
Vol.:(0123456789)

SN Computer Science (2022) 3: 415
https://doi.org/10.1007/s42979-022-01340-5

SN Computer Science

SURVEY ARTICLE

A Practical Guide to an Open‑Source Map‑Matching Approach for Big
GPS Data

Siavash Saki1  · Tobias Hagen1

Received: 11 March 2022 / Accepted: 19 July 2022 / Published online: 4 August 2022
© The Author(s) 2022

Abstract
This work shows how map-matching helps to minimize errors in GPS data by finding the most probable corresponding points
of the recorded waypoints of a trajectory on a road network. We investigate an open-source alternative for map-matching
trajectories called Valhalla, which could replace limited and costly commercial map-matching services. Valhalla is an open-
source routing engine, which provides different services, such as path-finding, map-matching, and generating maneuvers
based on a path. We build a cloud-based big data analytics framework on Amazon Web Services (AWS) platform for map-
matching. This well-established framework is scalable and could process millions of trajectories. Using an example GPS
dataset, it is demonstrated how Valhalla can be used for map-matching at scale. The dataset consists of about 18 million trips
in the year 2019 that have at least one recorded point in a bounding box surrounding Frankfurt am Main. The map-matching
results confirm an adequate performance of Valhalla map-matching, show a reduction of errors by distance calculation, and
allow for further street-segment-based analysis.

Keywords  GPS data · Trajectory · GPS error · Map-matching · Road network

Introduction

In recent years, location data have been collected more
than ever. Most moving objects, especially cars, are now
equipped with GPS loggers in one way or another. While
new cars have mostly GPS trackers, old cars' movements
are recorded using GPS-enabled smartphones. These data
have been used increasingly in mobility research in past
years. Although it has provided many new opportunities for
research, it has also introduced challenges [30].

Tracking data are collected by sampling the GPS location
of a moving object at a specific sampling rate (GPS points
per unit of time). These tracking data, combined with other
data collected by the object's sensors, such as speed, are
called Floating Car Data (FCD). FCD is a powerful source
in smart-mobility management systems to analyze and
predict traffic speed on road networks and measure traffic

congestion. In addition, it is broadly used in research, for
example, to find traffic patterns [21], to spot, explain, and
predict accidents [20], and to infer travel mode [48].

GPS data are not accurate [5]. According to Plaudis et al.
[35], a sequence of GPS points, called a GPS trajectory,
is associated with two types of errors. First, measurement
errors, i.e., the recorded location can deviate from the true
location. This is due to noise from several sources when
recording GPS data [19]. Second, sampling errors, which
refer to lost information between the recorded points. Ignor-
ing these errors in the data can lead to false analyses and
misleading conclusions. Map-matching is an approach to
minimize the errors in GPS data. It refers to matching the
recorded points to a representation (usually in the form of
a graph) of a road network. Figure 1 shows an example of
map-matching.

Map-matching can either be offline or in real time [29].
Offline map-matching refers to matching the recorded
coordinates after the trip is completed. Offline algorithms
use all points of an entire trajectory to estimate the true
positions on the road. These are primarily used when
working with historical data. Real-time map-matching
refers to matching the points during the trip as the points
are being recorded. Obviously, real-time algorithms can

 *	 Siavash Saki
	 Siavash.saki@fb3.fra-uas.de

	 Tobias Hagen
	 thagen@fb3.fra-uas.de

1	 Research Lab for Urban Transport, Frankfurt University
of Applied Sciences, Frankfurt am Main, Germany

http://orcid.org/0000-0002-5413-3007
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01340-5&domain=pdf

	 SN Computer Science (2022) 3: 415415  Page 2 of 13

SN Computer Science

use only previously recorded coordinates to estimate the
true position and direction on the road at a certain point.
These are used mainly by navigation services and in auton-
omous vehicles.

A comparison between different map-matching algo-
rithms and generally evaluating the map-matching qual-
ity is not straightforward [38], since the “true” positions
of the recorded points are unknown. However, almost all
the matching algorithms implemented by available map-
matching services demonstrate good performance when
the sampling rate is high, i.e., time interval between meas-
ured GPS points of less than 30 s [4–6].

This paper demonstrates a practical guide to open-
source map-matching. The section “Brief Overview of
Available Approaches” reviews the historical evolution
of map-matching algorithms and classifies their applica-
tions. The currently most prominent map-matching algo-
rithm, which is based on hidden Markov models, is briefly
explained in the section “Map-Matching Based on the
HMM Algorithm”. Next, several available map-matching
service providers and open-source routing engines are
compared in the section “Available Map-Matching Ser-
vices”. We chose the open-source routing engine Valhalla
between available options to demonstrate the map-match-
ing. The section “GPS Data Used” describes the GPS data-
set used. The section “Building a Valhalla Routing Server”
explains shortly how a Valhalla engine can be built. The
map-matching process, API parameters and data flows are
demonstrated in the section “Map-Matching Process”. The
section “Results and Evaluation” discusses the results and
evaluate the map-matching performed by Valhalla. Finally,
the section “Conclusion” concludes the paper.

Brief Overview of Available Approaches

Some early algorithms [25, 39, 41] tried statistical estima-
tion for map-matching. Their approach was to fit a curve
to recorded points and find the road segment that matches
the curve better. This approach worked only for some spe-
cial cases, but it did not function well in most practical
applications. The most naïve algorithm for map-matching,
which matches the points to the nearest street segments,
is discussed by Bernstein et al. [3], Kim [23], White et al.
[45], and Taylor et al. [42]. This algorithm is sensitive to
outliers and does not use the previously recorded points.
However, it is fast and can provide a baseline for more
advanced map-matching algorithms. Bernstein et al. [3]
and White et al. [45] added a simple improvement to this
algorithm by taking the heading information of the GPS
data into account. If the GPS heading does not correspond
to the road heading, then the road is discarded. Another
improvement to this algorithm is suggested and discussed
by Yang et al. [47] and Quddus et al. [37]. They use a
Kalman filter to drop unreasonable GPS data points which
leads to better map-matching results. A revolutionary map-
matching algorithm is proposed by Newson and Krumm
[34] which is the basis for many further approaches. This
algorithm is also implemented in many open-source rout-
ing engines (such as Valhalla) as well as commercial map-
matching services. This method, which is based on hidden
Markov models (HMM), finds the most likely sequence
of road segments that match the sequence of GPS points.

