
Vol.:(0123456789)

SN Computer Science (2022) 3:432 
https://doi.org/10.1007/s42979-022-01303-w

SN Computer Science

ORIGINAL RESEARCH

Using Dominated Solutions at Edges to the Diversity 
and the Uniformity of Non‑dominated Solution Distributions 
in NSGA‑II

Yuji Sato1  · Mikiko Sato2

Received: 22 October 2021 / Accepted: 4 July 2022 / Published online: 8 August 2022 
© The Author(s) 2022

Abstract
This paper proposes a method for improving the diversity of the Pareto front and the uniformity of non-dominated solution 
distributions in a fast elitist non-dominated sorting genetic algorithm (NSGA-II), which is an evolutionary multi-objective 
optimization algorithm. Conventional NSGA-II has excellent convergence to the Pareto front, but it has been reported that 
for some test cases, it does not produce a more diverse solution distribution than the strength Pareto evolutionary algorithm 2 
(SPEA2). In addition, selection using the crowding distance may cause a bias in the selected solution distribution. To avoid 
this problem, we propose a method that archives dominated solutions that may be effective in improving diversity in the 
conventional search process when used for genetic operations, and mates these archived solutions with non-dominated 
solutions at the edge of rank 1 for each objective function. We experimentally compare this approach with the conventional 
method on the typical ZDT suite of multi-objective test problems and a two-objective constrained knapsack problem. By 
evaluating the performance based on Pareto front diagrams, the number of non-dominated solutions, the maximum spread 
and hypervolume values, we show that the proposed method is effective at improving the diversity at both ends of the Pareto 
optimal front and the solution distribution.

Keywords Multi-objective optimization · NSGA-II · Non-dominated sorting · Pareto optimal front · Dominated solution · 
Crowding sorting

Introduction

Many real-world optimization problems have multiple objec-
tives. These objectives often have trade-off relationships, 
and there is no single solution that is optimal for all objec-
tive functions. It is therefore important to have some way of 
accurately locating the curved surface (Pareto optimal front 

[1]) formed by the set of Pareto optimal solutions. Evolu-
tionary multi-objective optimization algorithms, which are 
based on evolutionary computation, are being researched 
as a way of tackling this problem [2], due to their ability to 
find a set of solutions that approximate the Pareto optimal 
front by running a single algorithm, and due to the breadth 
of optimal solutions they are able to find. In this paper, we 
focus on a fast elitist non-dominated sorting genetic algo-
rithm (NSGA-II) [3, 4], which is the most practical of these 
algorithms. The main characteristics of the NSGA-II algo-
rithm are its fast non-dominated sort, which improves con-
vergence to the Pareto optimal front, and the crowding sort 
for the uniform solution distribution.

On the other hand, compared with the strength Pareto 
evolutionary algorithm 2 (SPEA2) [5], which focuses on 
the dominance of solutions and the preservation of non-
dominated solutions as in NSGA-II, it has been reported 
that although it achieves better convergence on the Pareto 
front, there are test cases where it did not achieve superiority 
in terms of the diversity of the solution distribution. Also, 
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while the selection of solutions based on crowding distance 
often works well to maintain population diversity, the result-
ing solution distribution can be biased. When working on 
real problems, the execution may be halted before comple-
tion if there is insufficient time available, in which case the 
solution used for product design can be selected using the 
Pareto front at that time. Even in a knapsack problem, if 
there are many objectives and a large population size, it may 
be difficult to accurately obtain the final Pareto front within a 
practical execution time. Therefore, if the types of non-dom-
inated solutions (range of solution distribution) that can be 
selected can be expanded and the uniformity of the solution 
distribution can be improved at the solution search stage, this 
algorithm will be more effective when considering practical 
applications. In this paper, we address this problem by pro-
posing a method that improves the uniformity of the solution 
distribution by using an archive population to preserve some 
of the dominated solutions that are usually culled at the start 
of a new generation, but which may be effective at improving 
the diversity of the population, and by actively using these 
dominated solutions in genetic operations.

We have already proposed adding a Rank 2 edge solu-
tion to the parent population for mating [6]. However, in 
cases where the number of Rank 1 solutions is less than the 
population size, then at least one of the solutions at the edge 
of Rank 2 should already be in the parent population, so the 
benefits of the proposed method can be expected only where 
the number of Rank 1 solutions is larger than the popula-
tion size. In addition, the efficiency of the solution search 
may deteriorate because the lowest individual of Rank 1 
is deleted instead of the solution candidate of the edge of 
Rank 2. In this paper, we revise the algorithm to solve these 
problems and update on our progress with discussions of 
new benchmarking problems, evaluations and discussions of 
the use of maximum spread (MS), and traditional solution 
selection problems.

Conventional Methods

Overview of NSGA‑II

As shown in Eq. (1), a constrained multi-objective optimi-
zation problem involves minimizing (or maximizing) k dif-
ferent objective functions f based on m different inequality 
constraints g.

