
Vol.:(0123456789)

SN Computer Science (2022) 3: 405
https://doi.org/10.1007/s42979-022-01288-6

SN Computer Science

ORIGINAL RESEARCH

Real‑Time Heuristic‑Based Detection of Attacks Performed on a Linux
Machine Using Osquery

Sarfaraz Ahamed1 · Ramanathan Lakshmanan2 

Received: 29 April 2022 / Accepted: 1 July 2022 / Published online: 28 July 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
With the increase in Unix-based operating system for web servers and IoT devices, it has become crucial to detect attacks
that are performed on these critical devices. Detection can be done at multiple layers of David Bianco's Pyramid of Pain
[http://​detect-​respo​nd.​blogs​pot.​com/​2013/​03/​the-​pyram​id-​of-​pain.​html] which consists of the following layers: TTPs, Tools,
Network/Host Artifacts, Domain Names, IP Address, and Hash Values. As majority of recent work focuses on machine
learning to help detect attack, our focus of this paper is detection of attacks predominantly at the TTPs, Tools, and Network/
Host Artifacts levels using heuristic-based detection. This will allow us to provide detection in depth to machine learning
models by detecting known bad that is sometimes missed by machine learning models. Using osquery, we were able to cre-
ate a real-time heuristic-based detection script for Linux. This script takes in each log from the osquery and tries to match
against various conditions to detect initial connections, lateral movement, and privilege escalation.

Keywords  Heuristic · Real-time detection · Unix · Attacker’s behaviour · Host-based intrusion detection · HIDS

Introduction

The internet has been built on trust; if each device and user
do what they are allowed to do, then there would be no
breach of trust and thus no need of the field of cybersecu-
rity. It is when this trust is broken and misused, there is a
need for detection, prevention, policies, and more. This trust
is broken by attackers that are driven by various kinds of
motivation. Some of them are for money, to show others that
can control other’s machine, and for political and ideologi-
cal reasons. There has been a rise in the use of Unix-based
system, but, respectively, there has not been a growth in

detection and response solutions for Unix-based system, this
has caused those who break the trust to go about undetected.
Before moving into how these attackers who break the trust
can be detected, let’s see the two types of attacks that these
attackers perform on a Unix machine.

The first kind of attack is network-based attacks. In this
type of attack, attackers try to break the trust using differ-
ent types of network protocols. One of the most common
types of attack in this category is brute-forcing. The attacker
might try to exploit known vulnerabilities to get access to the
machine, brute-force web login pages, open RDP ports, open
ftp ports, open SSH ports, and more. Using brute-forcing
the attackers want to get inside the network and machine
where they have no access being in, thus breaking the trust.
Another kind of attack that is performed is Denial of Ser-
vice (DoS) and Distributed Denial of Service (DDoS). This
kind of attack is done by opening multiple connections to
any service, in a limited period, than what the service can
handle. This cause the service to be not accessible for other
users, thus the name.

The second kind of attack is endpoint-based attack. In this
type of attack, the attackers that get access into some unau-
thorized machine can perform some tasks as the users of the
machine. This requires that they have access to the machine
in the first place. This kind of attack includes accessing

This article is part of the topical collection “Predictive Artificial
Intelligence for Cyber Security and Privacy” guest edited by Hardik
A. Gohel, S. Margret Anouncia and Anthoniraj Amalanathan.

 *	 Ramanathan Lakshmanan
	 lramanathan@vit.ac.in

	 Sarfaraz Ahamed
	 sarfarazahamed2k@gmail.com

1	 Department of Computer Science and Engineering, Vellore
Institute of Technology, Vellore, India

2	 Department of IoT, Vellore Institute of Technology, Vellore,
India

http://orcid.org/0000-0002-1532-5495
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01288-6&domain=pdf

	 SN Computer Science (2022) 3: 405405  Page 2 of 10

SN Computer Science

private information stored in the system, escalating their
privileges to get access into a user with more permission,
exfiltrating sensitive information, and more.

Modern research on host-based intrusion detection sys-
tems focusses primarily on machine leaning techniques to
identify and detect malicious activity. In papers [1–5] dis-
cussed below, machine learning models are used to create
a model using datasets created to provide a way to detect
malicious activity. This approach is very useful in detecting
threats, but it does not give a detection rate of 100%. Hence
an approach of detection in depth can be used with machine
learning-based detection and heuristic-based detection. This
approach of detection in depth allows each model to detect
what each model is known best to detect; heuristic-based
detection for detecting known bad and machine learning
models for detection new variations of attacks.

Syslog does not provide sufficient visibility into a Unix
machine to detect initial connections, privilege escalation,
and lateral movement. To get sufficient visibility, osquery
from Meta is a good solution. Osquery is an operating
system instrumentation agent that provides a unique and
refreshing approach to security. It delivers a single-agent
solution using a universal query language to collect rich
datasets for multiple use cases. Osquery simplifies the pro-
cess of understanding your infrastructure by exposing an
operating system as a high-performance relational database
[6]. Using osquery we can schedule queries that will run
at a fixed interval of time to query the operating system
for specific actions performed in it, so that we can detect
attacker’s behaviour, both network-based attacks to and from
the victim machine and also endpoint-based attacks in the
machine itself.

Related Work

Literature Review

The literature review of datasets is from the previous
10 years. There were 4 datasets that were created from 2012
for detecting attacks. From the 4 datasets, 3 of the data-
sets focus on detecting network-based attack and one data-
set focuses on detecting endpoint-attacks based on system
trace call.

