
Vol.:(0123456789)

SN Computer Science (2022) 3:500
https://doi.org/10.1007/s42979-022-01380-x

SN Computer Science

ORIGINAL RESEARCH

BarChartAnalyzer: Data Extraction and Summarization of Bar Charts
from Images

Siri Chandana Daggubati1 · Jaya Sreevalsan‑Nair1 · Komal Dadhich1

Received: 23 September 2021 / Accepted: 16 August 2022 / Published online: 1 October 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Charts or scientific plots are widely used visualizations for efficient knowledge dissemination from datasets. However, these
charts are predominantly available in image format. There are various scenarios where these images are interpreted in the
absence of their source data table. This leads to a pertinent need for data extraction from an available chart image. We narrow
down our scope to bar charts and its subtypes. We propose a semi-automated workflow, BarChartAnalyzer, for data extrac-
tion from chart images. Our workflow integrates the following tasks in sequence: chart type classification, image annotation,
object detection, text detection and recognition, data table extraction, chart summarization, and, optionally, chart redesign.
Our data extraction uses second-order tensor fields from tensor voting used in computer vision. Here, we propose a novel
application of design study methodology for the chart summarization component. Our results show that our workflow can
effectively and accurately extract data from images of different resolutions and subtypes of bar charts.

Keywords Chart classification · Chart segmentation · Chart image analysis · Optical character recognition · Data
extraction · Text recognition · Text summarization · Convolutional neural Network · Design study methodology · Bar
charts · Stacked bar charts · Grouped bar charts · Histograms

Introduction

Data can be interpreted better when presented as visualiza-
tions, wherein one of the simplest and most ubiquitous forms
is the class of charts. Chart representation specifically is a
widely used approach, which is evident from the inclusion
of the basic understanding of simple charts in the curriculum

of primary school education. Simple charts, e.g., bar charts,
scatter plots, etc., are commonly found in documents (text-
books, publications), print media (newspapers, magazines),
and on the Internet; and are most prevalent in image format.
There are use cases of redesign and reconstruction of charts
for getting high-resolution images for applications such
as generating accessible reading materials for differently
abled students. The chart redesign also enables students
with learning difficulties to understand data using alterna-
tive designs. These applications pose a problem when the
source data for the charts are not available alongside the
chart image for ready consumption. Thus, data extraction
in the form of semi-structured tables [1] from these chart
images is a relevant problem, specifically in the space of
improving assistive technologies.

Chart interpretation includes data extraction and textual
summary generation. The redesigning of multi-class charts
is a motivating application of the data extraction, as they
are relatively difficult to interpret [2]. The redesign entails
the requirement of source data that is used to generate the
original plot as well as information about multiple classes
being represented in the image. A motivating application of
chart summarization is for generating alternative text (alt

S. C. Daggubati, J. Sreevalsan-Nair, and K. Dadhich have
contributed equally to this work.

This article is part of the topical collection “Image Processing and
Vision Engineering” guest edited by Sebastiano Battiato, Francisco
Imai and Cosimo Distante.

 * Jaya Sreevalsan-Nair
 jnair@iiitb.ac.in

 Siri Chandana Daggubati
 daggubati.sirichandana@iiitb.ac.in

 Komal Dadhich
 komal.dadhich@iiitb.org

1 Graphics-Visualization-Computing Lab, IIIT Bangalore,
26/C Electronics City, Hosur Road, Bangalore,
Karnataka 560100, India

http://orcid.org/0000-0001-6333-4161
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01380-x&domain=pdf

 SN Computer Science (2022) 3:500500 Page 2 of 19

SN Computer Science

text) for web and document accessibility. While there are
applications where user intent can refine the chart summary
[3], use of the extracted data facilitates more generic appli-
cations where the goal is to inform the user of the source
data of the chart. In applications pertaining to accessibility,
chart summaries succinctly describe the data better than the
data table. One of the approaches for generating the textual
summary of chart images generically and yet automatically
is using its extracted data along with its extracted textual
content.

Since the design space for charts is large, in terms of chart
types and their formatting, we focus on a single chart type
here. Amongst all statistical plots, bar chart representation is
the most commonly used one for visual summarization. Bar
charts have subtypes, depending on the data type and user
requirement, such as simple, stacked, grouped bar charts, to
name a few. Stacked and grouped bar charts help visualize
multi-class or multi-series data. The grouped bar chart gives
inter-and intra-class trends, and the stacked bars give part-
to-whole information for multiple classes. Overall, we focus
on bar charts and its subtypes here.

The state-of-the-art reasoning over scientific plots
includes bar charts as a chart type of interest [1, 4]. These
methods use convolutional neural networks (CNNs) for the
object detection component for extracting bar geometry.
However, we find that CNNs for bar extraction may fail
specifically for the stacked bars. Hence, we use the image
processing method exploiting spatial locality for object
detection [5]. We, thus, propose a semi-automated work-
flow (Fig. 1), called BarChartAnalyzer [6], that can take an
image as input, identify the bar chart, sub-classify it to bar
chart type, and then perform data extraction. The extracted
data can be further used for reconstruction to get custom-
ized charts of high-resolution image quality, as well as for

redesigning the complex to simpler charts. Here, we extend
our previous work on BarChartAnalyzer by improving the
text summarization component using a novel design study.
Our approach is inspired by the design study methodology
(DSM) used for generating data visualizations and informa-
tion graphics [7]. In summary, our contributions are:

• an end-to-end semi-automated workflow (Fig. 1) for
interpreting images of bar charts and their seven sub-
types, with an improved text summary,

• a novel design study-based approach for template-based
chart summarization for bar chart subtypes,

• training dataset for bar chart images for bar chart subtype
classification, along with text summaries.

Our most significant contribution here is the text summary
generating component (C7), for which we adopt DSM,
which is usually used for visualization design. Here, we
propose the text summary generation from chart images as
its novel application. We have designed and implemented a
user study as a part of DSM. Our current work builds on our
previous work of the use of tensor fields for object (i.e., bar)
detection [5], and the proposed workflow (C1–C7) in Bar-
ChartAnalyzer [6]. In the latter, chart summarization relies
entirely on a template, which is now improved here by the
observations from a user study.

Related Work

Chart interpretation is generally divided into smaller tasks
such as chart type classification, data extraction, and, option-
ally, reconstruction or redesign, and summarization. ReVi-
sion is a system that performs tasks like identifying chart

Fig. 1 Our proposed workflow for data extraction from a given chart
image using our proposed semi-automated BarChartAnalyzer (BCA),
with seven components (C1–C7), for applications including chart
reconstruction and redesign. Significant components are C1 for clas-
sifying the chart image to bar charts and its subtypes, C2–C4 for fea-

ture extraction, C5 for text detection for data contextualization, and
C6 for data table generation. Here, we use the design study methodol-
ogy for improving the text summary in C7. This image is a modified
version of the one in our previous work [6]

SN Computer Science (2022) 3:500 Page 3 of 19 500

SN Computer Science

type, extracting visual elements, and encoded data by cre-
ating feature vectors and identifying geometric structures
in pixel space [8]. WebPlotDigitizer is another system that
provides both automatic and manual procedures to extract
data from given chart images [9]. However, the tool requires
extensive user interaction for aligning axes to select data
points. It works for simple bars, but fails for stacked and
grouped bar charts in giving class information.

Machine learning models have been effectively used for
classification and/or object detection problems in chart anal-
ysis. Beagle is a web-based system for classifying charts in
scalable vector graphics format [10]. Text type classification
has been done using feature vector generated using the geo-
metric property of text along with mark type classification
using a fine-tuned AlexNet [11]. FigureSeer uses a similar
fine-tuning approach [12]. A convolutional neural network
(CNN) model used for chart classification can also be used
for object detection, e.g., for chart objects such as bars in
the source image [4]. ChartSense uses GoogleNet to clas-
sify line, bar, pie, scatter charts, map, and table types [13].
ChartSense further uses the connected components method
to extract bar objects, using the x-axis as a baseline in the
image. While this method works for simple bar charts, the
charts with bars of multiple classes (e.g., grouped bars) get
incorrectly identified as belonging to the same class. The
existing methods using object detection-based approach
have not been shown to work for all subtypes of bar charts,
e.g., stacked bars, for which training data is currently una-
vailable. Hence, we rely on conventional computer vision
and image processing methods on all bar chart subtypes to
identify bars, and bar segments, in the case of stacked bars.
We choose a corner detection method that exploits spatial
locality using second-order tensor fields [5] in BarChartAna-
lyzer. These methods largely fall under the category of chart
interpretation through visual structure extraction.