Since there are trade-off relationships between the objec-
tive functions, studies are being made to find the Pareto opti-
mal front by means of evolutionary computation. A typical 

(1)

{

fi
(

x1,x2, … , xn
)

(i = 1, 2,… , k)

gj
(

x1,x2, … , xn
)

≤ 0 (j = 1, 2,… ,m)

evolutionary multi-objective optimization algorithm is 
NSGA-II, which was proposed by Deb et al. in 2000 as an 
improved version of the non-dominated sorting genetic algo-
rithm (NSGA) [7]. It searches for solutions using a combina-
tion of fast non-dominated sort, crowding sort, and crowded 
tournament selection. NSGA ranks individuals using non-
dominant sorting and sharing these individuals according to 
their rank. While this method has the advantage of obtain-
ing a wide variety of solutions within the same rank, it has 
problems such as the necessity of determining the sharing 
parameter and the high calculation cost. NSGA-II solved 
these problems by accelerating the calculation of ranking in 
non-dominated sort and using a new index called crowding 
distance as an alternative to sharing parameters.

Figure 1 shows a conceptual illustration of a fast domi-
nated sort. A fast non-dominated sort is an operation that 
classifies all individuals by rank, focusing on the dominated/
non-dominated relationships between individuals. For exam-
ple, in a minimization problem, a candidate solution (indi-
vidual) x is defined as dominating y when the following 
Eq. (2) is satisfied:

Using this definition, we can rank each individual by 
ascertaining the dominated/non-dominated relationships 
between each individual. First, we determine the individu-
als that belong to the best Rank 1 group. For each individual, 
count the number of other individuals that it dominates, and 
the number of other individuals by which it is dominated. If 
it is not dominated by any other individual, then it is deemed 
to be a non-dominated solution and is placed in Rank 1. The 
other individuals are dominated solutions. Next, the Rank 
1 individuals are ignored, and the dominated/non-domi-
nated definitions are used to determine Rank 2 individuals 
under the same conditions as when determining the Rank 1 

(2)∀ifi(x) ≤ fi(y) ∧ ∃ifi(x) < fi(y)

Fig. 1  Conceptual illustration of a fast dominated sort
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individuals. A fast non-dominated sort is achieved by repeat-
ing this operation until all the individuals have been ranked.

Crowding sort is a method that determines dominated/
non-dominated relationships between individuals at the 
same rank based on their crowding distance, which is the 
average distance between two solutions on either side of the 
ith solution along each of the objectives. A larger crowd-
ing distance (i.e., a solution that is less crowded) is ranked 
with higher precedence. Therefore, in many cases, it can be 
expected to work effectively to maintain the diversity of the 
solution population. In a crowded tournament selection, the 
solution candidates are first ranked by fast non-dominated 
sort, and then the candidates of equal rank are sorted by 
crowding distance.

Figure 2 shows a conceptual illustration of how the popu-
lation is updated in a crowded tournament selection. NSGA-
II advances the solution search using an archive population 
Pt that stores non-dominated solutions as the parent popu-
lation, and the initial search population Qt for performing 
the search as the child population. First, generate a group 
Rt = Pt ∪ Qt that combines the parent population Pt and the 
child population Qt. This group Rt is first subjected to a non-
dominated sort to rank each solution candidate. In the figure, 
Fn represents a solution candidate group of rank n. Next, 
perform a crowding sort and select the top N individuals 
with the highest number from the 2N individuals Rt as Pt+1. 
The parent individuals selected from Pt+1 are then crossed 
over and genetically manipulated by mutation to generate a 
new child population Qt+1. These operations constitute one 
generation step, and these generation steps are repeated the 
specified number of times.

Problems with Conventional Methods

Figure 3 shows an example of the state diagram of a popula-
tion Rt that is considered to lead to a decrease in the diversity 
of the solution distribution. The non-dominant sort used in 

NSGA-II is an operation that classifies all individuals into 
several ranks by focusing on the dominated/non-dominated 
relationships between individuals. Here, the best solution 
group is defined as Rank 1, followed in turn by Rank 2 and 
Rank 3. For some problems, these dominated/non-domi-
nated solution relationships may cease to hold as the num-
ber of generations increases. In such cases, all N individu-
als selected for the archive population Pt+1 would become 
Rank 1 solutions, while the other solutions of Rank 2, Rank 
3, etc., obtained in the previous solution search would be 
completely eliminated. In this study, we consider that one 
of the reasons why NSGA-II sometimes has inferior solution 
diversity compared with SPEA2 is the lack of solutions of 
other ranks besides Rank 1 at the initial stages of the search.

Next, we discuss one of the features of NSGA-II, which is 
its ability to select solutions based on crowding distance [1, 
3, 4]. NSGA-II seeks to maintain the diversity of solutions 
and the extent of distributions by preferentially selecting 
solutions with larger crowding distances (i.e., solutions that 
have no other solutions nearby). Figure 4 shows an example 

Fig. 2  Creating a new population generation by crowded tournament 
selection [1]

Fig. 3  Example of the state diagram of population Rt where all the 
archive groups are of Rank 1

Fig. 4  An example that the crowding distance selection caused a bias 
in the selected solution distribution
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of solution selection based on crowding distance when the 
number of Rank 1 individuals is larger than the population 
size N. In this figure, selected solutions are indicated by 
black circles and non-selected solutions are indicated by 
white circles. Since the crowding distance of the boundary 
solution is assigned to infinity, when selecting a solution 
based on the crowding distance, the boundary solutions a 
and e are selected first, and then b is selected because it has 
the largest crowding distance of the remaining solutions. 
The selection of solutions based on crowding distance works 
effectively in many cases. But in some cases, such as the 
distribution shown in Fig. 4, solutions located in dense areas 
may not be selected, causing these regions to be left blank 
(without any solutions). In other words, it can result in the 
formation of a Pareto front with a solution distribution that 
lacks uniformity.

