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Abstract
A polygonal curve is a collection of m connected line segments specified as the linear interpolation of a list of points 
{p0, p1,… , p

m
}. In applications it can be useful for a polygonal curve to be equilateral, with equal distance between con-

secutive points. We present a computationally efficient method for respacing the points of a polygonal curve and show that 
iteration of this method converges to an equilateral polygonal curve.

Keywords Polygonal curve · Equilateral · Uniform mesh · Image processing · Shape comparison

Introduction

A polygonal curve (also polygonal chain or polygonal path) 
is a collection of m connected line segments specified by a 
sequence of points {p0, p1,… , pm} in ℝn called vertices. In 
computer vision, polygonal curves arise as piecewise linear 
representations of digital curves, and serve as effective tools 
for shape analysis [8]. A fundamental step in determining 
these representations is polygonal curve approximation: for 
a give polygonal curve C,  we must find another polygonal 
curve C—often subject to constraints or other conditions—
which is sufficiently close to C. Polygonal curve approxima-
tion is often concerned with minimizing the error between C 
and C, or minimizing the number of vertices in C. Extensive 
literature is devoted to these objectives; most notably the 
classical algorithms of Ramer–Douglas–Peucker and Imai 
and Iri [6, 11, 12, 14].

An equilateral polygonal curve is a polygonal curve for 
which all Euclidean distances between consecutive points, 
‖pk − pk−1‖, k = 1,… ,m, are equal. Equilateral polygonal 
curves are useful in the context of shape analysis for object 
reassembly, where they can be directly compared to deter-
mine possible congruence [3, 18]. When these equilateral 
curves represent the boundaries of fragmented objects, these 
congruences suggest how these objects may fit together. For 
example, this approach has been used for the automated 
reassembly of jigsaw puzzles and broken eggs [7, 9, 10].

The present work considers a method for polygonal 
approximation with equilateral (or nearly equilateral) 
polygonal curves. There is extensive literature on polygonal 
approximation by curves satisfying various constraints, e.g., 
[2, 4, 17], but very few that apply an equilateral constraint. 
One of the few existing works on this topic [15], uses a 
nonlinear optimization process to compute an equilateral 
curve that minimizes a weighted distance from vertices of 
the original curve. In this work, we take a different tack 
with a similar goal: by sampling a given polygonal curve 
according to a fixed arclength measurement, we create a new 
polygonal curve which is close to the original and has more 
regularly spaced vertices (illustrated in Fig. 1). As we will 
show, repeating this resampling process creates curves with 
increasing regularity in the spacing of their vertices, limiting 
to an equilateral curve. In contrast to most other studies of 
polygonal approximation, we do not attempt to minimize any 
kind of distance in the approximation, nor do we impose any 
constraints on the approximating curve. Instead our goal is 
to understand the effect of our repeated resampling process 
from theoretical and empirical viewpoints.
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The layout of this paper is as follows. In “The Arclength 
Respacing Method” we introduce the arclength respacing 
process for a polygonal curve, outline its implementation, 
and establish some of its key properties. In “Iteration of 
the Respacing Method” we consider iteration of arclength 
respacing and show in Theorem 11 that the iteration tends 
toward a limiting polygonal curve and that the limit is equi-
lateral. In “Examples” we examine various examples. In 
“Application” we illustrate the effect of arclength respacing 
on polygonal curves approximating a shape.

The Arclength Respacing Method

Let C be a polygonal curve with vertices {p0, p1, p2,… , pm}. 
Curves will be visualized in ℝ2, but all discussion that fol-
lows applies equally to curves in ℝn. We make no restrictions 
on the points that define C; for example, polygonal curves 
may be closed (have an overlapping startpoint and endpoint) 
or otherwise have self-intersections or overlapping vertices. 
Denote by L(C) =

∑m

k=1
‖pk − pk−1‖ the length of C. Let P(s) 

be the linear interpolation of the vertices of C,  parameter-
ized by arclength s,  such that 0 ≤ s ≤ L(C). We now define 
the process that we will study in the following sections: the 
arclength respacing of a polygonal curve.

