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Abstract
Adversarial attack techniques have taken a firm stand against the capabilities of deep neural networks, rendering them less 
efficient in performing their functions. Various kind of attacks have been studied and appropriate defense mechanisms have 
been proposed in the Computer Vision and Image Processing domains. The progress in Intrusion Detection System (IDS) 
domain is relatively less although it is gaining momentum lately. One of the concerns in the IDS domain is that most of the 
research work has been carried out using old datasets. There is a need to study the properties of newer benchmark datasets 
and analyze their characteristics under adversarial settings. Contemporary datasets include modern network behaviors and 
attack scenarios, which help IDSs perform well in modern networks. The more realistic a dataset is, the more efficient it can 
make an IDS model in a real environment. This paper addresses the said concern by conducting a study on recent datasets in 
the light of adversarial perturbations. We analyze how various adversarial attack algorithms, under white box settings, impact 
contemporary IDS datasets, namely, UNSW-NB15, Bot-IoT, and CSE-CIC-IDS2018. This paper summarizes the study and 
discusses how various classification algorithms perform when an IDS model is trained with each of the chosen datasets. The 
results included in the paper indicate that the adversarial examples are successful in decreasing the detection capabilities 
of the IDS models covered in the study. We provide a conclusion based on the evaluation results and share thoughts on the 
direction in which we are headed for future work.

Keywords Intrusion detection systems · Intrusion detection datasets · Adversarial machine learning · Deep learning · Deep 
neural networks

Introduction

The Intrusion Detection Systems (IDSs), introduced in the 
year 1980 [1], became one of the most essential defenses in 
network security and cybersecurity. They were designed to 
proactively monitor the traffic and raise alerts when some-
thing malign or intrusive is detected [2]. The IDS technology 
evolved in many stages since it was introduced [3]. How-
ever, despite several developments made, the detection rates 

were not improving as expected, and there has not been a 
significant decrease in the number of false alarms. To over-
come such performance issues and widen the capabilities 
of the IDSs, research began in the late 1990s to incorporate 
Machine Learning (ML) techniques in IDS development 
[4]. With the power of ML, IDSs gain the ability to detect 
unknown attacks. Attack behaviors change rapidly with time, 
and an IDS should be able to correctly recognize the malign 
activities in a network. When traditional IDSs encounter new 
or sophisticated signatures, they may take relatively longer 
time to analyze the packets and respond [5].

As early as in 2004, a study by N. Dalvi et al. [6] revealed 
a concerning vulnerability that machine learning algorithms 
possess against adversarial inputs. Later, it was shown that 
such a vulnerability profoundly exists in deep learning and 
neural networks when presented with adversarial pertur-
bations [7–13]. Various adversarial attack scenarios were 
developed, and their impacts on classifiers were analyzed. 
Mechanisms have also been proposed to defend the models 
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from adversarial perturbations and minimize their impacts 
[14]. However, much of this progress was made in the 
image-based areas, like computer vision, image processing, 
etcetera. A relatively lesser progress has been made in the 
IDS domain [15]. One of the major concerns about training 
IDSs is datasets. The performance of an IDS hugely depends 
on the quality of the data it learns from.

The availability of good quality IDS datasets is a chal-
lenge. A major portion of research work in this domain is 
being conducted and/or evaluated using old datasets [16]. 
Unlike in image domain, the data in IDS domain quickly 
becomes outdated, as data patterns rapidly change in net-
works and attack behaviors turn sophisticated. A dataset 
should reflect the contemporary network behaviors and cover 
sufficient attack scenarios so that an IDS model learns a 
wide variety of traffic characteristics. On the bright side, 
there are some datasets that are relatively newer and can 
serve better than older benchmark datasets like NSL-KDD, 
DARPA, etcetera [12]. It is important to study the character-
istics of modern datasets and analyze how they are affected 
by adversarial algorithms, so that the analysis makes it easier 
for the research community to choose which dataset might 
fit better into a project’s requirements.

The objective behind choosing recently published IDS 
datasets for this study is to understand how an IDS model, 
trained with such a dataset, behaves in adversarial environ-
ments. An IDS deployed in a modern network needs to have 
sufficient knowledge of modern traffic behaviors to prop-
erly analyze and correctly identify undesired data patterns 
in its network. To achieve this, the IDS needs to learn from a 
dataset that covers a fair amount of traffic scenarios that are 
common to occur in a typical real-time network.

