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Abstract
This work shows how map-matching helps to minimize errors in GPS data by finding the most probable corresponding points 
of the recorded waypoints of a trajectory on a road network. We investigate an open-source alternative for map-matching 
trajectories called Valhalla, which could replace limited and costly commercial map-matching services. Valhalla is an open-
source routing engine, which provides different services, such as path-finding, map-matching, and generating maneuvers 
based on a path. We build a cloud-based big data analytics framework on Amazon Web Services (AWS) platform for map-
matching. This well-established framework is scalable and could process millions of trajectories. Using an example GPS 
dataset, it is demonstrated how Valhalla can be used for map-matching at scale. The dataset consists of about 18 million trips 
in the year 2019 that have at least one recorded point in a bounding box surrounding Frankfurt am Main. The map-matching 
results confirm an adequate performance of Valhalla map-matching, show a reduction of errors by distance calculation, and 
allow for further street-segment-based analysis.

Keywords  GPS data · Trajectory · GPS error · Map-matching · Road network

Introduction

In recent years, location data have been collected more 
than ever. Most moving objects, especially cars, are now 
equipped with GPS loggers in one way or another. While 
new cars have mostly GPS trackers, old cars' movements 
are recorded using GPS-enabled smartphones. These data 
have been used increasingly in mobility research in past 
years. Although it has provided many new opportunities for 
research, it has also introduced challenges [30].

Tracking data are collected by sampling the GPS location 
of a moving object at a specific sampling rate (GPS points 
per unit of time). These tracking data, combined with other 
data collected by the object's sensors, such as speed, are 
called Floating Car Data (FCD). FCD is a powerful source 
in smart-mobility management systems to analyze and 
predict traffic speed on road networks and measure traffic 

congestion. In addition, it is broadly used in research, for 
example, to find traffic patterns [21], to spot, explain, and 
predict accidents [20], and to infer travel mode [48].

GPS data are not accurate [5]. According to Plaudis et al. 
[35], a sequence of GPS points, called a GPS trajectory, 
is associated with two types of errors. First, measurement 
errors, i.e., the recorded location can deviate from the true 
location. This is due to noise from several sources when 
recording GPS data [19]. Second, sampling errors, which 
refer to lost information between the recorded points. Ignor-
ing these errors in the data can lead to false analyses and 
misleading conclusions. Map-matching is an approach to 
minimize the errors in GPS data. It refers to matching the 
recorded points to a representation (usually in the form of 
a graph) of a road network. Figure 1 shows an example of 
map-matching.

Map-matching can either be offline or in real time [29]. 
Offline map-matching refers to matching the recorded 
coordinates after the trip is completed. Offline algorithms 
use all points of an entire trajectory to estimate the true 
positions on the road. These are primarily used when 
working with historical data. Real-time map-matching 
refers to matching the points during the trip as the points 
are being recorded. Obviously, real-time algorithms can 
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use only previously recorded coordinates to estimate the 
true position and direction on the road at a certain point. 
These are used mainly by navigation services and in auton-
omous vehicles.

A comparison between different map-matching algo-
rithms and generally evaluating the map-matching qual-
ity is not straightforward [38], since the “true” positions 
of the recorded points are unknown. However, almost all 
the matching algorithms implemented by available map-
matching services demonstrate good performance when 
the sampling rate is high, i.e., time interval between meas-
ured GPS points of less than 30 s [4–6].

This paper demonstrates a practical guide to open-
source map-matching. The section “Brief Overview of 
Available Approaches” reviews the historical evolution 
of map-matching algorithms and classifies their applica-
tions. The currently most prominent map-matching algo-
rithm, which is based on hidden Markov models, is briefly 
explained in the section “Map-Matching Based on the 
HMM Algorithm”. Next, several available map-matching 
service providers and open-source routing engines are 
compared in the section “Available Map-Matching Ser-
vices”. We chose the open-source routing engine Valhalla 
between available options to demonstrate the map-match-
ing. The section “GPS Data Used” describes the GPS data-
set used. The section “Building a Valhalla Routing Server” 
explains shortly how a Valhalla engine can be built. The 
map-matching process, API parameters and data flows are 
demonstrated in the section “Map-Matching Process”. The 
section “Results and Evaluation” discusses the results and 
evaluate the map-matching performed by Valhalla. Finally, 
the section “Conclusion” concludes the paper.