Dataset Name: CSE‑CIC‑ IDS‑2018 [7, 8]

Created by: University of New Brunswick
Year Created: 2018
Description: This dataset consists of 80 features with a

wide range of attacks such as Brute force, Portscan, Botnet,
Dos, DDoS, Web attacks, and Infiltration. The network traf-
fic was captured for the duration of capture of 5 days with

an attack infrastructure of 4 PCs, 1 router, 1 switch and a
victim infrastructure of 3 server, 1 firewall, 2 switches, 10
PCs. Network profiles were used to generate the dataset in
a specific manner, hence as networks architectures are dif-
ferent in how they are setup and used in different organiza-
tions, the behavioural patterns of network assaults are shown
here in the year of 2018. As network assaults change over
time, this dataset was created to cover the techniques that
were performed in the year of 2018 and as an inundation
from the previous year (2017). A limitation of this dataset
is that the data samples created by network flow analysis are
saved in files, and processing these files is a time-consuming
activity since each file contains a significant number of data
instances.

Dataset Name: CSE‑CIC‑IDS‑2017 [8, 9]

Created by: University of New Brunswick
Year Created: 2017
Description: This dataset consists of 80 features with a

wide range of attacks such as Brute force, Portscan, Botnet,
Dos, DDoS, Web attacks, and Infiltration. The network traf-
fic was captured for the duration of capture of 10 days with
an attack infrastructure of 50 PCs and a victim infrastruc-
ture of 420 PCs, 30 servers. Network profiles were used to
generate the dataset in a specific manner, hence as networks
architectures are different in how they are setup and used in
different organizations, the behavioural patterns of network
assaults are shown here in the year of 2017. As network
assaults change over time, the following year another dataset
was created to cover the techniques that were performed in
the year of 2018. A limitation of this dataset is that the data
samples created by network flow analysis are saved in files,
and processing these files is a time-consuming activity since
each file contains a significant number of data instances.

Dataset Name: The ADFA Linux Dataset (ADFA‑LD) [10, 11]

Created by: University of New South Wales
Year Created: 2014
Description: This dataset consists of 10 attack vectors

along with the traces of the other data instances but has a
limited range of attacks such as Zero-day attacks, Stealth
attack, C100 Webshell attack. The dataset was based on sys-
tem call traces and thus has the limitation of detecting for
zero-day attacks and malware-based attacks. This dataset is
not suitable for detecting attacks where an attacker manu-
ally tries to get initial connection, privilege escalation and
lateral movement.

Dataset Name: ISCXIDS2012 [12, 13]

Created by: University of New Brunswick

SN Computer Science (2022) 3: 405	 Page 3 of 10  405

SN Computer Science

Year Created: 2012
Description: This dataset consists of detection of attacks

such as DoS, DDoS, Brute-flows force, Infiltration. This
dataset was constructed with IP flows that consist of net-
work scenarios with intrusive activities and labelled data
instances. The data captures network traffic of protocols such
as HTTP, SMTP, SSH, IMAP, POP3, and FTP to detect net-
work-based attacks. This dataset has the limitation of detect-
ing network level attacks and thus cannot detect attacks that
are happening inside of a host Unix machine as it does not
detect and capture any logs of the machine.

Early Detection of Host‑Based Intrusions in Linux Environment
[1]

This paper studies host-based intrusion detection systems
(HIDSs) that have been utilizing the Australian Defence
Force Academy Linux Dataset (ADFA-LD). HIDSs have
also been subjected to a variety of machine learning tech-
niques to improve detection performance for high accuracy
and low false alarm rate. However, the practical implementa-
tion of HIDS for real-time intrusion detection receives less
attention. To solve this restriction, we present a machine
learning-based HIDS that can perform early intrusion detec-
tion using the same ADFA-LD dataset. Only a small number
of system calls, invoked by programs early in their execu-
tion, are evaluated for intrusion detection in the proposed
HIDS. The results of the experiments reveal that it is pos-
sible to achieve detection performance that is comparable
to techniques that utilize all system calls invoked during the
whole execution of programs.

Evaluating Host‑Based Anomaly Detection Systems:
A Preliminary Analysis of ADFA‑LD [2]

This paper studies host-based intrusion detection systems
(HIDSs), particularly anomaly-based HIDSs, which have
gotten a lot of attention recently. However, due to the sig-
nificant advancement of computer systems, the previous data
sets utilised for HIDS assessment have lost much of their
relevance over time. To address this need, this paper utilizes
the ADFA Linux data set (ADFA-LD) was published. This
paper conducts a preliminary investigation of ADFA-LD
in this work to extract important information for designing
new host-based anomaly detection systems. Some common
parameters, such as length, common pattern, and frequency,
are analysed specifically against ADFA-LD, in accordance
with the community's general concerns. The authors created
a KNN-based HIDS that to be tested using ADFA-LD. The
experimental findings reveal that, while acceptable perfor-
mance for a few types of attacks may be achieved, there

is still a long way to go in completely understanding the
complicated behaviour of a modern computer system and,
ultimately, realising more intelligent HIDSs.

A Modern Implementation of System Call Sequence‑Based
Host‑Based Intrusion Detection Systems [3]

This paper discussed the fact that researchers in the syscall
HIDS arena have built several complicated and powerful
syscall-based models to act as anomaly detectors, matching
advances in the machine learning community. These models
usually have a high degree of accuracy while focusing on
reducing the number of false positives. However, this paper
shows that with each iteration of the suggested model, the
industry moves further away from the context in which these
models are designed to function. Further, the implementa-
tion space for anomaly detection models is shrinking as ker-
nels grow more elaborate and hardened. Furthermore, due
to the fast progress of operating systems and the resulting
complexity, datasets that are decades old are no longer rel-
evant. This paper seeks in evaluating the latest Linux kernel
5.7.0-rc1, and to bridge the gap between theoretical models
and their intended application settings in this research. The
authors look at the viability of syscall-based HIDS in current
operating systems as well as the limits that HIDS developers
face. They address how recent kernel improvements have
rendered the traditional syscall trace gather method of con-
structing syscall table wrappers obsolete and offer a new
strategy for generating data and positioning our detection
model. Finally, they present preliminary findings from their
model, which basically demonstrate that, depending on their
complexity, in-kernel machine learning models are possible.