The novelty of this work lies in the combination of ele-
ments such as the contemporary IDS datasets, the adver-
sarial white-box attack algorithms, and more significantly, 
the domain in which we want to evaluate the impacts of 
adversarial machine learning. The motive behind choosing 
the CSE-CIC-IDS2018 dataset is its characteristics, as high-
lighted in “CSE-CIC-IDS2018 Dataset”, which are close to a 
real-world environment. Network data that is far from reality 
might make a model behave as expected in an experimen-
tal/research setup, but cannot guarantee the model’s perfor-
mance in a real-time network. The lesser the gap is between 
a research IDS dataset and the traffic observed in a real-time 
network, the greater the chance is for an experimental model 
to be capable of doing well in a real-world environment.

This work contributes to evaluate the impacts of adver-
sarial algorithms on contemporary datasets that represent 
modern traffic behaviors and attack scenarios. The datasets 
covered in this study are UNSW-NB15, published in 2015; 
Bot-IoT, published in 2018; and CSE-CIC-IDS2018, pub-
lished in 2018. The adversarial attack algorithms studied are 
Jacobian-based Saliency Map Attack (JSMA), Fast Gradient 

Sign Method (FGSM), and Carlini Wagner (CW). Metrics 
such as Accuracy, Area Under the Curve (AUC), F1 Score, 
and Recall were used to evaluate the results and analyze the 
impact of the adversarial algorithms.

The remaining portion of this paper is organized as fol-
lows: “Background” presents an overview of adversarial 
machine learning, the adversarial methods used in this study, 
and briefly summarizes the datasets studied. “Related Work” 
presents related work on adversarial sample generation and 
adversarial machine learning.“Experimental Evaluation” 
discusses the experimental evaluation process implemented 
for the study. “Experimentation Results” presents the evalu-
ation results. “Analysis and Discussion” provides an analysis 
of the adversarial attacks on the datasets. “Conclusions and 
Future Work” concludes the paper and presents our thoughts 
for future work.

Background

Adversarial Machine Learning: A Bird‑eye View

Adversarial Machine Learning (AML) is the process of 
deceiving an ML model by providing a perturbed input that 
makes the model render incorrect prediction. The perturbed 
input is imperceptible to humans but makes a considerable 
difference to a neural network. Neural networks are vulner-
able to adversarial attacks during training as well as test-
ing/validation phases. Variations in attack techniques can 
be introduced based on factors like phase (training, test-
ing, etc.), the knowledge of the model that the attacker has, 
the target of the attack, influence of the attacker, etc. The 
attacks carried out in the training phase are termed as Poi-
soning attacks and those launched during the testing phase 
are called Evasion attacks. Barreno et al. [17] highlights 
three properties of an attack - influence, focus of violation 
(confidentiality, integrity, availability), and specificity of 
the target. For example, based on some of the factors stated 
above, an evasion attack can be classified as either a white-
box attack, where the attacker has complete knowledge of 
the model (including details like training dataset, param-
eters, etcetera), or a black-box attack, where the attacker has 
almost no knowledge of the model, or a gray-box attack, 
where the attacker has partial knowledge of the same.

Methods used for Generation of Adversarial 
Samples

The adversarial algorithms chosen for this study are all 
white-box evasion attacks. Although black-box and gray-
box attacks are more common in practice (i.e., in real-time 
environments), most of these techniques aim at collecting 
information about their target models in a variety of ways, 
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implying that they gradually progress towards becoming 
white-box attacks, which tend to be more powerful than the 
other two categories. This thought process motivated us to 
choose white-box attacks for our study. The current section 
briefly explains the algorithms we chose for the experiment.

Jacobian‑based Saliency Map Attack

The Jacobian-based Saliency Map Attack (JSMA), intro-
duced by [11], is one of the attack techniques evaluated in 
this study. It is an evasion attack that works by minimiz-
ing the L0 norm by iteratively generating a saliency map 
which is used to choose a feature that will have a maximum 
error in prediction when added with perturbation [18]. The 
attack aims to perturb least possible number of features to 
cause misclassification. The process consists of obtaining 
the Jacobian matrix where the component i is the input and 
j is a derivative of the class for input i [11]:

In the above equation,F represents the second to last layer 
[19]. For each feature selected, the perturbation is adjusted 
and the iterations are continued until misclassification in the 
target class is achieved or the limit for a maximum number 
of perturbed features is met [11]. If it fails to achieve this, 
the algorithm selects the next feature and repeats the pro-
cess with it [12]. The authors were successful in modifying 
as less as 4.02% of the features per sample and achieved a 
success rate of 97% [19]. It is a white-box attack algorithm, 
therefore, requires a complete knowledge of the architecture 
and parameters of the model targeted [11].

Although the success rates achieved by JSMA and FGSM 
are almost similar, the number of features modified are rela-
tively lesser and the computational costs higher with JSMA, 
than with FGSM [18].