Proposal of Genetic Operation Using 
Dominated Solutions

Genetic Manipulation Using Dominated Solutions

In this paper, we propose a method applied to genetic opera-
tions that involves preserving some of the inferior solutions 
that are culled in conventional search processes but may be 
capable of leading to improved diversity. For example, the 
solutions at both ends of the Rank 2 solution distribution 
could be preserved. By preserving the solutions at both ends 
of the Rank 2 solution distribution in the archive population 
and using them for genetic manipulation, it may be possible 
to improve the diversity of the next generation of solutions. 
Figure 5 shows an example of a distribution diagram of cur-
rent solutions generated by performing genetic operations 
only on Rank 1 solutions using the two-objective minimiza-
tion problem as an example. On the other hand, Fig. 6 shows 
an example of a distribution diagram of current solutions 

generated by mating the solution candidates at the edges of 
Rank 1 and Rank 2 according to the proposed method. In the 
conventional genetic operations shown in Fig. 5, the individ-
uals represented by green circles are generated from Rank 1 
parent individuals. Although this improves the convergence 
to the true Pareto front, it also creates new solution candi-
dates that dominate the original Rank 1 edge solution can-
didates and reduces the breadth (i.e., diversity) of the solu-
tion distribution. In the proposed method shown in Fig. 6, 
the genetic operations also include dominated solutions 
at both ends of the Rank 2 solution distribution. Suppose 
the solution candidate at the end of Rank1 is (xR1E1, yR1E1), 
the solution candidate at the end of Rank2 is (xR2E1, yR2E1) 
(xR1E1 < xR2E1, yR1E1 < yR2E1) and the solution candidate after 
mating these two solution candidates is (x′R1E1, y′R1E1). If the 
difference between the values of xR1E1 and xR2E1 is small, it 
may be possible to generate solution candidates that satisfy 
the conditions of xR1E1 < x′R1E1 and y′R1E1 < yR1E1. The solu-
tion candidate obtained from this mating operation belongs 
to Rank 1, and is possible that it might become a new solu-
tion candidate at the edge of Rank 1, thereby expanding 
the distribution of solution candidates. This idea can be 
developed even further. For example, when considering the 
spread of the solution distribution for the objective function 
1, for some small value δ, mate all the dominated solutions 
in the range from yR1E1 to yR1E1 + δ with the non-dominated 
solution (xR1E1, yR1E1) at the edge of Rank 1. Here, since the 
appropriate value of δ may depend on the problem, on this 
occasion we performed a feasibility study by conducting an 
evaluation experiment for the case where only the edge of 
Rank 2 is targeted.

Leverage with Archived Dominated Solutions

Figure 7 summarizes the method used to generate child indi-
viduals by mating the solutions at the edge of Rank 2 stored 
in the archive population with the solutions at the edge of 
Rank 1. Figure 7a shows an example when the number of 
Rank 1 individuals is less than N, and Fig. 7b shows an Fig. 5  Searching for a solution using only Rank 1 solutions

Fig. 6  Including Rank 2 solutions for greater solution diversity
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example when the number of Rank 1 individuals is larger 
than N. In either case, there are no changes to the original 
NSGA-II regarding the generation of Pt+1 and Qt+1 from Rt, 
except that the solutions at the edge of Rank 2 are archived. 
In cases where the number of Rank 1 is less than N, if the 
child individuals created by mating the solutions at the edge 
of Rank 2 stored in the archive population with the solutions 
at the edge of Rank 1 belong to Rank 1 solutions, there will 
be more non-dominated solutions, and as shown in Fig. 6, 
this is highly likely to lead to an increase in the diversity of 
rank 1 solution sets. On the other hand, when the number 
of Rank 1 is larger than N, if the child individuals created 
by mating the solutions at the edge of Rank 2 stored in the 
archive population with the solutions at the edge of Rank 1 
belong to Rank 1 solutions, since the solutions belonging 

to Rank 1 are sorted based on their crowding distance, the 
solution with the smallest crowding distance (i.e., the most 
densely distributed solutions) in Rank 1 are replaced.

This replacement maintains a constant number of indi-
viduals N and leads to a uniformity of the solution distri-
bution, it is also highly likely to lead to an increase in the 
diversity of rank 1 solution sets. In both Fig. 7a, b, if a child 
individual created by mating the solutions at the edge of 
Rank 2 stored in the archive population with the solutions at 
the edge of Rank 1 is a poor individual that interferes with 
search, it will be eliminated by non-dominated sorting and 
will not adversely affect the generation of Pt+1. Even in the 
original NSGA-II, if the number of non-dominated solutions 
for Rank 1 is less than N, the solution for the edge of Rank 
2 is already included in Pt+1. However, the probability of 

Fig. 7  a NSGA-II making use 
of an archived dominated solu-
tion (the number of Rank 1 is 
less than N). b NSGA-II making 
use of an archived dominated 
solution (the number of Rank 1 
is larger than N)
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mating a solution for a Rank 1 edge with a Rank 2 edge is 
small. On the other hand, in the proposed method, archived 
Rank 2 edge solution candidates are mated with Rank 1 edge 
solution candidates with a probability of 1.0.