Threat Detection and Response in Linux Endpoints [4]

This paper demonstrates that using open-source technologies
like Osquery and Elastic for building a host-based intrusion
detection. The authors also present an in-house designed
Endpoint Detection and Response (EDR) for Linux systems.
Further, the authors state that the advantage of developing
in-house EDR tools compared to commercial EDR solutions
is that it gives both the expertise and the technological capa-
bilities to detect and analyse security events. Furthermore,
they go through the tool's design and the benefits it provides.
In the proposed system, all endpoint logs are collected on a
single server, which we use to do correlation between events
on multiple endpoints and automatically detect risks like
as pivoting and lateral movements. Lastly, they discuss the
various types of attacks that our tool can identify.

	 SN Computer Science (2022) 3: 405405  Page 4 of 10

SN Computer Science

Deep‑Hook: A Trusted Deep Learning‑Based Framework
for Unknown Malware Detection and Classification in Linux
Cloud Environments [5]

This paper discusses that the fact that antivirus software
and even more sophisticated malware detection technolo-
gies, have limits when it comes to identifying new, undis-
covered, and elusive malware. The authors present Deep-
Hook, a trusted framework for detecting unknown malware
in Linux-based cloud settings, in this study. Deep-Hook uses
a trustworthy method to hook the VM's volatile memory and
obtain the memory dump to find malware footprints while
the VM is running. The memory dumps are converted into
visual pictures, which are then examined by a convolu-
tional neural network (CNN) classifier. The papers show an
accuracy of up to 99.9% in their experimental assessment
results that show Deep-ability Hook's to identify and classify
unknown malware (including evasive malware like rootkits)
quickly, efficiently, and correctly.

Design and Implementation of an Intrusion Detection System
Using Extended BPF in the Linux Kernel [14]

This paper examines the content of packet headers and pay-
loads to identify network breaches to produce an intrusion
detection system (IDS). Previously, an IDS, such as Snort, a
popular open-source IDS, was used with traditionally built
as a software running in user space on a hardware server.
With the inclusion of Extended BPF (eBPF) in the Linux
kernel, the authors suggest that it is now possible to effec-
tively inspect and filter incoming packets directly in the ker-
nel. The paper develops and constructs an IDS with two sec-
tions that function together. The Linux kernel is used for the
first section. It employs eBPF to do quick pattern matching
to pre-drop many packets that are unlikely to fit any rule. The
user space is where the second phase takes place. It looks
over the packets left by the first portion to see which rules
match them. The authors experimented using a modified ver-
sion of Snort's registered ruleset that reveals that their IDS
system can beat Snort's maximum throughput by a factor of
three under many of the scenarios evaluated.

Proposed Work

For building a host-based intrusion detection system (HIDS)
for Linux using osquery, the first step is to configure the
osqueryd to log from certain number of tables with a fre-
quency. This will ensure that the osquery daemon runs the
query at the interval set and log its results in /var/log/
osquery/osqueryd.results.log file.

Once the logging has been started, attacking the machine
with various techniques allows the osquery daemon to log
the activities through the tables queries to the log file.

This log file is then passed onto a python script that will
check for any addition of log lines into the file and perform
a sequence of checks using regular expression to check if the
log is malicious in nature. If it is then it logs into a log file
corresponding to the nature of its activity.

7 modules for HIDS system using osquery:

A)	 How osquery is configured
B)	 What logs are collected
C)	 What vulnerabilities are exploited
D)	 How lateral movement and privilege escalation is per-

formed
E)	 How to detect initial connections and sessions
F)	 How to detect lateral movement
G)	 How to detect privilege escalation

Module Description

A) How osquery is configured

The logs generated by osquery is saved in /var/log/osquery/
directory and the logger plugin is the default, filesystem.

To query using event-based tables, disable_events and
disable_audit is set to false.

The number of worker threads is set to 10, as to allow the
osquery to query simultaneously.

The host_identifier is set to hostname, so that the same
config files can be set on all machines where logging has
to be done and also so that when these logs are aggregated
from various machine, we know which logs belong to which
machine.

The enable_bpf_events is set to true so that bpf tables can
be queried. However, these only show log those events that
are added, and not those events that are logged.

The enable_syslog is set to true so that syslog events can
be queried.

The enable_file_events is set to true so that any file modi-
fications that happen in specific directories can be identified.

The audit_allow_process_events is set to true so that pro-
cesses that run can be analysed and checked for any suspi-
cious activity.

B) What logs are collected

There are a few logs that are collected:

(1)	 Logs from bpf_socket_events table to identify connec-
tions from and to the target vulnerable VM

SN Computer Science (2022) 3: 405	 Page 5 of 10  405

SN Computer Science

(2)	 Logs from process_open_sockets table to identify all
active connections to and from the vulnerable VM

(3)	 Logs from file_events table to identify any and all file
actions that occurred in a set of files or in a set of file
paths and their children directories

(4)	 Logs from process_events to identify and all process
that run on the target vulnerable VM

(5)	 Logs from syslog_events to identify sessions that are
created on the target vulnerable VM

(6)	 Logs from processes table to identify any running
processes that have been created from commands run
inside of a docker container

C) What vulnerabilities are exploited

The vulnerabilities exploited to get a reverse shell are:

(1)	 Default credentials used to login to apache tomcat
server admin console

(2)	 Get bash, dash, rbash, or sh reverse shells or bind shells
or meterpreter shell

D) How lateral movement and privilege escalation
is performed

The privileges/vulnerabilities for lateral movement were
simulated as follows:

•	 Non-root user part of docker group—This is part of
intended functionality, but this issue is raised if an
attacker is able to get access user part of docker group.

