
Vol.:(0123456789)

SN Computer Science (2022) 3: 367
https://doi.org/10.1007/s42979-022-01285-9

SN Computer Science

ORIGINAL RESEARCH

A Fast Parallelizable Algorithm for Constructing Balanced Binary
Search Trees

Pavel S. Ruzankin1

Received: 28 August 2021 / Accepted: 1 July 2022 / Published online: 14 July 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
We suggest a new non-recursive algorithm for constructing a balanced binary search tree given an array of numbers. The
algorithm has O(N) time and O(1) auxiliary memory complexity if the given array of N numbers is sorted. The resulting tree
is of minimal height and can be transformed into a complete binary search tree while retaining minimal height with O(logN)
time and O(1) auxiliary memory. The algorithm allows simple and effective parallelization resulting in time complexity
O((N∕s) + s + logN) , where s is the number of parallel threads.

Keywords Binary search tree · Parallel algorithm

A binary search tree (BST) is a fundamental data structure
which is widely used in applications. There is a large vari-
ety of algorithms for constructing BSTs. A first approach is
based on sequentially adding nodes to the tree. The nodes
may be added to leaves [5] or to the root of the tree [7]. A
second approach consists in reconstructing a BST from pre-
order or postorder traversals (e.g., see [1, 2] and references
therein). A third approach is based on halving the given
sorted array and recursively building the left and the right
subtrees [9]. There are also algorithms that account for the
probabilities of hitting specific nodes and try to build opti-
mal BSTs (e.g., see [4] and references therein).

There also exist algorithms that do not adhere to any of
the approaches above. The recursive algorithm in [8] con-
structs the tree by sequentially constructing perfect BSTs.
After a perfect BST is constructed, it is incorporated into the
new BST as the left subtree of the root. Then the new BST
is transformed into a perfect BST, and so on.

We present a new non-recursive algorithm for construct-
ing a binary search tree. The algorithm has O(N) time and
O(1) auxiliary memory complexity if the given array of N
numbers is sorted. We use an array-based representation
of the BST. The O(1) auxiliary memory complexity means
that, except for the resulting arrays used to store the tree, we

need O(1) auxiliary memory. If a link-based representation
is needed, then the algorithm will additionally need O(N)
auxiliary memory. The resulting BST has minimal height.
However, it may fail to be balanced in the sense of AVL
trees, i.e., the trees where the heights of the two child sub-
trees of each node differ by at most one. The new algorithm,
though being non-recursive, somewhat resembles the recur-
sive algorithm in [8]. Moreover, we can use the rotations
algorithm from [8] to make the BST complete (i.e., make all
the levels, except possibly the lowest one, completely filled)
while retaining the minimal height, which needs O(logN)
time and O(1) auxiliary memory.

As mentioned above, we assume that the given array of
N numbers is sorted. To simplify notations, we will build a
BST for the numbers 0,… ,N − 1 . This will not limit gener-
ality even when the keys are not pairwise distinct.

Our algorithm is substantially based on the binary rep-
resentation of a number. We will mark the binary numbers
with a leading zero to distinguish them from decimal ones;
e.g., 2 = 010.

First, let us consider the case when N = 2K − 1 for some
integer K ≥ 1 . In this case, the minimal-height BST is per-
fect. For example, for K = 4 , the tree is shown in Fig. 1.

Let the level of a node be the distance from the node to a
nearest leaf in the perfect BST. That is, in a perfect BST, the
leaves lie on level 0, the parents of the leaves lie on level 1,
and so on. Note that in our case the level of a node depends
on the number of the node only and does not depend on the
height of the tree.

 * Pavel S. Ruzankin
 ruzankin@math.nsc.ru

1 Sobolev Institute of Mathematics, Novosibirsk, Russia

http://orcid.org/0000-0002-5262-3037
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01285-9&domain=pdf

 SN Computer Science (2022) 3: 367367 Page 2 of 5

SN Computer Science

We see that the binary representations of nodes of level k
end with a zero and plus k ones, since subsequent nodes on
level k differ by 2k+1 . Thus, the level L(j) of a node j can be
calculated as the location of the least significant zero in the
binary representation of j.