The HMM has been widely used for map-matching
applications and optimized for different settings and
environments (see, e.g., [12, 24, 28, 40, 46]. An essential

Fig. 1   GPS recorded points
(red) and matched points (blue).
The blue line shows the cor-
responding trajectory found
by map-matching. basemap:
©OpenStreetMap ©CARTO

SN Computer Science (2022) 3: 415	 Page 3 of 13  415

SN Computer Science

aspect of map-matching using HMM is path-finding for
estimating transition probabilities. HMM determines the
shortest (least-cost) path between the two successive hid-
den states. This is a classic point2point shortest-path opti-
mization problem (P2P), which has been extensively stud-
ied in the last decades (see, e.g., [1, 2, 8–10, 13, 22, 49].
There are exact and metaheuristics algorithms for solving
the shortest-path problem. An example of an exact algo-
rithm for finding the shortest path from a starting node
S to a target node T in a weighted graph is the Dijkstra’s
algorithm [10]. This algorithm finds the shortest path from
S to T by exploring the shortest path from S to all other
vertices in the graph.

A heuristic extension of Dijkstra’s algorithm is the A*
search algorithm [16], which is implemented in Valhalla.
Unlike Dijkstra, A* does not explore all routes from the
source to the destination, and it only explores the promising
routes. It minimizes the sum of the cost from the source to
the current node and the current node to the destination.
While the cost of the path from the source to the current
node is known, the cost of the path from the current node to
the destination is estimated using a heuristic function such
as Euclidian or Manhattan distance. In recent years, heuris-
tic approaches have gained significant attention for solving
shortest-path problems [31]. For example, in Chen et al. [7],
a heuristic method is proposed, which is an extension of
Dijkstra’s algorithm, for finding the shortest path in traffic
networks. The shortest-path problem is also relevant in other
contexts rather than mobility. Hasan et al. [17] propose a
heuristic genetic algorithm for finding the shortest path for
Internet routing.

There are several literature reviews on map-matching
attempting to classify existing methods. Quddus et al. [36]
group the map-matching algorithms into geometric, topolog-
ical, probabilistic, and advanced. Geometric map-matching
is only based on geometric distance (e.g., point-to-curve),
topological map-matching uses the contiguity of the roads,
probabilistic methods approximate an error region using the
uncertainty of position, and advanced map-matching is a
combination of methods. In addition, this paper evaluates
several available methods, and identify their constraints
and limitations. Finally, it argues that the main problems
are associated with the initial position identification. Wei
et al. [44] review the map-matching algorithms and clas-
sify them as incremental max-weight, global max-weight,
and global geometric. Max-weight methods integrate sev-
eral factors (e.g., directions of recorded points and road,
distance of the recorded point to road segments, and short-
est path between recorded points) and select the candidate
sequence with the highest score. Incremental max-weight
only use previously recorded points for real-time applica-
tions and global max-weight use the entire trajectory for
offline applications. For example, all algorithms using

hidden Markov models (e.g., Newson and Krumm [34] fall
under global max-weight. Global geometric methods refer
to models which match the points only based on geometric
measures. Hashemi and Karimi [18] provide an overview of
map-matching methods mainly for navigational (real-time)
applications and are therefore not discussed further. Kubicka
et al. [27] divide map-matching algorithms based on their
application. The intention for this division is that map-
matching problems vary across applications, and different
methods could be suitable for different applications. While
real-time algorithms are suitable for navigation purposes,
offline algorithms are used in surveying applications. A most
recent review of map-matching algorithms is conducted by
Chao et al. [6]. They argue that previous categorizations of
map-matching algorithms are outdated and are not useful
anymore. Geometric algorithms are not implemented and
recent hidden Markov models map-matching algorithms can
be used in both real-time and offline applications. Therefore,
they provide a new categorization of map-matching models
according to their algorithms and applications. Moreover,
by evaluating several map-matching methods, they find that
both too high and too low sampling rates can be problematic
for map-matching models.

Map‑Matching Based on the HMM Algorithm

Many map-matching service providers, such as Valhalla,
Mapbox, and GraphHopper, use the HMM algorithm based
on Newson and Krumm [34]. This algorithm, which is pro-
posed by Microsoft, is also widely used by other companies
such as Uber. In this approach, the problem is formulated
as follows: given a sequence of (time-stamped) GPS points,
each point has to match a road segment, what is the most
likely sequence of road segments that match the sequence
of GPS points? This formulation naturally fits the HMM, as
the recorded GPS points (observations) refer to state meas-
urements and the individual road segments refer to hidden
states of the HMM algorithm. The most likely path is the
sequence of states with the most likely transitions, where the
transitions between road segments are ruled by connectivity
in the road network.

The HMM algorithm works as follows: First, for each
GPS point, the model finds the possible road segment
matches, the so-called candidates. Figure 2 shows an exam-
ple of a sequence of four GPS observations and their identi-
fied road segment candidates. These candidates are found
within a certain search radius from the observation. Each
observation has a set of candidates; for example, observation
P
1
 has two candidates, c1

1
 and c2

1
.

Second, the measurement probability and the transition
probabilities are calculated. The measurement probability is
the likelihood of observing a particular measurement using

	 SN Computer Science (2022) 3: 415415  Page 4 of 13

SN Computer Science

only that measurement, assuming that GPS noise is Gauss-
ian distributed with a zero mean. This way, the candidates
being further away from the observation are less likely to be
considered. The transition possibility of two successive can-
didates gives the likelihood that the vehicle drove between
them. For example, some transitions which require com-
plex maneuvers are less likely to be considered. Moreover,
the algorithm favors the transitions, with a great-circle dis-
tance1 being about the same as the driving distance. Finally,
considering both measurement and transition probabilities,
the optimal path is identified. Figure 3 shows all the pos-
sible transitions between the road candidates for the GPS
sequence of Fig. 2. The selected candidates and the optimal
path are marked red.