Apart from visual structure extraction, chart analysis
can be done through automated chart question–answering
(CQA) systems, and data parsing. PlotQA is an example of
CQA that uses a more accurate neural network for object
detection for visual elements, such as bars [1]. While PlotQA
is an example of an approach where data are parsed from
charts, and then used for QA, an alternative approach for
CQA is using natural language understanding (NLU) meth-
ods. An example of such an approach is through the use of
transformers for answering questions from charts directly,
of which Structure-based Transformer using Localization,
STL-CQA [14], is a recent solution.

Text detection is important for chart inference. Automated
data extraction for bar charts has been done by identifying
graphical components and text regions independently [15,
16]. Text detection and recognition are both required for
extracting the text content from a chart image. Chart data

are finally extracted using inference from both graphical and
text content.

A textual summary of a chart is a relevant task for its
interpretation. While its relevance may appear counter-
intuitive as the charts are themselves visual summaries of
data, its text summarization has been found to be useful for
the visually impaired (VI) users to read its images, usually
embedded in documents. Visualization of summaries in a
graphical interface is an alternative to text summaries of
charts, e.g., Chartseer [17], but does not improve the acces-
sibility to the VI users. Hence, the conventional textual
summaries are of interest to us. The challenges involved
in textual summarization are in the selection of relevant
information, organization of the content into fluent text,
use of appropriate comprehensible sentence structures, and
choice of appropriate expressions in the concerned language,
i.e., English in this case [18]. The purpose of the chart sum-
mary determines the relevant information that is added to the
content [16]. Once the content is identified, the summary is
generated using two different natural language generation
(NLG) approaches, namely, predefined templates and deep-
learning methods. The predominantly used template-based
approach provides more rigid content than the deep learning
methods that is more recently used. For generic applications
or for creating master summaries, the former is simpler to
implement and also suffices.

Using predefined templates, iGRAPH-Lite system gener-
ates a short summary explaining the visual description of the
chart itself, but does not provide insight into the informa-
tion provided by visualization using the chart [19]. Linguis-
tic constructs have been used to generate a chart summary
with the help of semantic graph representation [20]. Three
types of features have been selected from charts, namely,
salience, trend, and rank, that encode details like increas-
ing or decreasing trend, any specific colored bar showing
highly prominent detail. However, we have found that the
summary output of this system has limited description.
Summaries, especially for bar charts, have also been gener-
ated by calculating differences using existing attributes in
chart images and providing the core message represented
by the selected chart [21]. In an improved version, the level
of importance of the different aspects of the content has
been determined using a user study [18]. A centrality-based
algorithm based on PageRank has been used for content
selection prior to templatized sentence creation for the bar
(simple and grouped) and line charts for improving acces-
sibility of information graphics to the VI users [22]. Unlike
these methods, we use the design study methodology used
in human–computer interaction (HCI) [7] as an alternative
for content selection. Our work is also different from users
collaboratively designing chart summaries using a graphical
interface, e.g., Chart Constellations [23].

 SN Computer Science (2022) 3:500500 Page 4 of 19

SN Computer Science

Recently, deep-learning methods in NLG have been used
for chart summarization. These include the 1D convolutional
residual network in Autocaption for creating captions of
visualizations [24], long- and short-term memory network
(LSTM) with user inputs in cyberphysical social systems
[3], and transformer-based encoder–decoder architecture in
Chart-to-Text [25].

The 7‑Component Workflow

We propose a workflow, BarChartAnalyzer, that interprets
a given chart from its image. It has seven main components
(Fig. 1), namely, chart subtype classification, chart image
annotation, canvas extraction, tensor field computation, text
recognition, data table extraction, and chart summarization.

Chart Subtype Classification (C1): Data are represented
using different chart types based on the number of variables
and user requirements. For example, scatter plots and bar
chart representations visually encode the data differently,
requiring different chart analysis approaches. In the case
of bar charts, there are commonly used subtypes, namely,
simple bars, grouped bars, stacked bars, and of different ori-
entations, depending on design requirements. Since the data
extraction process from a given chart image depends on its
chart type, identifying the type/subtype is the first step of
our workflow.

Image classification is a widely studied problem in com-
puter vision, and it has been done using different CNN-based
classification models, such as AlexNet and GoogleNet.
These models were trained and tested for a set of natural
images provided during the ImageNet challenge [26]. The
natural images contain characteristics other than the shape
of the object, like texture, finer edges, color gradients, etc.
However, compared to natural images, the chart images are
sparser and more structured with repeating patterns. Hence,
the models that work for natural images do not work effec-
tively for chart images.

The chart objects, such as bars, scatter points, and lines,
are distinguishable based on their shape and geometry,
unlike objects found in natural images. However, the chart

subtypes for bar charts all have similar geometry, i.e., bars.
Hence, contour-based techniques for chart subtype classifi-
cation are inefficient. A few pre-trained models have been
used for chart type classification of images by imposing cer-
tain constraints, e.g., training with a small image corpus;
however, the classification outcomes have low accuracy. The
classifier in ChartSense has used GoogleNet [13], which has
been trained on different chart types. This model classifies
subtypes, such as grouped and simple bars, also, since the
features are similar in both subtypes. However, other sub-
types of our interest, namely stacked bar charts, have not
been explored. On the other hand, mark-based chart classifi-
cation is an alternative approach [11], where the classifier is
trained to recognize five mark types: bars, lines, areas, scat-
ter plot symbols, and other types. This classifier is limited
to the identification of the chart type without any scope of
extension to subtypes. Thus, we explore all bar chart sub-
types, including the stacked bar charts and histograms, that
have not been considered widely in the state-of-the-art.

Our proposed subtype classifier is inspired by the VGG-
Net (Visual Geometry Group Network) architecture [27],
which is widely used for object detection and segmentation
tasks on image databases, such as KITTI [28], an image
benchmark dataset for road-area, and ego-lane detection
[29]. We choose the VGGNet architecture as it is efficient in
feature extraction from images and addresses depth in con-
volutional networks. It is also simple for a new model, with
the flexibility of adding more VGG blocks. The VGGNet
architecture has a stack of convolutional layers (Fig. 2 (left))
that generalizes the deep-learning tasks. Our CNN model
is a combination of the convolutional, pooling, and fully
connected layers, as specified in Table 1. The convolutional
layers are responsible for extracting features by convolving
images using kernels. Our classifier uses max-pooling to
reduce computation by reducing the spatial size by half. The
tailing layers in our classifier are the fully connected layers
that take the results of the pooling/convolutional layer and
assign it a label/class. Our classifier identifies the bar chart
subtype of an input image. This classification also checks if
the given image is of bar chart type, as the workflow down-
stream accepts only bar charts, rejecting the others.

Fig. 2 (Left) The architecture diagram of our CNN-based classifier
for identifying bar chart subtypes. (Right) Human-guided annotation
of the chart image, where the chart canvas is used for object detec-

tion. This image is a modified version of the one provided in our pre-
vious work [6], specifically for the CNN architecture diagram

SN Computer Science (2022) 3:500 Page 5 of 19 500

SN Computer Science

Training Dataset—The chart image dataset that we have
curated consists of images of seven different subtypes of
bar charts, namely, simple, grouped/clustered, and stacked
bar charts of horizontal and vertical orientations and histo-
grams. The training dataset of our CNN model consists of
images of these seven subtypes and additionally an “other”
category. The “other” category includes scatter plots and
line and pie chart images that are commonly used, exclud-
ing bar chart subtypes. Histograms are included as one
of the subtypes of bar charts, since some plotting tools,
e.g., Google sheets and Microsoft Excel®, use bar charts
for histogram plots. Also, we observe that the geometry of
bins in histograms is the same as columns/bars in the bar
charts. Our CNN-based classifier requires input images of
fixed size for training; hence, we first resize the images in
the dataset to 200 × 200 size. The image resizing and clas-
sifier implementation has been done using Python imaging
(PIL) and Keras libraries, respectively. Our CNN model
for chart subtype classification is novel in its application
for classifying bar chart subtypes. Our classifier assigns
class labels to an input image specifying the bar chart sub-
type and its orientation, except in the case of histograms,
e.g., “horizontal grouped bar,” “vertical stacked bar.”