Brief Overview of Available Approaches

Some early algorithms [25, 39, 41] tried statistical estima-
tion for map-matching. Their approach was to fit a curve 
to recorded points and find the road segment that matches 
the curve better. This approach worked only for some spe-
cial cases, but it did not function well in most practical 
applications. The most naïve algorithm for map-matching, 
which matches the points to the nearest street segments, 
is discussed by Bernstein et al. [3], Kim [23], White et al. 
[45], and Taylor et al. [42]. This algorithm is sensitive to 
outliers and does not use the previously recorded points. 
However, it is fast and can provide a baseline for more 
advanced map-matching algorithms. Bernstein et al. [3] 
and White et al. [45] added a simple improvement to this 
algorithm by taking the heading information of the GPS 
data into account. If the GPS heading does not correspond 
to the road heading, then the road is discarded. Another 
improvement to this algorithm is suggested and discussed 
by Yang et al. [47] and Quddus et al. [37]. They use a 
Kalman filter to drop unreasonable GPS data points which 
leads to better map-matching results. A revolutionary map-
matching algorithm is proposed by Newson and Krumm 
[34] which is the basis for many further approaches. This 
algorithm is also implemented in many open-source rout-
ing engines (such as Valhalla) as well as commercial map-
matching services. This method, which is based on hidden 
Markov models (HMM), finds the most likely sequence 
of road segments that match the sequence of GPS points.

The HMM has been widely used for map-matching 
applications and optimized for different settings and 
environments (see, e.g., [12, 24, 28, 40, 46]. An essential 

Fig. 1   GPS recorded points 
(red) and matched points (blue). 
The blue line shows the cor-
responding trajectory found 
by map-matching. basemap: 
©OpenStreetMap ©CARTO
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aspect of map-matching using HMM is path-finding for 
estimating transition probabilities. HMM determines the 
shortest (least-cost) path between the two successive hid-
den states. This is a classic point2point shortest-path opti-
mization problem (P2P), which has been extensively stud-
ied in the last decades (see, e.g., [1, 2, 8–10, 13, 22, 49]. 
There are exact and metaheuristics algorithms for solving 
the shortest-path problem. An example of an exact algo-
rithm for finding the shortest path from a starting node 
S to a target node T in a weighted graph is the Dijkstra’s 
algorithm [10]. This algorithm finds the shortest path from 
S to T by exploring the shortest path from S to all other 
vertices in the graph.

A heuristic extension of Dijkstra’s algorithm is the A* 
search algorithm [16], which is implemented in Valhalla. 
Unlike Dijkstra, A* does not explore all routes from the 
source to the destination, and it only explores the promising 
routes. It minimizes the sum of the cost from the source to 
the current node and the current node to the destination. 
While the cost of the path from the source to the current 
node is known, the cost of the path from the current node to 
the destination is estimated using a heuristic function such 
as Euclidian or Manhattan distance. In recent years, heuris-
tic approaches have gained significant attention for solving 
shortest-path problems [31]. For example, in Chen et al. [7], 
a heuristic method is proposed, which is an extension of 
Dijkstra’s algorithm, for finding the shortest path in traffic 
networks. The shortest-path problem is also relevant in other 
contexts rather than mobility. Hasan et al. [17] propose a 
heuristic genetic algorithm for finding the shortest path for 
Internet routing.