Definition 1 The arclength respacing of the polygonal curve 
C is the polygonal curve f(C) with vertices {f (p0),… , f (pm)} 
evenly spaced by arclength along C: 

An example result of arclength respacing is shown in 
Fig. 2.

It is important to note that arclength respacing can be 
performed computationally without costly numerical 
integration or function inversion typically needed to find 
an arclength parameterization. The key idea is that piece-
wise linearity can be exploited to find P(s). Let d0 = 0 

f (pk) = P

(
k
L(C)

m

)
, k = 0,… ,m.

and dk =
∑k

i=1
‖pi − pi−1‖ the arclength of C up to vertex 

dk for k = 1,… ,m. Then, when dk ≠ 0, for 0 ≤ t ≤ 1 and 
k = 1,… ,m, the parameterizations of segments:

can be combined to provide an arclength parameterization 
P(s) of C. Thus it is possible to compute f(C) from C quickly 
using only linear interpolation. We now outline this process 
in more detail.

Algorithm 2 An outline of the implementation of arclength 
respacing. An example implementation in Mathematica 
can be found on the third author’s website [19].

Input: Points {p0,… , pm} representing the vertices of a 
polygonal curve C.

Output: Points {q0,… , qm} representing the arclength 
respacing f(C) of C. 

1. Let d0 = 0 and dk = ‖pk − pk−1‖ + dk−1 for k = 1,…m. 
dk is the piecewise linear arclength distance from p0 to 
pk.

2. Compute the piecewise linear interpolating function 
g ∶ [0, dm] → [0,m] for the points (dk, k), 0 ≤ k ≤ m. 
This function inverts the arclength measurements, so 
that g(dk) = k. Here we require pk ≠ pk+1 in order for 
this inverse to be well defined.

P
(
(1 − t)dk−1 + tdk

)
= (1 − t)pk−1 + tpk

Fig. 1  Unevenly spaced polygo-
nal curve (left) and the polygo-
nal curve that results after one 
application of arclength respac-
ing (right)
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Fig. 2  Polygonal curve C and its arclength respacing f(C)
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3. Compute the piecewise linear interpolating function 
h ∶ [0,m] → ℝ

2 for the discrete curve points p0,… , pm.

4. Let  � = dm∕m  and  de f ine  qk = h(g(k�)) fo r 
k = 0, 1,… ,m. The points qk are separated by an 
arclength distance of � along C. These points are the 
vertices of f(C).

Remark 3 Note that in Step 2 of Algorithm 2, the linear 
interpolation of the inverted arclength distances is key to 
avoiding inefficient arclength integral computations when 
performing arclength respacing. In addition, note that the 
distance of � in Step 4 can be chosen to fit the application. 
For example, one could choose the same � across a collec-
tion of curves to have consistent arclength spacing for curve 
comparison. Finally, since each step of Algorithm 2 involves 
a fixed time computation done at each of the m points of C,  
the algorithm has a run time which is O(m).

Polygonal curves with different vertex sets can have 
the same arclength parameterized linear interpolation. To 
account for this ambiguity, we introduce the notion of simi-
lar polygonal curves.

Definition 4 A vertex pk of a polygonal curve is called a 
basic vertex if it is not equal to the preceding vertex pk−1 
and does not lie on the line segment between its neighboring 
vertices pk−1 and pk+1. Polygonal curves P and Q are similar, 
P ∼ Q, if they share the same sequence of basic vertices. 
Note that the initial vertex p0 is always basic.  Two similar 
polygonal curves are shown in Fig. 3.

Lemma 5 Similar polygonal curves have the same arclength 
parameterized linear interpolation.