Image Annotation (C2) and Canvas Extraction (C3):
Image annotation is usually performed to generate training
datasets for computer vision-related problems like object
detection, segmentation, etc. Image annotation entails
labeling different regions of interest (ROIs) in the images.
These predefined labels are used to detect and extract ROIs
in test data using learning approaches. Since this requires
contextual labels and appropriate associations between

labels and ROIs, human-guided annotation is an optimal
approach.

For chart images, manual marking and annotation of
bounding boxes for ROIs have been widely used [1, 4].
Different labels are assigned to the components of chart
images based on their role in the visualization, such as
canvas, x-axis, y-axis, x-labels, y-labels, legend, title,
x-title, and y-title, as shown for a sample chart image
[Fig. 2 (right)]. We use LabelImg [30] to mark and anno-
tate bounding boxes for ROIs of the above-mentioned
labeled components of a chart image. LabelImg is
a Python tool with a graphical user interface (GUI) for
interactively selecting an image, drawing a bounding box
for an ROI, annotating the ROI, and labeling the ROI. We
use the label Canvas for the ROI that contains the chart
objects, such as bars, lines, or scatter points, and is defined
as chart canvas, which is one of the chart image compo-
nents [5]. The annotation is generated as an XML file that
is processed to extract the canvas region as well as for text
localization. The former is used for chart extraction (C3),
and the latter for text detection (C5).

The canvas extraction step (C3) includes image pre-
processing methods to remove the remaining elements
other than chart objects such as gridlines, overlaid legends,
etc. The subsequent step (C4) on tensor field computation
is sensitive to the presence of these extraneous elements,
which leads to erroneous results. Image processing tech-
niques, marker-based watershed segmentation, and con-
tour detection algorithm have been used to remove such
components in the chart canvas effectively [5]. These steps
also fill hollow bars, as required, since the tensor field
is computed effectively for filled bars. Highly pixelated
edges in aliased images lead to uneven edges in each bar
object. This issue is addressed using the contour detection
method to add a fixed-width border to bars [5]. Overall,
we perform these steps, as illustrated in Fig. 3 with an
example, to extract a chart canvas containing chart objects
used in C4.

Tensor Field Computation (C4): Tensor fields have
been widely used to exploit geometric properties of objects
in natural images [31] using structure tensor and tensor
voting. We use a local geometric descriptor as a second-
order tensor for tensor vote computation [32] that further
leads to corner detection in the case of bars for a given
bar chart. The steps in C4 are illustrated in Fig. 4 with the
help of an example.

Structure tensor Ts at a pixel provides the orientation
of the color gradient computed from the local neighbor-
hood. Ts is the gradient tensor Tg at the pixel with intensity
I; convolved (using ∗ operator) with Gaussian function G
with zero mean and standard deviation � . Then, Ts is given
as follows:

Table 1 The VGGNet [27]-inspired architecture of our proposed con-
volutional neural network for chart type classification, diagrammati-
cally given in Fig. 2

Layer Type Output shape

input _ 200 × 200 × 3

conv1 Convolution 200 × 200 × 16

conv2 Convolution 200 × 200 × 16

pool1 Max-pooling 100 × 100 × 16

conv3 Convolution 100 × 100 × 16

conv4 Convolution 100 × 100 × 16

pool2 Max-pooling 50 × 50 × 16

conv5 Convolution 50 × 50 × 32

conv6 Convolution 50 × 50 × 32

pool3 Max-pooling 25 × 25 × 32

conv7 Convolution 25 × 25 × 64

conv8 Convolution ×25 × 64

pool4 Max-pooling 12 × 12 × 64

fc1 Fully connected 256
fc2 Fully connected 8

 SN Computer Science (2022) 3:500500 Page 6 of 19

SN Computer Science

The tensor vote cast at xi by xj using a second-order tensor
Kj in d-dimensional space is Sij , computing using the closed-
form Eq. [33]. If dij is the distance vector, i.e., dij = xj − xi ,
then its unit vector is rij = d̂ij . Let Id be the d-dimensional
identity matrix, and �d be the scale parameter which is used
with the inverse distance weight using Gaussian function,
cij = exp

�
−

‖dij‖22
�d

�
 . Thus, we compute Sij as

(1)
Tg = (GTG), where gradient vector G =

[
�I

�x

�I

�y

]
,

Ts = G� ∗ Tg.

Here, we use the gradient tensor Tg as Kj [34]. If rijrTij is the
distance tensor, then Rij is physically the normal tensor to
the distance tensor, when treated as the tangent tensor.

We compute the color gradient using the color in the
CieLAB space [5]. Owing to the use of color for corner
detection, BarChartAnalyzer fails for bar charts that use

(2)

Sij = cijRijKjR
�

ij
,

where we compute Rij =

(
Id − 2rijr

T
ij

)
;

R�

ij
=

(
Id −

1

2
rijr

T
ij

)
Rij.

Image Annotation (C2)

LabelImg
Annotation

Tool

Histogram Equalized
Threshold Image of

Annotated Canvas region
If foreground
pixel count is

< 20%

Fill closed contour
regions with

their edge colors
and recompute
threshold image

Classified
Chart Image

Yes
Sure background image

obtained from Dilation

Sure foreground image
obtained from

Distance Transform

Canvas Extraction (C3)

Apply Marker based
Watershed Transform
followed by drawing
borders of contours

Compute markers
using Connected

Component labeling

No

Fig. 3 The illustration of the workflow for C2 and C3 demonstrates the chart image annotation and canvas extraction sub-components of the Bar-
ChartAnalyzer with their intermediate steps. Here, we follow the steps in C2-C3 as described in our previous work [6]

Canvas Extraction (C3) Corner Point Detection
using DBscan Clustering

Saliency Visualization of
Tensor Vote after

Anisotropic Diffusion

Fig. 4 Illustration of the steps in C4 for corner point extraction of bar
chart image using tensor field computation using DBscan clustering
of critical points from anisotropically diffused tensor voting with sali-

ency value C
l
< 0.4 . Here, we follow the steps in C4 as described in

our previous work [6]

SN Computer Science (2022) 3:500 Page 7 of 19 500

SN Computer Science

texture for region-fill of the bars. This is observed especially
in the case of grouped and stacked bar charts where texture
is used to differentiate bars of different classes/series.

Anisotropic diffusion As the tensor votes Tv in normal
space has to encode object geometry in tangential space, we
perform anisotropic diffusion to transform Tv to tangential
space [5, 32]. The eigenvalue decomposition of the two-
dimensional Tv yields ordered eigenvalues, �0 ≥ �1 , and
corresponding eigenvectors v0 and v1 , respectively. Aniso-
tropic diffusion requires a diffusion parameter � , for which
(� = 0.16) is widely used [5, 35]. Anisotropic diffusion of Tv
gives Tv-ad , that is a positive semidefinite second-order tensor

Saliency computation The saliency of a pixel to belong to
geometry features of line- or junction/point-type is deter-
mined by the eigenvalues of Tv-ad [5]. We get the saliency
maps at each pixel of an image of its likelihood for being a
line- or junction-type feature, Cl and Cp , respectively

using eigenvalues of Tv-ad of the pixel, such that �0 ≥ �1 .
The pixel with Cp ≈ 1.0 is referred to as a critical point or
degenerate point in the parlance of tensor fields. We detect
all the critical points in the chart canvas during C4.

DBSCAN clustering The critical points of the chart image
computed from tensor field computation form sparse clusters
at the corners of each bar [5]. These pixels are localized
using density-based clustering, DBSCAN [36], and cluster
centroids are computed by tuning the hyperparameters of
DBSCAN clustering to specific chart types. These cluster
centroids are treated as corners of the bar. Using the posi-
tional layout or arrangement of these corner points based on
the specific chart type and subtype, we heuristically compute
the height of each bar in pixel space.

Text Recognition (C5) and Information Aggregation
for Data Extraction (C6): At this juncture, the data we
have extracted from the chart image, using tensor field
computation, are in the image (or pixel) space. However,
the extracted data must be in the data space for accurately
summarizing and optionally reconstructing the chart.
Hence, to transform the data from the pixel space to the
data space, we now combine the data in pixel space with
the text information in the image. We perform text detec-
tion to get x-axis and y-axis labels and compute the scale
factor between the pixel and data spaces. The recognition
of other textual elements, namely, plot title, legend, x-axis,
and y-axis titles, also plays a crucial role in analyzing chart
images, e.g., the information is used in summary (C7).