When the number of Rank 1 solutions is larger than the 
population size N, it can help reduce congestion in the solu-
tion distribution by replacing the lowest ranked solution in 
Rank 1, that is, the densely crowded non-dominated solu-
tions. The removal of these solutions thus improves the 
likelihood of selecting solutions from regions that were 
densely populated with candidate solutions. Figure 8 shows 
an example of solution selection based on crowding distance 
after removing two solution candidates in a region where 
the solution candidates were densely crowded, resulting in 
better uniformity. It appears that the creation of children by 
mating solutions at the ends of Ranks 1 and 2 increases the 
probability of generating solution candidates for the next 
generation at both ends of the Pareto front, and may also be 
effective at improving the distribution uniformity of current 
solutions by thinning out solutions in regions where solution 
candidates are densely distributed.

In the original NSGA-II, the diversity of solutions and 
the spread of the distribution of solutions are maintained by 
selecting solutions with a large crowding distance, that is, 
solutions with sparse surroundings. Therefore, when using 
the crowding distance as shown in Fig. 4, since solution 
b having a large crowding distance is selected, solutions 

from places where the solutions are concentrated are hardly 
selected at all, which may result in a blank area. On the 
other hand, Fig. 8 shows an example in which a new Rank 
1 solution f is generated by mating a Rank 1 edge solution 
and a Rank 2 edge solution, and instead the solution d hav-
ing the smallest crowding distance is eliminated. As a result, 
instead of solution b, solution c is selected, and the spread of 
the solution distribution and the uniformity of the solution 
distribution are also improved compared with Fig. 4.

Pseudo Code of the Proposed Method

Fig. 8  An example of crowding distance selection where a high-den-
sity cluster of solution candidates has been deleted
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The pseudo code of the proposed method is summarized 
in Algorithm 1. In the execution step in the pseudo code, 
lines 8 and 11 are correspond to the modifications made 
in the proposed method. In the proposed method, after the 
crowding sort, the solution at the edge of Rank 2 is stored in 
the archive, and the child generated by mating the solution 
stored in this archive with the solution at the edge of Rank 
1 is added to Rt+1.

The main points of the proposed method are shown 
below.

1. Archive the solution candidates for Rank 2 edges.
2. For each objective function, the solution of the edge of 

Rank 1 and the solution of the edge of Rank 2 are mated 
with a probability of 1.0, and the resulting offspring are 
added to Qt.

3. If the above added individuals are dominated solutions, 
they will be weeded out and this algorithm becomes the 
same as the original NSGA-II. That is, the proposed 
mating does not adversely affect the original NSGA-II 
even if no valid offspring can be produced.

4. When the above added individual becomes Rank 1, the 
number of Rank 1 individuals (non-dominated solutions) 
increases when the number of Rank 1 individuals is less 
than N. If the number of Rank 1 individuals is larger 
than N, it will be replaced with the solution candidate at 
the bottom of Rank 1 (where the solutions are densely 
packed). In addition, if the added individual becomes 
Rank 1, this is expected to have the effect of widening 
both ends of the distribution of Rank 1 solution candi-
dates (regardless of the number of Rank 1 individuals 
and the size of N).

Evaluation

Experimental Method

We performed an experimental comparison of the pro-
posed algorithm with the conventional NSGA-II algorithm 
using the ZDT test suite [1, 8, 9] and a two-objective 
constrained knapsack problem [10], which are typical 
test functions for multi-objective optimization problems. 
ZDT1 has a convex Pareto optimal front and is suitable 
for evaluating convergence. It is defined by the following 
equations:

where xi ∈ [0, 1], i = 2,… , n, n = 30.

ZDT2 has a concave Pareto-optimal front and is suit-
able for evaluating diversity. It is defined by the following 
equations:

where xi ∈ [0, 1], i = 2,… , n, n = 30.

ZDT3 has a convex Pareto optimal front and is a complicated 
problem characterized by a discontinuous Pareto optimal 
front, and is defined by the following equations:

where xi ∈ [0, 1], i = 2,… , n, n = 30.

ZDT4 is a multimodal problem with two objectives and ten 
design variables, which is characterized by the difficulty of 
finding the Pareto optimal solution g(x) = 1 due to the wide 
range of values of design variables other than x1, and there 
are many local convergence areas. It is defined by the fol-
lowing equations.
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where x1 ∈ [0, 1], xi ∈ [−5, 5], i = 2,… , n, n = 30.

ZDT6 has a concave Pareto-optimal front and is character-
ized in that the value in a certain range of f1(x) is deter-
mined by the value in a very small range of x1. It is defined 
by the following equations.

where xi ∈ [0, 1], n = 30.

As a test problem to evaluate the ability to find the 
boundary solutions, we focus on mk knapsack problems 
(mk-KPs) [10]. A mk-KP is defined as follows.