There are several literature reviews on map-matching 
attempting to classify existing methods. Quddus et al. [36] 
group the map-matching algorithms into geometric, topolog-
ical, probabilistic, and advanced. Geometric map-matching 
is only based on geometric distance (e.g., point-to-curve), 
topological map-matching uses the contiguity of the roads, 
probabilistic methods approximate an error region using the 
uncertainty of position, and advanced map-matching is a 
combination of methods. In addition, this paper evaluates 
several available methods, and identify their constraints 
and limitations. Finally, it argues that the main problems 
are associated with the initial position identification. Wei 
et al. [44] review the map-matching algorithms and clas-
sify them as incremental max-weight, global max-weight, 
and global geometric. Max-weight methods integrate sev-
eral factors (e.g., directions of recorded points and road, 
distance of the recorded point to road segments, and short-
est path between recorded points) and select the candidate 
sequence with the highest score. Incremental max-weight 
only use previously recorded points for real-time applica-
tions and global max-weight use the entire trajectory for 
offline applications. For example, all algorithms using 

hidden Markov models (e.g., Newson and Krumm [34] fall 
under global max-weight. Global geometric methods refer 
to models which match the points only based on geometric 
measures. Hashemi and Karimi [18] provide an overview of 
map-matching methods mainly for navigational (real-time) 
applications and are therefore not discussed further. Kubicka 
et al. [27] divide map-matching algorithms based on their 
application. The intention for this division is that map-
matching problems vary across applications, and different 
methods could be suitable for different applications. While 
real-time algorithms are suitable for navigation purposes, 
offline algorithms are used in surveying applications. A most 
recent review of map-matching algorithms is conducted by 
Chao et al. [6]. They argue that previous categorizations of 
map-matching algorithms are outdated and are not useful 
anymore. Geometric algorithms are not implemented and 
recent hidden Markov models map-matching algorithms can 
be used in both real-time and offline applications. Therefore, 
they provide a new categorization of map-matching models 
according to their algorithms and applications. Moreover, 
by evaluating several map-matching methods, they find that 
both too high and too low sampling rates can be problematic 
for map-matching models.

Map‑Matching Based on the HMM Algorithm

Many map-matching service providers, such as Valhalla, 
Mapbox, and GraphHopper, use the HMM algorithm based 
on Newson and Krumm [34]. This algorithm, which is pro-
posed by Microsoft, is also widely used by other companies 
such as Uber. In this approach, the problem is formulated 
as follows: given a sequence of (time-stamped) GPS points, 
each point has to match a road segment, what is the most 
likely sequence of road segments that match the sequence 
of GPS points? This formulation naturally fits the HMM, as 
the recorded GPS points (observations) refer to state meas-
urements and the individual road segments refer to hidden 
states of the HMM algorithm. The most likely path is the 
sequence of states with the most likely transitions, where the 
transitions between road segments are ruled by connectivity 
in the road network.

The HMM algorithm works as follows: First, for each 
GPS point, the model finds the possible road segment 
matches, the so-called candidates. Figure 2 shows an exam-
ple of a sequence of four GPS observations and their identi-
fied road segment candidates. These candidates are found 
within a certain search radius from the observation. Each 
observation has a set of candidates; for example, observation 
P
1
 has two candidates, c1

1
 and c2

1
.

Second, the measurement probability and the transition 
probabilities are calculated. The measurement probability is 
the likelihood of observing a particular measurement using 
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only that measurement, assuming that GPS noise is Gauss-
ian distributed with a zero mean. This way, the candidates 
being further away from the observation are less likely to be 
considered. The transition possibility of two successive can-
didates gives the likelihood that the vehicle drove between 
them. For example, some transitions which require com-
plex maneuvers are less likely to be considered. Moreover, 
the algorithm favors the transitions, with a great-circle dis-
tance1 being about the same as the driving distance. Finally, 
considering both measurement and transition probabilities, 
the optimal path is identified. Figure 3 shows all the pos-
sible transitions between the road candidates for the GPS 
sequence of Fig. 2. The selected candidates and the optimal 
path are marked red.

There are different algorithms to find the optimal path. A 
naive approach is a brute-force solution that explores all the 
possible transitions. This could be associated with a long 
computation time. A relatively faster approach is the Viterbi 
algorithm [11], which is used in the Newson and Krumm 
[34] approach. This algorithm also calculates the short-
est path for all the consecutive pairs of nodes. Assuming a 
sequence has M measurements with an average of T states 
per measurement, the algorithm must calculate M*T*T 
shortest paths, corresponding to the time complexity of 
O(N2

T) . This calculation can also take much time, especially 
in dense urban areas with many possible transitions. Another 
method to reduce the number of shortest-path calculations 
is to use Dijkstra’s algorithm, which is implemented in Val-
halla. It uses a greedy algorithm to extract only the most 
likely nodes at each state that could lead to a lower runtime 
than Viterbi.