Proof If pk is a non-basic vertex, either pk−1 = pk, or pk lies 
in the image of the line segment connecting pk−1 and pk+1. 
In either case, removing pk from the vertex set of C will 
not affect the arclength parameterized linear interpolation 
(we either remove a segment of length zero or replace two 
segments with one segment of combined length). Thus the 
arclength parameterized linear interpolation is determined 

only by the basic vertices, and similar curves have the same 
basic vertices.   ◻

We now investigate how the process of arclength res-
pacing changes a polygonal curve. In particular, we find in 
Proposition 8 that similarity characterizes particular ways 
that the length and spacing of a polygonal curve change 
under arclength respacing. We first prove a simple lemma 
about a more general respacing process we call oriented 
resampling, of which arclength respacing is a special case.

Definition 6 Let C be a polygonal curve and P(s),   
0 ≤ s ≤ L(C), the associated arclength parameterized linear 
interpolation of the vertices of C. Suppose we sample m + 1 
values of arclength 0 = s0 ≤ s1 ≤ ⋯ ≤ sm−1 ≤ sm = L(C) 
and define a corresponding sample of points q0,… , qm along 
C such that qk = P(sk), for k = 0,… ,m. The polygonal curve 
D defined by the vertex set q0,… , qm is called an oriented 
resampling of P.

Lemma 7 If D is an oriented resampling of C,   then 
L(D) ≤ L(C). In particular, L(f (C)) ≤ L(C), so arclength 
respacing cannot increase the length of a polygonal curve.

Proof We use the notation of Definition 6. First observe that 
‖qk − qk−1‖ ≤ sk − sk−1, since sk − sk−1 is the arclength dis-
tance between points qk−1 and qk measured along C. Thus

  ◻

Proposition 8 Let C be a polygonal curve and f(C) the 
arclength respacing of C. The following properties are 
equivalent: 

L(D) =

m�

k=1

‖qk − qk−1‖

≤

m�

k=1

sk − sk−1

= sm − s0 = L(C).

Fig. 3  Two similar polygonal 
curves with different vertices
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(1) L(C) = L(f (C)),

(2) C ∼ f (C),

(3) f(C) is equilateral.

Proof We first show (1) ⟺ (2). If C ∼ f (C) then 
L(f (C)) = L(C) by Lemma 5. Suppose then that f (C) ≁ C. 
There must then be a vertex pk of C which is not equal to 
any vertex of f(C),  nor lies on a line segment connecting 
two consecutive vertices of f(C). Suppose that qn and qn+1 
are the vertices of f(C) immediately preceding and following 
pk along C. Let pl be the vertex of C immediately preced-
ing qn along C and pr the vertex immediately following qn+1 
along C. Let

be the polygonal curve obtained from C by adding the verti-
ces qn, qn+1 to C and deleting all vertices pl+1,… , pk,… , pr−1 
between qn and qn+1 along C. Because these deleted verti-
ces do not all lie along the line segment connecting qn and 
qn+1 (in particular, pk does not), we have the strict inequal-
ity: L(C) < L(C). Since the arclength respacing f(C) is also 
an oriented resampling of C, L(f (C)) ≤ L(C) by Lemma 7. 
Combining these two inequalities gives L(f (C)) < L(C).

We next show (2) ⟺ (3). Suppose first that C ∼ f (C). 
Then, by Lemma 5, C and f(C) have the same arclength 
parameterized linear interpolation. Thus a sampling of 
points evenly spaced along C by arclength will also be 
evenly spaced by arclength along f(C),   so f(C) will be 
equilateral.