Using the -v parameter to mount host directories onto
the docker allows changing of contents of any file in
the host system.

•	 Lateral Tool Transfer (T1570)—This involves the trans-
fer of tools such as Linux privilege escalation scripts and
malicious scripts.

Some of the different ways to escalating privileges from
getting access to host file from inside of docker are:

(1) Abuse Elevation Control Mechanism: Setuid
(T1548.001)

SUID bit can be set on a variety of tools available on the
machine, which can then be used by www-data user to esca-
late their privileges. A list of all the tools that can be used
for this purpose is given in https://​gtfob​ins.​github.​io/#+​suid.

(2) Abuse Elevation Control Mechanism: Sudo and Sudo
Caching (T1548.003)

This way of privilege escalation is done by giving a
particular user to run certain tools as root using sudo. This
requires that these permissions be given in a special file
known as /etc./sudoers. A list of all the tools that can be
used for this purpose is given in https://​gtfob​ins.​github.​
io/#+​sudo. Adding “www-data ALL = (ALL) NOPASSWD:
ALL” in /etc./sudoers gives www-data user to run all tools as
root using sudo without inserting their password.

(3) Scheduled Task/Jobs—Systemd Timers
(T1053.006 + T1057)

This can only be done using CVE-2020–27,352 as the fol-
lowing commands need to be run as root: “systemctl enable
systemdprivesc.timer” and “systemctl start systemdprivesc.
timer”. Here I am creating a new systemd timer and enabling
and starting it so that this timer runs the bash command
provided to get a reverse shell.

(4) Scheduled Task/Jobs—Cron (T1053.003 + T1548.001)

Cron jobs are a type of scheduled tasks in Unix environ-
ment where it will run the command specified at the given
condition. Here /bin/bash is copied to /tmp directory and
SUID is added to it every second.

(5) Hijack Execution Flow: Dynamic Linker Hijacking
(T1574.006)—LD_PRELOAD

Setting up of LD_PRELOAD and using it for privilege
escalation is given in https://​www.​hacki​ngart​icles.​in/​linux-​
privi​lege-​escal​ation-​using-​ld_​prelo​ad/. It requires that /etc./
sudoers be edited where a user is given sudo permissions and
that LD_PRELOAD environment is added.

(6) Creating of a new local root account (T1136.001)—
Can be done using all three methods

This can be done by appening a formatted line into /etc./
passwd file. One way of adding a new low user with root
privileges is using script given in https://​flast​101.​github.​io/​
docker-​prive​sc/. Another way is by running following com-
mand adds a local user with no password, who can imper-
sonate the root user.

(7) Account Manipulation—SSH Authorized Keys
(T1098.004)

This requires that the SSH authorized keys be created and
adding public key in.ssh folder of the user wanting to imper-
sonate. Also, this requires a openssh-server be installed as
the target vulnerable VM does not have it.

https://gtfobins.github.io/#+suid
https://gtfobins.github.io/#+sudo
https://gtfobins.github.io/#+sudo
https://www.hackingarticles.in/linux-privilege-escalation-using-ld_preload/
https://www.hackingarticles.in/linux-privilege-escalation-using-ld_preload/
https://flast101.github.io/docker-privesc/
https://flast101.github.io/docker-privesc/

	 SN Computer Science (2022) 3: 405405  Page 6 of 10

SN Computer Science

(8) LXD—Can be done only using CVE-2020–27,352

As www-data user is part of lxd group, although lxd
tool is not installed on the target vulnerable VM. We can
use install lxd, therefore, only CVE-2020–27,352 is only
possible.

(9) Modify Authentication Process—Pluggable Authen-
tication Modules—pam_unix.so (T1556.003 + T1570)

pam_unix.so can be made in a separate ubuntu vm using
the following github repo: https://​github.​com/​zephr​ax/​linux-​
pam-​backd​oor. Downloading this.so file and configuring
allows us to use to escalate our privileges.

(10) Event Triggered Execution—Unix Shell Configura-
tion Modification (T1546.004)

When root user runs bash, then /root/.bashrc is loaded
by default. In this file location, we can put a one-liner bash
reverse shell to get a reverse shell when the root user runs
bash.

According to https://​attack.​mitre.​org/​techn​iques/​T1546/​
004/, some other files that can be used for similar effect are: /
etc./profile, /etc./profile.d, ~ /.bash_profile, ~ /.bash_login, ~ /.
profile, ~ /.bash_profile, and ~ /.bash_logout.

(11) Setting and misusing capabilities

Setting up capabilities allows a non-root user to use
those capabilities. Here we are setting up capabilities for
python3.9 and misusing it to escalate our privileges.

E) How to detect initial connections and sessions

There are three sources of logs that are used to analyse for
connections and sessions:

(1) bpf_socket_events table
Logs generated using this method where the family is 2
gives a list of network connections. Using logs generated
from this, we can identify open ports, bind connections,
reverse connections, downloading of files and other con-
nections.
One major drawback of the logs generated by this method
is that they can’t log meterpreter shells and reverse shells
generated from meterpreter shells. To overcome this
issue, we use process_open_sockets table with processes
table.
Open ports can be identified in these logs where local_
address is “0.0.0.0” and the remote_address is not listed.
This can help us to detect if there are any ports that have
been opened by any webserver or ssh or for bind connec-