This problem has n items and k knapsacks, and each 
item i has m profits pij (j = 1,2,…,m) and k weights 
wil (l = 1,2,…,k). The task is to find a set of items 
x = x1, x2,… , xn ∈ {0, 1}n that maximize m objectives 
while not exceeding k knapsack capacities cl. The knap-
sack capacity cl is defined as follows.

where φ is the feasibility ratio for each knapsack (constraint), 
and we can control the strictness of constraints by varying φ. 
The mk-KP is different from the multi-objective knapsack 
problem (MOKP) [11] in that the numbers of objectives m 
and knapsacks k can be independently determined. Here, we 
set the number of items to 300 and the feasibility rate φ to 
0.5, and we evaluated the cases of (m, k) = (2, 1) and (3, 2).
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Using these six types of test problem, we performed 
experiments to compare the following four items:

1. Overall solution search performance using hypervolume 
(HV) values [1, 12, 13].

2. Extent of the distribution of current solutions using 
maximum spread (MS) [14].

3. Number of non-dominated solutions generated at both 
ends of the Pareto front.

4. Uniformity of the solution distribution in Pareto front 
diagrams.

Here, HV is an index representing the overall effective-
ness of the solutions, and is defined as the volume (or, in the 
case of two objectives, the surface area) of the hyperplane 
formed by the origin and the finally obtained Pareto front. 
The definition of HV can be expressed as shown in Eq. (10). 
In Eq. (10), nPF represents the number of solutions in the 
Pareto set, and a hypercube vi is constructed with a refer-
ence point and the solution i as its diagonal corners.

By comparing the HV values, we can check that the 
proposed method does not adversely affect the conver-
gence to the Pareto front or the overall solution search 
performance.

(10)HV = volume
(

∪
nPF
i=1

vi
)

Fig. 9  Overview of the maximum spread (MS)

Table 1  GA parameters and origin point

Population size 20, 100
Max. number of generations 1000
Crossover method 2-point crossover
Crossover rate 0.9
Mutation method Polynomial mutation
Mutation rate 0.033
Reference point (1.2, 1.5)
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The MS value is an indicator used to evaluate the spread 
of a solution set based on the extreme points of the set 
obtained by searching. A larger MS value indicates a solu-
tion set that is more widely distributed. If fmin

k
 and fmax

k
 

are the minimum and maximum values of the objective 

function fk amongst the set of approximate Pareto solutions 
obtained by searching, then the MS value is calculated 
using the formula shown in Eq. (11). A schematic illustra-
tion of MS is shown in Fig. 9.

Fig. 10  The relationship between the number of generations and the 
HV value for ZDT1 (20 individuals)

Fig. 11  The relationship between the number of generations and the 
HV value for ZDT2 (20 individuals)

Fig. 12  The relationship between the number of generations and the 
HV value for ZDT3 (20 individuals)

Fig. 13  The relationship between the number of generations and the 
HV value for ZDT4 (20 individuals)

Fig. 14  The relationship between the number of generations and the 
HV value for ZDT6 (20 individuals)

Fig. 15  The relationship between the number of generations and the 
HV value for knapsack problem (100 individuals)
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By comparing MS values, we can confirm whether the 
proposed method is effective at improving the diversity 
of the Pareto front. At the same time, we can compare the 

(11)MS =

√

√

√

√

r
∑

k=1

(

fmax
k

− fmin
k

) number of non-inferior solutions generated around both 
ends of the Pareto front to check whether the search per-
formance is improved around the Pareto front extremities. 
Furthermore, to confirm the effectiveness of this approach 
at remedying the problem that can arise when selecting 
solutions based on crowding distance, whereby no solu-
tions are selected from places where solutions are bunched 

Fig. 16  Comparison of HV and MS values for ZDT1

Fig. 17  Comparison of HV and MS values for ZDT2

Fig. 18  Comparison of HV and MS values for ZDT3

Fig. 19  Comparison of HV and MS values for ZDT4

Fig. 20  Comparison of HV and MS values for ZDT6

Fig. 21  Comparison of HV and MS values for Knapsacks (10,000th 
generations)
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together (leaving empty spaces with no solutions), we 
compared the uniformity of the solution distributions in 
the Pareto optimal front. For the HV and MS values, we 
plotted the average of 31 trials, and for the Pareto front 
diagram, we plotted the median data.

Table 1 shows the GA parameters used in all the test 
questions and the origin point used for the calculation of 
HV values.

Experimental Results and Discussion

Comparison of HV and MS Values

At first, to check the ability of this method to converge on 
the Pareto front, we investigated how the HV value varies 
with the number of generations. Figures 10, 11, 12, 13, 
14 and 15 show the relationship between the number of 
generations and the HV value for each test problem. In 
the ZDT test suite, the number of individuals is set to 20 
because it quickly converges to the Pareto optimal front 
when the number of individuals is large. For all the test 
problem, the convergence curve of the proposed method 
rose sharply over the original NSGA-II method, but no 

significant differences were observed in the final HV value 
(probably because both methods eventually have reached 
the accurate Pareto optimal front). Therefore, the details of 
the HV and MS values for the 300 generations just before 
converging to Pareto optimal front and the 200 generations 
during the search are shown below. However, in the knap-
sack problem, it is difficult to accurately obtain the Pareto 
front unless a certain number of individuals are set, so we 
set the number of generations to 10,000 and compared the 
cases where the number of individuals is 100 and 300. For 
the HV and MS values, we plotted the average of 31 trials.

Figures 16, 17, 18, 19 and 20 show the 200th and 300th 
generation HV and MS values for ZDT1 to ZDT6, respec-
tively. Figure 21 shows the HV and MS values for the con-
strained knapsack problem for populations 100 and 300 in 
the 10,000 generation. As shown in these figures, for all test 
questions, in the 200th generation of the search process, the 
proposed method tends to show higher HV values than the 
original NSGA-II, and found that the difference tends to nar-
row according to converge. And in the problem of reaching 

Fig. 22  Comparison of the distribution of current solutions for ZDT1 
(20 pop, 200 gen.)