Assume now that f(C) is equilateral. Because there 
are m + 1 points in f(C) and m line segments in C,   
there must be a pair of consecutive vertices qk, qk+1 of 
f(C) which lie on the same line segment of C. Thus 
‖qk+1 − qk‖ = L(C)∕m. Because f(C) is equilateral, we 
also have ‖qk+1 − qk‖ = L(f (C))∕m. Thus L(C) = L(f (C)), 
and so C ∼ f (C) , since we have already established that 
(1) ⟹ (2).   ◻

We now examine what happens when the arclength res-
pacing process is repeated. First observe that, although the 
vertices of f(C) are equally spaced by arclength along C,  
they are not necessarily equally spaced by arclength along 
f(C). Thus f(C) is not necessarily an equilateral polygonal 
curve. Nevertheless, it appears that vertices of f(C) are 
more evenly spaced than those of C (as seen clearly in 
Fig. 1). Thus, in an effort to obtain an equilateral curve, 
we can iterate the arclength respacing process, hoping 
to obtain polygonal curves that are increasingly close to 
being equilateral. The result of iterated arclength respac-
ing is considered in the next section.

C = {p0,… , pl, qn, qn+1, pr,… , pm}

Iteration of the Respacing Method

Let C be a polygonal curve and denote by Cn the nth itera-
tion of the arclength respacing: Cn = f n(C). Lemma 7 
yields an immediate observation about this iteration: the 
sequence of lengths of the iterated curves must converge.

Lemma 9 L(Cn) converges as n → ∞.

Proof From Lemma 7, the sequence {L(Cn)} is nonincreas-
ing. This sequence is also bounded below by the distance 
‖pm − p0‖ between the endpoints of C. (Note that this could 
be 0 for a closed polygonal curve.) Thus {L(Cn)} is bounded 
and monotonic and must converge.   ◻

As demonstrated in Proposition 8, arclength respacing 
yields an equilateral curve only in special cases. However, 
arclength respacing generally produces a curve that appears 
closer to being equilateral (as shown in Fig. 2, for example). 
More precisely, as the respacing is repeated, the iterates will 
converge to an equilateral curve. We introduce an equivalent 
definition of equilateral that will be useful in proving this.

Lemma 10 C = {p0,… , pm} is equilateral if and only if, for 
k = 1,… ,m ∶

Theorem  11 For any polygonal curve C,   limn→∞ f n(C) 
exists and is an equilateral curve.

Proof We will argue that, for each pk, the sequence 
{f n(pk)}

∞
n=0

 converges, and thus that the limiting 
polygonal curve is given by C∗ = {p∗

0
,… , p∗

m
}, where 

p∗
k
= limn→∞ f n(pk). For convenience, we will use the nota-

tion pn
k
= f n(pk) in what follows.

Let 𝜖 > 0. By Lemma 9 there is an N such that for all 
n ≥ N∶

Consider the distance ‖pn+1
k

− pn+1
k−1

‖. This distance must sat-
isfy the inequality:

for n ≥ N and k = 1,… ,m. The right side of this inequal-
ity is by construction, since the points pn+1

k
 are chosen 

to be evenly spaced by arclength distance L(C
n)

m
 along Cn. 

For the left side, assume that there is some k∗ such that 
‖pn+1

k∗
− pn+1

k∗−1
‖ ≤

L(Cn)

m
− �. Then

kL(C)

m
=

k�

i=1

‖pi − pi−1‖.

(1)L(Cn) − 𝜖 < L(Cn+1) ≤ L(Cn).

(2)
L(Cn)

m
− 𝜖 < ‖pn+1

k
− pn+1

k−1
‖ ≤

L(Cn)

m
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where the last two inequalities follow from (1). This is a 
contradiction, and (2) follows.

Next, for n ≥ N and k = 1,… ,m, consider the distance 
between points on consecutive iterates, ‖pn+2

k
− pn+1

k
‖. By 

construction, the point pn+2
k

 is placed on Cn+1 an arclength 
distance of kL(C

n+1)

m
 from pn+1

0
 along Cn+1. By definition, the 

point pn+1
k

 lies an arclength distance of 
∑k

i=1
‖pn+1

i
− pn+1

i−1
‖ 

from pn+1
0

 along Cn+1. Thus, the Euclidean distance 
‖pn+2

k
− pn+1

k
‖ is bounded by the difference of these arclength 

distances along Cn+1:

With some rearrangement we find

Now, by (1)

which, combined with (2), yields

for i = 1,… , k. Thus

Since m is fixed in the respacing process, this provides a 
uniform bound ‖pn+2

k
− pn+1

k
‖ < m𝜖 for k = 1,… ,m and 

n ≥ N, and thus limn→∞ pn
k
 converges for k = 0,… ,m. (The 

k = 0 case is immediate, since the initial point is always 

L(Cn+1) =

m�

k=1

‖pn+1
k

− pn+1
k−1

‖

= ‖pn+1
k∗

− pn+1
k∗−1

‖ +
�

k≠k∗

‖pn+1
k

− pn
k−1

‖

≤
L(Cn)

m
− 𝜖 + (m − 1)

L(Cn)

m

< L(Cn+1),

(3)‖pn+2
k

− pn+1
k

‖ ≤
����
kL(Cn+1)

m
−

k�

i=1

‖pn+1
i

− pn+1
i−1

‖
����
.

(4)

����
kL(Cn+1)

m
−

k�

i=1

‖pn+1
i

− pn+1
i−1

‖
����

=
����

k�

i=1

L(Cn+1)

m
− ‖pn+1

i
− pn+1

i−1
‖
����

≤

k�

i=1

����
L(Cn+1)

m
− ‖pn+1

i
− pn+1

i−1
‖
����
.

L(Cn)

m
− 𝜖 <

L(Cn+1)

m
≤

L(Cn)

m
,

����
L(Cn+1)

m
− ‖pn+1

i
− pn+1

i−1
‖
����
< 𝜖

(5)
‖pn+2

k
− pn+1

k
‖ ≤

k�

i=1

����
L(Cn+1)

m
− ‖pn+1

i
− pn+1

i−1
‖
����

< k𝜖.

fixed.) As before, call the limit p∗
k
 and the limiting curve 

C∗ = {p∗
0
,… , p∗

m
}.

Finally, we show that C∗ is equilateral. From (4) and (5) 
we see that, for k = 1,… ,m,

Passing the limit, we have

and thus by Lemma 10, C∗ is equilateral.   ◻

Examples

Any given polygonal curve will limit to an equilateral curve; 
however, it appears to be difficult in general to determine 
the limiting equilateral curve. In this section, we look at 
some examples, where we know the limiting curve or can 
determine information about it. We will continue to use the 
notation pn

k
= f n(pk) and p∗

k
= limn→∞ pn

k
 from the proof of 

Theorem 11.

Example 12 There are polygonal curves which become equi-
lateral precisely at iteration n. Consider three colinear verti-
ces p0, p1, p2, with p2 on the line segment connecting p0 and 
p1. Let d = ‖p2 − p0‖. After each iteration, p0 and p2 remain 
fixed, and p1 moves a distance d/2 closer to p0. If L(C) = n d, 
then C will become equilateral at precisely iteration n. This 
example is illustrated in Fig. 4.

It is not necessary to have colinear vertices to produce 
an example which becomes equilateral after finitely many 
iterations. Figure 5 shows a curve which becomes equilateral 
after exactly two iterations. It is an open question if it is pos-
sible to generalize an approach like the one shown in Fig. 5 
to work for an arbitrary iteration n.

Example 13 We next consider triangles, viewed as closed 
polygonal curves with four vertices {p0, p1, p2, p3 = p0}. By 
Theorem 11, the only possible limiting polygonal curves are 
a single point, or an equilateral triangle. We consider starting 
curves which will realize either of these possibilities.

Consider an isosceles triangle C with angle 𝜃 >
𝜋

3
 at p0, as 

shown in Fig. 6. The points p1 and p2 will be mapped sym-
metrically under iteration to points on the side opposite to 

lim
n→∞

����
kL(Cn+1)

m
−

k�

i=1

‖pn+1
i

− pn+1
i−1

‖
����
= 0.