Available Map‑Matching Services

There are many map service providers which offer map-
matching. Several examples and their API pricing are 
listed in Table 1. These services provide ease-of-use and 
fast implementation for applications, which require map-
matching. For a few trips, map-matching is cheap, but costs 
for matching a large number of trajectories can become exor-
bitant. There are also limitations in each service. For exam-
ple, in a single request, a maximum number of 100 locations 
is allowed while using Google Maps API or Mapbox API. 

Fig. 2   GPS points (observa-
tions) and their corresponding 
road candidates. ©OpenStreet-
Map ©CARTO

Fig. 3   Possible transitions between states and optimal path1  The shortest distance between two points on a sphere.
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This could be a problem for long trajectories which contain 
many location points or are recorded at a high sampling rate, 
since splitting trajectories increases the complexity of data 
engineering and reduces the quality the of map matching 
results. Further limitations in API usage, such as daily or 
minutely requests restrictions, are also present. For exam-
ple, GraphHopper and Mapbox allow only 1500 requests per 
day and 300 requests per minute, respectively. These limita-
tions could be acceptable for implementing these services in 
applications like smartphone apps. There are usually custom 
pricing plans for clients with scaling businesses. However, 
these limitations could be obstructive when working with 
historical data that require map-matching for a large number 
of trajectories at once.

Another way to conduct map-matching is to build a rout-
ing server capable of map-matching. Fortunately, there are 
several open-source routing engines that provide routing 
services, including map-matching. Two widely used open-
source engines are OSRM2 and Valhalla.3 Some of the 
advantages and disadvantages of these two routing engines, 
as discussed by Kreiser [26], are listed in Table 2.

These engines have a high performance and are vastly 
used by large enterprises. Some of the above-mentioned 
service providers use these engines under the hood. OSRM 
and Valhalla are used (and also mainly developed and 
maintained) by Mapbox and Mapzen, respectively. Another 

advantage of both these engines is that they use OpenStreet-
Map data, making it easy for further analysis and visualiza-
tion purposes. Here, we chose to build a Valhalla routing 
engine, since it needs significantly lower memory. A com-
prehensive study on map-matching using OSRM is per-
formed by Vander Laan et al. [43]. They propose a scalable 
well-constructed enhancement framework for GPS data that 
could map-match millions of trajectories.

Other examples for map-matching frameworks are 
pgMapMatch4 and Fast Map-Matching (FFM).5 However, 
as the advantages of OSRM and Valhalla outweigh the other 
frameworks, they are not discussed here.

GPS Data Used

The GPS data consist of about 18 million trips with more 
than 5 billion GPS observations (locations with timestamp). 
These trips have at least one GPS location within a bound-
ing box surrounding Frankfurt am Main in the year 2019. 
The data source is INRIX, a private company that provides 
location-wise data and analytics. The journeys are recorded 
using either a smartphone or embedded GPS devices. The 
dataset contains private as well as fleet trips, and it is dis-
tinguished between vehicle weight classes. Light, medium, 
and heavy vehicles range from 0 to 14,000 lb, 14,000 lb to 

Table 1   Map-matching API pricing of several map service providers

a A request with maximum number of locations
b Prices do not linearly increase. There are usually custom plans for heavy clients with discounts. This is just for a quick comparison between the 
services
c Requests with maximum number of locations

Price/requesta (€) Price/1,000,000 
requestsb (€)

Request locations limitation Other requestsc limitations

Google Maps [14] 0.010 10,000 100 points/require
GraphHopper [15] 0.003 3,000 500 points/require 1500 requests/day
Mapbox [32] 0.0016 1,600 100 points/request 300 requests/minute
Mapzen [33] 0.001 1,000

Table 2   Comparison between 
OSRM and Valhalla routing 
engines according to Kreiser 
[26]

OSRM Valhalla

Pros Fast performance
Support multi-mode travel

Low memory usage
Provides different routes at runtime by 

varying request parameters
Cons High memory usage

Precomputing routes do not provide different routes 
at runtime (e.g., avoid tolls, penalize ferries, etc.)

