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Abstract
We suggest a new non-recursive algorithm for constructing a balanced binary search tree given an array of numbers. The 
algorithm has O(N) time and O(1) auxiliary memory complexity if the given array of N numbers is sorted. The resulting tree 
is of minimal height and can be transformed into a complete binary search tree while retaining minimal height with O(logN) 
time and O(1) auxiliary memory. The algorithm allows simple and effective parallelization resulting in time complexity 
O((N∕s) + s + logN) , where s is the number of parallel threads.
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A binary search tree (BST) is a fundamental data structure 
which is widely used in applications. There is a large vari-
ety of algorithms for constructing BSTs. A first approach is 
based on sequentially adding nodes to the tree. The nodes 
may be added to leaves [5] or to the root of the tree [7]. A 
second approach consists in reconstructing a BST from pre-
order or postorder traversals (e.g., see [1, 2] and references 
therein). A third approach is based on halving the given 
sorted array and recursively building the left and the right 
subtrees [9]. There are also algorithms that account for the 
probabilities of hitting specific nodes and try to build opti-
mal BSTs (e.g., see [4] and references therein).

There also exist algorithms that do not adhere to any of 
the approaches above. The recursive algorithm in [8] con-
structs the tree by sequentially constructing perfect BSTs. 
After a perfect BST is constructed, it is incorporated into the 
new BST as the left subtree of the root. Then the new BST 
is transformed into a perfect BST, and so on.

We present a new non-recursive algorithm for construct-
ing a binary search tree. The algorithm has O(N) time and 
O(1) auxiliary memory complexity if the given array of N 
numbers is sorted. We use an array-based representation 
of the BST. The O(1) auxiliary memory complexity means 
that, except for the resulting arrays used to store the tree, we 

need O(1) auxiliary memory. If a link-based representation 
is needed, then the algorithm will additionally need O(N) 
auxiliary memory. The resulting BST has minimal height. 
However, it may fail to be balanced in the sense of AVL 
trees, i.e., the trees where the heights of the two child sub-
trees of each node differ by at most one. The new algorithm, 
though being non-recursive, somewhat resembles the recur-
sive algorithm in [8]. Moreover, we can use the rotations 
algorithm from [8] to make the BST complete (i.e., make all 
the levels, except possibly the lowest one, completely filled) 
while retaining the minimal height, which needs O(logN) 
time and O(1) auxiliary memory.

As mentioned above, we assume that the given array of 
N numbers is sorted. To simplify notations, we will build a 
BST for the numbers 0,… ,N − 1 . This will not limit gener-
ality even when the keys are not pairwise distinct.

Our algorithm is substantially based on the binary rep-
resentation of a number. We will mark the binary numbers 
with a leading zero to distinguish them from decimal ones; 
e.g., 2 = 010.

First, let us consider the case when N = 2K − 1 for some 
integer K ≥ 1 . In this case, the minimal-height BST is per-
fect. For example, for K = 4 , the tree is shown in Fig. 1.

Let the level of a node be the distance from the node to a 
nearest leaf in the perfect BST. That is, in a perfect BST, the 
leaves lie on level 0, the parents of the leaves lie on level 1, 
and so on. Note that in our case the level of a node depends 
on the number of the node only and does not depend on the 
height of the tree.
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We see that the binary representations of nodes of level k 
end with a zero and plus k ones, since subsequent nodes on 
level k differ by 2k+1 . Thus, the level L(j) of a node j can be 
calculated as the location of the least significant zero in the 
binary representation of j.

To calculate L(j), one may use the operation of the least 
significant one in a binary number, which is implemented 
in many modern processor architectures [3]. There are also 
built-in functions for the operation in popular compilers. 
For instance, in GCC, L(j) can be computed as __buil-
tin_ffs(~j)-1 (see [6]). We assume that the binary rep-
resentation of N − 1

contains at least one zero, which is the case when N can 
be represented as the number of the same unsigned integer 
type as is used for indexing the cells of the given sorted 
array of numbers.

However, Algorithms 1 and 2 below utilize not L(j) itself 
but 2L(j) , and Algorithm 3 below can be obviously modified 
to use 2L(j) instead of L(j) if needed. It is well known [3] that

or

where & is the bitwise AND operator, ∼ is the bitwise NOT 
operator, −j is the negative of j treating j as a signed integer 
in two’s complement arithmetic, which is common in mod-
ern processors. For instance, in R, 2L(j) can be computed as 
bitwAnd((j+1L),-(j+1L)).

A node j on level k ≥ 1 has the left child j − 2k−1 and the 
right child j + 2k−1 . Moreover, a node j on level k ≥ 0 has 
the parent j + 2k if the binary representation of j ends with 
“ 001⋯ 1 ” (ending with k ones) and the parent j − 2k if the 
binary representation of j ends with “ 101⋯ 1 ” (ending with 
k ones).