There are different algorithms to find the optimal path. A
naive approach is a brute-force solution that explores all the
possible transitions. This could be associated with a long
computation time. A relatively faster approach is the Viterbi
algorithm [11], which is used in the Newson and Krumm
[34] approach. This algorithm also calculates the short-
est path for all the consecutive pairs of nodes. Assuming a
sequence has M measurements with an average of T states
per measurement, the algorithm must calculate M*T*T
shortest paths, corresponding to the time complexity of
O(N2

T) . This calculation can also take much time, especially
in dense urban areas with many possible transitions. Another
method to reduce the number of shortest-path calculations
is to use Dijkstra’s algorithm, which is implemented in Val-
halla. It uses a greedy algorithm to extract only the most
likely nodes at each state that could lead to a lower runtime
than Viterbi.

Available Map‑Matching Services

There are many map service providers which offer map-
matching. Several examples and their API pricing are
listed in Table 1. These services provide ease-of-use and
fast implementation for applications, which require map-
matching. For a few trips, map-matching is cheap, but costs
for matching a large number of trajectories can become exor-
bitant. There are also limitations in each service. For exam-
ple, in a single request, a maximum number of 100 locations
is allowed while using Google Maps API or Mapbox API.

Fig. 2   GPS points (observa-
tions) and their corresponding
road candidates. ©OpenStreet-
Map ©CARTO

Fig. 3   Possible transitions between states and optimal path1  The shortest distance between two points on a sphere.

SN Computer Science (2022) 3: 415	 Page 5 of 13  415

SN Computer Science

This could be a problem for long trajectories which contain
many location points or are recorded at a high sampling rate,
since splitting trajectories increases the complexity of data
engineering and reduces the quality the of map matching
results. Further limitations in API usage, such as daily or
minutely requests restrictions, are also present. For exam-
ple, GraphHopper and Mapbox allow only 1500 requests per
day and 300 requests per minute, respectively. These limita-
tions could be acceptable for implementing these services in
applications like smartphone apps. There are usually custom
pricing plans for clients with scaling businesses. However,
these limitations could be obstructive when working with
historical data that require map-matching for a large number
of trajectories at once.

Another way to conduct map-matching is to build a rout-
ing server capable of map-matching. Fortunately, there are
several open-source routing engines that provide routing
services, including map-matching. Two widely used open-
source engines are OSRM2 and Valhalla.3 Some of the
advantages and disadvantages of these two routing engines,
as discussed by Kreiser [26], are listed in Table 2.

These engines have a high performance and are vastly
used by large enterprises. Some of the above-mentioned
service providers use these engines under the hood. OSRM
and Valhalla are used (and also mainly developed and
maintained) by Mapbox and Mapzen, respectively. Another

advantage of both these engines is that they use OpenStreet-
Map data, making it easy for further analysis and visualiza-
tion purposes. Here, we chose to build a Valhalla routing
engine, since it needs significantly lower memory. A com-
prehensive study on map-matching using OSRM is per-
formed by Vander Laan et al. [43]. They propose a scalable
well-constructed enhancement framework for GPS data that
could map-match millions of trajectories.

Other examples for map-matching frameworks are
pgMapMatch4 and Fast Map-Matching (FFM).5 However,
as the advantages of OSRM and Valhalla outweigh the other
frameworks, they are not discussed here.

GPS Data Used

The GPS data consist of about 18 million trips with more
than 5 billion GPS observations (locations with timestamp).
These trips have at least one GPS location within a bound-
ing box surrounding Frankfurt am Main in the year 2019.
The data source is INRIX, a private company that provides
location-wise data and analytics. The journeys are recorded
using either a smartphone or embedded GPS devices. The
dataset contains private as well as fleet trips, and it is dis-
tinguished between vehicle weight classes. Light, medium,
and heavy vehicles range from 0 to 14,000 lb, 14,000 lb to

Table 1   Map-matching API pricing of several map service providers

a A request with maximum number of locations
b Prices do not linearly increase. There are usually custom plans for heavy clients with discounts. This is just for a quick comparison between the
services
c Requests with maximum number of locations

Price/requesta (€) Price/1,000,000
requestsb (€)

Request locations limitation Other requestsc limitations

Google Maps [14] 0.010 10,000 100 points/require
GraphHopper [15] 0.003 3,000 500 points/require 1500 requests/day
Mapbox [32] 0.0016 1,600 100 points/request 300 requests/minute
Mapzen [33] 0.001 1,000

Table 2   Comparison between
OSRM and Valhalla routing
engines according to Kreiser
[26]

OSRM Valhalla

Pros Fast performance
Support multi-mode travel

Low memory usage
Provides different routes at runtime by

varying request parameters
Cons High memory usage

Precomputing routes do not provide different routes
at runtime (e.g., avoid tolls, penalize ferries, etc.)

Slower performance than OSRM
Localization is not as advanced as OSRM

2  http://​proje​ct-​osrm.​org/.
3  https://​github.​com/​valha​lla/​valha​lla.

4  https://​github.​com/​amillb/​pgMap​Match.
5  https://​github.​com/​cyang-​kth/​fmm.

http://project-osrm.org/
https://github.com/valhalla/valhalla
https://github.com/amillb/pgMapMatch
https://github.com/cyang-kth/fmm

	 SN Computer Science (2022) 3: 415415  Page 6 of 13

SN Computer Science

26,000 lb, and higher than 26,000 lb, respectively. An over-
view of the number of trips in each category can be seen in
Table 3.

The data are stored in compressed GZIP format on the
AWS S3 storage and takes more than 300 GB. The way-
points are separated monthly. Each month has about 80
GZIP part files containing the waypoints. A 0.56% sample
consisting of 100,000 trips is visualized in Fig. 4.

A description of the trips’ metadata can be seen in the
Table 4.

Building a Valhalla Routing Server

There are two ways to install Valhalla. The first one is to
build it from the source. The second one is to run a Valhalla
instance using Docker. The second option is less complex
and is more efficient with regard to time and resources. The
requirement is the latest docker and docker-compose running

on an Ubuntu 20.04. It is recommended to run the Valhalla
Docker image by GIS OPS6, since it is more straightforward
than the original Valhalla Docker image.