tions or for any other purpose. This is the first check that
is done which acts asa a precursor to bind connections.
Bind connections can be identified using this method
when the local_address is “0.0.0.0”, but the remote_
address should be listed. This is done after open ports
are checked for as all those events where remote_address
is not listed cannot be a connection.
Reverse connections can be identified using this method
when the local_address is “0.0.0.0”, the remote_address
is not listed and the path listed is one of the following: '/
usr/bin/nc', '/usr/bin/telnet', '/usr/bin/bash', '/usr/bin/dash',
'/usr/bin/sh', '/usr/bin/rbash', and '/usr/bin/perl'. The multi-
ple values to check for the path is given as a reverse con-
nection can be initiated using anyone of these tools. One
drawback of these logs regarding reverse shells is that it
cannot identify reverse shells that have been initiated by
meterpreter shells using the “shell” command.
Downloading of files can be detected using this method
where the path is either '/usr/bin/wget' or '/usr/bin/curl'
as these are two available ways using which files can be
downloaded on the target vulnerable VM.
A list of common paths are removed from logging so that
any other interesting logs can be logged for forensics.
This list of common paths include the following: '/usr/
bin/whoopsie', '/usr/lib/firefox/firefox', '/usr/lib/systemd/
systemd-resolved', '/usr/sbin/NetworkManager', '/snap/
snapd/14066/usr/lib/snapd/snapd', and '/lib/systemd/sys-
temd-resolved' as these are run very frequently so that
when analysing logs during forensics, the process is not
hampered by unnecessary logs events.
(2) process_open_sockets table with processes table

Logs generated by joining these two tables using the pro-
cess IDs where family is 2 gives a list of active network
connections. In these types of logs, we were able to identify
the status of connection and also identify connections that
are removed.

One major drawback of these logs is that they only cap-
ture active connections. If a connection is not active when
this query is run, then it will not be able to log it. To over-
come this issue, we use bfp_socket_events table. Using logs
generated from this, we can identify meterpreter shells, open
ports, bind connections, reverse connections, and other
connections.

Meterpreter shells use a name consisting of 5 random
letters, which is a combination of capital letters and lower-
case letters. This can be checked for using regular expres-
sion. There are exceptions to this regular expression with
“https”, “cupsd” and “snapd” as these are also five letter
words that matches this regular expression. Adding an
AND logic where the name is not https gives us meterpreter
connections.

https://github.com/zephrax/linux-pam-backdoor
https://github.com/zephrax/linux-pam-backdoor
https://attack.mitre.org/techniques/T1546/004/
https://attack.mitre.org/techniques/T1546/004/

SN Computer Science (2022) 3: 405	 Page 7 of 10  405

SN Computer Science

Open ports can be identified using these logs where
local_adress are “0.0.0.0”, remote_port is “0.0.0.0” and
remote_port is 0. Here the local_port can be anything, which
will show which ports on the local machine is open.

Bind connections can be identified using these logs where
fd is 4 and the name is either one of the following: 'nc',
'telnet', 'bash', 'dash', 'sh', 'rbash', 'perl'. I have used a variety
of names as anyone of these can be used to initiate a bind
connection to an open port on the target machine. In these
types of logs, we can identify the different states of connec-
tions as they progress, this helps in forensics of when the
connection was initiated, when it was in progress and when
it was closed. However, in these logs bind connections are
not dependent on identifying open ports.

Reverse connections can be identified using these logs
where fd is 3 and the name is either one of the following:
'nc', 'telnet', 'bash', 'dash', 'sh', 'rbash', 'perl'. I have used a
variety of names as anyone of these can be used to initiate a
reverse connection to an open port on the attacker’s machine.
In these types of logs, we can identify the different states of
connections as they progress, this helps in forensics of when
the connection was initiated, when it was in progress and
when it was closed.

A concatenation of name, remote_address and remote_
port is done to identify and remove connections that are
frequently established, to ease the process of analysing these
logs at the time of forensics. These types of logs are stored
in other_connections.log for forensics purpose.

(3) syslog_events table

These types of logs are brought into osquery by configur-
ing rsyslog to forward all syslogs using the format provided
under Linux Syslog in osquery docs website. With types of
logs, we can identify the sessions that are being created for
a particular user. This is done using regular expression on
the message part of the logs received. Filtering messages
by checking for the presence of the keywords ‘session’ and
‘user’ using regular expression, gives us a list of sessions
created.

F) How to detect lateral movement

Lateral Movement that is performed in the given vulner-
able VM by moving laterally to the docker present in the
vulnerable VM. This can be achieved by an attacker after
moving on to the machine using Apache WebLogic by either
getting a reverse shell or a bind shell or a meterpreter shell.
Lateral Movement to docker container by its very nature is
not something that is a suspicious behaviour.

Lateral Movement can be identified by process_events
table as it makes a list of all the commands that are run.
The easiest way of identifying lateral movement would be to

filter out any process that have the path as docker. However,
these logs will also include those commands that are run to
see those images or containers available and more. So, to
address this issue, a regular expression can be used against
cmdline part of this log where it is starts with docker fol-
lowed by either of the following words: attach, exec and run.
These are the three keywords that can be used to laterally
move into a docker container.

This above-mentioned method is used only for identifying
that a user has moved laterally. This method is not useful in
identifying in what commands does a user run after moving
laterally into a docker container.

To identify that a user has moved laterally and to identify
the commands that the user is running inside of the docker
container, analysing the parent process ID of those process
IDs that run the command supplied by the user shows us that
a specific process is used to run the actual docker container.
Identifying this command helps us to identify that a user
is moving laterally and also the commands that the user is
running inside of the docker container. The commands that
are run inside a docker container can be logged by making
a list of all the process IDs that start a docker container or
that start a bash or sh or rbash or dash shells from within
the docker container. This command is identified by number
of regular expressions against the log from process_events
table as follows:

The first regular expression is that the current work-
ing directory (cwd) should start with “/run/containerd/
io.containerd.runtime.v2.task/moby/”.

The second regular expression is that the command line
argument of the log (cmdline) should contain “/usr/bin/
containerd-shim-runc-v2 -namespace.* -id.* -address /run/
containerd/containerd.sock|/run/containerd/io.containerd.
runtime.v2.task)”.

The third regular expression is that the command line
argument of the log (cmdline) should contain “runc–root”.