Fig. 23  Comparison of the distribution of current solutions for ZDT2 
(20 pop, 200 gen.)
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the correct Pareto optimal front, it will eventually reach 
about the same HV value as the original NSGA-II. On the 
other hand, in the search process of the 200th generation, the 
MS value of the proposed method may be higher or lower 
than that of the original NSGA-II, and found that the differ-
ence tends to become narrower due to convergence. Upon 
closer observation, it was found that the proposed method 
had a high MS value for problems in which the spread of 
the solution distribution increased as the search progressed, 
and a low MS value for problems in which the distribution 
of current solutions was convergent. That is, the proposed 
method effectively works to improve diversity (improve-
ment of MS value) and to improve the comprehensive solu-
tion search ability (improvement of HV value) in problems 
that require expansion of solution distribution in the search 
process.

Comparison of the Distribution of Current Solutions

Figures 22, 23, 24, 25 and 26 are comparisons when the 
Pareto front diagram obtained in the 200th generation is 
applied to the conventional method and the proposed method 
when the population is 20. However, the knapsack problem 

shown in Fig. 27 is a comparison of Pareto fronts obtained 
in the 10000th generation when the population size is 100. 
In addition, the Pareto front diagram is created by converting 
it so that it becomes a minimization problem like the other 
test problems. The original NSGA-II displays the median 
Pareto front of 31 trials sorted by HV value, as plotting the 
average of 31 trials would obscure the individual trends. 
On the other hand, the proposed method displays the Pareto 
front when the same initial value as the original NSGA-II 
is used. Table 2 summarize the number of non-dominated 
solutions contained in the Pareto front shown in Figs. 22, 23, 
24, 25, 26 and 27 for the original NSGA-II and the proposed 
method.

From Fig. 22, in the case of ZDT1, it can be seen that the 
proposed method does not show a large difference in the dis-
tribution spread of current solutions but does improve their 
distribution uniformity. In the case of ZDT2 from Fig. 23, 
the solution is generated by the conventional method in a 
sparse region where no solution exists, and the distribution 
spread of the current solutions is improved for objective 
function 2. In ZDT3 shown in Fig. 24, there is no differ-
ence in the distribution spread of the current solutions, but 

Fig. 24  Comparison of the distribution of current solutions for ZDT3 
(20 pop, 200 gen.) Fig. 25  Comparison of the distribution of current solutions for ZDT4 

(20 pop, 200 gen.)
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looking at each group of solution groups, it can be seen that 
the solutions are more uniformly dispersed than in the con-
ventional method, and that there are more non-dominated 
solutions forming islands on the left and right ends. From 
Fig. 25, in the case of ZDT4, the distribution spread of the 
current solutions is greatly improved for both objective func-
tions 1 and 2 by the proposed method. From Fig. 26, in 
ZDT6, the distribution of current solutions for the objective 
function 2 is improved, and so is the distribution uniformity 
of current solutions. In the case of the knapsack problem 
shown in Fig. 27, the proposed method greatly improves the 
distribution spread of the current solutions for both objec-
tive functions 1 and 2, and also improves the distribution 
uniformity of current solutions.

From Table 2, the number of non-dominated solutions 
for ZDT1 to ZDT6 is 20, which reached the value of the 
population size during the solution search. Therefore, these 
are the cases in Fig. 7b, and the number of non-dominated 
solutions does not increase even if the search is continued. 
This can alleviate the problem of solution distribution non-
uniformity that occurs when using crowding distances. 
These experimental results are in line with the idea that if 

the offspring produced by mating the solutions at the ends 
of Rank 1 and Rank 2 contribute to the solution search, it 
may lead to improved spread and the distribution uniform-
ity of current solutions. On the other hand, in the knapsack 
problem, the number of non-dominated solutions is smaller 
than the number of individuals, so it corresponds to the case 
of Fig. 7a. Since the number of non-dominated solutions of 
the proposed method is larger than that of the conventional 

Fig. 26  Comparison of the distribution of current solutions for ZDT6 
(20 pop, 200 gen.) Fig. 27  Comparison of the distribution of current solutions for knap-

sack (100 pop, 10,000 gen.)

Table 2  Number of non-dominated solutions in Pareto Front (ZDT 
test suite: 20 pop, Knapsack: 100 pop)

Test problem Conventional method Proposed 
method

ZDT1 20 20
ZDT2 20 20
ZDT3 20 20
ZDT4 20 20
ZDT6 20 20
Knapsack 17 35
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Fig. 28  Comparison of the 
transition diagram of the shape 
of the Pareto front of ZDT4
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Fig. 29  Comparison of the 
transition diagram of the shape 
of the Pareto front of KP
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method, it is believed that effective offspring for improved 
spread and uniformity of the solution distribution were gen-
erated by mating the solutions at the ends of Rank1 and 
Rank2.

Comparison of Pareto Front Shape Transitions

Figures 28 and 29 show the changes in the shape of the 
Pareto front as the number of generations increases with 
respect to the ZDT4 and knapsack problems, for which the 
proposed method achieved remarkable spreading in the 
distribution of current solutions. These graphs show the 
changes that occur before arriving at the Pareto fronts shown 
in Figs. 25 and 27 in “Comparison of the distribution of cur-
rent solutions” section, respectively.