(3)Tv-ad =

1∑

k=0

��
k
.vkv

T
k
, where ��

k
= exp

(
−

�k

�

)
.

(4)Cl =
�0 − �1

�0 + �1
and Cp =

2�1

�0 + �1
,

The deep-learning-based OCR, namely Character Region
Awareness for Text Detection, CRAFT [37], is used for
effective text area detection, including arbitrarily-oriented
text. This approach is designed for relatively complex text
in images, and it works by exploring each character region
and considering the affinity between characters. A CNN
designed in a weakly supervised manner predicts the char-
acter region score map and the affinity score map of the
image. The character region score is used to localize indi-
vidual characters and affinity scores to group each character
to a single instance. Therefore, the instance of text detected
is not affected by its orientation and size. The text orienta-
tion is inferred from the detected text boxes and then rotated
to horizontal orientation for the proper extraction.

The CRAFT text detection model can be followed by
a unified framework for scene text recognition that fits all
variants of scenes, called the scene text recognition frame-
work STR [38]. Being a four-stage framework consisting
of transformation, feature extraction, sequence modeling,
and prediction, STR resembles the combination of computer
vision tasks such as object detection and sequence prediction
task and, hence, uses a convolutional recurrent neural net-
work (CRNN) for text recognition. We find that the CRAFT
model, along with the STR framework, works efficiently to
retrieve labels and titles of the chart image better than the
widely used Tesseract OCR [39]. This is because Tesser-
act OCR fails for commonly found characteristics of chart
images, such as text content with different colors, sizes, ori-
entations, curvy fonts, and different languages, along with
interferences or issues in the text, such as low resolution,
exposure, noise, motion blur, out-of-focus, varying illumi-
nation, etc. Thus, we use the CRAFT model with the STR
framework here.

In C6, subsequent to text detection and recognition, we
transform the data extracted in pixel space to data space and
add appropriate textual information for the variable name
and bar width. Once the information is in the data space,
we extract the data table. For both stacked and grouped bar
charts, we additionally identify class/series information
using the legend. The class/series information is then added
to the extracted data table.

Chart summarization (C7) Our next step is to generate
a summary of the chart image based on its retrieved data
table and the perceivable visual elements of the chart image.
While our approach is to use a predefined template for gen-
erating the textual summary, we propose a design study
for generating it, as explained in section "Design Study for
Chart Summarization". A design study is apt here, since
this is a task involving human–computer interaction (HCI),
and the output of the workflow, i.e., the summary, is to be
designed for real users [7]. The design study is necessary to
facilitate consideration of the user inputs during summary
generation. This is different from the conventional practice

 SN Computer Science (2022) 3:500500 Page 8 of 19

SN Computer Science

of using user study for evaluation of chart summary [3, 25].
Thus, in our work, we utilize a user study for design itera-
tions of the summary template.

Design Study for Chart Summarization

An effective summary should concisely represent the signifi-
cant information of the chart image instead of a detailed tex-
tual representation of the entire chart data table. The infor-
mation perceived as significant by a user varies based on
various aspects, such as education, work, and their reason-
ing. Given our requirement of creating a generic summary
without serving any specific intent, a predefined template
suits our requirement better than the deep learning solutions
based on user inputs [3].

We use the 9-stage design study methodology [7] to arrive
at the predefined template to be used for the chart summary.
Even though the design study methodology pertains to visu-
alization as an output of human–computer interaction (HCI),
it can also be extended to the design of chart summaries.
This is because the chart summary is computer-generated
but consumed by human users, just like visualizations
themselves. The nine stages are divided into three top-level
phases in sequence, namely precondition, core, and analysis,
and the nine stages are split across these phases. The pre-
condition phase, which focuses on the design’s preparation,
includes learning, winnow, and cast stages in sequence. The
core phase, central to the actual design process, includes
discover, design, implement, and deploy stages in sequence.
The analysis phase, which is done retrospectively, includes
reflect and write stages in sequence. Even though these nine
stages form a linear process, the design study involves sev-
eral feedback loops leading to a highly iterative dynamical
methodology.

For specifically C7, i.e., chart summarization, we loosely
consider both the determination of the problem statement
pertaining to automatically interpreting chart images and
the design of components C1–C6 of our workflow as the
precondition phase. Here, we elaborate on the core and the
analysis phases.

Core phase Here, we implemented the following:

• Discover Problem Characterization and Abstraction—
this stage entails gathering requirements from experts
and users. Thus, to understand the requirement of blind
users’ usability of automated chart interpretation with
chart summary to improve accessibility to the visually
impaired, we listened to experts in education for the visu-
ally impaired (VI), one visually impaired person, and
volunteers who create educational resources for the VI,
such as haptics, braille textbooks. We selected this group
of experts and users in the context of interpreting charts

given in high school mathematics textbooks. We gathered
that the manually created summary currently includes
visual characteristics of color, geometry, and details of
chart title, axes, and ranges. The summary also optionally
includes apparent characteristics of the data, and usually,
the chart accompanies the data table, which can be read
using screen readers. Since our goal is to improve acces-
sibility to charts in print and mass media, where data
table is usually unavailable to the user, we added this as
an additional requirement.

• Design Encoding—To satisfy the requirements, we
arrived at a sentence structure for specifically bar charts
and their subtypes [6], using a flowchart (Fig. 5). This
well-built sentence structure serves as the predefined
template for the summary. It contained the visual sum-
mary of the appearance of the chart and the data table
summary capturing the chart title, axes, and statistical
descriptors. The descriptors include data distribution,
range, mean, median, mode, standard deviation, and cor-
relation values of attributes based on the subtype of bar
charts. The summary also includes the variable-based
trend patterns in the chart image in the case of ordinal
attributes.

• Implement Prototype—We implemented the chart sum-
marizer, i.e., C7 in the workflow (Fig. 1), as explained
in section "The 7-Component Workflow". These system-
generated summaries are programmatically generated for
all the charts in our dataset.

• Deploy Release and Gather Feedback—We then released
a set of sample chart images and its corresponding sys-
tem-generated summaries in a user study to gather feed-
back. Since the purpose of the user study is to evaluate
the completeness of the system-generated summary, vis-
ually abled participants are used in the feedback process.

User Study We conducted a user study to collect feedback
on the initial system-generated summaries of chart images.
This study is intended to refine the sentence structure in the
predefined template for the chart summary. Our user study
is similar to that conducted for identifying the intended mes-
sage of a graphic [18], where the users evaluate our system-
generated summary.

The core part of our user study has been designed as
two different modules based on the objectives of the study.
The first objective is to learn about the understanding and
interpretation of bar chart images by the user. The second
objective is to assess the completeness and effectiveness of
the initial system-generated summary and help us further
improve it. The second objective is partially similar to the
user study for identifying the intended message of a simple
bar chart [18], where participants are asked to rate specific
propositions, i.e., pieces of information, as “essential,”
“possible,” and “not important”.

SN Computer Science (2022) 3:500 Page 9 of 19 500

SN Computer Science

We designed an online user study that allows us to col-
lect diverse responses from various sections of the population.
The online study is also required owing to the social distanc-
ing during the pandemic. The participants are invited to the
study through email, social media, etc., and are informed about
the purpose of the user study. The participants’ responses are
recorded using a web form on the study website. The web form
has the following four parts in sequence, as shown in Fig. 6:

1. Participants’ details—This information includes par-
ticipant name, email, age, gender, educational degree,
profession (if worked/working as an educator), vision
deficiency, and self-assessment of familiarity with usage

of charts. This information helps us analyze how factors
like age, gender, educational conditioning, and vision
deficiencies impact chart understanding and interpreta-
tion of participants.

2. Instructions—A web page of written detailed instruc-
tions is included in the study website, including the
expected time commitment for the study. In addition to
these instructions, further queries have been answered
through telephonic calls, emails, social media corre-
spondences, etc.