Fast Gradient Sign Method

The FGSM attack was a technique proposed by [9] for adver-
sarial data generation. As per this technique, a perturbation 
can be defined as follows:

In the above equation, � represents the parameters of a 
model, where x is the input, y is/are the corresponding 
target(s), and J(� , x, y) is the cost to train the neural network 
[9]. � represents the magnitude of the attack, and the gradient 
can be obtained by back propagation.

The attack algorithm has a loss function, and works by 
aiming to minimize it [15]. Unlike the JSMA attack, the 
FGSM attack does not aim at generating minimal adversarial 

(1)JF(X) =
�F(x)

�x
=

[
�j(x)

�xi

]

ixj

(2)� = � ∗ sign(∇xJ(�, x, y))

perturbations. However, it tries to speed up the adversarial 
data generation process [8], and this is why it saves compu-
tation time when compared to JSMA.

Carlini Wagner

This attack, proposed by [8], is considered to be one of the 
powerful attacks in defeating neural network models. It is 
often used as a benchmark algorithm to evaluate the vul-
nerability of a model, and also to assess the strength of an 
adversarial data generation technique. An L2 attack norm 
is used to generate adversarial samples, and can be defined 
as follows:

The main goal of the algorithm is to minimize the distortion 
in the L2 metric. The evaluations conducted by the authors 
show that the CW attack fails defensive distillation mecha-
nism, which is another potential reason for its robustness. 
The L2 attack, implemented in this work, is available in 
Cleverharns library [20].

Overview of the Datasets

Data is a fundamental and an essential ingredient to con-
duct research in any field of science. In the modern era, 
the research community has a greater advantage because of 
the publicly available datasets, a good number of which are 
used as benchmark datasets for research and development. 
In an IDS dataset, the records represent the network traffic, 
and each data point is either categorized as normal or as 
malicious, and this categorization is used for the evaluation 
[21]. Generating a realistic dataset is not only tedious, but 
also involves complications to make it publicly available 
because of the sensitive information present in it related to 
the network, its environment, and the users in it [22]. Despite 
the hurdles, fortunately, there have been a considerable num-
ber of datasets recently made available, that cover relatively 
modernized network traffic scenarios [23]. They have been 
generated in a way to overcome the shortcomings of the 
older benchmark datasets like NSL-KDD [24], and make 
data more useful for research activities. There is a need to 
study their characteristics and properties, to understand how 
useful they can be in various forms of research. This study 
uses three recently published datasets, UNSW-NB15, Bot-
IoT, and CSE-CIC-IDS2018.

UNSW‑NB15 Dataset

Developed in the Cyber Range Lab, at UNSW (University 
of New South Wales) Canberra, the UNSW-NB15 is one 

(3)
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of the benchmark datasets that has a hybrid of realistically 
generated normal traffic behaviors and synthetically gen-
erated contemporary attack behaviors. The IXIA Perfect-
Storm tool was used for the generation of the data [16, 25]. 
The tcpdump tool was used to capture 100 GB of traffic 
in the raw form. The dataset covers nine types of attacks, 
and has a total of 49 features including the label attrib-
ute. A total of up to 12 algorithms are developed using 
tools like Argus and Bro-IDS, to generate the features of 
the dataset [26–29]. This dataset is well-balanced when 
compared with the other two datasets used in this study. 
This is because there is relatively much lesser difference 
between the number of benign and malign traffic instances 
in this dataset.

Bot‑IoT Dataset

The Bot-IoT dataset was also developed in the Cyber 
Range Lab of UNSW Canberra, in the year 2018. A realis-
tic network environment was created to generate this data-
set. As it is clear from the name of the dataset, it consists 
of IoT-based traffic, both benign and botnet. The total raw 
data captured is 69.3 GB in size, and has over 72 million 
records. For easier handling of the dataset, the authors also 
published a smaller version of this dataset, extracting 5% 
of its data through specific MySQL queries [23, 30–34]. 
This smaller version, split into training and testing sets, 
with about 3 million records and around 1 GB in size, has 
been used in this study.

CSE‑CIC‑IDS2018 Dataset

The CSE-CIC-IDS2018 dataset hereafter referred to as the 
CIC-IDS2018 dataset, was developed as a collaborative 
project between the Communications Security Establish-
ment (CSE) and the Canadian Institute for Cybersecurity 
(CIC). The dataset covers seven different attack scenarios, 
and was generated in an environment that is close to reality 
because of the massive resources used. The attack-gener-
ating network had up to 50 devices and the victim network 
was divided into 5 departments, with a total of 450 devices 
including servers and other machines. The CICFlowMeter-
V3 was used to generate a bidirectional network traffic, and 
for feature extraction as well [35–37]. The traffic data was 
collected for 10 days, and was saved in 10 different files. 
There are 79 features in 9 of those files, and 83 features in 
the remaining file. This dataset is huge to be handled in full, 
therefore, we have used about 20% of the dataset, making 
sure we have all the classes included, and a balanced amount 
of instances in all of them. A brief summary of the datasets 
is presented in Table 1.