The condition for these regular expressions is that the first
expression must be satisfied, but either of the second or third
regular expression may be satisfied.

The drawback of this method is that we miss some com-
mands run by the user inside of a newly created script that is
run on the host machine using CVE-2020–27,352 (cgroups).

To overcome this drawback, we can use processes table
to check for any cmdline that includes the following path: /
var/lib/docker/overlay2/, as files created for abusing CVE-
2020–27,352 (cgroups) are stored on this path on the host
machine (ie. the above-mentioned path is a path on host
machine). This captures scripts that are created and run by
user on host machine and gives us a wider view of what is
being run by a user to check for any suspicious activity.

	 SN Computer Science (2022) 3: 405405  Page 8 of 10

SN Computer Science

G) How to detect privilege escalation

Privilege Escalation Scripts
Before moving on detecting users that trying to escalate
their privileges, we can try to identify different enu-
merations done to identify ways of escalating privileges.
To enumerate for ways to escalate ones privileges, an
attacker can run privilege escalation scripts. Multiple
ways are available to identify these scripts.
(1) Using Filename
Attackers may use scripts straight from the internet,
without changing the filename of the script to enumer-
ate. Using file_events table to detect any events on file
on the following directories: "/root/.ssh/%%", "/home/%/.
ssh/%%", "/home/%%", "/root/%%", "/tmp/%%", and "/
dev/shm/%%" were used to identify the files on whom to
check the filenames of. The following list includes a list
of some well-known privilege escalation scripts: 'bashark.
sh', 'LinEnum.sh', 'linpeash.sh', 'linux-exploit-suggester.
sh', 'linux-exploit-suggester-2.pl', 'linuxprivchecker.py',
'lse.sh', 'noir-private-i.sh', 'private-i.sh', and 'unix-privesc-
check'.
The drawback with this method is that if the filename
is modified, then this method becomes unsuccessful in
detecting these privilege escalation scripts.
(2) Using File Hash
Some attackers may use scripts straight from the inter-
net, but with a slight modification of the filename. Using
file_events table to detect any events on file on the follow-
ing directories: "/root/.ssh/%%", "/home/%/.ssh/%%", "/
home/%%", "/root/%%", "/tmp/%%", and "/dev/shm/%%"
were used to identify the files on whom to check the file
hashes of. Using the file hash, ensures that regardless of
the filename, that contents of the file are the same.
The following list includes the file hashes of the
above given filename (in no particular order):
'a7cf44139e5c86c06a99fdb01c21e37efb5c8744',
'26bbf01183c7aacf331f9ecdf694d44122e1a089',
'994b8ac7c04a2714792a2bb2f390c2257d1322ea',
'51c3176be341179418a83ec7bc2a1b89e40ad45c',
'75c306e90e3a31877a2adeb5d39072180aafb87d',
'28571c8e1107650cd1d764419e9d160d464fac0b',
'0c511357c395c7585573067316ffa7157fa1ec26',
'34abaf9a7196751dcc54876f25c6656b3835d8f8',
'2b0496aa002c9e8c6b9fb1b3a11ad5c455ec3588', and
'd3e44fc93a665a29e145fac99144be66cee8fbb5'.
The drawback with this method is that as these scripts
are updated, if the attacker uses a different version of
the same script mentioned above, the file hashes may
not match as the contents are not exactly same. Also a
slight modification in the contents of the file can result in
changing of the hash of the file.
(3) Using String Signatures

This method is the best amongst all the methods avail-
able, as this method uses yara_strings to identify if a
specific set of characters are in a file, from a file which
is added or modified in each list of paths. This is done
using yara_events table. Identifying a particular string
from the privilege escalation script and adding it in yara
that checks for either of the strings, will help us to find the
scripts even if there are some changes made to the script
or the version changes, provided that the string checked
for is not altered or deleted.
To add this yara.conf file to osqueryd, we have to insert
a comma (,) after the last pack on osquery.conf and add
the following: "yara": "/opt/edr/packs/yara.conf". Also, in
the options section of the yara.conf file, adding a comma
(,) after the last option and adding the following option to
enable yara strings: "enable_yara_string": "true".
Further, there is another way of enumerating privilege
escalation methods. This can be done using logs from
process_events table. A module from Metasploit can be
used check for different ways to escalate privileges. It
is known as “multi/recon/local_exploit_suggester”. This
module runs a sequence of commands to check for a list
of vulnerabilities when a meterpreter session is passed to
it. The issue with detecting a sequence of commands is
that if the sequence is jumbled or altered in any way then,
the detection fails.
For this reason, I have checked if a particular command
from process_event logs matches with the following
commands: lsattr -l /etc./passwd', 'grep abrt-hook-ccpp /
proc/sys/kernel/core_pattern', rep abrt-hook-ccpp /proc/
sys/kernel/core_pattern', 'uname -v', 'cat /proc/sys/user/
max_user_namespaces', 'cat /proc/sys/kernel/unprivi-
leged_userns_clone', '/usr/bin/python3 /usr/bin/apport-cli
–version', 'sh -c kill -64 $$ && id', 'docker ps', '/bin/bash
/usr/bin/ldd –version', 'dbus-send –system –print-reply
–dest = org.blueman.Mechanism –type = method_call /
org.freedesktop.Dbus.Introspectable.Introspect', '/bin/sh
-c ldd –version', '/bin/sh /usr/bin/which juju-run', '/bin/sh
-c command -v lastore-daemon && echo true', 'cat /proc/
cpuinfo', '/bin/sh -c command -v nmcli && echo true', '
grep ^ii', 'dpkg -l ntfs-3 g', 'dpkg-query –list – ntfs-3 g',
'grep ^ID = /etc./os-release', '/bin/uname -r', 'cat /proc/sys/
kernel/yama/ptrace_scope', 'cat /proc/sys/kernel/yama/
ptrace_scope', "/bin/sh -c test -x '/reptile/reptile_cmd' &&
echo true", '/bin/sh -c command -v bash && echo true', "/
bin/sh -c test -x '/usr/local/Serv-U/Serv-U' && echo true",
and 'sudo –version', 'id -un', 'lsattr'.
I have tried my best to keep only that commands that
don’t start with “/bin/sh -c” as these can be changed to
“/bin/bash -c” or “/bin/rbash -c” or “/bin/dash -c”. Also,
a few commands like “uname -m” and “uname -r” are
removed from the above list as these commands were