To calculate L(j), one may use the operation of the least
significant one in a binary number, which is implemented
in many modern processor architectures [3]. There are also
built-in functions for the operation in popular compilers.
For instance, in GCC, L(j) can be computed as __buil-
tin_ffs(~j)-1 (see [6]). We assume that the binary rep-
resentation of N − 1

contains at least one zero, which is the case when N can
be represented as the number of the same unsigned integer
type as is used for indexing the cells of the given sorted
array of numbers.

However, Algorithms 1 and 2 below utilize not L(j) itself
but 2L(j) , and Algorithm 3 below can be obviously modified
to use 2L(j) instead of L(j) if needed. It is well known [3] that

or

where & is the bitwise AND operator, ∼ is the bitwise NOT
operator, −j is the negative of j treating j as a signed integer
in two’s complement arithmetic, which is common in mod-
ern processors. For instance, in R, 2L(j) can be computed as
bitwAnd((j+1L),-(j+1L)).

A node j on level k ≥ 1 has the left child j − 2k−1 and the
right child j + 2k−1 . Moreover, a node j on level k ≥ 0 has
the parent j + 2k if the binary representation of j ends with
“ 001⋯ 1 ” (ending with k ones) and the parent j − 2k if the
binary representation of j ends with “ 101⋯ 1 ” (ending with
k ones).

Thus, for the case N = 2K − 1 , we can write down the
algorithm as the following pseudocode. Below, p, l, r
denote the resulting arrays of parents, left children, and
right children, respectively. The algorithm constructs the
BST as these three arrays. t stands for the number of the

2L(j) = (j + 1)&(−(j + 1))

2L(j) = (∼ j)&(−(∼ j)),

root node. M(j) denotes the location of the most significant
one in the binary representation of j, e.g., M(01001) = 3 .
For instance, in GCC, __builtin_clz() function may
be used for computing M(j) [6]. Unlike L(j), the function
M(j) has no known representations in terms of common
bitwise operations.

Algorithm 1.

for (j in 0, . . . , N − 1)
if ((j & 2L(j)+1) = 0)

p[j]:=j + 2L(j)

else

p[j]:=j − 2L(j)

end if
if (L(j) > 0)

l[j]:=j − 2L(j)−1

r[j]:=j + 2L(j)−1

else
l[j]:= NULL
r[j]:= NULL

end if
end for

t:=2M(N) − 1
p[t]:= NULL

Now it remains to modify Algorithm 1 for the case of
arbitrary N. If we try to build a binary tree with Algo-
rithm 1, then some edges may point to missing nodes that
are greater than N − 1.

Lemma . All the edges pointing to missing nodes in the
“tree” built by Algorithm 1, except the down-right edge of
the last node if any, are located on the ascending path from
the node (N − 1) to the root in the perfect BST of the same
height.

Proof Let us have the “tree” constructed by Algorithm 1. Let
a node j, j ≠ N − 1 , of the “tree” have its down-right edge
pointing to a missing node i. We have j < N − 1 < i . Let k be
the level of the node j, and let m be the ancestor of the node
(N − 1) on level k in the corresponding perfect BST. Then
we have m ≥ j , since j < N − 1 . Besides, we cannot have
m > j since it would imply N − 1 > i . Hence, m = j , and the
ancestor of the node (N − 1) at level k − 1 in the correspond-
ing perfect BST is i since j < N − 1 < i.

Let now a node j of the “tree” constructed by Algorithm 1
have its up edge pointing to a missing node i, let k be the
level of the node j, and let m be the ancestor of the node
(N − 1) on level k in the corresponding perfect BST. Then
again j < N − 1 < i and m ≥ j , and again we cannot have
m > j since it would imply N − 1 > i . Hence, m = j.

0111

01011

01101

0111001100

01001

0101001000

011

0101

01100100

01

01000

Fig. 1 The perfect binary search tree for the binary numbers from 0
to N − 1 = 2

4 − 2

SN Computer Science (2022) 3: 367 Page 3 of 5 367

SN Computer Science

The lemma is proved.

To correct the “tree” built by Algorithm 1, it remains to
follow the descending path from the root to the node (N − 1)
in the corresponding perfect BST and merge edges point-
ing to missing nodes. Finally, the algorithm, which will be
explained below, is as follows. Below, / denotes integer divi-
sion, e.g., 1∕2 = 0.