Slower performance than OSRM
Localization is not as advanced as OSRM

2  http://​proje​ct-​osrm.​org/.
3  https://​github.​com/​valha​lla/​valha​lla.

4  https://​github.​com/​amillb/​pgMap​Match.
5  https://​github.​com/​cyang-​kth/​fmm.

http://project-osrm.org/
https://github.com/valhalla/valhalla
https://github.com/amillb/pgMapMatch
https://github.com/cyang-kth/fmm
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26,000 lb, and higher than 26,000 lb, respectively. An over-
view of the number of trips in each category can be seen in 
Table 3.

The data are stored in compressed GZIP format on the 
AWS S3 storage and takes more than 300 GB. The way-
points are separated monthly. Each month has about 80 
GZIP part files containing the waypoints. A 0.56% sample 
consisting of 100,000 trips is visualized in Fig. 4.

A description of the trips’ metadata can be seen in the 
Table 4.

Building a Valhalla Routing Server

There are two ways to install Valhalla. The first one is to 
build it from the source. The second one is to run a Valhalla 
instance using Docker. The second option is less complex 
and is more efficient with regard to time and resources. The 
requirement is the latest docker and docker-compose running 

on an Ubuntu 20.04. It is recommended to run the Valhalla 
Docker image by GIS OPS6, since it is more straightforward 
than the original Valhalla Docker image.

To build the Valhalla Docker with Germany’s tiles, the 
docker-compose.yml file should be properly configured. The 

Table 3   Number of trips in each category regarding source, vehicle 
weight, and type

Source Weight class Type Trips count

Embedded GPS Light Consumer 681,699
Fleet 364

Medium Fleet 2,776,388
Heavy Fleet 153,223

Mobile device Light Consumer 14,160,423
Medium Fleet 17,508

Fig. 4   Waypoints of 100,000 
trips visualized on the map. 
©OpenStreetMap ©CARTO

Table 4   The descriptive 
statistics of trips’ mean and max 
speed, length, and sampling 
frequency of the whole dataset

Mean speed (Kph) Max speed (Kph) Trip length (m) Sampling 
frequency 
(S)

Mean 69.03 142.84 96,773.07 45.7
Std 34.53 63.81 124,566.1 57.6
Min 0.03 0.07 0.42 0.5
25% 39.22 92.03 10,572.04 6.9
50% 71.35 146.49 39,752.61 17.7
75% 97.2 197.04 144,949.5 57.9
max 199.99 250 2,216,875 985.2

6  https://​github.​com/​gis-​ops/​docker-​valha​lla.

https://github.com/gis-ops/docker-valhalla
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tiles data are available on geofabrik,7 which is an official 
member of OpenStreetMap. After integrating the geofabrik 
link8 in the YAML file, Germany’s tiles could be extracted 
directly from a PBF file while building Valhalla. An example 
of a YAML configuration file is shown in appendix.

Depending on the hardware, it can take several hours 
to build Valhalla completely with the Germany’s tiles. In 
our case, it took more than 4 h on a t2.2xlarge AWS EC2 
instance with 32 GB RAM and 8 CPU cores. We store this 
server as an Amazon Machine Image (AMI) to make it reus-
able. Therefore, each time we need a map-matching server, 
we can simply start an EC2 instance with this AMI. We can 

even run multiple map-matching servers in parallel by start-
ing several servers using this AMI.

Map‑Matching Process

The first challenge with our dataset is assembling the jour-
neys’ trajectories, since the waypoints are stored in many dif-
ferent files without any logical order. There are several dif-
ferent tools for big data analytics. Since our data are spatial 
and we need to perform spatial operations on the data, we 
chose the PostGIS9 spatial database. PostGIS is an extension 

Fig. 5   Preprocessing step: only 
the waypoints in Germany are 
kept

7  https://​www.​geofa​brik.​de/.
8  http://​downl​oad.​geofa​brik.​de/​europe/​germa​ny-​latest.​osm.​pbf. 9  https://​postg​is.​net/.