To build the Valhalla Docker with Germany’s tiles, the
docker-compose.yml file should be properly configured. The

Table 3   Number of trips in each category regarding source, vehicle
weight, and type

Source Weight class Type Trips count

Embedded GPS Light Consumer 681,699
Fleet 364

Medium Fleet 2,776,388
Heavy Fleet 153,223

Mobile device Light Consumer 14,160,423
Medium Fleet 17,508

Fig. 4   Waypoints of 100,000
trips visualized on the map.
©OpenStreetMap ©CARTO

Table 4   The descriptive
statistics of trips’ mean and max
speed, length, and sampling
frequency of the whole dataset

Mean speed (Kph) Max speed (Kph) Trip length (m) Sampling
frequency
(S)

Mean 69.03 142.84 96,773.07 45.7
Std 34.53 63.81 124,566.1 57.6
Min 0.03 0.07 0.42 0.5
25% 39.22 92.03 10,572.04 6.9
50% 71.35 146.49 39,752.61 17.7
75% 97.2 197.04 144,949.5 57.9
max 199.99 250 2,216,875 985.2

6  https://​github.​com/​gis-​ops/​docker-​valha​lla.

https://github.com/gis-ops/docker-valhalla

SN Computer Science (2022) 3: 415	 Page 7 of 13  415

SN Computer Science

tiles data are available on geofabrik,7 which is an official
member of OpenStreetMap. After integrating the geofabrik
link8 in the YAML file, Germany’s tiles could be extracted
directly from a PBF file while building Valhalla. An example
of a YAML configuration file is shown in appendix.

Depending on the hardware, it can take several hours
to build Valhalla completely with the Germany’s tiles. In
our case, it took more than 4 h on a t2.2xlarge AWS EC2
instance with 32 GB RAM and 8 CPU cores. We store this
server as an Amazon Machine Image (AMI) to make it reus-
able. Therefore, each time we need a map-matching server,
we can simply start an EC2 instance with this AMI. We can

even run multiple map-matching servers in parallel by start-
ing several servers using this AMI.

Map‑Matching Process

The first challenge with our dataset is assembling the jour-
neys’ trajectories, since the waypoints are stored in many dif-
ferent files without any logical order. There are several dif-
ferent tools for big data analytics. Since our data are spatial
and we need to perform spatial operations on the data, we
chose the PostGIS9 spatial database. PostGIS is an extension

Fig. 5   Preprocessing step: only
the waypoints in Germany are
kept

7  https://​www.​geofa​brik.​de/.
8  http://​downl​oad.​geofa​brik.​de/​europe/​germa​ny-​latest.​osm.​pbf. 9  https://​postg​is.​net/.

Fig. 6   Map-matching data
pipeline

https://www.geofabrik.de/
http://download.geofabrik.de/europe/germany-latest.osm.pbf
https://postgis.net/

	 SN Computer Science (2022) 3: 415415  Page 8 of 13

SN Computer Science

to PostgreSQL, which adds support for geographic objects
and allows to run spatial operations using SQL.

The first step is to import all the GZIP waypoint files
from the S3 storage into a PostGIS server. Any required
preprocessing step can be done on this server. For example,
we drop all the GPS points outside Germany, since they
are not of our interest for map-matching purposes. Figure 5
shows the same sample visualized in Fig. 4 after this pre-
processing step.

The next step is assembling the trajectories. We group the
points by their TripID, order the points by their timestamp
and store them in a LineString geometry type. Afterward,
they are ready to be sent to the map-matching server. Fig-
ure 6 shows the data flow in our map-matching architec-
ture. For each trip, a request is generated and sent to the
map-matching server or, more precisely, to Meili using
the Library API. Meili is a namespace within Valhalla that
includes the map-matching code and is responsible for map-
matching functionality.

We can control the performance and accuracy of Meili by
adjusting the map-matching hyperparameters. Some of the
parameters are listed in Table 5.10 sigma_z is the standard
deviation of the GPS measurement error and represents the
GPS noise. It directly affects the emission probabilities. beta
weighs the transition costs and affects the transition prob-
ability of two successive points. search_radius could affect
the number of initial candidates that the HMM considers.
The default values for these parameters in Valhalla are set
regarding the recommendations from Newson and Krumm
[34]. For instance, if the GPS data exhibit a lot of noise,
we can increase the search_radius, beta, and sigma_z. This
could increase the runtime as it considers more measure-
ments and transition possibilities, but it could lead to better
results depending on the data. There are also further param-
eters to set up the map-matching environment. For example,
“transport mode” can be chosen between “auto”, “bicycle”,
“pedestrian”, and “multimodal”.

Integrating the timestamps of the coordinates in the API
request is optional. Timestamps affect the calculated transi-
tion probabilities. The algorithm favors the transitions with
durations (calculated by the shortest-path algorithm) being

similar to the actual duration. This can enhance the map-
matching performance.

Meili processes the request, performs the map-matching
based on OSM tiles, and creates a response in JSON format.
While parsing the response, we can split the result into three
parts: matched points, trajectory, and narrative. Matched
points are the corresponding locations of the recorded
points on the road network. Trajectory is a sequence of cor-
responding road segments in a polyline format (convertible
to LineString). It can be used to calculate the trip distance
or to visualize the trip on the map. Narrative contains the
maneuver points and their details (e.g., type of turn or verbal
instruction by a navigation app) based on the actual path.

The parsed and processed responses are then directed to
another PostGIS database responsible for holding the results.
When the map-matching is finished for all the GPS points,
we can export the results from the PostGIS database to the
S3 storage or to send them to the machine learning data
pipeline to do further analysis.

Results and Evaluation

We tested our map-matching environment with a sample of
1,216,476 trajectories. A description of the sample dataset
can be seen in Table 6.