Related Work

This section discusses various works that revolve around 
adversarial machine learning, including works that pro-
pose adversarial attack techniques, layout taxonomies for 
approaches to generate adversarial data put forth mecha-
nisms for defending the adversarial techniques, etcetera.

One of the early studies on adversarial attack techniques 
and defenses was published in 2006, by [17]. The authors 
discussed how the learning algorithm can be corrupted when 
detailed information about the model and its properties is 
provided.

The authors of [38] propose a strategy to make linear 
classifiers more robust against adversarial settings, and in 
particular, investigate two methods, namely, random sub-
spacing and bagging, for the construction of ensemble-clas-
sifier models.

In [39], the authors propose an adaptive adversarial tech-
nique for embedding a backdoor in a model’s training data 
and/or its parameters, and can bypass the currently existing 
mechanisms that detect the presence of backdoors.

The authors of [40] studied the vulnerability of the NSL-
KDD dataset against the FGSM technique. They conducted 
experiments to investigate the presence of attack vector in 
the data samples that can be used to let the adversarial inputs 
bypass the detection mechanism.

In [15], the authors used the NSL-KDD dataset to study 
the impacts of adversarial learning algorithms on deep neu-
ral networks, with a Multi-Layer Perceptron (MLP) model. 
They also examined the uses of feature selection in adver-
sarial sample generation. The attack techniques used in their 
work are FGSM, Deepfool, JSMA, and CW. Their evaluation 
results indicate that it is not so beneficial for an adversary to 
modify a large number of features in the adversarial sample 
generation.

The authors of [41] propose a GAN-based black-box 
adversarial technique and analyze how practical its impacts 
are on a network-based IDS (NIDS). Their results suggest 
that a black-box adversarial attack can also have a consider-
able impact on the performance of a deep neural network 
(DNN). The NSL-KDD dataset was used for their study.

In [12], the author studied the performance of IDS model 
when trained with each of NSL-KDD and KDD-99 datasets 
under two attacks, JSMA and FGSM. The classifiers used 
for the analysis include Random Forest (RF), MLP, Support 

Table 1  Overview of the datasets

Dataset Total attributes Total instances

UNSW-NB15 49 2,540,044
Bot-IoT 46 73,370,443
CSE-CIC-IDS2018 79 (in 9 files), 83 (in 1 file) 16,233,002
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Vector Machine (SVM), and Decision Tree (DT). Although 
the attacks used in this study were proposed for image 
domain-based classifiers, the results in the study showed 
that these attack methods affect IDS models, too.

In [18], the authors evaluated the perfomance of IDS 
models by training them with NSL-KDD and CIC-IDS2017 
datasets separately. The adversarial techiques they used 
were DeepFool, JSMA, FGSM, and CW. The study was 
performed only based on Denial-of-Service (DoS) attack 
instances. The evaluation results show that the overall per-
formance of the model when trained with CIC-IDS2017 
dataset decreased by up to 40%, and by 13% when trained 
with NSL-KDD.

The authors of [42] conducted a survey on the commonly 
used IDS datasets for the AML research in the IDS domain, 
and the attacks implemented. Their study suggests that up 
to 60% of the works use NSL-KDD dataset, upto 30% use 
CTU-13, and upto 10% use CIC-IDS2017 dataset. Addition-
ally, it suggests that more commonly used attack algorithms 
are JSMA, DeepFool, FGSM, and WGAN. Most affected 
classfiers include SVM, DT, Naive Bayes (NB), while RF 
and SVM with Radial Basis Function (RBF) kernel are rela-
tively more robust than others.

Aayush Arora and Shantanu [43] present a review of 
GAN applications in the cybersecurity domain on currently 
stable datasets. In this paper, they review the extensions of 
GAN frameworks relevant to the cybersecurity domain such 
as Deep Convolutional Generative Adversarial Networks 
(DCGANs), Bidirectional Generative Adversarial Networks 
(BiGANs), Cycle-Consistent Adversarial Networks (Cycle-
GANs) and commonly used stable datasets. They also dis-
cuss applications of GAN like Steganography, Password 
Guessing, and Intrusion Detection Systems. Additionally, 
they provide a case study to evaluate the performance of the 
BiGANs for Anomaly Detection.