����
kL(C∗)

m
−

k�

i=1

‖p∗
i
− p∗

i−1
‖
����
= 0,
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p0. The angle �n at pn
0
 will approach �∕3 and C will approach 

an equilateral triangle.

Next consider a triangle C with an angle 𝜃 <
𝜋

3
 at the 

starting vertex p0. By construction, this angle does not 
increase under iteration, so �n+1 ≤ �

n, where �n is the angle 

at the vertex pn
0
 of Cn. Thus Cn cannot approach an equilat-

eral triangle, and must converge to a point. A special case 
of this is the iteration of an isosceles triangle with angle 
𝜃 <

𝜋

3
 at p0, which will produce a sequence of similar tri-

angles shrinking to a point, as shown in Fig. 7.

pn−2
0

pn−1
0

pn0

pn−2
1pn−2

2

pn−1
1 = pn−1

2

pn2pn1

...

...
L (C0) = n d

L (Cn) = d

L (Cn−1) = d

L (Cn−2) = 2d

p0 p1p2

Fig. 4  Polygonal curve that becomes equilateral after n iterations

Fig. 5  Polygonal curve that 
becomes equilateral after two 
iterations

p0

p1

p2

p4

p3

p10 p11
p12

p14p13

p20 p21
p22

p24p23

C

C2

C1

Fig. 6  Arclength respac-
ing iteration for an isosceles 
triangle with angle 𝜃 >

𝜋

3
 at 

p0 converges to an equilateral 
triangle

p0

p1 p2p∗1 p∗2
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Example 14 We consider quadrilaterals, viewed as closed 
polygonal curves with five vertices {p0, p1, p2, p3, p4 = p0}. 
By Theorem 11, a quadrilateral must tend toward an equi-
lateral polygonal curve, in this case a rhombus, degenerate 
rhombus, or a single point. If the polygonal curve {p0, p1, p2} 

has the same length as the polygonal curve {p2, p3, p4}, the 
vertex p2 will remain fixed under iteration. The limiting 
curve will be a rhombus. A special case of this is the itera-
tion of a parallelogram, shown in Fig. 8.

Application

In this section, we empirically explore the practical effect 
arclength respacing has on polygonal curves approximat-
ing a given shape. We compute several measurements at 
the nth iteration of the arclength respacing to quantify this 
effect. Iterations should tend toward an equilateral curve, 
so we find the standard deviation �n of the collection of 
distances dn

k
= ‖pn

k
− pn

k−1
‖, k = 1,… ,m, the maximum 

interpoint distance maxn = max1≤k≤n d
n
k
, and the minimum 

interpoint distance min
n = min1≤k≤n d

n
k
, as different ways to 

measure this effect. It is also important to understand how 
successive iterations retain fidelity to the original polygonal 
curve. Since the �-tolerance zone—the region consisting of 
the union of all radius � disks centered on the polygonal 
curve—is a standard metric in polygonal curve approxima-
tion [5, 11, 13], we compute �n, the smallest � for which the 
nth iterate lies within the �-tolerance zone of the original 
polygonal curve, as measure for the accuracy of our polygo-
nal approximation.

Shown in Fig. 9 is a synthetic “noisy cat” curve after 0,  1,  
and 5 applications of respacing. The noisy cat curve consists 
of 65 points, with x, y values in the range [−1, 1]. The points 
are visually equilateral after only a few iterations. The ears 
(and other smaller protrusions) become rounded, causing �n 
to increase sharply, but this effect quickly diminishes. Note 
that the jagged point on the right side of the figure does not 
smooth out; this is an artifact of the choice of starting point 
for the respacing. As seen in Fig. 10 the standard deviation 
�
n appears to decrease exponentially with a factor of about 

0.54. After approximately 15 iterations, the standard devia-
tion is essentially 0 and the maximum and minimum are 
equal up to first five decimal places.