In our Valhalla’s map-matching environment, the “trans-
port mode” is set to “auto”. All other parameters are set
to default. The first attempt succeeds in map-matching
78.24% of the journeys (n = 951,804). After exploring the

Table 5   Examples of map-matching hyperparameters

Parameter Description Default

Sigma_z To specify the GPS accuracy 4.07
Beta To weigh the transition cost 3
Search_radius search radius for road candidates 50 m

Table 6   The descriptive statistics of trips’ mean and max speed,
length, and sampling frequency of the sample used

Points count Trip length (KM) Sampling
frequency
(S)

Mean 302.22 98.999 46.8
Std 545.47 122.181 55.8
Min 2 0 0.5
25% 25 11.27 8.3
50% 95 41.79 22.1
75% 311 151.91 61
Max 10,578 1365.38 985.2

Table 7   Range of hyperparameters chosen for the experiment

Parameter Min Max Steps Scale

Sigma_z 0.5 12 8 Linear
Beta 0.5 12 8 Linear
Search_radius 20 100 9 Linear

10  A complete list of parameters can be found at:
  https://​valha​lla.​readt​hedocs.​io/​en/​latest/​meili/​confi​gurat​ion/.

https://valhalla.readthedocs.io/en/latest/meili/configuration/

SN Computer Science (2022) 3: 415	 Page 9 of 13  415

SN Computer Science

unsuccessful cases, we could establish two systematic fail-
ures associated with two clusters of journeys: (1) journeys
longer than 200 km and (2) journeys with too few GPS
measurements. The reason why the journeys longer than
200 km could not be map-matched is unknown; however,
a possible limitation might be implemented in Valhalla
without being documented. After discovering this issue, the
journeys with a trip length of more than 200 km are split
into several parts, so that each part is less than 200 km. The
map-matching process is conducted again, and the new suc-
cess rate is 95.20% (n = 1,158,144).

To discover if any better success rate could be achieved,
a grid search is done on a random sample of 5000 journeys.
The selected hyperparameters, resulting in 556 (= 8*8*9)
combinations, for the grid search are listed in Table 7.

The grid search results demonstrate that the success rate
of map-matching is constant at 95.26% for all the hyper-
parameter combinations. This means a better result on this
sample could not be achieved with the selected finite subset

from the hyperparameters’ domain space. This could be due
to the low number of GPS measurements and high noise in
the “unsuccessful” journeys. However, we cannot make any
claim about the success rate of the map-matching of our
sample for the combinations of hyperparameters that fall out
of the selected grid search.

The raw data before map-matching is visualized in Fig. 7,
and the trajectories after map-matching are visualized in
Fig. 8. It can be seen that before map-matching, the trajec-
tories can deviate from roads, i.e., they are associated with
errors. After map-matching, they perfectly lie on the road
network.

We calculate the trip’s distance before and after map-
matching to get an overview of the changes. A sample of
20,000 trips is chosen containing trips with a distance of
more than 1000 m and a continuous LineString from the ori-
gin to the destination after map-matching. The trip distance
is defined as the sum of the great-circle distances between
the location points. The absolute and relative difference in

Fig. 7   Trajectories before map-
matching

Fig. 8   Trajectories after map-
matching

	 SN Computer Science (2022) 3: 415415  Page 10 of 13

SN Computer Science

trip distance after map-matching in comparison to the origi-
nal trip distance can be seen in Fig. 9. The trip distance after
map-matching is on average 1.4% longer than the original
trip distance calculated from raw data. One reason for this
increase is the fact that curves are mapped more realistic
after map-matching (see Fig. 1).

To provide an overview of map-matching runtime, the
duration of map-matching of every journey is measured.
Table 8 shows the average map-matching runtime for dif-
ferent groups of journeys based on the number of GPS
measurements and trip length. We can see that the average
runtime increases by increasing the points count and trip
length. This is intuitive as the number of computational tasks
increases.

Map-matching runtime depends on the hardware. For
example, in this case, the map-matching server is set up on
an r5a.2xlarge EC2 instance. This instance has 64 GB RAM
and 8 vCPUs and costs $0.548 per hour on-demand on a
Linux machine at the time this paper is written. This indi-
cates a relatively low cost for this map-matching approach.

Conclusion

In recent years, there has been a drastic increase in using
GPS data in mobility research and smart-mobility applica-
tions. Moreover, much research has been done on dealing

with inaccuracy in the GPS movement data. Against this
background, map-matching has been recognized to be an
essential preprocessing step for minimizing errors.

Using map-matching, we can find the road segments
matched to the recorded points of a GPS trajectory, allowing
further analysis based on road segments. There are several
map service providers that offer map-matching. However,
their APIs are usually restricted (e.g., number of locations
per request) and costly, which make them not suitable for
map-matching historical big GPS data. An alternative to
these services is building a map-matching server using open-
source routing engines such as Valhalla.

We built a cloud-based map-matching framework on
AWS. Within this framework, PostGIS is used to perform
spatial operations and to assemble trajectories, and Valhalla
runs on the map-matching server. We tested Valhalla with a
sample of about 1.2 million GPS trajectories and 95.20% of
the journeys were successfully map-matched. Other journeys
(the remaining 4.80%) contained too few GPS measurements
to yield a reliable map-matching result. This proves that Val-
halla can be considered a powerful tool for map-matching
big GPS datasets regarding cost, runtime, and performance.
A visualization of map-matched trips shows that their tra-
jectories perfectly lie on the road network. The trajectory
distance calculated after map-matching is on average 1.4%
longer than the distance calculated using raw data before
map-matching. Assuming that map-matching reveals the

Fig. 9   Absolute (left) and relative difference (right) of trip distance after map-matching

Table 8   Average runtime of
map-matching for each trip
separated by different length-
points count groups

a For every trip with a TL > 200, the sum of the runtimes of its parts is considered

Trip length [TL] (in kilometers)

TL < 50 50 ≤ TL ≤ 200 TL > 200a

Points count [PC]
 PC < 50 0.0353 s (n = 363,005) 0.0446 s (n = 41,088) 0.0599 s (n = 1237)
 50 ≤ PC ≤ 100 0.0468 s (n = 108,004) 0.0576 s (n = 41,644) 0.0769 s (n = 15,331)
 PC > 100 0.0562 s (n = 226,881) 0.0828 s (n = 171,199) 0.1493 s (n = 189,755)

SN Computer Science (2022) 3: 415	 Page 11 of 13  415

SN Computer Science

actual driven route, it leads to a significant error reduction
while calculating trajectory distance. This could improve the
accuracy of further analyses that use trip distance.

Map-matching using the suggested framework by Valhalla
is fast enough for most applications, since it is supposed to
be used for offline and not for real-time map-matching. How-
ever, it can still take significant time. Alternatives, such as
OSRM, are relatively faster and could replace Valhalla when
the overall runtime is an essential aspect. With the paralleli-
zation of Valhalla servers, the overall map-matching runtime
could be reduced linearly (which could be associated with
more infrastructure and cost). Overall, the proposed map-
matching framework is efficient and scalable and can be used
to conduct map-matching for terabytes of geospatial data.