A survey by Kusha Sadeghi et al. [44] on attacks and 
defenses in adversarial ML provides system-driven taxono-
mies for the following aspects - datasets; the architectures 
of ML models; adversary’s utilities (knowledge, capability, 
and goal); strategies followed by the adversaries; results of 
the defense mechanisms. The authors’ idea behind a system-
oriented classification is that a system model is necessary 
to conduct and repeat experiments launching adversarial 

attacks and to implement their corresponding defenses. In 
the author’s view, a race between the attacks and defenses 
carried out using such a model can help enhancing the 
robustness of the model, and of the ML applications.

Experimental Evaluation

The study summarized in this paper is oriented around multi-
class classification, as all the datasets used in this study have 
multiple classes. To suit the nature of the datasets, four effi-
cient classification algorithms have been chosen, namely, 
MLP, DT, RF, and SVM. Table 2 presents the hyperparam-
eters chosen for the evaluations. To handle multi-class clas-
sification, the OneVsRestClassifier function is used, to fit 
one classifier per class.

Software Specifications

The entire programming set-up is based on Python 3.6.5, 
Scikit-learn V.0.19.1 library [45], Tensorflow V.1.13.2 [46], 
and Keras V.2.1.5 [47]. For the implementation of the attack 
algorithms, Cleverhans V.3.0.1 library [20] has been used.

Data Pre‑Processing

The data oftentimes needs processing before a learning algo-
rithm is subjected to training with the dataset. There are two 
steps of pre-processing implemented in this work - the One-
Hot Encoding, and the Min-Max Normalization.

One‑Hot Encoding

This technique was opted for to convert the entire data to a 
numerical format. There are some features in each dataset 
that do have non-numerical values, for example, they may 
have categorical data. The One-Hot encoding method helps 
address this scenario.

Min‑Max Normalization

This technique was applied to all the datasets to scale the 
values in each of them between 0 and 1. Since different 

Table 2  Hyperparameters for 
the classifiers [48]

Classifier Parameters

MLP Dropout = 0.4, Layer 1 = 256, Layer 2 = 128, Activation = Relu, Loss 
= categorical crossentropy, Optimizer = Adam, Output Layer Activa-
tion = Softmax

DT criterion = gini, max_depth = 12
RF n_estimators = 200, random_state = 4, min_samples_split = 10
SVM C = 1, random_state = 42, loss = hinge



 SN Computer Science (2022) 3: 412412 Page 6 of 12

SN Computer Science

features in a dataset might have values distributed on dif-
ferent scales, this technique helps convert all the values to 
a common scale and eliminate outliers, if any. Additionally, 
the attack methods require that all the features are within a 
common range, to be effective [18].

Steps Involved in the Experiment

There are two stages implemented in the experiment: 1) 
training a learning algorithm with original data; 2) gen-
erating adversarial samples from the original data. In first 
stage, training and testing phases are carried out, as shown 
in Fig. 1. In both phases, the original data is pre-processed. 
MLP has been used as the baseline learning algorithm. 
Therefore, baseline results are obtained when MLP is tested 
with the data (original or adversarial), and for the evaluation 
purpose, each of the other algorithms (DT, RF, and SVM) 
are implemented over the baseline algorithm.

Figure 2 outlines the steps involved in the second stage, 
the adversarial sample generation. There are training and 
testing phases in this stage, too. The main difference here is 
that, in the testing phase, after the test-data is pre-processed, 
it is fed to the MLP, and each of the attack algorithms are 
invoked to introduce adversarial perturbations into the test-
data. The obtained adversarial test-set is forwarded to the 
classifier for final predictions. The attacks have been per-
formed targeting the normal class in the chosen datasets, 
with white-box settings. Table 3 presents the parameters set 
for each of the attacks.

The evaluation was initially conducted 10 times on a 
machine with UNSW-NB15 and Bot-Iot datasets, and the aver-
age values were noted as the experimental results. Later, the 
evaluation with the UNSW-NB15 dataset was carried out for 
an additional 3 times and with the CIC-IDS2018 dataset for 3 
times, on a different machine (a server), whose configuration 
is as follows: 128 GB RAM, dual-core processor, and 3.17 TB 
secondary storage. The results included in this paper are the 
averages of the corresponding runs.

Evaluation Metrics

The last step in the evaluation with each attack algorithm is 
to test every classifier with the original test-set and then with 
the poisoned set. The same process is applied in case of every 
dataset. The metrics used for evaluation are Accuracy, Area 
Under the Curve (AUC), F1-score, and Recall.