Algorithm 2.

function P (j) :=

if ((j & 2L(j)+1) = 0) then j + 2L(j)

else j − 2L(j)

for (j = 0 to N − 1 by 2)
p[j]:=P (j)
l[j]:= NULL
r[j]:= NULL

end for
for (j = 1 to N − 1 by 2)

p[j]:=P (j)
l[j]:=j − 2L(j)−1

r[j]:=j + 2L(j)−1

end for
r[N − 1]:= NULL
t:=2M(N) − 1
p[t]:= NULL

k:=2L(t)

j:=t

while (k > 2L(N−1))
k:=k/2
if (((N − 1− t) & k) = 0)

k:=k/2
while (((N − 1− t) & k) = 0)

k:=k/2
end while
r[j]:=j + k
p[j + k]:=j

end if
j := j + k

end while

The time complexity is still O(N), since merging edges
after the for loops takes O(logN) time and O(1) auxiliary
memory.

The while loops for merging edges are explained
as follows. Traveling by the descending path from the
root node t to the node (N − 1) , we move by ±2L(j)−1

when we go from the node j to its right/left child. Thus,
N − 1 − t = A − B , where A is the binary number with 1’s
on locations m = L(j) − 1 such that the path contains the
edge from j to its right child; analogously, B is the binary
number that has 1’s on locations m such that the path con-
tains the edge from j to its left child, m = L(j) − 1 . The
path goes through the nodes > N − 1 when it contains a
subpath with the edges down right–left–left–⋯–left with
the next edge being down-right or with the last edge of
the subpath being the last edge of the path. Only the first
and the last node of the subpath are ≤ N − 1 . So we must
merge each such subpath into one edge. Let m and n be the
levels of the first and the last node of the subpath. Then
N − 1 − t will contain the following binary digits at the
locations m − 1,… , n : 100⋯ 0 − 011⋯ 1 = 00⋯ 01 . The
while loops just search for all such subpaths (all such
patterns in N − 1 − t) and connect their first and last nodes
with an edge.

Remark 1 Algorithm 2 allows effective straightforward
vectorization and/or parallelization. The only loop that
cannot be vectorized or parallelized is the loop correcting
edges pointing to nodes > N − 1 . That loop has complex-
ity O(logN) . Hence, the time complexity of the parallelized
algorithm is O((N∕s) + s + logN) , where s is the number
of parallel threads. Note that the possible parallelization is
much simpler than that for recursive algorithms.

Remark 2 If the user does not need the array of parents p,
then the array can be excluded from Algorithm 2 as well as
from Algorithm 3 below, since those algorithms never read
the values from p.

To make the tree complete while retaining the mini-
mal height, we can use the rotations algorithm from [8]
as follows.

In the algorithm below, R(j) stands for the height of
the right subtree of a node j in the BST built by Algo-
rithm 2 when the node j is reachable from the root node
by descending via down-right edges only, h is the level of
the current node, and x is the current node.

 SN Computer Science (2022) 3: 367367 Page 4 of 5

SN Computer Science

Algorithm 3.

function R(j):=
if (j = N − 1) then 0
else M(N − 1− j) + 1

x:=t
h:=L(t)
if (R(x) < h and h > 1) then

y:=l[x]
t:=y
p[y]:= NULL
l[x]:=r[y]
p[l[x]]:=x
r[y]:=x
p[x]:=y
z:=y

else
z:=x
x:=r[x]

end if
h:=h− 1

while (h > 1)
if (R(x) < h) then

y:=l[x]
p[y]:=z
r[z]:=y
l[x]:=r[y]
p[l[x]]:=x
r[y]:=x
p[x]:=y
z:=y

else
z:=x
x:=r[x]

end if
h:=h− 1

end while

Algorithm 3 needs O(logN) time since h decreases by 1
in each iteration of the while loop.

Performance of the new algorithm

In order to test performance of the new algorithm, we com-
pared it with the classical Wirth’s algorithm [9] which recur-
sively builds left and right subtree for each node, and with
Vaucher’s algorithm [8]. Rotations balancing the BST were
included into the implementation of Vaucher’s algorithm, as
well as into the implementation of the new algorithm. Recall
that all the three algorithms have linear time complexity and
build complete BSTs. All the algorithms were implemented
in R language and used array-based representations of BSTs.
We ran the three tests: for all N = 10,001, … , 20,000 ran-
domly ordered; for 1000 values of N randomly selected
without replacement from the range 100,001, … , 200,000 ;
and for 1000 values of N randomly selected without replace-
ment from the range 1,000,001, … , 2,000,000 . All the three
algorithms were run for the same choices of values of N.
No parallelization was implemented for the algorithms. The
tests were run on an AMD 3950X processor. It is to be noted
that, in the tests, the time was measured for constructing a
BST for the numbers 0,… ,N − 1 , while, in practice, the
tree may be constructed for an unsorted array of numbers, in
which case sorting of the array must be done before applying
each of the algorithms. The results of the tests are reported
in Table 1 as mean time ± standard deviation.