SN Computer Science (2022) 3: 405	 Page 9 of 10  405

SN Computer Science

seen in the logs even when I did not run it. Hence, to
decrease false positive, the commands were removed.
yara_events can also be run to identify for CVE-2020–
27,352 (cgroups) by identifying for specific strings in the
file created regardless of the name of the file create as
we know of the location of where the file is stored on the
host machine. The path location is “/var/lib/docker/over-
lay2/%%”. The %% symbol means that the yara_events
will look at files in this directory and their subdirectories.
Meterpreter Payload file
Using file_events table, which generates hash of a file
created, we can check if the hash matches to the sha1 hash
of a meterpreter payload, c324913b88f2ce7a043b8d1b-
d97e93be40860d58.
Another better way to check for starting or containing or
ending hex strings using yara_events table.
Detecting Privilege Escalation
As seen from Sect. 1 that there are numerous ways and
variations of these ways for an attacker to escalate their
privileges. Hence, creating rules that perfectly fit each
variation is not possible. Hence, the approach undertaken
is to better identify different ways regardless of the vari-
ations that are used.
This is done after detecting commands that are run inside
the docker container or initiated by a command in docker
container.
(1) Detecting Abuse of Elevation Control Mechanism:
Setuid
As setting SUID bit requires running “chmod + x …”,
we can detect usage of chmod by from within the docker
container. This is done using check_docker function.
(2) Detecting Abuse of Elevation Control Mechanism:
Sudo and Sudo Caching
As setting up this requires modification of /etc./sudoers
file, we can identify if any command run within docker
container uses this file. This is done using check_docker
function.
(3) Detecting Scheduled Task/Jobs—Systemd Timers
As this requires that.timer and.service file be added into
/usr/lib/systemd/system/ directory, we can look out for.
timer and.service. This is done using check_docker func-
tion.
(4) Detecting Scheduled Task/Jobs—Cron jobs
As this requires that crontab command be run, we can
filter for this keyword from the commands that are run
inside the docker container or initiated by a command in
docker container. This is done using check_docker func-
tion.
(5) Detecting Hijack Execution Flow: Dynamic Linker
Hijacking—LD_PRELOAD
As this requires that /etc./sudoers be edited where a user
is given sudo permissions and that LD_PRELOAD envi-

ronment is added, we can check for any the mention of
the file name and also for LD_PRELOAD. This is done
using check_docker function.
Detection of Creating of a new local root account
As this requires that /etc./passwd file be appended with
or manipulated, we can check for the mention of /etc./
passwd file from the commands that are run inside docker
containers. This is done using check_docker function.
(6) Detection of Account Manipulation—SSH Author-
ized Keys
As this requires that ssh authorized keys be added in.ssh
folder of the user that they want to access using ssh-
rsa, we can check for any command run inside docker
container that have these two keywords in it. Also, as
openssh-server can be checked for in the commands run
inside of docker container. This is done using check_
docker function.
(7) Detection of privilege escalation using lxd
As this requires that lxd to be installed and can only be
done using CVE-2020–27,352. So, checking for lxd and
lxc in commands that are run from a docker container.
This is done using check_docker function.
(8) Detection of Modify Authentication Process—Plug-
gable Authentication Modules—pam_unix.so
As this uses a particular location to which the.so file
is copied, we can check for the file location “/usr/lib/
x86_64-linux-gnu/security/” in the commands that are
run inside the docker container. This is done using check_
docker function.
(9) Detection of Event Triggered Execution—Unix Shell
Configuration Modification
As some of the files where this misuse can happen are: ~ /.
bashrc, /etc./profile, /etc./profile.d, ~ /.bash_profile, ~ /.
bash_login, ~ /.profile, ~ /.bash_profile, and ~ /.bash_log-
out, so we can check if these paths are listed in any com-
mand that is run inside of docker container. This is done
using check_docker function.
(10) Detection of Setting Up of Capabilities

As setcap command is required to set capabilities, this
command can used to identify for any setting up of capa-
bilities from within a docker container. This is done using
check_docker function.

Conclusion

Host-based intrusion detection system using osquery can
be used to detect attacks that are network-based attacks
used to get initial access and detect endpoint-based
attacks, such as lateral movement to docker container and
privilege escalation. This help us to detect attack that are

	 SN Computer Science (2022) 3: 405405  Page 10 of 10

SN Computer Science

not only network-based, but also host-based attacks. Heu-
ristic method of detecting attacks from osquery provides
visibility for a variety of attacks. This method detects open
ports, bind shells, reverse shells, and meterpreter shells in
the category of initial access. In addition, this method can
detect lateral movement into a docker container. Further, it
can detect and check for malicious commands run inside of
the docker container, this allows us to detect any changes
done to the host machine from inside of the docker con-
tainer for privilege escalation.

Funding  This study was not funded by anyone.

Declarations 

Conflict of Interest  The authors declare that they have no conflicts of
interest.

Ethical Approval  This article does not contain any studies with human
participants or animals performed by any of the authors.

References

	 1.	 Zhang X, Niyaz Q, Jahan F, Sun W. Early detection of host-based
intrusions in Linux environment. IEEE Int Conf Electro Info
Technol (EIT). 2020;2020:475–9. https://​doi.​org/​10.​1109/​EIT48​
999.​2020.​92082​45.

