of an internal 
SDN application that receives notifications from the con-
troller. The Packet Processor and Flow Manager, on the other 
hand, respond to these notifications through the controller’s 



	 SN Computer Science (2022) 3:502502  Page 6 of 7

SN Computer Science

Response API. We again suggest that OpenFlow be used 
wherever possible in these components, since it is already 
the standard for SBIs. For example, since OpenFlow is used 
to communicate Flows from the controller to forwarding 
devices, a similar (though slightly more abstract) represen-
tation could be used between the Flow Manager of the appli-
cation and the controller.

Conclusion

SDN separates the control and data layers of networks, 
allowing greater flexibility and control by making a network 
programmable. However, whilst SDN controllers use Open-
Flow as the standard southbound interface, there is currently 
no standard northbound interface (NBI).

Since the NBI is used to allow applications to communi-
cate with controllers, this means that applications are typi-
cally not compatible between different controller implemen-
tations. Whilst partial solutions, such as SDN programming 
languages, can help here, a well-defined open and extendable 
NBI is required. Our goal is to provide such an NBI. This 
interface will increase portability of applications between 
SDN implementations and help solve current incompatibility 
issues.

Using lessons learned from existing NBI implementa-
tions, and building on OpenFlow, we believe the correct 
solution is a RESTful Response API implemented on SDN 
controllers to allow reading and writing actions over the 
network, and a REST-like Listener API that allows applica-
tions to register with controllers and be notified of certain 
network events.

Each application that requires notification of events could 
then implement a RESTful interface that the controller 
would use to provide these notifications. The responses to 
these notifications could specify any actions required by the 
controller (e.g. dropping a packet or inserting a new flow). 
Borrowing representations from OpenFlow wherever pos-
sible (perhaps with some modifications/abstractions) would 
ensure familiarity with people already comfortable with 
OpenFlow.

Once these RESTful interfaces have been defined fully, 
the next step will be to implement shim implementations that 
utilise two existing, but currently incompatible, SDN con-
trollers and have them both interact with a single implemen-
tation of an SDN application. This proof of concept could 
then be extended to further controllers and existing SDN 
applications could even be ported to this new interface by 
placing a translator component between the controller using 
this new interface and the application.

SDN applications are often tied to a specific SDN con-
troller and porting these applications between different 
implementations is complex and time-consuming. The main 

advantage of our proposal is to improve this compatibility, 
so developers can create an application once and deploy it 
to any SDN controller. The disadvantage of our proposal is 
due to the existing incompatible implementations of NBIs 
in SDN. To overcome this, we recommend the development 
of a conversion layer to translate from our open and extend-
able NBI to the closed proprietary interfaces of existing 
controllers.

Funding  Open Access funding enabled and organized by CAUL and 
its Member Institutions. Abdullah Alghamdi’s PhD study is supported 
by the Saudi Arabia Cultural Mission.

Declarations 

Conflict of Interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Al Shuhaimi F, Jose M, Singh AV. Software defined network 
as solution to overcome security challenges in IoT. in 2016 5th 
International Conference on Reliability, Infocom Technologies 
and Optimization (Trends and Future Directions)(ICRITO). 2016. 
IEEE. https://​doi.​org/​10.​1109/​icrito.​2016.​77850​05.

	 2.	 Akcay H, Derya Y-K. Web-based user interface for the floodlight 
SDN controller. Int J Adv Netw Appl. 2017;8(5):3175–80.

	 3.	 Jain S, et  al. B4: Experience with a globally-deployed soft-
ware defined WAN. ACM SIGCOMM Comput Commun Rev. 
2013;43(4):3–14. https://​doi.​org/​10.​1145/​24860​01.​24860​19.

	 4.	 Shahid A, Fiaidhi J, Mohammed S. Implementing innovative rout-
ing using software defined networking (SDN). Int J Multimedia 
Ubiquitous Eng. 2016;11(2):159–172. https://​doi.​org/​10.​14257/​
ijmue.​2016.​11.2.​17.

	 5.	 Open Networking Foundation. 2021; Available from: https://​
openn​etwor​king.​org/.

	 6.	 McKeown N, et al. OpenFlow: enabling innovation in campus net-
works. ACM SIGCOMM Comput Commun Rev. 2008;38(2):69–
74. https://​doi.​org/​10.​1145/​13557​34.​13557​46.

	 7.	 Tijare P, Vasudevan D. The northbound APIs of software defined 
networks. Int J Eng Sci Res Technol. 2016;5(10):501–13.