In the case of ZDT4, the conventional method seems to 
have a strong tendency to converge on the Pareto front in the 
lower left direction for all generations. On the other hand, in 
the proposed method, in addition to the force acting in the 
lower left direction, it can be seen that there is a force acting 
so as to expand the distribution of current solutions in the 
lower right direction works after about 100 generations. This 
is thought to be because the offspring produced by mating 
the solutions at the ends of rank 1 and rank 2 worked effec-
tively in the solution search. In addition, since the number 
of non-dominant solutions reached 20 in the 175th genera-
tion, the offspring replace to the individuals in the region 
where the distribution of current solutions is dense, which 
is effective in improving the distribution uniformity of cur-
rent solutions.

On the other hand, in the case of the knapsack problem, 
there is no significant difference during the initial stages of 
the search, but from around 7000 generations, it seems that 
the proposed method has the effect of widening both ends 
of the Pareto front and the effect of making the solution 

distribution uniform. It can also be observed that the num-
ber of non-dominated solutions increases compared to the 
conventional method. In the conventional method, there 
tends to be a strong force driving convergence towards the 
Pareto front in the lower left direction, which is the same 
as in the case of ZDT4. In addition, in the conventional 
method, the solution candidates (at the 8000th generation) 
at edges found in the search process are eliminated when 
other solution candidates that dominates this individual 
are found (at the 9000th generation), so the distribution 
spread of the current solutions cannot be maintained. On 
the other hand, in the proposed method, when the offspring 
produced by mating the solutions at the edges of Rank 1 
and Rank 2 work effectively in the solution search, they 
converge toward the true Pareto front while maintaining 
the distribution spread of the current solutions.

Here, if the original NSGA-II is searching for a solu-
tion with high accuracy, applying the proposed method will 
not have any further improvement. It was also observed that 
the HV value decreased slightly depending on the initial 
value. However, the superiority of the proposed method is 
clear from the average of 31 trials, and the comparison of 
the median Pareto front also shows that it tends to effec-
tively improve the spread and uniformity of the solution 
distribution.

The Experiments on Tri‑objective Optimization Problems

Here, we confirm the effectiveness of increasing the number 
of objectives from 2 to 3 for knapsack problems where it is 
difficult to maintain the distribution of solutions during the 
search process.

1. Comparison of HV and MS values

Fig. 30  The relationship between the number of generations and the 
HV value for knapsack problem (300 individuals)

Fig. 31  Comparison of HV and MS values for Knapsacks (2000, 
4000, 6000 and 10,000th generations)
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  Figure 30 shows the relationship between the num-
ber of generations and the HV value for the knapsack 
problem when (m, k) = (3, 2). We set the number of gen-
erations up to 10,000 and compared the cases where 
the number of individuals is 300. For the HV and MS 
values, we plotted the average of 31 trials. Figure 31 
show the HV and MS values of the knapsack problem 
at the 2000th, 4000th, 6000th and 10000th generations. 
As shown in these figures, for all generations, the pro-
posed method tends to show higher HV values than 
the original NSGA-II, although the difference tends to 
decrease as the algorithms converge. However, in the 
search process of the 2000th generation, the MS value of 
the proposed method was about the same as the original 

NSGA-II. In other words, the proposed method shows 
the effect of effectively improving diversity (improve-
ment of MS value) and comprehensive solution search 
ability (improvement of HV value) even if the number 
of objectives is increased from 2 to 3.

2. Comparison of Pareto front shape transitions
  Figure 32 shows the transition in the shape of the 

Pareto front for knapsack problems as the number of 
generations increases. Since it is difficult to confirm 
visually the diversity in the minimization problem in 
3D space, the results are shown mapped to the x–y, y–z 
and z–x planes to confirm the convergence, spread, and 
uniformity of the solution distribution. The original 
NSGA-II displays the median Pareto front of 31 trials 

Fig. 32  Comparison of the transition diagram of the shape of the 2D-Pareto front of KP
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Fig. 33  Non-dominated solutions generated for problem ZDT4 at the 3000 generations
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sorted by HV value, as plotting the average of 31 trials 
would obscure the individual trends. On the other hand, 
the proposed method displays the Pareto front when 
using the same initial value as the original NSGA-II.

  There was no significant difference during the first 
2000 generations, but from around 4000 generations, it 
seems that the proposed method has the effect of widen-
ing both ends of the Pareto front at the z–x plane, which 
has the effect of making the solution distribution uni-
form. At the 10,000th generation, it can be seen that the 
proposed method improves the spread and uniformity of 
the solution distribution in all of the x–y, y–z, and z–x 
planes compared to the original NSGA-II. In the conven-
tional method, there tends to be a strong force driving 
convergence towards the Pareto front in the lower left 
direction, which is the same tendency as in the case of 
two-objective problems.