	 2.	 M. Xie and J. Hu, "Evaluating host-based anomaly detection sys-
tems: A preliminary analysis of ADFA-LD," 2013 6th Interna-
tional Congress on Image and Signal Processing (CISP), 2013,
pp. 1711–1716, doi: https://​doi.​org/​10.​1109/​CISP.​2013.​67439​52.

	 3.	 Byrnes J, Hoang T, Mehta NN, Cheng Y. A modern implementa-
tion of system call sequence based host-based intrusion detec-
tion systems. In: 2020 Second IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems and Applica-
tions (TPS-ISA), 2020, pp. 218–225, doi: https://​doi.​org/​10.​1109/​
TPS-​ISA50​397.​2020.​00037.

	 4.	 Agarwal S, Sable A, Sawant D, Kahalekar S, Hanawal MK. Threat
detection and response in Linux endpoints. In: 2022 14th Inter-
national Conference on COMmunication Systems & NETworkS
(COMSNETS), 2022, pp. 447–449, doi: https://​doi.​org/​10.​1109/​
COMSN​ETS53​615.​2022.​96685​67.

	 5.	 Landman T, Nissim N. Deep-Hook: A trusted deep learning-based
framework for unknown malware detection and classification
in Linux cloud environments. Neural Netw. 2021;144:648–85.
https://​doi.​org/​10.​1016/j.​neunet.​2021.​09.​019.

	 6.	 h t t p s : / / ​w w w . ​u p t y c s . ​c o m / ​b l o g / ​o s q u e​
ry-​what-​it-​is-​how-​it-​works-​and-​how-​to-​use-​it

	 7.	 https://​www.​unb.​ca/​cic/​datas​ets/​ids-​2018.​html
	 8.	 Iman S, Lashkari AH, Ali AG. Toward Generating a new intru-

sion detection dataset and intrusion traffic characterization. In:
4th International Conference on Information Systems Security
and Privacy (ICISSP), Purtogal, January 2018

	 9.	 https://​www.​unb.​ca/​cic/​datas​ets/​ids-​2017.​html
	10.	 https://​resea​rch.​unsw.​edu.​au/​proje​cts/​adfa-​ids-​datas​ets
	11.	 Creech G, Hu J. Engineering & Information Technology, UNSW

Canberra, UNSW, “Developing a High-Accuracy Cross Platform
Host-Based Intrusion Detection System Capable of Reliably
Detecting Zero-Day Attacks”, 2014 University of New South
Wales, Engineering & Information Technology, http://​handle.​
unsw.​edu.​au/​1959.4/​53218.

	12.	 https://​www.​unb.​ca/​cic/​datas​ets/​ids.​html
	13.	 Ali S, Hadi S, Mahbod T, Ghorbani AA. Toward developing a

systematic approach to generate benchmark datasets for intrusion
detection. Comput Security. 2012;31(3):357–74. https://​doi.​org/​
10.​1016/j.​cose.​2011.​12.​012.

	14.	 Wang S-Y, Chang J-C. Design and implementation of an intrusion
detection system by using Extended BPF in the Linux kernel.
J Netw Comput Appl. 2022. https://​doi.​org/​10.​1016/j.​jnca.​2021.​
103283.

	15.	 http://​detect-​respo​nd.​blogs​pot.​com/​2013/​03/​the-​pyram​id-​of-​pain.​
html

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/EIT48999.2020.9208245
https://doi.org/10.1109/EIT48999.2020.9208245
https://doi.org/10.1109/CISP.2013.6743952
https://doi.org/10.1109/TPS-ISA50397.2020.00037
https://doi.org/10.1109/TPS-ISA50397.2020.00037
https://doi.org/10.1109/COMSNETS53615.2022.9668567
https://doi.org/10.1109/COMSNETS53615.2022.9668567
https://doi.org/10.1016/j.neunet.2021.09.019
https://www.uptycs.com/blog/osquery-what-it-is-how-it-works-and-how-to-use-it
https://www.uptycs.com/blog/osquery-what-it-is-how-it-works-and-how-to-use-it
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://research.unsw.edu.au/projects/adfa-ids-datasets
http://handle.unsw.edu.au/1959.4/53218
http://handle.unsw.edu.au/1959.4/53218
https://www.unb.ca/cic/datasets/ids.html
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1016/j.jnca.2021.103283
https://doi.org/10.1016/j.jnca.2021.103283
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html

	Real-Time Heuristic-Based Detection of Attacks Performed on a Linux Machine Using Osquery
	Abstract
	Introduction
	Related Work
	Literature Review
	Dataset Name: CSE-CIC- IDS-2018 [7, 8]
	Dataset Name: CSE-CIC-IDS-2017 [8, 9]
	Dataset Name: The ADFA Linux Dataset (ADFA-LD) [10, 11]
	Dataset Name: ISCXIDS2012 [12, 13]
	Early Detection of Host-Based Intrusions in Linux Environment [1]
	Evaluating Host-Based Anomaly Detection Systems: A Preliminary Analysis of ADFA-LD [2]
	A Modern Implementation of System Call Sequence-Based Host-Based Intrusion Detection Systems [3]
	Threat Detection and Response in Linux Endpoints [4]
	Deep-Hook: A Trusted Deep Learning-Based Framework for Unknown Malware Detection and Classification in Linux Cloud Environments [5]
	Design and Implementation of an Intrusion Detection System Using Extended BPF in the Linux Kernel [14]

	Proposed Work
	Module Description
	A) How osquery is configured
	B) What logs are collected
	C) What vulnerabilities are exploited
	D) How lateral movement and privilege escalation is performed
	E) How to detect initial connections and sessions
	F) How to detect lateral movement
	G) How to detect privilege escalation

	Conclusion
	References