Fig. 6   Map-matching data 
pipeline

https://www.geofabrik.de/
http://download.geofabrik.de/europe/germany-latest.osm.pbf
https://postgis.net/
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to PostgreSQL, which adds support for geographic objects 
and allows to run spatial operations using SQL.

The first step is to import all the GZIP waypoint files 
from the S3 storage into a PostGIS server. Any required 
preprocessing step can be done on this server. For example, 
we drop all the GPS points outside Germany, since they 
are not of our interest for map-matching purposes. Figure 5 
shows the same sample visualized in Fig. 4 after this pre-
processing step.

The next step is assembling the trajectories. We group the 
points by their TripID, order the points by their timestamp 
and store them in a LineString geometry type. Afterward, 
they are ready to be sent to the map-matching server. Fig-
ure 6 shows the data flow in our map-matching architec-
ture. For each trip, a request is generated and sent to the 
map-matching server or, more precisely, to Meili using 
the Library API. Meili is a namespace within Valhalla that 
includes the map-matching code and is responsible for map-
matching functionality.

We can control the performance and accuracy of Meili by 
adjusting the map-matching hyperparameters. Some of the 
parameters are listed in Table 5.10 sigma_z is the standard 
deviation of the GPS measurement error and represents the 
GPS noise. It directly affects the emission probabilities. beta 
weighs the transition costs and affects the transition prob-
ability of two successive points. search_radius could affect 
the number of initial candidates that the HMM considers. 
The default values for these parameters in Valhalla are set 
regarding the recommendations from Newson and Krumm 
[34]. For instance, if the GPS data exhibit a lot of noise, 
we can increase the search_radius, beta, and sigma_z. This 
could increase the runtime as it considers more measure-
ments and transition possibilities, but it could lead to better 
results depending on the data. There are also further param-
eters to set up the map-matching environment. For example, 
“transport mode” can be chosen between “auto”, “bicycle”, 
“pedestrian”, and “multimodal”.

Integrating the timestamps of the coordinates in the API 
request is optional. Timestamps affect the calculated transi-
tion probabilities. The algorithm favors the transitions with 
durations (calculated by the shortest-path algorithm) being 

similar to the actual duration. This can enhance the map-
matching performance.

Meili processes the request, performs the map-matching 
based on OSM tiles, and creates a response in JSON format. 
While parsing the response, we can split the result into three 
parts: matched points, trajectory, and narrative. Matched 
points are the corresponding locations of the recorded 
points on the road network. Trajectory is a sequence of cor-
responding road segments in a polyline format (convertible 
to LineString). It can be used to calculate the trip distance 
or to visualize the trip on the map. Narrative contains the 
maneuver points and their details (e.g., type of turn or verbal 
instruction by a navigation app) based on the actual path.

The parsed and processed responses are then directed to 
another PostGIS database responsible for holding the results. 
When the map-matching is finished for all the GPS points, 
we can export the results from the PostGIS database to the 
S3 storage or to send them to the machine learning data 
pipeline to do further analysis.

Results and Evaluation

We tested our map-matching environment with a sample of 
1,216,476 trajectories. A description of the sample dataset 
can be seen in Table 6.

In our Valhalla’s map-matching environment, the “trans-
port mode” is set to “auto”. All other parameters are set 
to default. The first attempt succeeds in map-matching 
78.24% of the journeys (n = 951,804). After exploring the 

Table 5   Examples of map-matching hyperparameters

Parameter Description Default

Sigma_z To specify the GPS accuracy 4.07
Beta To weigh the transition cost 3
Search_radius search radius for road candidates 50 m

Table 6   The descriptive statistics of trips’ mean and max speed, 
length, and sampling frequency of the sample used

Points count Trip length (KM) Sampling 
frequency 
(S)

Mean 302.22 98.999 46.8
Std 545.47 122.181 55.8
Min 2 0 0.5
25% 25 11.27 8.3
50% 95 41.79 22.1
75% 311 151.91 61
Max 10,578 1365.38 985.2