Fig. 1  Sequence of steps 
involved using the original data

Fig. 2  Sequence of steps 
involved using the adversarial 
data

Table 3  Parameters set for the attacks on all datasets [48]

Attacks Parameters

JSMA Theta = 1, Gama = 0.1, clip_min = 0, clip_max = 1
FGSM Eps = 0.3
CW binary_search_steps = 2, max_iterations = 100, 

learning_rate = 0.2, batch_size = 1, initial_cost 
= 10
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Experimentation Results

This section presents the results obtained, ordered by the 
datasets, and discusses the impact of each attack algorithm 
on each of the datasets.

UNSW‑NB15 Dataset

Tables 4, 5, 6, 7 summarize the results in terms of the vari-
ous metrics used. The highest accuracy with normal data is 
obtained from the baseline algorithm, MLP, with the least 

from SVM. Considering the overall adversarial accuracy 
scores, the results indicate that CW attack has the highest 
impact, and JSMA has the least.

Jacobian‑based Saliency Map Attack

A total of 95 distinct features are altered by JSMA attack in 
this dataset, with average of 22 per data point. The total per-
centage of altered features is 11%. The average time taken to 
generate adversarial samples is 8 min. With UNSW-NB15, 
the overall results show that this attack has the highest 
impact on the SVM classifier and the lowest impact on the 
RF classifier. This makes SVM the most vulnerable to JSMA 
among the chosen clsasifiers, and RF the least vulnerable.

Fast Gradient Sign Method

A total of 192 features are altered by this attack, with an 
average of 162 features per data point. The total percentage 
of altered features is 78%. The time taken for adversarial 
sample generation is less than 5 seconds. The results suggest 
that this attack has more impact on DT classifier than on the 
others, and the least impact on RF. Therefore, RF and SVM 
are almost equally robust against the FGSM attack, and are 
better than the DT.

Carlini Wagner

A total of 196 features are altered by this attack, with an 
average of 133 features per data point. The total percentage 
of altered features is 65%. The time taken for adversarial 
sample generation is almost 50 min, the longest among all 
the selected attack algorithms. The results suggest that this 
attack has the highest impact on DT classifier and the least 
impact on RF. Therefore, RF is more robust against the CW 
attack than the other two algorithms and DT is the most 
vulnerable to CW.

Bot‑IoT Dataset

Tables 8, 9, 10, 11 summarize the results for Bot-IoT in 
terms of the various metrics used. The highest accuracy with 
normal data is obtained from both DT and RF classifiers, 

Table 4  Accuracy results for UNSW-NB15 dataset

Classifier Accuracy

Baseline JSMA FGSM CW

MLP 0.72 0.39 0.38 0.21
SVM 0.59 0.22 0.26 0.23
DT 0.64 0.57 0.19 0.15
RF 0.64 0.64 0.25 0.28

Table 5  AUC results for UNSW-NB15 dataset

Classifier AUC 

Baseline JSMA FGSM CW

MLP 0.90 0.58 0.62 0.55
SVM 0.89 0.31 0.63 0.61
DT 0.84 0.80 0.53 0.51
RF 0.92 0.92 0.83 0.78

Table 6  F1 score results for UNSW-NB15 dataset

Classifier F1 Score

Baseline JSMA FGSM CW

MLP 0.73 0.45 0.35 0.33
SVM 0.68 0.30 0.29 0.31
DT 0.69 0.62 0.32 0.24
RF 0.73 0.68 0.38 0.43

Table 7  Recall results for UNSW-NB15 dataset

Classifier Recall

Baseline JSMA FGSM CW

MLP 0.72 0.42 0.40 0.25
SVM 0.60 0.23 0.31 0.26
DT 0.66 0.62 0.38 0.22
RF 0.65 0.56 0.24 0.28

Table 8  Accuracy results for Bot-IoT dataset [48]

Classifier Accuracy

Baseline JSMA FGSM CW

MLP 0.91 0.39 0.36 0.34
SVM 0.94 0.48 0.40 0.48
DT 0.99 0.45 0.48 0.65
RF 0.99 0.86 0.47 0.60
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with the least from MLP. Considering the overall adversar-
ial accuracy scores, the results indicate that FGSM attack 
is degrading the accuracy by a greater magnitude than the 
other two, and JSMA has the least impact.

Jacobian‑Based Saliency Map Attack

A total of 57 features are altered, with an average of 28 per 
data point, making the total perentage of altered features 
43%. The time taken for adversarial data generation is close 
to 14 min. The DT classifier is the most vulnerable to this 
attack, and RF is the least.