We see that in all the tests the new algorithm performed
at least 8 times faster than each of the other two considered
algorithms. That can be explained by the fact that the new
algorithm does not use recursive function calls which are
time-expensive. Besides, a vectorized version of the new
algorithm was tested (We might note that the vectorized ver-
sion has O(N) auxiliary memory complexity unlike the ver-
sion with loops that needs O(1) auxiliary memory).

Conclusion

We have suggested a new fast algorithm for constructing
complete binary search trees. The new algorithm has linear
time complexity like previously known algorithms, but, in
contrast to those algorithms, the new algorithm does not
use recursive function calls. The new algorithm allows
simple vectorization and parallelization. When comparing
the performance of the new algorithm with that of Wirth’s

Table 1 Execution times of the
algorithms, presented as mean
± standard deviation

Mean execution time, milliseconds

N ∈ 10,001, … , 20,000 100,001, … , 200,000 1,000,001, … , 2,000,000

Vaucher’s algorithm 22.47 ± 5.72 228.5 ± 47.2 2343 ± 458

Wirth’s algorithm 17.14 ± 4.94 172.6 ± 35.6 1769 ± 355

Algorithm 2 + Algorithm 3 0.852 ± 1.835 14.15 ± 8.42 217.8 ± 70.8

SN Computer Science (2022) 3: 367 Page 5 of 5 367

SN Computer Science

algorithm and Vaucher’s algorithm, the new algorithm
appeared to be at least eight times faster than its competi-
tors in the considered tests.

Funding The study was supported by the program for fundamental
scientific research of the Siberian Branch of the Russian Academy of
Sciences, project FWNF-2022-0009.

Declarations

Conflict of interest The author declares that has no conflict of interest.

References

 1. Aghaieabiane N, Koppelaar H, Nasehpour P. An improved algo-
rithm to reconstruct a binary tree from its inorder and postorder
traversals. J Algorithms Comput. 2017;49(1):93–113.

 2. Das VV. A new non-recursive algorithm for reconstructing a
binary tree from its traversals. In: 2010 International Confer-
ence on Advances in Recent Technologies in Communication

and Computing, Kottayam, 2010; pp 261–263. https:// doi. org/ 10.
1109/ ARTCom. 2010. 88.

 3. Find first set. Wikipedia article. https:// en. wikip edia. org/ wiki/
Find_ first_ set. Retrieved 1 Jun 2022.

 4. Gagie T. New ways to construct binary search trees. In: Ibaraki T,
Katoh N, Ono H (eds) Algorithms and computation. ISAAC 2003.
Lecture Notes in Computer Science, vol. 2906, Springer, Berlin,
Heidelberg, 2003.

 5. Knuth DE. The art of computer programming: sorting and search-
ing, vol. 3. Reading: Addison-Wesley Pub. Co; 1973.

 6. Other built-in functions provided by GCC. https:// gcc. gnu. org/
onlin edocs/ gcc/ Other- Built ins. html. Retrieved 27 Aug 2021.

 7. Stephenson CJ. A method for constructing binary search trees by
making insertions at the root. Int J Comput Inf Sci. 1980;9:15–29.

 8. Vaucher JG. Building optimal binary search trees from sorted
values in O(N) time. In: Essays in Memory of Ole-Johan Dahl,
2004; pp 376–388.

 9. Wirth N. Algorithms + data structures = programs. Englewood
Cliffs: Prentice-Hall; 1976.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ARTCom.2010.88
https://doi.org/10.1109/ARTCom.2010.88
https://en.wikipedia.org/wiki/Find_first_set
https://en.wikipedia.org/wiki/Find_first_set
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

	A Fast Parallelizable Algorithm for Constructing Balanced Binary Search Trees
	Abstract
	Performance of the new algorithm
	Conclusion
	References