Table 7   Range of hyperparameters chosen for the experiment

Parameter Min Max Steps Scale

Sigma_z 0.5 12 8 Linear
Beta 0.5 12 8 Linear
Search_radius 20 100 9 Linear

10  A complete list of parameters can be found at:
  https://​valha​lla.​readt​hedocs.​io/​en/​latest/​meili/​confi​gurat​ion/.

https://valhalla.readthedocs.io/en/latest/meili/configuration/
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unsuccessful cases, we could establish two systematic fail-
ures associated with two clusters of journeys: (1) journeys 
longer than 200 km and (2) journeys with too few GPS 
measurements. The reason why the journeys longer than 
200 km could not be map-matched is unknown; however, 
a possible limitation might be implemented in Valhalla 
without being documented. After discovering this issue, the 
journeys with a trip length of more than 200 km are split 
into several parts, so that each part is less than 200 km. The 
map-matching process is conducted again, and the new suc-
cess rate is 95.20% (n = 1,158,144).

To discover if any better success rate could be achieved, 
a grid search is done on a random sample of 5000 journeys. 
The selected hyperparameters, resulting in 556 (= 8*8*9) 
combinations, for the grid search are listed in Table 7.

The grid search results demonstrate that the success rate 
of map-matching is constant at 95.26% for all the hyper-
parameter combinations. This means a better result on this 
sample could not be achieved with the selected finite subset 

from the hyperparameters’ domain space. This could be due 
to the low number of GPS measurements and high noise in 
the “unsuccessful” journeys. However, we cannot make any 
claim about the success rate of the map-matching of our 
sample for the combinations of hyperparameters that fall out 
of the selected grid search.

The raw data before map-matching is visualized in Fig. 7, 
and the trajectories after map-matching are visualized in 
Fig. 8. It can be seen that before map-matching, the trajec-
tories can deviate from roads, i.e., they are associated with 
errors. After map-matching, they perfectly lie on the road 
network.

We calculate the trip’s distance before and after map-
matching to get an overview of the changes. A sample of 
20,000 trips is chosen containing trips with a distance of 
more than 1000 m and a continuous LineString from the ori-
gin to the destination after map-matching. The trip distance 
is defined as the sum of the great-circle distances between 
the location points. The absolute and relative difference in 

Fig. 7   Trajectories before map-
matching

Fig. 8   Trajectories after map-
matching
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trip distance after map-matching in comparison to the origi-
nal trip distance can be seen in Fig. 9. The trip distance after 
map-matching is on average 1.4% longer than the original 
trip distance calculated from raw data. One reason for this 
increase is the fact that curves are mapped more realistic 
after map-matching (see Fig. 1).

To provide an overview of map-matching runtime, the 
duration of map-matching of every journey is measured. 
Table 8 shows the average map-matching runtime for dif-
ferent groups of journeys based on the number of GPS 
measurements and trip length. We can see that the average 
runtime increases by increasing the points count and trip 
length. This is intuitive as the number of computational tasks 
increases.

Map-matching runtime depends on the hardware. For 
example, in this case, the map-matching server is set up on 
an r5a.2xlarge EC2 instance. This instance has 64 GB RAM 
and 8 vCPUs and costs $0.548 per hour on-demand on a 
Linux machine at the time this paper is written. This indi-
cates a relatively low cost for this map-matching approach.

Conclusion

In recent years, there has been a drastic increase in using 
GPS data in mobility research and smart-mobility applica-
tions. Moreover, much research has been done on dealing 

with inaccuracy in the GPS movement data. Against this 
background, map-matching has been recognized to be an 
essential preprocessing step for minimizing errors.

Using map-matching, we can find the road segments 
matched to the recorded points of a GPS trajectory, allowing 
further analysis based on road segments. There are several 
map service providers that offer map-matching. However, 
their APIs are usually restricted (e.g., number of locations 
per request) and costly, which make them not suitable for 
map-matching historical big GPS data. An alternative to 
these services is building a map-matching server using open-
source routing engines such as Valhalla.