Fast Gradient Sign Method

A total of 60 distinct features are altered using this attack, 
with average of 34 per data point. The percentage of altered 
features is 52%. The attack takes around 20 seconds to 
generate adversarial data with Bot-IoT dataset. DT and RF 

classifiers are almost equally robust against this attack, and 
are better than the SVM.

Carlini Wagner

A total of 59 distinct features are altered, with an average 
of 42 per data point, and 52% as the total percentage of 
altered features. The attack takes close to 2 h to generate 
adversarial samples. The impact is almost the same on all 
the classifiers, with DT showing relatively lesser vulner-
ability than the other two, and SVM being more vulnerable 
than the other two.

CIC‑IDS2018 Dataset

Tables 12, 13, 14, 15 summarize the results for the CIC-
IDS2018 dataset in terms of the various metrics used. The 
highest accuracy with normal data is obtained from the RF 
classifier, with the least from MLP. Considering the over-
all adversarial accuracy scores, the results indicate that 
CW attack is degrading the accuracy by a greater magni-
tude than the other two, while FGSM has the least impact.

Table 9  AUC results for Bot-IoT dataset [48]

Classifier AUC 

Baseline JSMA FGSM CW

MLP 0.98 0.48 0.97 0.96
SVM 0.99 0.50 0.98 0.95
DT 0.99 1.0 0.97 0.97
RF 0.99 0.50 0.98 0.95

Table 10  F1 score results for Bot-IoT dataset [48]

Classifier F1 Score

Baseline JSMA FGSM CW

MLP 0.99 0.76 0.40 0.55
SVM 1.0 0.77 0.33 0.58
DT 0.99 0.61 0.46 0.67
RF 0.99 0.96 0.42 0.57

Table 11  Recall results for Bot-IoT dataset [48]

Classifier Recall

Baseline JSMA FGSM CW

MLP 0.99 0.93 0.39 0.57
SVM 1.0 0.93 0.41 0.59
DT 1.0 0.45 0.40 0.60
RF 0.99 0.95 0.41 0.57

Table 12  Accuracy results for CSE-CIC-IDS2018 dataset

Classifier Accuracy

Baseline JSMA FGSM CW

MLP 0.62 0.39 0.38 0.35
SVM 0.61 0.58 0.61 0.20
DT 0.88 0.47 0.85 0.38
RF 0.92 0.84 0.91 0.81

Table 13  AUC results for CSE-CIC-IDS2018 dataset

Classifier AUC 

Baseline JSMA FGSM CW

MLP 1.0 0.42 0.97 0.99
SVM 1.0 0.44 0.91 0.99
DT 1.0 0.44 1.0 0.99
RF 1.0 0.44 1.0 0.99

Table 14  F1 score results for CSE-CIC-IDS2018 dataset

Classifier F1 Score

Baseline JSMA FGSM CW

MLP 0.89 0.43 0.85 0.51
SVM 0.66 0.39 0.64 0.47
DT 0.91 0.11 0.89 0.69
RF 0.94 0.59 0.92 0.83
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Jacobian‑based Saliency Map Attack

A total of 93 features are altered, with an average of 72 per 
data point. The percentage of altered features is 42%. The 
time taken for this attack to generate adversarial samples is 
close to 10 h. The SVM classifier has been affected the least 
of all, and the DT has been affected the most.

Fast Gradient Sign Method

A total of 187 features are altered, with an average of 136 per 
data point. The percentage of altered features is 85%. The 
time taken for this attack to generate adversarial samples is 
around 6 h. The RF classifier has been affected the least of 
all, and the SVM has been affected the most.

Carlini Wagner

A total of 189 features are altered, with an average of 157 per 
data point. The percentage of altered features is about 86%. 
The time taken for this attack to generate adversarial samples 
is around 14 h. The RF classifier has been affected the least 
of all, and the DT has been affected the most.

Analysis and Discussion

Considering datasets, classifiers, and attacks as three enti-
ties, the results obtained from the evaluation indicate that 
the influence of an entity varies with the other two. This 
section analyzes the results further and notes appropriate 
implications.

Implications of this Study

Although all three attack algorithms affected the perfor-
mances of the classifiers, the variations in their impacts can 
help investigate deep into the characteristics of the datasets 
used. Based on the results, the overall impact on the CIC-
IDS2018 dataset is relatively lesser, which is followed by the 
UNSW-NB15 dataset, and then the Bot-IoT. One possible 
reason behind this pattern is the number of features in the 
datasets. With lesser number of features, the vulnerabilties 

may increase. If the entire volume of each of the datasets 
was considered for the study, the scale of imbalance (being 
well-balanced or imbalanced) in the datasets would also 
become a factor for the variations in performance.