3. Module-1—The first module of the core part of the user
study satisfies the first objective of the study. Here, each
participant is shown a set of three bar chart images. These

Fig. 5 Our proposed flowchart
of sentence structure formation
in the chart summary (Source:
[6]), that is implemented in the
design stage of the core phase in
the design study

 SN Computer Science (2022) 3:500500 Page 10 of 19

SN Computer Science

images are randomly selected from 26 images from the
test corpus. We ensure that the set presented to each
participant includes a grouped bar chart, a stacked bar
chart, and a simple bar/histogram. The participants see
an image and complete the assigned task for the image
before being shown the next image. The task for each
image entails writing one’s own creative chart summary
for the image. The participant is advised to prepare the
summary in a way he/she would narrate to a VI person.

4. Module-2—The second module of the core part of the
user study satisfies the second objective of the study.
Here, we present the user with the same set of chart
images from the first module, their creative summaries
by the participant prepared in Module-1, and the corre-
sponding system-generated summaries from the design
stage. These three entities are juxtaposed for the par-
ticipant to compare the two summaries. The task entails
comparing both the summaries and assessing using Lik-
ert-like scales. We use three components of the scores,
i.e., compare-, sufficiency-, and grammar-scores, to rate
our system-generated summaries qualitatively against
their creative summaries. This task of comparison is
done for one image at a time, as done in Module-1.

The three components of the total score used in our study
are given below, with the range of rating in parentheses
and the interpretation of each rating.

Compare-Score (1–3):

3. System-Summary is better than Creative-Summary
2. Both summaries are equivalent or similar
1. Creative-Summary is better than System-Summary.

Sufficiency-Score (1–5):

5. System-Summary is sufficient but has extra information
4. System-Summary is just sufficient
3. Some minor details are missing in System-Summary
2. Some critical information is missing in System-Sum-

mary
1. System-Summary is not sufficient at all.

Grammar-Score (1–4):

4. System-Summary is grammatically/structurally correct
3. System-Summary needs minor modifications
2. System-Summary needs major modifications

Fig. 6 A snapshot of user study displaying web page for a participant’s details collection, b instructions of survey, c module-1 for creative sum-
maries collection, and d module-2 for comparative assessment of summaries

SN Computer Science (2022) 3:500 Page 11 of 19 500

SN Computer Science

1. System-Summary is grammatically/structurally incor-
rect.

As a final step of the user study, participants are provided
a text box in the web form to optionally provide short feed-
back with suggestions for improving the system-generated
summary.

The 30 participants of the study, who were primarily
undergraduate and graduate college students, were in the age
group 18–45 and completed both Module-1 and 2. Each par-
ticipant is given a set of three chart images with a grouped
bar chart, a stacked bar chart, and a simple bar/histogram.
These chart images are randomly selected from a generic test
dataset of 26 images obtained from different sources like the
internet and synthetically generated datasets that are simple
and easily understood by most sections of the population.
The outcome of the survey is that, in most of the cases, the
participants were satisfied with the system-generated sum-
mary. They stated that the non-visual statistical description,
such as distribution of histogram, standard and correlations
values in the stacked and grouped bar, etc., improved their
understanding of the data of the chart image. However, a
few participants contradicted that the statistical description
in the system-generated summary was extraneous. They also
pointed out that the system-generated summaries had not
included a few visually perceivable details, such as intra-
class inferences, overall bar heights, and inter-class differ-
ences in heights in grouped and stacked bars. Some of the
participants misinterpreted the histogram chart as a simple
bar chart without considering the semantics of the bar being
counts or frequencies and that of the chart being a visualiza-
tion of the data distribution.

Apart from the suggestions on improving the content of
the summary, there were suggestions on editorial corrections
to the summaries, e.g., proper noun usage, capitalization
of words, etc. These summaries also had instances of a few
words being misspelled due to improper text recognition in
C5. Some of the participants suggested that detailed data

representation is desirable for charts with fewer bars, say
< 8 . There was another feedback to use compound subjects
in sentences to shorten the summary, e.g., “A is correlated
to B, B is correlated to C, and C is correlated to A” is to be
rephrased as “A, B, and C are correlated to each other.”

Quantifying the survey outcomes, the average grammar
score is 3.33 out of 4.0, which states that minor grammatical
modifications are required in initial summaries. The aver-
age compare-score is 2.33 out of 3.0, which states that our
initial system-generated summaries cover similar details as
the creative summaries by the participants. The participants
reported that the system-generated summaries outperformed
creative summaries, especially in cases of charts without
any context, such as missing chart title or axes titles. The
average sufficiency score is 3.97 out of 5.0, which states that
system-generated summaries are sufficient. The outcomes of
the user study lead to the analysis phase in the design study.
The reflect stage of the analysis phase entails refining the
summary using the feedback from the user study.

Analysis Phase: We have implemented the following
steps given in the design study methodology (DSM) [7]:

• Reflect: Confirm and Refine—We confirmed our findings
from the user study and then determined a change in the
text organization, from the sentence flow format, for the
predefined summary template. Our refined text organiza-
tion is implemented using a new algorithm, as shown in
Fig. 7. This algorithm creates summaries specific to each
chart subtype, thus exploiting the semantics of the type.
Here, we also use best practices of reusing components
in programming, where the grouped and stacked bar
charts are reduced to simple bar charts, and the summa-
rizer for the simple bar chart is invoked. We refined the
visual summary to include intra- and inter-class trends
in grouped and stacked bar charts. For histograms, we
re-annotate the variables to include terms such as “fre-
quencies” and “bins” to convey the chart semantics. The
new text organization now has three parts in sequence

Fig. 7 Our proposed algorithm
for generating the text sum-
mary in the BarChartAnalyzer,
refined by the responses from
the user study. This algorithm is
implemented in the reflect stage
of the analysis phase in the
design study

 SN Computer Science (2022) 3:500500 Page 12 of 19

SN Computer Science

[22]—the chart specifications, the visual summary, and
the data table summary. The content from the visual and
data table summaries are then de-duplicated to make
the content crisp. We additionally used an open-source
Python library, GingerIt, to correct the spelling and
grammar mistakes based on the construction of the com-
plete sentences. This gives us the final chart summary.

• Write: Design Study Paper—Our elaborate documenta-
tion in this section serves as the written report of the
entire design study.

We conclude that our chart summarization provides a master
summary. This summary can be further pruned based on
user inputs, thus, customizing this component for intended
purposes. The parts of the modified text organization can
also be considered as the granularity of information, which
can be used in an interactive framework for providing high-
to-low level details of the graphic, e.g., Interactive SIGHT
(Summarizing Information GrapHics Textually) [40].

Experiments and Results

This section discusses the overall implementation, and per-
formance of the BarChartAnalyzer.

Implementation: The workflow is implemented in the
Pycharm 2018.3 tool on an Intel i5 processor equipped
with 8 GB RAM in Mac OS 10.14.3. The manual interven-
tion is required for image annotation in C2, and optionally
for tuning hyperparameters for DBScan algorithm in C4. We
manually annotate the chart image using the LabelImg
tool separately installed on our machine, which takes ∼ 2
min. We then input the chart image along with the generated
XML file to our BarChartAnalyzer. The execution time of
the entire workflow of BarChartAnalyzer is ∼ 3 min for an
image of 192 DPI (Dots Per Inch), of which the tensor voting
computation consumes two-thirds of the entire running time.
Our current implementation of the tensor voting computa-
tion is serial and has the scope of parallel implementation
in future to reduce the execution time of BarChartAnalyzer.

In C1 of the BarChartAnalyzer, we have trained the
CNN model for classification using 1000 images belong-
ing to eight types of charts, namely, the seven subtypes of
bar charts and a complement set, “others”, consisting of
chart images of line charts, scatter plots, and pie charts. The
training set excludes images for charts with textured, hol-
low, or hand-drawn bar objects. The training accuracy for
our classifier is currently at 85%. For testing, we have used
a dataset of 50 chart images each from these eight types.
For experiments, we generated a dataset that includes bar
chart images of these eight types from two sources, namely
images downloaded from the Internet and synthetically gen-
erated images. The latter is from bar charts generated using

the Python plotting library, matplotlib from known data
tables.