We built a cloud-based map-matching framework on 
AWS. Within this framework, PostGIS is used to perform 
spatial operations and to assemble trajectories, and Valhalla 
runs on the map-matching server. We tested Valhalla with a 
sample of about 1.2 million GPS trajectories and 95.20% of 
the journeys were successfully map-matched. Other journeys 
(the remaining 4.80%) contained too few GPS measurements 
to yield a reliable map-matching result. This proves that Val-
halla can be considered a powerful tool for map-matching 
big GPS datasets regarding cost, runtime, and performance. 
A visualization of map-matched trips shows that their tra-
jectories perfectly lie on the road network. The trajectory 
distance calculated after map-matching is on average 1.4% 
longer than the distance calculated using raw data before 
map-matching. Assuming that map-matching reveals the 

Fig. 9   Absolute (left) and relative difference (right) of trip distance after map-matching

Table 8   Average runtime of 
map-matching for each trip 
separated by different length-
points count groups

a For every trip with a TL > 200, the sum of the runtimes of its parts is considered

Trip length [TL] (in kilometers)

TL < 50 50 ≤ TL ≤ 200 TL > 200a

Points count [PC]
 PC < 50 0.0353 s (n = 363,005) 0.0446 s (n = 41,088) 0.0599 s (n = 1237)
 50 ≤ PC ≤ 100 0.0468 s (n = 108,004) 0.0576 s (n = 41,644) 0.0769 s (n = 15,331)
 PC > 100 0.0562 s (n = 226,881) 0.0828 s (n = 171,199) 0.1493 s (n = 189,755)
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actual driven route, it leads to a significant error reduction 
while calculating trajectory distance. This could improve the 
accuracy of further analyses that use trip distance.

Map-matching using the suggested framework by Valhalla 
is fast enough for most applications, since it is supposed to 
be used for offline and not for real-time map-matching. How-
ever, it can still take significant time. Alternatives, such as 
OSRM, are relatively faster and could replace Valhalla when 
the overall runtime is an essential aspect. With the paralleli-
zation of Valhalla servers, the overall map-matching runtime 
could be reduced linearly (which could be associated with 
more infrastructure and cost). Overall, the proposed map-
matching framework is efficient and scalable and can be used 
to conduct map-matching for terabytes of geospatial data.

Some of the limitations of our work are as follows: 
(1) We cannot make any claim about the accuracy of the 
results, since the true positions of raw GPS measurements 
are unknown. A possible approach to evaluate the accuracy 
of the results would be testing the framework with artificial 
GPS points and a deviation metric. (2) Because of the com-
putation limits, only a small subset of hyperparameters are 
chosen for the grid search. The performance of the algorithm 
outside of this space is not studied.

Future work should use other open-source alternatives, 
such as OSRM. It should demonstrate how OSRM could be 
built and used for map-matching. Using the same dataset, its 
performance should be evaluated and a comparison between 
the open-source routing engines, i.e., OSRM and Valhalla, 
could help to decide which service to use depending on the 
application. In addition, using an artificial GPS dataset, 
the accuracy of both frameworks should be measured and 
compared.

Appendix

To build the Valhalla Docker with Germany’s tiles, the 
docker-compose.yml file can be configured as follows:

services:
valhalla:
image: gisops/valhalla:latest
ports:
- "8002:8002"
volumes:
-./custom_files/:/custom_files
environment:
- tile_urls = http://​downl​oad.​geofa​brik.​de/​europe/​germa​ny-​latest.​osm.​

pbf
- min_x = 5.8 # Germany’s minimum longitude
- max_x = 15.1 # Germany’s maximum longitude
- min_y = 47.2 # Germany’s minimum latitude

- max_y = 55.2 # Germany’s maximum latitude
- use_tiles_ignore_pbf = True
- build_time_zones = True
- build_elevation = True
- build_admins = True
- force_rebuild_elevation = False
- force_rebuild = False

Using this configuration, the local PBF files, located in 
custom_files folder, are prioritized. To get the Germany’s 
tiles using the specified link, this folder must be empty. After 
configuring the YAML file, Valhalla can be built by:
docker-compose up --build

Once the installation is finished, Valhalla should be run-
ning on https://​en.​wikip​edia.​org/​wiki/​Local​host .
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