Thus, for the case N = 2K − 1 , we can write down the 
algorithm as the following pseudocode. Below, p, l, r 
denote the resulting arrays of parents, left children, and 
right children, respectively. The algorithm constructs the 
BST as these three arrays. t stands for the number of the 

2L(j) = (j + 1)&(−(j + 1))

2L(j) = (∼ j)&(−(∼ j)),

root node. M(j) denotes the location of the most significant 
one in the binary representation of j, e.g., M(01001) = 3 . 
For instance, in GCC, __builtin_clz() function may 
be used for computing M(j) [6]. Unlike L(j), the function 
M(j) has no known representations in terms of common 
bitwise operations.

Algorithm 1.

for (j in 0, . . . , N − 1)
if ((j & 2L(j)+1) = 0)

p[j]:=j + 2L(j)

else

p[j]:=j − 2L(j)

end if
if (L(j) > 0)

l[j]:=j − 2L(j)−1

r[j]:=j + 2L(j)−1

else
l[j]:= NULL
r[j]:= NULL

end if
end for

t:=2M(N) − 1
p[t]:= NULL

Now it remains to modify Algorithm 1 for the case of 
arbitrary N. If we try to build a binary tree with Algo-
rithm 1, then some edges may point to missing nodes that 
are greater than N − 1.

Lemma . All the edges pointing to missing nodes in the 
“tree” built by Algorithm 1, except the down-right edge of 
the last node if any, are located on the ascending path from 
the node (N − 1) to the root in the perfect BST of the same 
height.

Proof Let us have the “tree” constructed by Algorithm 1. Let 
a node j, j ≠ N − 1 , of the “tree” have its down-right edge 
pointing to a missing node i. We have j < N − 1 < i . Let k be 
the level of the node j, and let m be the ancestor of the node 
(N − 1) on level k in the corresponding perfect BST. Then 
we have m ≥ j , since j < N − 1 . Besides, we cannot have 
m > j since it would imply N − 1 > i . Hence, m = j , and the 
ancestor of the node (N − 1) at level k − 1 in the correspond-
ing perfect BST is i since j < N − 1 < i.

Let now a node j of the “tree” constructed by Algorithm 1 
have its up edge pointing to a missing node i, let k be the 
level of the node j, and let m be the ancestor of the node 
(N − 1) on level k in the corresponding perfect BST. Then 
again j < N − 1 < i and m ≥ j , and again we cannot have 
m > j since it would imply N − 1 > i . Hence, m = j.
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Fig. 1  The perfect binary search tree for the binary numbers from 0 
to N − 1 = 2

4 − 2
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The lemma is proved.

To correct the “tree” built by Algorithm 1, it remains to 
follow the descending path from the root to the node (N − 1) 
in the corresponding perfect BST and merge edges point-
ing to missing nodes. Finally, the algorithm, which will be 
explained below, is as follows. Below, / denotes integer divi-
sion, e.g., 1∕2 = 0.

Algorithm 2.

function P (j) :=

if ((j & 2L(j)+1) = 0) then j + 2L(j)

else j − 2L(j)

for (j = 0 to N − 1 by 2)
p[j]:=P (j)
l[j]:= NULL
r[j]:= NULL

end for
for (j = 1 to N − 1 by 2)

p[j]:=P (j)
l[j]:=j − 2L(j)−1

r[j]:=j + 2L(j)−1

end for
r[N − 1]:= NULL
t:=2M(N) − 1
p[t]:= NULL

k:=2L(t)

j:=t

while (k > 2L(N−1))
k:=k/2
if (((N − 1− t) & k) = 0)

k:=k/2
while (((N − 1− t) & k) = 0)

k:=k/2
end while
r[j]:=j + k
p[j + k]:=j

end if
j := j + k

end while

The time complexity is still O(N), since merging edges 
after the for loops takes O(logN) time and O(1) auxiliary 
memory.

The while loops for merging edges are explained 
as follows. Traveling by the descending path from the 
root node t to the node (N − 1) , we move by ±2L(j)−1 

when we go from the node j to its right/left child. Thus, 
N − 1 − t = A − B , where A is the binary number with 1’s 
on locations m = L(j) − 1 such that the path contains the 
edge from j to its right child; analogously, B is the binary 
number that has 1’s on locations m such that the path con-
tains the edge from j to its left child, m = L(j) − 1 . The 
path goes through the nodes > N − 1 when it contains a 
subpath with the edges down right–left–left–⋯–left with 
the next edge being down-right or with the last edge of 
the subpath being the last edge of the path. Only the first 
and the last node of the subpath are ≤ N − 1 . So we must 
merge each such subpath into one edge. Let m and n be the 
levels of the first and the last node of the subpath. Then 
N − 1 − t will contain the following binary digits at the 
locations m − 1,… , n : 100⋯ 0 − 011⋯ 1 = 00⋯ 01 . The 
while loops just search for all such subpaths (all such 
patterns in N − 1 − t ) and connect their first and last nodes 
with an edge.