Experimental Results: We have tested our entire sys-
tem on the 50 chart images for each of the eight bar chart
subtypes, apart from using them for testing the chart type
classifier. The results from the BarChartAnalyzer for a sub-
set of our experiments are shown in Fig. 8. The images are
first classified, and only those of bar charts and its subtypes
pass through the BarChartAnalyzer. The source images
are given in Fig. 8a. The tensor field analysis on extracted
canvas detects the corner of the bars using critical points
identified by the saliency value calculation. The results of
pixels identified by corner detection are shown in Fig. 8b.
The critical points are detected at the top and bottom corners
of bars and at the bar segment junctions in the stacked bar
chart. The histogram displays the distribution of such points
at the junction where the transition between bins occurs.
The visualization of critical points at corners also guides us
in tuning the hyperparameters for DBSCAN, e.g., distance
(eps), minPts.

The OCR-based text detection model [37] works with
a 0.95 F1-score on ICDAR 2013 dataset. The model fails
to detect certain text components during testing, as shown
in Fig. 8c, ii. Our workflow addresses this limitation while
performing data extraction based on pixel scaling and the
intervals retrieved from the detected text/values. Our recon-
structed charts in Fig. 8d can be visually compared with the
original images in Fig. 8a.

Color is an important property of the images of the multi-
class bar charts like grouped and stacked bar, as color is
a visual encoding of the metadata of the classes. In such
cases, color represents the identity of the classes the data
item belongs to. However, in the case of simple bar charts
and histograms, the use of color is cosmetic. Our algorithm
preserves the source color value only in the case of it being
a visual encoding, where we use the color value identified
in the legend for the bars during reconstruction. In the cases
where color is not used as a visual encoding for the chart,
we use a default color value, i.e., black, during reconstruc-
tion. Thus, color is preserved in reconstruction for charts
in Fig. 8ii, iii, but not in Fig. 8i, iv. However, even where
color is preserved, the order of rendering the classes is not
guaranteed to be preserved, as shown in Fig. 8ii, iii, as the
ordering of the classes is not an important property in the
multi-class bar charts.

Evaluation: The premise of our work is to extract data
from images of charts that do not have accompanying
data tables, i.e., the ground truth. Hence, to compare the
extracted data with source information, we run our algo-
rithm on images of charts generated using the plotting
library, e.g., matplotlib, from known data tables. While
our algorithm works well with such synthetically generated
images owing to their high resolution and fidelity, they are

SN Computer Science (2022) 3:500 Page 13 of 19 500

SN Computer Science

useful in computing exact numerical errors in the extracted
data table.

The data extraction involves mapping the pixel loca-
tion of the cluster center of degenerate points and text
location extracted using OCR. Such a mapping causes
the extracted values to have numerical precision errors
predominantly. Hence, to compare the difference between
the extracted values, we compute the normalized Mean
Absolute Error (nMAE), and the Mean Absolute Per-
centage Error (MAPE) for the synthetic images (Fig. 9),
which are bounded in [0,1]. MAPE is commonly reported

in a percentage format. We observe that nMAE captures
our performance better than MAPE, as it does not aug-
ment numerical precision errors as much as MAPE.
MAPE is augmented in the case of missing extracted data
in grouped bar charts (Fig. 9ii) and stacked bar charts
(Fig. 9iii) owing to relatively short bars or bar segments.
For N data items with source data value xi and its cor-
responding extracted value x(e)

i
 , for i = 1, 2,… ,N , we

compute

Fig. 8 The key steps in our BarChartAnalyzer workflow of corner
detection (C4), text detection (C5), data extraction (C6), chart recon-
struction, and chart summary (C7) of the source input chart images.

We observe that the ordering of the classes could be reversed in (ii)
the grouped and (iii) stacked bar charts, even though the data are
extracted accurately (Source: [6])

 SN Computer Science (2022) 3:500500 Page 14 of 19

SN Computer Science

In our representative examples in Fig. 9, we observe rela-
tively low nMAE values. Histograms are not included in
this analysis as the source, and extracted data in its case are
a frequency table, different from a data table in the case of
other subtypes of bar charts.

Table 2 gives an overall accuracy of the data extraction
component of our BarChartAnalyzer, comparing them to
the results reported by the state-of-the-art data extraction
methods. Our work differentiates the performance of the
bar chart subtypes, unlike the state-of-the-art methods.
Owing to the low count of images used for computing

(5)nMAE =

∑N

i=1
�x

i
− x

e

i
�

∑N

i=1
x
i

.

the scores, a few failures in data extraction tend to bring
the scores down. Hence, increasing the test corpus size
for validation would give us more realistic comparative
results. Despite the caveat of the test corpus size, our
proposed workflow performs as comparable as the state-
of-the-art data extraction methods. BarChartAnalyzer
achieves near-perfect accuracy for high-resolution bar
chart images, created with standard or minimal format-
ting available commonly across plotting libraries. The
morphological methods for image preprocessing in C3 in
BarChartAnalyzer improve data extraction accuracy from
low-fidelity images. The aggregated accuracy for PlotQA
[1] for CQA is 22%, and STL-CQA [14] achieves near-
perfect accuracy, but with synthetic datasets. However,
comparing our work with the CQA algorithms is not fair,

nMAE=0.009, MAPE=0.89% nMAE=0.011, MAPE=1.07% nMAE=0.025, MAPE=6.55% nMAE=0.021, MAPE=2.26%

nMAE=0.003, MAPE=0.33%

nMAE=0.006, MAPE=0.61%

nMAE=0.008, MAPE=6.51%

nMAE=0.005, MAPE=0.52%

nMAE=0.004, MAPE=0.53%

nMAE=0.020, MAPE=12.65%

nMAE=0.051, MAPE=51.88%

nMAE=0.040, MAPE=38.62%

nMAE=0.012, MAPE=1.38%

nMAE=0.006, MAPE=0.65%

nMAE=0.014, MAPE=1.20%

nMAE=0.002, MAPE=0.18%
(i))vi()iii()ii(

Fig. 9 Reconstruction of synthetically generated bar chart images with their error evaluation in normalized mean absolute error (nMAE) and
mean absolute percentage error (MAPE) (Source: [6])

SN Computer Science (2022) 3:500 Page 15 of 19 500

SN Computer Science

as the goals are different, even though there are overlap-
ping outcomes.

Figure 10 shows the sample results of our workflow for
text summary generation for different bar chart types. We
observe that the summaries are qualitatively complete after
the design study. The summaries for grouped and stacked
bar charts are longer and contain more details, serving well
as the master summary.

Limitations: In a limited number of cases, our sys-
tem suffers from errors in detection, specifically when
DBSCAN clustering does not distinguish small/insignifi-
cant height differences between bars/bins [5]. We have
identified two such cases. The first case is of false nega-
tives when bars are close to the baseline, which is the
x-axis and y-axis for column and bar orientations, respec-
tively (Fig. 11d, ii). The second case is when heights of
adjacent bins in a histogram have relatively small height

Table 2 Comparison of
accuracy of data extraction of
BarChartAnalyzer with the
state-of-the-art

The boldface highlights indicate values greater than the average results from our method in bold

Method Chart type Precision (%) Recall (%) F1-score (%)

MECDG [3] Bar (all) 91.2 94.6 92.9
ReVision [8] Bar (all) 78.3 84.6 81.3
ChartSense [13] Bar (all) 90.7 92.1 91.3
Choi et al. [4] Bar (all)—figureQA 93.5 94.0 93.7

Bar (all)—web-collected 92.9 64.5 76.1
Ours Grouped bar 100 99.2 99.6

Horizontal grouped bar 100 98 98.9
Stacked bar 98.8 84.1 90
Horizontal stacked bar 72.7 67.9 70
(Simple) bar 75 67 70.5
Horizontal bar 100 100 100

Bar (all) 91 86 91.7

Fig. 10 Comparison of the summaries generated during the core and analysis phases of our design study for chart summarization. The boldface
formatted excerpts in row E2 are added during the reflect stage of the analysis phase in the design study

 SN Computer Science (2022) 3:500500 Page 16 of 19

SN Computer Science

differences, and the extracted data do not capture the dif-
ferences (Fig. 11d, iv). This error is also manifested as
missing values in grouped and stacked bar charts when
the bars or bar segments are relatively short (Fig. 9ii, iii).

The text recognition model [38] identifies text with an
F1-score of 0.93 on ICDAR 2013 dataset. This recognition
model misidentifies and confuses the alphabet ’O’ or ’o’,
irrespective of the case, as the numeral ’0’ and vice versa in
chart images. Also, the model has gaps in handling special
characters, such as $,%,£, sign(−), and cannot handle super-
script symbols, e.g., degrees, and exponents (Fig. 11c, iii).
These shortcomings affect the accuracy of the extracted data
scale (Fig. 11c, i). The inaccurate results in text recognition

also manifest as errors in the textual summary of the source
image. Some of these errors in text detection are shown in
the reconstructed chart in Figs. 11d, i and d, iii. The accu-
racy of our chart summarization is limited by that of text
recognition, as expected [16].