Effect on the Spread of Solution Distribution

Here, we will consider the effect when the proposed 
method works effectively. Figure 33 compares the shape 
of the Pareto front with NSGA-II, SPEA2, ε-dominant 
MOEA [15], MOEA/D [16], and the proposed method in 
the 3000 generations when the search was started from 
the same initial population. In the comparative experi-
ment in this section, our proposed method is improved 
based on the program (in C language) downloaded from 
Deb [17] and modified for the experiments. For the other 
algorithms, evaluation experiments are conducted using 
the Platypus Library [18]. When Platypus was used, even 
if the search was started from the same initial popula-
tion, the results were different each time it was executed. 
Therefore, Fig. 33 lists and compares the results of five 
trials. From Fig. 33, it can be observed that ε-dominance 
MOEA and MOEA/D tend to be superior to NSGA-II and 
SPEA2 in terms of the spread of the solution distribu-
tion. On the other hand, NSGA-II has better convergence 
to Pareto optimal pronto than ε-dominance MOEA and 
MOEA/D. The reason for the small spread of the SPEA2 
solution distribution may be due to the fact that SPEA2 
requires a large number of generations for solution search, 
so 3000 generations may not have been sufficient. The pro-
posed improvement shows superior results to ε-dominance 
MOEA and MOEA/D in terms of the spread of solution 
distribution, and maintains the convergence of the origi-
nal NSGA-II. The proposed method does not always work 
effectively, but if it works, it can be expected to have a 
great effect on the spread of the solution distribution.

Comparison with Related Research

An approach similar to the proposed method was studied 
by Sato, who focused on controlling the balance between 
convergence and diversity in a search for solutions where 
the objective function is transformed by introducing control 
parameters to modify the dominated and non-dominated 
relation regions of candidate solutions [19]. This approach 
works effectively when suitable control parameters have 
been set. However, it is not easy to set suitable control 
parameter values unless the rough shape of the Pareto front 
is known in advance. The constant changes in the shape of 
the Pareto front at the beginning of the search also make it 
difficult to determine appropriate control parameter values 
in advance. On the other hand, our proposed method has 
the advantage that it does not require any prior knowledge 
of the Pareto front geometry and can be implemented with 
only a small modification to the original NSGA-II program.

Another paper [20] describes the use of Pareto partial 
dominance in a study that focuses on countermeasures to 
be used when search using dominance/non-dominance rela-
tions does not work as effectively in a similar manner to 
the proposed method. This is a two-step NSGA-II method 
that cuts out partial multi-objective problems from many 
objectives to address the problem whereby, in multi-objec-
tive optimization problems with four or more objectives, 
almost all the solution candidates are of Rank 1, and the 
search for solutions using dominance/non-dominance rela-
tions does not work effectively. This method is thought to be 
effective when there are four or more objectives, but when 
applied to a multi-objective problem with fewer objectives, 
a single objective problem will be generated. It also requires 
much more computation time than the original NSGA-II. 
Furthermore, algorithms with better search capability, such 
as MOEA/D and NSGA-III [21], have been proposed for 
many-objective optimization problems with more than four 
objectives. On the other hand, our proposed method is also 
effective for multi-objective optimization problems where 
there are three or fewer objectives, and can easily combined 
with algorithms such as [22] that focus on improving con-
vergence to the Pareto front.

Another method called Cone ε-dominance MOEA has 
also been reported [23]. This is an improved version of 
ε-dominance that is effective at improving the bias of the 
solution distribution and ensuring uniformity in the finally 
obtained rank 1 solution group. In [23], the ZDT and the 
DTLZ families are used as benchmark problems, and the 
results show that the uniformity of the solution distribution 
is significantly improved compared to the original NSGA-II. 



 SN Computer Science (2022) 3:432432 Page 20 of 21

SN Computer Science

On the other hand, since additional calculation is required 
for all non-dominated solutions, its worst-case computa-
tional load is O((mN)2), where m is the objective number 
and N is the number of individuals. As a result, when the 
number of individuals increases, the increase in calculation 
time cannot be ignored. On the other hand, the proposed 
method can be expected to increase the number of new rank 
1 solutions in the process of solution search to widen the 
solution distribution and to improve the uniformity of the 
solution distribution. In addition, it can be implemented 
with a slight program modification to the original NSGA-II 
and has the advantage of low calculation cost. The proposed 
method does not preclude the use of Cone ε-dominance, and 
the two techniques can be used in combination.

In this study, we evaluated the proposed method using 
the ZDT test suite and a two-objective constrained knapsack 
problem. However, in the future it will also be, necessary to 
evaluate using three or more objective test problems such 
as DTLZ test suite [24] and WFG test suite [25]. A more 
detailed comparison with related studies such as SPEA2, 
ε-dominance MOEA, Cone ε-dominance MOEA is also 
important. Furthermore, this time, the experiment was con-
ducted without changing the reference point values of the 
previous experiment, but there is a paper [26] that the solu-
tion accuracy greatly depends on the reference point value. 
Therefore, an evaluation experiment with different reference 
points is also necessary.

Conclusions

In this paper, we have proposed a method whereby, in the 
NSGA-II evolutionary multi-objective optimization algo-
rithm, some of the dominated solutions outside Rank 1 that 
would normally be culled during the search process are 
instead preserved and actively used for genetic operations, 
which may be an effective way of actively improving diver-
sity. More exactly, we have proposed a method that uses the 
offspring produced by mating the solutions at the edges of 
Rank 1 and Rank 2, in the solution search. Using the typical 
ZDT test suite and a two-objective constrained knapsack 
problem, we have shown that the proposed method is effec-
tive in increasing the hyper-volume value in the early stages 
of the search. We also may show that the proposed method 
can helps to increasing the number of non-dominated solu-
tions when the number of non-dominated solutions is less 
than the population size, and to improve the uniformity of 
the solution distribution when the number of non-dominated 
solutions is larger than the population size.

In the future, it will be necessary to evaluate using three 
or more objective test problems such as DTLZ test suite 

and WFG test suite, and A more detailed comparison with 
related studies is also important.
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