C

C1

C2

C3

p0

p1
p2

p11 p12

Fig. 7  Arclength respacing iteration for a triangle with angle 𝜃 <
𝜋

3
 at 

p0 converges to a point

p0
p1

p2p3

p∗1

p∗3

Fig. 8  Parallelogram will limit towards a rhombus under iteration

Fig. 9  “Noisy cat” polygonal curve after 0,  1,  and 5 iterations of arclength respacing
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We next apply arclength respacing to the outline of a jig-
saw puzzle piece obtained from image segmentation, shown 
in Fig. 11. This jigsaw curve consists of 400 points, with x, y 
values in [−6, 6]. The vertices have been normalized so that 
mean interpoint distances are comparable to the “noisy cat” 
example, with � ≈ 0.1. One iteration of arclength respacing 
produces a curve which appears very close to equilateral. In 
Fig. 12 are the basic statistics for this arclength respacing 
iteration. Once again, the standard deviation �n appears to 
decrease exponentially, and the standard deviation is 0 and 
the maximum and minimum are equal up to first five decimal 
places after approximately 15 iterations. The size �n of the 
�-tolerance zone settles quickly at a value that is very small 
relative to the overall size of the original polygonal curve, 
suggesting that this iteration provides an equilateral approxi-
mation with good fidelity.

Conclusions

This paper introduces an arclength respacing method for 
polygonal curves and establishes general facts about the 
behavior of polygonal curves under iteration of this res-
pacing. There are several interesting directions for further 
investigation.

The impetus for this research was the application of 
arclength respacing to problems in computer vision. For 
this application it would be very useful to better understand 
the rate of convergence to an equilateral polygon and the 
smoothing effect, the latter being especially apparent in 
Fig. 9. One might also consider replacing the underlying 
polygonal curve with a higher order interpolating func-
tion, as is done in [9], to affect rates of convergence and 
smoothing.

n 0 1 2 3 5 10 15

σn 0.127073 0.01431 0.00342 0.00117 0.00039 0.00002 0.00000

σn/σn−1 - 0.112646 0.23937 0.34217 0.66789 0.53647 0.53571

maxn 0.65736 0.11137 0.10436 0.10274 0.10217 0.10199 0.10198

minn 0.010769 0.02796 0.08312 0.09420 0.09923 0.10184 0.10197

εn 0 0.030064 0.033578 0.033920 0.036121 0.038718 0.038843

Fig. 10  Measuring the respacing of the “noisy cat” polygonal curve

Fig. 11  Outline of a puzzle 
piece after 0 and 1 iteration

n 0 1 2 3 5 10 15

σn 0.11327 0.00123 .00038 0.00011 0.00001 0.00000 0.00000

σn/σn−1 - 0.01084 0.31176 0.29806 0.29953 0.40801 0.58714

maxn 0.96667 0.10400 0.10369 0.10362 0.10358 0.10358 0.10358

minn 0.03018 0.08805 0.09861 0.10218 0.10341 0.10357 0.10357

εn 0 0.025417 0.032453 0.034892 0.035567 0.035705 0.035706

Fig. 12  Measuring the respacing of a puzzle piece polygonal curve
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Simple, concrete examples of limiting polygonal curves 
are provided in “Examples”, but we found it generally dif-
ficult to determine limiting curves exactly. Further investi-
gation may discover ways to obtain information about the 
limiting curves, e.g., bounds for final locations of vertices or 
knowledge of whether the vertices will converge to a single 
point. In addition, one could study stability—ways in which 
perturbations to the initial vertex configuration affect the 
limiting curve.

Finally, the arclength respacing iteration bears a resem-
blance to the pentagram map [16], an operation defined on 
convex polygons with many interesting properties, including 
discrete integrability and a continuum limit corresponding 
to the Boussinesq equation [1, 20]. It would be worthwhile 
to investigate this resemblance. A first step could be under-
standing the continuum limit of arclength respacing; does 
the infinitesimal motion of the vertices produce a non-trivial 
curve flow? This curve flow would likely be non-local, since 
the respacing process is non-local.
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