One of the critical drawbacks of our BarChartAnalyzer is
in the false positives for corner detection in relatively low-
fidelity images, owing to aliasing and subsequent pixelation.
Our method, in combination with more recent deep-learning
methods for corner detection [3], may alleviate this issue. Also,
our classification model cannot handle variants of bar charts
with textures in the bars or hollow bars. Our workflow fails
for chart canvas extraction for such exceptional test cases,

Fig. 11 Examples of bar chart images that give erroneous results in BarChartAnalyzer (Source: [6]). The errors in the chart reconstruction are
indicated using red translucent boxes in row D

SN Computer Science (2022) 3:500 Page 17 of 19 500

SN Computer Science

e.g., images shown in Fig. 12. Even though not widely prac-
ticed, bars can be re-annotated, e.g., by including text or bar
value written inside each bar (Fig. 12b), which cannot be ana-
lyzed using BarChartAnalyzer. BarChartAnalyzer also fails
for another test case where the data extraction process cannot
interpret bar charts with divergent axes, e.g., presence of nega-
tive bars (Fig. 12c). Our text recognition model fails to identify
text written in the hand-drawn chart shown in Fig. 12d. With
respect to corner detection, BarChartAnalyzer fails in a few
cases owing to the errors in human-guided annotation, critical
point detection in tensor fields, and hyperparameter setting for
DBSCAN for clustering corner points.

Improving chart summarization further requires an iterative
process of feedback gathering through a user study in the deploy
stage and the refinement of the summary in the reflect stage in
our proposed design study. Hence, a careful design of subse-
quent user studies is in the scope of our future work. Several of
the state-of-the-art methods use bilingual evaluation understudy
(BLEU) [41] for validation of the chart summaries [3, 25]. In
the absence of a ground truth or gold summary, we have not
used the BLEU evaluation in our work. Even though we applied
BLEU with respect to the creative summaries of users, BLEU
underperformed owing to the variety and language styles in
the creative summaries. An alternative that can be pursued in
the future is to manually generate gold summaries for all chart
images and to compute scores of the system-generated sum-
maries with respect to the gold summaries based on content
selection, relation generation, and content ordering metrics [42].

It is an interesting exercise to provide a confidence score
upstream in our system on the success of automating data
extraction for any input chart image. This requires running our
system for a larger set of images from the different subtypes,
and performing an in-depth analysis on the causality of the
failures. This analysis is in the scope of future work of improv-
ing the usability of the BarChartAnalyzer system.

Conclusions

As a next step, a subtype-based analysis can be extended
to other chart types, such as scatter plots. Our workflow
requires user interaction for tasks such as image annota-
tion for canvas extraction and setting hyperparameters of
DBSCAN. In the scope of future work, the automation in
our workflow can be increasing using more CNN models
for annotation. We currently use tensor field computation
on the chart images, which can be made more robust to
separate chart objects from the source image. As VGGNet
has been widely used for object detection tasks, our goal is
to improve our classifier to automate the canvas extraction
step, thus making our end-to-end workflow completely
automated. Super-resolution algorithms may be explored
as an additional component in our algorithm to improve
the accuracy of both OCR and object detection, especially
for severely aliased images.

In summary, we propose a workflow BarChartAnalyzer
using standard image processing techniques and deep-
learning models to perform the critical task of chart image
digitization and summarization for bar charts. BarChar-
tAnalyzer is novel in handling seven different bar chart
subtypes. Our contributions include the mapping between
pixel space data and the data space using the text detec-
tion model. We propose a novel application of the design
study methodology for chart summarization. The design
study provides the predefined template with information
from the chart type details, perceivable visual features in
the chart, and the data extracted from the chart image.
The summarization achieved from our system has the
potential of being used in a language processing module,
such as gtts in Python, to generate an audio summary
of the given chart image for the visually impaired audi-
ence. Our text summary can be pruned to provide crisper
summaries as per user inputs. As discussed, our work-
flow has limitations of the dependency of workflow on
the image fidelity, object size, training dataset, a variety
of chart images, etc. Overall, our work shows promising

Fig. 12 Bar charts generated in different design spaces, which are known to not work with our chart analysis workflow, BarChartAnalyzer
(Source: [6])

 SN Computer Science (2022) 3:500500 Page 18 of 19

SN Computer Science

results in automatically interpreting the chart images for
bar charts and its subtypes, mostly human-out-of-the-loop
approaches.

Acknowledgements This work has been funded by the Machine Intelli-
gence and Robotics Center (MINRO) grant to the International Institute
of Information Technology Bangalore (IIITB) by the Government of
Karnataka. The authors are grateful for the discussion with T. K. Sri-
kanth, IIITB; Sindhu Mathai of Azim Premji University; Vidhya Y. and
Supriya Dey of Vision Empower; Neha Trivedi, XRCVC; Vani, Push-
paja, Kalyani, and Anjana of Braille Resource Center, Matruchayya,
that has shaped this work. The authors are thankful for the helpful
comments from anonymous reviewers.

Data Availability The curated training dataset of bar chart images con-
tributed by this work is at https:// github. com/ GVCL/ GVCL. github. io/
tree/ master/ static/ data/ Test.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

 1. Methani N, Ganguly P, Khapra MM, Kumar P. PlotQA: reasoning
over scientific plots. In: The IEEE Winter Conference on Applica-
tions of Computer Vision. 2020;1516–1525.

 2. Burns R, Carberry S, Elzer S. Modeling relative task effort for
grouped bar charts. In: Proceedings of the Annual Meeting of the
Cognitive Science Society. 2009;31:2292–2297.

 3. Chen L, Zhao K. An approach for chart description generation in
cyber-physical-social system. Symmetry. 2021;13(9):1552.

 4. Choi J, Jung S, Park DG, Choo J, Elmqvist N. Visualizing for the
Non-Visual: Enabling the Visually Impaired to Use Visualization.
In: Computer Graphics Forum. vol. 38. Wiley Online Library;
2019:249–260.

 5. Sreevalsan-Nair J, Dadhich K, Daggubati SC. Tensor fields for
data extraction from chart images: bar charts and scatter plots.
In: Hotz I, Bin Masood T, Sadlo F, Tierny J, editors. Topological
methods in data analysis and visualization VI. Cham: Springer;
2021. p. 219–241. arXiv: 2010. 02319.

 6. Dadhich K, Daggubati SC, Sreevalsan-Nair J. BarChartAnalyzer:
digitizing images of bar charts. In: Proceedings of 1st Interna-
tional Conference on Image Processing and Vision Engineering
(IMPROVE). INSTICC: SciTePress; 2021. p. 17–28.

 7. Sedlmair M, Meyer M, Munzner T. Design study methodology:
reflections from the trenches and the stacks. IEEE Trans Vis Com-
put Gr. 2012;18(12):2431–40.

 8. Savva M, Kong N, Chhajta A, Fei-Fei L, Agrawala M, Heer J.
ReVision: Automated classification, analysis and redesign of chart
images. In: Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology. UIST ’11. New York:
Association for Computing Machinery; 2011. p. 393–402. https://
doi. org/ 10. 1145/ 20471 96. 20472 47.

 9. Rohatgi A. WebPlotDigitizer.
 10. Battle L, Duan P, Miranda Z, Mukusheva D, Chang R, Stone-

braker M. Beagle: automated extraction and interpretation of
visualizations from the web. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. CHI ’18.
New York: Association for Computing Machinery; 2018. p. 1–8.
https:// doi. org/ 10. 1145/ 31735 74. 31741 68.

 11. Poco J, Heer J. Reverse-engineering visualizations: recovering vis-
ual encodings from chart images. In: Computer Graphics Forum.
vol. 36. Wiley Online Library; 2017:353–363.

 12. Siegel N, Horvitz Z, Levin R, Divvala S, Farhadi A. FigureSeer:
parsing result-figures in research papers. In: Leibe B, Matas J,
Sebe N, Welling M, editors. Comput. Vis. ECCV 2016. Cham:
Springer International Publishing; 2016. p. 664–80.