	 8.	 Alghamdi A, Paul D, Sadgrove E. A RESTful northbound inter-
face for applications in software defined networks. in Proceedings 
of the 17th International Conference on Web Information Systems 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/icrito.2016.7785005
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.14257/ijmue.2016.11.2.17
https://doi.org/10.14257/ijmue.2016.11.2.17
https://opennetworking.org/
https://opennetworking.org/
https://doi.org/10.1145/1355734.1355746


SN Computer Science (2022) 3:502	 Page 7 of 7  502

SN Computer Science

& Technologies. 2021. SciTePress. https://​doi.​org/​10.​5220/​00107​
13300​003058.

	 9.	 Haji SH, et al. Comparison of software defined networking with 
traditional networking. Asian J Res Comput Sci. 2021;1–18.

	10.	 Rekhter Y, Li T, Hares S. A border gateway protocol 4 (BGP-4). 
1994, ISI, USC Information Sciences Institute. https://​doi.​org/​10.​
17487/​rfc16​54.

	11.	 Baker F, Coltun R. OSPF version 2 management information base. 
1991, RFC 1253, ACC, Computer Science Center. https://​doi.​org/​
10.​17487/​rfc12​52.

	12.	 Rosen E, Viswanathan A, Callon R. Multiprotocol label switching 
architecture. 2001. https://​doi.​org/​10.​17487/​rfc30​31.

	13.	 Braun W, Menth M. Software-defined networking using Open-
Flow: Protocols, applications and architectural design choices. 
Future Internet. 2014;6(2):302–36. https://​doi.​org/​10.​3390/​fi602​
0302.

	14.	 Latif Z, et al. A comprehensive survey of interface protocols 
for software defined networks. J Netw Comput Appl. 2020;156: 
102563. https://​doi.​org/​10.​1016/j.​jnca.​2020.​102563.

	15.	 Kreutz D, et al. Software-defined networking: a comprehensive 
survey. Proc IEEE. 2014;103(1):14–76. https://​doi.​org/​10.​1109/​
jproc.​2014.​23719​99.

	16.	 Shin MK, Nam KH, Kim HJ. Software-defined networking (SDN): 
A reference architecture and open APIs. in 2012 International 

Conference on ICT Convergence (ICTC). 2012. IEEE. https://​doi.​
org/​10.​1109/​ictc.​2012.​63868​59.

	17.	 Goransson P, Black C, Culver T. Software defined networks: a 
comprehensive approach. 2016: Morgan Kaufmann.

	18.	 Banse C, Rangarajan S. A secure northbound interface for SDN 
applications. in 2015 IEEE Trustcom/BigDataSE/ISPA. 2015. 
IEEE. https://​doi.​org/​10.​1109/​trust​com.​2015.​454.

	19.	 Zhou W, et al. REST API design patterns for SDN northbound 
API. in 2014 28th international conference on advanced informa-
tion networking and applications workshops. 2014. IEEE. https://​
doi.​org/​10.​1109/​waina.​2014.​153.

	20.	 Janz C et al. Intent nbi–definition and principles. Open Network-
ing Foundation, Version, 2015;2.

	21.	 Hoang DB, Pham M. On software-defined networking and the 
design of SDN controllers. in 2015 6th International Conference 
on the Network of the Future (NOF). 2015. IEEE. https://​doi.​org/​
10.​1109/​nof.​2015.​73333​07.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5220/0010713300003058
https://doi.org/10.5220/0010713300003058
https://doi.org/10.17487/rfc1654
https://doi.org/10.17487/rfc1654
https://doi.org/10.17487/rfc1252
https://doi.org/10.17487/rfc1252
https://doi.org/10.17487/rfc3031
https://doi.org/10.3390/fi6020302
https://doi.org/10.3390/fi6020302
https://doi.org/10.1016/j.jnca.2020.102563
https://doi.org/10.1109/jproc.2014.2371999
https://doi.org/10.1109/jproc.2014.2371999
https://doi.org/10.1109/ictc.2012.6386859
https://doi.org/10.1109/ictc.2012.6386859
https://doi.org/10.1109/trustcom.2015.454
https://doi.org/10.1109/waina.2014.153
https://doi.org/10.1109/waina.2014.153
https://doi.org/10.1109/nof.2015.7333307
https://doi.org/10.1109/nof.2015.7333307

	Designing a RESTful Northbound Interface for Incompatible Software Defined Network Controllers
	Abstract
	Introduction
	Background Information
	Software Defined Networking
	SDN Applications
	NBI API Requirements

	Design of a Reactive NBI
	Listener
	Packet Processor
	Flow Manager

	Discussion
	Conclusion
	References