Remark 1 Algorithm  2 allows effective straightforward 
vectorization and/or parallelization. The only loop that 
cannot be vectorized or parallelized is the loop correcting 
edges pointing to nodes > N − 1 . That loop has complex-
ity O(logN) . Hence, the time complexity of the parallelized 
algorithm is O((N∕s) + s + logN) , where s is the number 
of parallel threads. Note that the possible parallelization is 
much simpler than that for recursive algorithms.

Remark 2 If the user does not need the array of parents p, 
then the array can be excluded from Algorithm 2 as well as 
from Algorithm 3 below, since those algorithms never read 
the values from p.

To make the tree complete while retaining the mini-
mal height, we can use the rotations algorithm from [8] 
as follows.

In the algorithm below, R(j) stands for the height of 
the right subtree of a node j in the BST built by Algo-
rithm 2 when the node j is reachable from the root node 
by descending via down-right edges only, h is the level of 
the current node, and x is the current node.
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Algorithm 3.

function R(j):=
if (j = N − 1) then 0
else M(N − 1− j) + 1

x:=t
h:=L(t)
if (R(x) < h and h > 1) then

y:=l[x]
t:=y
p[y]:= NULL
l[x]:=r[y]
p[l[x]]:=x
r[y]:=x
p[x]:=y
z:=y

else
z:=x
x:=r[x]

end if
h:=h− 1

while (h > 1)
if (R(x) < h) then

y:=l[x]
p[y]:=z
r[z]:=y
l[x]:=r[y]
p[l[x]]:=x
r[y]:=x
p[x]:=y
z:=y

else
z:=x
x:=r[x]

end if
h:=h− 1

end while

Algorithm 3 needs O(logN) time since h decreases by 1 
in each iteration of the while loop.

Performance of the new algorithm

In order to test performance of the new algorithm, we com-
pared it with the classical Wirth’s algorithm [9] which recur-
sively builds left and right subtree for each node, and with 
Vaucher’s algorithm [8]. Rotations balancing the BST were 
included into the implementation of Vaucher’s algorithm, as 
well as into the implementation of the new algorithm. Recall 
that all the three algorithms have linear time complexity and 
build complete BSTs. All the algorithms were implemented 
in R language and used array-based representations of BSTs. 
We ran the three tests: for all N = 10,001, … , 20,000 ran-
domly ordered; for 1000 values of N randomly selected 
without replacement from the range 100,001, … , 200,000 ; 
and for 1000 values of N randomly selected without replace-
ment from the range 1,000,001, … , 2,000,000 . All the three 
algorithms were run for the same choices of values of N. 
No parallelization was implemented for the algorithms. The 
tests were run on an AMD 3950X processor. It is to be noted 
that, in the tests, the time was measured for constructing a 
BST for the numbers 0,… ,N − 1 , while, in practice, the 
tree may be constructed for an unsorted array of numbers, in 
which case sorting of the array must be done before applying 
each of the algorithms. The results of the tests are reported 
in Table 1 as mean time ± standard deviation.

We see that in all the tests the new algorithm performed 
at least 8 times faster than each of the other two considered 
algorithms. That can be explained by the fact that the new 
algorithm does not use recursive function calls which are 
time-expensive. Besides, a vectorized version of the new 
algorithm was tested (We might note that the vectorized ver-
sion has O(N) auxiliary memory complexity unlike the ver-
sion with loops that needs O(1) auxiliary memory).

Conclusion

We have suggested a new fast algorithm for constructing 
complete binary search trees. The new algorithm has linear 
time complexity like previously known algorithms, but, in 
contrast to those algorithms, the new algorithm does not 
use recursive function calls. The new algorithm allows 
simple vectorization and parallelization. When comparing 
the performance of the new algorithm with that of Wirth’s 

Table 1  Execution times of the 
algorithms, presented as mean 
± standard deviation

Mean execution time, milliseconds

N ∈ 10,001, … , 20,000 100,001, … , 200,000 1,000,001, … , 2,000,000

Vaucher’s algorithm 22.47 ± 5.72 228.5 ± 47.2 2343 ± 458

Wirth’s algorithm 17.14 ± 4.94 172.6 ± 35.6 1769 ± 355

Algorithm 2 + Algorithm 3 0.852 ± 1.835 14.15 ± 8.42 217.8 ± 70.8
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algorithm and Vaucher’s algorithm, the new algorithm 
appeared to be at least eight times faster than its competi-
tors in the considered tests.
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