Looking at the overall results from classifiers end, the 
RF classifier stood almost steadily robust against all three 
attacks, with all three datasets. Another significant behavior 
is that the impact patterns are not uniform among different 
evaluation metrics. It means, an adversary needs to decide 
on a performance metric as target and design the attack 
accordingly.

Although the CW attack is considered one of the most 
sophisticated and powerful algorithms, its result patterns on 
the IDS datasets chosen for this study are similar to the other 
two attack techniques, and are not exceptional, per se.

Contribution to the Literature

Data is a precious entity, driving ML-based research in 
nearly every area of science. The quality and characteristics 
of a dataset are crucial in tuning the efficiency of a model. 
This work contributes to the literature by analyzing the 
behaviors of ML-based IDSs in adversarial environments 
using datasets that consist of realistic network patterns.

A consequential avenue for investigation is the extent of 
validity of these adversarial white-box attacks in the context 
of IDS datasets. Although the adversarial samples generated 
by the attack algorithms succeed in dropping the perfor-
mance of an IDS model, there is a need to examine their 
efficiency in generating valid adversarial data. The goal of 
an adversarial algorithm targeting an IDS model is to modify 
an attack data instance in a way that it should look like a 
benign instance to the target while retaining the properties 
that make it the attack it is supposed to be. In other words, 
an adversarial data instance, X’, generated from an original 
(non-adversarial) attack instance, X, is valid only if X’ can 
achieve exactly what X can, in the network guarded by the 
target IDS. The real success of an adversarial attack lies in 
generating valid deceptive samples that can bypass detection 
and launch the attacks they are meant for. Pujari et al. [49] 
lists some factors that indicate the validity of adversarial 
samples. We want to continue this research by analyzing 
how successful various white-box attacks can be on IDS 
research datasets.

Limitations

A substantial limitation is the resources to process the huge 
volumes of datasets utilized in the experiments. Datasets 
like Bot-IoT and CIC-IDS2018 are big data and need effi-
cient frameworks to handle them. We used smaller portions 
of these datasets to accommodate the resource constraints. 
One of the extensions to this work would be to evaluate 

Table 15  Recall results for CSE-CIC-IDS2018 dataset

Classifier Recall

Baseline JSMA FGSM CW

MLP 0.90 0.58 0.85 0.81
SVM 0.97 0.64 0.92 0.95
DT 0.94 0.12 0.93 0.82
RF 0.91 0.57 0.91 0.81
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the experiments with full datasets using a framework like 
Hadoop.

Insights into Mitigation Strategies

Improving the resistance of IDS models towards adversarial 
inputs has been a substantial stream of research ever since 
the vulnerabilities were discovered. The insights on how 
to enhance the resistance of a model, drawn based on our 
experiment are presented here. The datasets chosen for this 
work have many features, but not all the features in a dataset 
have a significant contribution to the outputs. One approach 
to reducing the impact of adversarial inputs is to extensively 
train a model on the features that decide the output. Tech-
niques such as feature selection, feature reduction, etcetera, 
can help filter the features bearing less to no weightage in 
predicting the output. Such a training process enables a 
model to focus more on the deciding attributes and ignore 
the adversarial perturbations in the remaining features. Fur-
thermore, some features in a dataset may allow values only 
within a specific range, in which case, an extra step can be 
added to validate the values in those features before predic-
tion. Another strategy for filtration can be to validate the 
values that non-changeable features of an input hold. The 
approaches mentioned here are superficial, as it requires a 
much more thorough defensive mechanism to effectively 
make an IDS model robust.

Conclusions and Future Work

There is a need to study the properties of the available 
modern IDS datasets and switch from the old and outdated 
datasets to the contemporary ones. As important as it is 
to analyze how useful the modern datasets are in machine 
learning-based research, it is essential to know how useful 
they are under adversarial settings. This work studies three 
recently published IDS datasets, namely, UNSW-NB15, Bot-
IoT, and CIC-IDS2018 under the light of three adversarial 
attack algorithms, namely, JSMA, FGSM, and CW. The 
performance is evaluated using multiple classifiers - SVM, 
DT, and RF - while using MLP as the baseline classifier. 
The experimental results have shown that RF is relatively 
more robust in adversarial environments, and in terms of 
the datasets, CIC-IDS2018 has offered more resilience to 
the classifiers. The impacts of the attacks have been varying 
with the datasets and classifiers.

We would like to extend this study in multiple directions. 
One of them is to analyze the impacts of the white-box 
attacks on recent datasets using other powerful algorithms, 
especially, deep learning algorithms. Another direction is to 
study black-box and gray-box attack techniques and develop 
defense mechanisms to tackle them.
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