Some of the limitations of our work are as follows:
(1) We cannot make any claim about the accuracy of the
results, since the true positions of raw GPS measurements
are unknown. A possible approach to evaluate the accuracy
of the results would be testing the framework with artificial
GPS points and a deviation metric. (2) Because of the com-
putation limits, only a small subset of hyperparameters are
chosen for the grid search. The performance of the algorithm
outside of this space is not studied.

Future work should use other open-source alternatives,
such as OSRM. It should demonstrate how OSRM could be
built and used for map-matching. Using the same dataset, its
performance should be evaluated and a comparison between
the open-source routing engines, i.e., OSRM and Valhalla,
could help to decide which service to use depending on the
application. In addition, using an artificial GPS dataset,
the accuracy of both frameworks should be measured and
compared.

Appendix

To build the Valhalla Docker with Germany’s tiles, the
docker-compose.yml file can be configured as follows:

services:
valhalla:
image: gisops/valhalla:latest
ports:
- "8002:8002"
volumes:
-./custom_files/:/custom_files
environment:
- tile_urls = http://​downl​oad.​geofa​brik.​de/​europe/​germa​ny-​latest.​osm.​

pbf
- min_x = 5.8 # Germany’s minimum longitude
- max_x = 15.1 # Germany’s maximum longitude
- min_y = 47.2 # Germany’s minimum latitude

- max_y = 55.2 # Germany’s maximum latitude
- use_tiles_ignore_pbf = True
- build_time_zones = True
- build_elevation = True
- build_admins = True
- force_rebuild_elevation = False
- force_rebuild = False

Using this configuration, the local PBF files, located in
custom_files folder, are prioritized. To get the Germany’s
tiles using the specified link, this folder must be empty. After
configuring the YAML file, Valhalla can be built by:
docker-compose up --build

Once the installation is finished, Valhalla should be run-
ning on https://​en.​wikip​edia.​org/​wiki/​Local​host .

Funding  Open Access funding enabled and organized by Projekt
DEAL. This work is funded by the state of Hesse and HOLM fund-
ing under the “Innovations in Logistics and Mobility” measure of the
Hessian Ministry of Economics, Energy, Transport and Housing [HA
Project No.: 1017/21-19].

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Aljazzar H, Leue S. K⁎: a heuristic search algorithm for finding
the k shortest paths. Artif Intell. 2011;175(18):2129–54. https://​
doi.​org/​10.​1016/j.​artint.​2011.​07.​003.

	 2.	 Beke L, Weiszer M, Chen J. A comparison of genetic representa-
tions and initialisation methods for the multi-objective shortest
path problem on multigraphs. SN Comput Sci. 2021. https://​doi.​
org/​10.​1007/​s42979-​021-​00512-z.

	 3.	 Bernstein D, Kornhauser A, New Jersey Institute of Technology.
An Introduction to Map Matching for Personal Navigation Assis-
tants: New Jersey TIDE Center. 1966. https://​rosap.​ntl.​bts.​gov/​
view/​dot/​38257.

	 4.	 Chao P. A Study on map-matching and map inference problems.
Queensland: University of Queensland Library; 2020.

http://download.geofabrik.de/europe/germany-latest.osm.pbf
http://download.geofabrik.de/europe/germany-latest.osm.pbf
https://en.wikipedia.org/wiki/Localhost
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.artint.2011.07.003
https://doi.org/10.1016/j.artint.2011.07.003
https://doi.org/10.1007/s42979-021-00512-z
https://doi.org/10.1007/s42979-021-00512-z
https://rosap.ntl.bts.gov/view/dot/38257
https://rosap.ntl.bts.gov/view/dot/38257

	 SN Computer Science (2022) 3: 415415  Page 12 of 13

SN Computer Science

	 5.	 Chao P, Hua W, Mao R, Xu J, Zhou X. A survey and quantitative
study on map inference algorithms from GPS Trajectories. IEEE
Trans Knowl Data Eng. 2020. https://​doi.​org/​10.​1109/​TKDE.​
2020.​29770​34.

	 6.	 Chao P, Ye Xu, Hua W, Zhou X. A survey on map-matching algo-
rithms. In: Renata B-G, Jianzhong Q, Weiqing W, editors. Data-
bases theory and applications. Cham: Springer International Pub-
lishing; 2020. p. 121–33 (Lecture Notes in Computer Science).

	 7.	 Chen X, Fei Q, Li W. A new shortest path algorithm based on heu-
ristic strategy. World Congr Intell Control Autom. 2006;1:2531–6.
https://​doi.​org/​10.​1109/​wcica.​2006.​17128​18.

	 8.	 Cherkassky BV, Goldberg AV, Radzik T. Shortest paths algo-
rithms: theory and experimental evaluation. Math Program.
1996;73(2):129–74. https://​doi.​org/​10.​1007/​BF025​92101.

	 9.	 Di Caprio D, Ebrahimnejad A, Alrezaamiri H, Santos-Arteaga FJ.
A novel ant colony algorithm for solving shortest path problems
with fuzzy arc weights. Alex Eng J. 2022;61(5):3403–15. https://​
doi.​org/​10.​1016/j.​aej.​2021.​08.​058.

	10.	 Dijkstra, EW. A note on two problems in connexion with graphs.
In Edsger Wybe Dijkstra: His Life, Work, and Legacy, 2022. pp.
287-290.

	11.	 Forney G, David JR (2005): The viterbi algorithm: a personal
history. 2022. https://​arxiv.​org/​pdf/​cs/​05040​20.

	12.	 Fu X, Zhang J, Zhang Y. An online map matching algorithm
based on second-order hidden Markov model. J Adv Transp. 2021.
https://​doi.​org/​10.​1155/​2021/​99938​60.

	13.	 Goldberg AV, Silverstein C. Implementations of Dijkstra’s algo-
rithm based on multi-level buckets. In: Donald WH, William
WH, Panos MP, editors. Network optimization. 450th ed. Berlin:
Springer; 1997. p. 292–327 (Lecture Notes in Economics and
Mathematical Systems).

	14.	 Google Maps Platform. Pricing plans and API costs-google
maps platform. 2022. https://​mapsp​latfo​rm.​google.​com/​prici​ng/.
Accessed 02 July 2022.