 13. Jung D, Kim W, Song H, Hwang Ji, Lee B, Kim B, et al. Chart-
Sense: Interactive data extraction from chart images. In: Proceed-
ings of the 2017 CHI Conference on Human Factors in Comput-
ing Systems. CHI ’17. New York: Association for Computing
Machinery; 2017. p. 6706–6717. https:// doi. org/ 10. 1145/ 30254
53. 30259 57.

 14. Singh H, Shekhar S. STL-CQA: structure-based transformers with
localization and encoding for chart question answering. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2020:3275–3284.

 15. Al-Zaidy RA, Giles CL. Automatic extraction of data from bar
charts. In: Proceedings of the 8th International Conference on
Knowledge Capture. K-CAP 2015. New York: Association for
Computing Machinery; 2015. p. 1–4. https:// doi. org/ 10. 1145/
28158 33. 28169 56.

 16. Davila K, Setlur S, Doermann D, Bhargava UK, Govindaraju V.
Chart mining: a survey of methods for automated chart analysis.
IEEE Trans Pattern Anal Machine Intell. 2020.

 17. Zhao J, Fan M, Feng M. Chartseer: Interactive steering explora-
tory visual analysis with machine intelligence. IEEE Trans Vis
Comput Gr. 2020.

 18. Demir S, Carberry S, McCoy KF. Summarizing information
graphics textually. Comput Linguist. 2012;38(3):527–74.

 19. Ferres L, Verkhogliad P, Lindgaard G, Boucher L, Chretien A,
Lachance M. Improving accessibility to statistical graphs: the
IGraph-lite system. In: Proceedings of the 9th International ACM
SIGACCESS Conference on Computers and Accessibility. Assets
’07. New York: Association for Computing Machinery; 2007. p.
67–74. https:// doi. org/ 10. 1145/ 12968 43. 12968 57.

 20. Al-Zaidy R, Choudhury S, Giles C. Automatic summary gen-
eration for scientific data charts. In: WS-16-01. vol. WS-16-
01 - WS-16-15. United States: AI Access Foundation; 2016. p.
658–663.

 21. Demir S, Carberry S, McCoy KF. Generating Textual Summaries
of Bar Charts. In: Proceedings of the Fifth International Natural
Language Generation Conference. INLG ’08. USA: Association
for Computational Linguistics; 2008. p. 7–15.

 22. Moraes P, Sina G, McCoy K, Carberry S. Evaluating the acces-
sibility of line graphs through textual summaries for visually
impaired users. In: Proceedings of the 16th International ACM
SIGACCESS Conference on Computers & Accessibility. ACM;
2014. p. 83–90.

 23. Xu S, Bryan C, Li JK, Zhao J, Ma KL. Chart Constellations:
Effective Chart Summarization for Collaborative and Multi-User
Analyses. In: Computer Graphics Forum. vol. 37. Wiley Online
Library; 2018. p. 75–86.

 24. Liu C, Xie L, Han Y, Wei D, Yuan X. Autocaption: An approach
to generate natural language description from visualization auto-
matically. In: Proceedings of 2020 IEEE Pacific Visualization
Symposium (PacificVis). IEEE; 2020. p. 191–195.

 25. Obeid J, Hoque E. Chart-to-Text: generating natural language
descriptions for charts by adapting the transformer model. In:
Proceedings of the 13th International Conference on Natural Lan-
guage Generation. Dublin, Ireland: Association for Computational
Linguistics; 2020. p. 138–147. https:// aclan tholo gy. org/ 2020. inlg-
1. 20.

 26. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L, ImageNet: a
large-scale hierarchical image database. In: 2009 IEEE conference

https://github.com/GVCL/GVCL.github.io/tree/master/static/data/Test
https://github.com/GVCL/GVCL.github.io/tree/master/static/data/Test
http://arxiv.org/abs/2010.02319
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.1145/2815833.2816956
https://doi.org/10.1145/2815833.2816956
https://doi.org/10.1145/1296843.1296857
https://aclanthology.org/2020.inlg-1.20
https://aclanthology.org/2020.inlg-1.20

SN Computer Science (2022) 3:500 Page 19 of 19 500

SN Computer Science

on computer vision and pattern recognition. IEEE; 2009. p.
248–255.

 27. Simonyan K, Zisserman A. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In: Bengio Y, LeCun Y, edi-
tors. 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference
Track Proceedings; 2015. arXiv: 1409. 1556.

 28. Chen T. Going deeper with convolutional neural network for intel-
ligent transportation. Ph. D. Dissertation, Dept. Elect. Comput.
Engg., Worcester Polytechnic Institute, 2015.

 29. Fritsch J, Kuehnl T, Geiger A. A new performance measure and
evaluation benchmark for road detection algorithms. In: 16th
International IEEE Conference on Intelligent Transportation
Systems (ITSC 2013). IEEE; 2013. p. 1693–1700.

 30. Tzutalin.: LabelImg. GitHub. https:// github. com/ tzuta lin/ label
Img. Accessed 3 Mar, 2022.

 31. Medioni G, Tang CK, Lee MS. Tensor voting: theory and applica-
tions. In: Proceedings of RFIA, Paris, France; 2000.

 32. Sreevalsan-Nair J, Kumari B. In: Schulz T, Özarslan E, Hotz I,
editors. Local geometric descriptors for multi-scale probabilistic
point classification of airborne LiDAR point clouds. Mathematics
and Visualization. Cham: Springer; 2017. p. 175–200.

 33. Wu TP, Yeung SK, Jia J, Tang CK, Medioni G. A closed-form
solution to tensor voting: theory and applications. arXiv: 1601.
04888; 2016. p. 1–17.

 34. Moreno R, Pizarro L, Burgeth B, Weickert J, Garcia MA, Puig
D. Adaptation of tensor voting to image structure estimation. In:
Laidlaw DH, Vilanova A, editors. New developments in the visu-
alization and processing of tensor fields. Berlin: Springer; 2012.
p. 29–50.

 35. Wang S, Hou T, Li S, Su Z, Qin H. Anisotropic elliptic PDEs for
feature classification. Visualization and computer graphics. IEEE
Trans. 2013;19(10):1606–18. https:// doi. org/ 10. 1109/ TVCG.
2013. 60.

 36. Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm
for discovering clusters in large spatial databases with noise. In:

Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining. KDD’96. Palo Alto: AAAI
Press; 1996. p. 226–231.

 37. Baek Y, Lee B, Han D, Yun S, Lee H. Character region awareness
for text detection. In: 2019 IEEE/CVF conference on computer
vision and pattern recognition (CVPR); 2019. p. 9357–9366.

 38. Baek J, Kim G, Lee J, Park S, Han D, Yun S, et al. What is wrong
with scene text recognition model comparisons? Dataset Model
Anal. 2019;4714–4722.

 39. Smith R. An Overview of the Tesseract OCR Engine. In: Ninth
international conference on document analysis and recognition
(ICDAR 2007). vol. 2. IEEE; 2007. p. 629–633.

 40. Demir S, Oliver D, Schwartz E, Elzer S, Carberry S, McCoy KF.
Interactive sight into information graphics. In: Proceedings of the
2010 International Cross Disciplinary Conference on Web Acces-
sibility (W4A); 2010. p. 1–10.

 41. Papineni K, Roukos S, angard T, Zhu WJ. BLEU: A method for
automatic evaluation of machine translation. In: Proceedings of
the 40th annual meeting of the Association for Computational
Linguistics; 2002. p. 311–318.

 42. Wiseman S, Shieber SM, Rush AM. Challenges in data-to-doc-
ument generation. In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. Copenha-
gen, Denmark: Association for Computational Linguistics; 2017.
p. 2253–2263. https:// aclan tholo gy. org/ D17- 1239.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

http://arxiv.org/abs/1409.1556
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
http://arxiv.org/abs/1601.04888
http://arxiv.org/abs/1601.04888
https://doi.org/10.1109/TVCG.2013.60
https://doi.org/10.1109/TVCG.2013.60
https://aclanthology.org/D17-1239

	BarChartAnalyzer: Data Extraction and Summarization of Bar Charts from Images
	Abstract
	Introduction
	Related Work
	The 7-Component Workflow
	Design Study for Chart Summarization
	Experiments and Results
	Conclusions
	Acknowledgements
	References