	15.	 GraphHopper. Pricing-GraphHopper Directions API. 2022.
https://​www.​graph​hopper.​com/​prici​ng/. Accessed 02 July 2022.

	16.	 Hart P, Nilsson N, Raphael B. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans Syst Sci Cyber.
1968;4(2):100–7. https://​doi.​org/​10.​1109/​TSSC.​1968.​300136.

	17.	 Hasan BS, Khamees MA, Mahmoud ASH. A heuristic genetic
algorithm for the single source shortest path problem. IEEE/ACS
Int Conf. 2007. https://​doi.​org/​10.​1109/​aiccsa.​2007.​370882.

	18.	 Hashemi M, Karimi HA. A critical review of real-time map-
matching algorithms: current issues and future directions. Comput
Environ Urban Syst. 2014;48:153–65. https://​doi.​org/​10.​1016/j.​
compe​nvurb​sys.​2014.​07.​009.

	19.	 Hendawi A, Shen J, Sabbineni SS, Song Y, Cao P, Zhang Z, et al.
Noise patterns in GPS trajectories. IEEE Int Conf Mob Data
Manag (MDM). 2020. https://​doi.​org/​10.​1109/​mdm48​529.​2020.​
00040.

	20.	 Hunter M, Saldivar-Carranza E, Desai J, Mathew JK, Li H, Bull-
ock DM. A proactive approach to evaluating intersection safety
using hard-braking data. J Big Data Anal Transp. 2021;3(2):81–
94. https://​doi.​org/​10.​1007/​s42421-​021-​00039-y.

	21.	 Karve V, Yager D, Abolhelm M, Work DB, Sowers RB. Sea-
sonal disorder in urban traffic patterns: a low rank analysis. J Big
Data Anal Transp. 2021;3(1):43–60. https://​doi.​org/​10.​1007/​
s42421-​021-​00033-4.

	22.	 Khani A, Boyles SD. An exact algorithm for the mean–standard
deviation shortest path problem. Transp Res Part B. 2015;81:252–
66. https://​doi.​org/​10.​1016/j.​trb.​2015.​04.​002.

	23.	 Kim J-S. Node based map matching algorithm for car navigation
system. In: International Symposium on Automotive Technology
and Automation (29th : 1996 : Florence, Italy). Global deployment
of advanced transportation telematics/ITS, 1996.

	24.	 Koller H, Widhalm P, Dragaschnig M, Graser A. Fast hidden
markov model map-matching for sparse and noisy trajectories.
In: 2015 IEEE 18th International Conference on Intelligent Trans-
portation Systems. 2015 IEEE 18th International Conference on
Intelligent Transportation Systems - (ITSC 2015). Gran Canaria,
Spain, IEEE, 2015, pp. 2557–61.

	25.	 Krakiwsky EJ, Harris CB, Wong RVC. A Kalman filter for inte-
grating dead reckoning, map matching and GPS positioning. In:
IEEE PLANS '88.,Position Location and Navigation Sympo-
sium, Record. 'Navigation into the 21st Century'. IEEE PLANS
'88.,Position Location and Navigation Symposium, Record. 'Navi-
gation into the 21st Century'. Orlando, FL, USA, IEEE, 1988,
pp. 39–46.

	26.	 Kreiser K. OSRM vs Valhalla. 2018. https://​github.​com/​valha​lla/​
valha​lla/​issues/​1514#​issue​comme​nt-​41916​0356. Accessed 02 July
2022.

	27.	 Kubicka M, Cela A, Mounier H, Niculescu S-I. Comparative study
and application-oriented classification of vehicular map-matching
methods. IEEE Intell Transport Syst Mag. 2018;10(2):150–66.
https://​doi.​org/​10.​1109/​MITS.​2018.​28066​30.

	28.	 Luo A, Chen S, Xv B. Enhanced map-matching algorithm with
a hidden markov model for mobile phone positioning. IJGI.
2017;6(11):327. https://​doi.​org/​10.​3390/​ijgi6​110327.

	29.	 Luo L, Hou X, Cai W, Guo B. Incremental route inference from
low-sampling GPS data: an opportunistic approach to online map
matching. Inf Sci. 2020;512:1407–23. https://​doi.​org/​10.​1016/j.​
ins.​2019.​10.​060.

	30.	 Lyu C, Wu X, Liu Y, Liu Z. A partial-Fréchet-Distance-Based
Framework For Bus Route Identification. IEEE Trans Intell Trans-
port Syst. 2021. https://​doi.​org/​10.​1109/​TITS.​2021.​30696​30.

	31.	 Magzhan K, Hajar MJ. A review and evaluations of shortest path
algorithms. In: International Journal of Scientific and Technology
Research, 2013, pp. 99–104.

	32.	 Mapbox. Mapbox pricing. 2022. https://​www.​mapbox.​com/​prici​
ng/#​match​ing. Accessed 2 July 2022.

	33.	 Mapzen. Mapzen map matching. 2022. https://​www.​mapzen.​com/​
produ​cts/​mobil​ity/​map-​match​ing/. Accessed 2 July 2022.

	34.	 Newson P, Krumm J. Hidden Markov map matching through noise
and sparseness. In: Wolfson O, Agrawal D, Chang-Tien L, edi-
tors. Proceedings of the 17th ACM SIGSPATIAL international
conference on advances in geographic information systems - GIS
’09. The 17th ACM SIGSPATIAL international conference. New
York: ACM Press; 2009. p. 336.

	35.	 Plaudis M, Azam M, Jacoby D, Drouin M-A, Coady Y. An Algo-
rithmic Approach to Quantifying GPS Trajectory Error. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 3909–16.

	36.	 Quddus MA, Ochieng WY, Noland RB. Current map-matching
algorithms for transport applications: state-of-the art and future
research directions. Transp Res Part C. 2007;15(5):312–28.
https://​doi.​org/​10.​1016/j.​trc.​2007.​05.​002.

	37.	 Quddus MA, Ochieng WY, Zhao L, Noland RB. A general
map matching algorithm for transport telematics applica-
tions. GPS Solut. 2003;7(3):157–67. https://​doi.​org/​10.​1007/​
s10291-​003-​0069-z.

	38.	 Rehrl K, Gröchenig S, Wimmer M. Optimization and evaluation
of a high-performance open-source map-matching implementa-
tion. In: Mansourian A, Pilesjö P, Harrie L, van Lammeren R, edi-
tors. Geospatial technologies for all. Cham: Springer International
Publishing; 2018, p. 251–70 (Lecture Notes in Geoinformation
and Cartography).

	39.	 Scott CA, Drane CR. Increased accuracy of motor vehicle posi-
tion estimation by utilising map data: vehicle dynamics, and other
information sources. In : Proceedings of VNIS'94 - 1994 Vehicle
Navigation and Information Systems Conference. VNIS'94 - 1994

https://doi.org/10.1109/TKDE.2020.2977034
https://doi.org/10.1109/TKDE.2020.2977034
https://doi.org/10.1109/wcica.2006.1712818
https://doi.org/10.1007/BF02592101
https://doi.org/10.1016/j.aej.2021.08.058
https://doi.org/10.1016/j.aej.2021.08.058
https://arxiv.org/pdf/cs/0504020
https://doi.org/10.1155/2021/9993860
https://mapsplatform.google.com/pricing/
https://www.graphhopper.com/pricing/
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/aiccsa.2007.370882
https://doi.org/10.1016/j.compenvurbsys.2014.07.009
https://doi.org/10.1016/j.compenvurbsys.2014.07.009
https://doi.org/10.1109/mdm48529.2020.00040
https://doi.org/10.1109/mdm48529.2020.00040
https://doi.org/10.1007/s42421-021-00039-y
https://doi.org/10.1007/s42421-021-00033-4
https://doi.org/10.1007/s42421-021-00033-4
https://doi.org/10.1016/j.trb.2015.04.002
https://github.com/valhalla/valhalla/issues/1514#issuecomment-419160356
https://github.com/valhalla/valhalla/issues/1514#issuecomment-419160356
https://doi.org/10.1109/MITS.2018.2806630
https://doi.org/10.3390/ijgi6110327
https://doi.org/10.1016/j.ins.2019.10.060
https://doi.org/10.1016/j.ins.2019.10.060
https://doi.org/10.1109/TITS.2021.3069630
https://www.mapbox.com/pricing/#matching
https://www.mapbox.com/pricing/#matching
https://www.mapzen.com/products/mobility/map-matching/
https://www.mapzen.com/products/mobility/map-matching/
https://doi.org/10.1016/j.trc.2007.05.002
https://doi.org/10.1007/s10291-003-0069-z
https://doi.org/10.1007/s10291-003-0069-z

SN Computer Science (2022) 3: 415	 Page 13 of 13  415

SN Computer Science

Vehicle Navigation and Information Systems Conference. Yoko-
hama, Japan, , IEEE, 1994, pp. 585–90.

	40.	 Szwed P, Pekala K. An incremental map-matching algorithm
based on hidden Markov model. In: Rutkowski L, Korythowski
M, Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM, editors.
Artificial intelligence and soft computing. 13th International
Conference, ICAISC 2014, Zakopane, Poland, June 1-5, 2014,
proceedings. 8468th ed. Berlin: Springer; 2014. p. 579–90 (LNCS
sublibrary. SL 7, Artificial intelligence, 8468).

	41.	 Takashi JO, Miki H, Hideo K. a map matching method with the
innovation of the Kalman filtering. IEICE Trans Fundam Electr
Commun Comput Sci. 1996;E79-A(11):1853–5.

	42.	 Taylor G, Blewitt G, Steup D, Corbett S, Car A. Road reduction
filtering for GPS-GIS navigation. Trans GIS. 2001;5(3):193–207.
https://​doi.​org/​10.​1111/​1467-​9671.​00077.

	43.	 Vander Laan Z, Franz M, Marković N. scalable framework for
enhancing raw GPS trajectory data: application to trip ana-
lytics for transportation planning. J Big Data Anal Transp.
2021;3(2):119–39. https://​doi.​org/​10.​1007/​s42421-​021-​00040-5.

	44.	 Wei H, Wang Y, Forman G, Zhu Y. Map matching by Fréchet
distance and global weight optimization. Technical Paper, Depar-
tement of Computer Science and Engineering, 2013, p.19.

	45.	 White CE, Bernstein D, Kornhauser AL. Some map matching
algorithms for personal navigation assistants. Transp Res Part C.

2000;8(1–6):91–108. https://​doi.​org/​10.​1016/​S0968-​090X(00)​
00026-7.

	46.	 Yang C, Gidófalvi G. Fast map matching, an algorithm integrat-
ing hidden Markov model with precomputation. Int J Geogr Inf
Sci. 2018;32(3):547–70. https://​doi.​org/​10.​1080/​13658​816.​2017.​
14005​48.

	47.	 Yang D, Cai B, Yuan Y. An improved map-matching algorithm
used in vehicle navigation system. In : Proceedings of the 2003
IEEE International Conference on Intelligent Transportation Sys-
tems. 2003 IEEE International Conference on Intelligent Trans-
portation Systems. Shanghai, China, 12–15, IEEE, 2003, pp.
1246–50.

	48.	 Yazdizadeh A, Patterson Z, Farooq B. Semi-supervised GANs to
infer travel modes in GPS trajectories. J Big Data Anal Transp.
2021;3(3):201–11. https://​doi.​org/​10.​1007/​s42421-​021-​00047-y.

	49.	 Zeng W, Church RL. Finding shortest paths on real road networks:
the case for A*. Int J Geogr Inf Sci. 2009;23(4):531–43. https://​
doi.​org/​10.​1080/​13658​81080​19498​50.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1111/1467-9671.00077
https://doi.org/10.1007/s42421-021-00040-5
https://doi.org/10.1016/S0968-090X(00)00026-7
https://doi.org/10.1016/S0968-090X(00)00026-7
https://doi.org/10.1080/13658816.2017.1400548
https://doi.org/10.1080/13658816.2017.1400548
https://doi.org/10.1007/s42421-021-00047-y
https://doi.org/10.1080/13658810801949850
https://doi.org/10.1080/13658810801949850

	A Practical Guide to an Open-Source Map-Matching Approach for Big GPS Data
	Abstract
	Introduction
	Brief Overview of Available Approaches
	Map-Matching Based on the HMM Algorithm
	Available Map-Matching Services
	GPS Data Used
	Building a Valhalla Routing Server
	Map-Matching Process
	Results and Evaluation
	Conclusion
	References

