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Abstract
Object detection is one of the inevitable tasks in the technological world. When the world started to rely entirely on tech-
nological intervention for almost all the tasks, different sectors started to implant artificial intelligence for precise decision 
making. Object detection is one among the category, which showed its applications in various domains including health care, 
military and anomaly detection, etc. Since there are many review on object detection, we focus only on the methods which are 
less expressed but indirectly have a significant performance gain. Notwithstanding, we review predominant methods of object 
detection including the pre-deep learning era. From the review, we are able to conclude indirect performance parameters of 
object detector has a significant impact on their performance for different problem scenarios. Finally, we also highlight the 
best characteristic of object detection in various applications.

Keywords Object detection · Context · Object proposal · Training strategy · Human intervention · Technological 
intervention

Introduction

From many aspects, technological intervention for human 
problems has changed its face from assisting to complete 
depending on the technology, especially, after the evolution 
of artificial intelligence and deep learning. Object detection 
is one among the task gaining its reputation almost in all the 
sectors. There are numerous reviews on the area. Therefore, 
we tried to avoid reassert the same topics again. Instead, we 
intensify the least expressed attributes of object detection.

The main motive of our study is to highlight indirect 
parameters of object detection also provide significant accel-
eration in performance. Moreover, we also briefly review 
predominant methods including the pre-deep learning era. 
Further, we tried to draft the best-researched applications 
of object detection over the decades from various domains.

The manuscript is organized as follows. In second sec-
tion, it briefly reviews predominant methods, and third sec-
tion analyzes indirect parameters of object detection. The 
fourth section drafts best applications of object detection, 
and the last section draws conclusion.

Review on Predominant Methods

Object detection was carried out based on the template 
matching and object’s part-based representation [16]. The 
focus was on a particular object whose object position lay-
out is roughly adamant (like faces). Then, recognition was 
based on the object’s geometric structure till 1990 [43]. 
Later, the focus shifted from geometry to the statistical 
classifier which was based on feature representation [like 
Adaboost [59], SVM [39] and Neural]. The feature represen-
tations through global handcrafted feature extraction-based 
classifier have set a stage for consecutive research in the 
ground. The appearance feature representation later shifted 
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from global representation [37] to local representation. The 
local representation was invariant to geometric transforma-
tions: rotation, occlusion, scale, viewpoint and illumination. 
Representative methods include SIFT [36], Haar-like fea-
tures [59], shape contexts [6], local binary patterns (LBP), 
histogram of gradients (HOG) [12] and region covariance. 
After extracting local features, features are combined either 
through straightforward concatenation or feature pooling 
encoders. Through various methods, including bag of vis-
ual words [11], spatial pyramid matching and Fisher vectors 
[42], local hand feature descriptor methods gained a reputa-
tion for their invariant ability to geometric transformation.

In the deep learning era feature descriptor for an object, 
representation is automatically learned from the convolution 
neural network. Convolution layers of CNN are responsible 
for feature extraction; later extracted features are learned in 
the fully connected layers; and finally classification layer 
assigns class-specific labels. CNN extracts features layer-
by-layer initial layer extracts elementary features and deep 
layers extract more robust features. Features extracted in the 
initial layers are combined by the deep layers to extract more 
discriminative features [54, 57].

Object detector uses CNN as backbone for object 
detection [7]. Predominant methods in the deep learning 
era include both single- and two-stage detectors [22, 26, 
34, 45]. Single-stage detector associates class label and 
bounding box regressor into a single pipeline that does 

not associate external or internal object proposal. Com-
monly, it partitions the input images into a coarse grid, 
and in each cell, objects are classified and boundings 
are adjusted. Representative methods include Detector-
Net OverFeat [48], YOLO [45] and SSD [35] as shown 
in Table 1. All these methods are identical which resolves 
class labels in each cell. However, it differs in simulta-
neously training bounding box regressor and resolving 
class labels, and YOLO and SSD are the two important 
detectors in the single-stage detector. YOLO [45] assigns 
the probability for all the classes in each cell. The class 
which obtained the highest probability is considered, and 
bounding boxes are adjusted with respect to the size of the 
object. Moreover, classification and bounding box train-
ing is carried out parallelly end to end. A single-stage 
detector has the upper hand in real-time applications like 
pedestrian detection and other moving objects since it is 
faster compared to the two-stage detector. SSD incorpo-
rated the advantage of YOLO and a two-stage detector to 
build an object detector as fast as YOLO and as accurate as 
a two-stage detector (faster RCNN). SSD [34] architecture 
comprises a fixed convolution size 1*1 with stride two 
throughout the network. Therefore, each consecutive layer 
decreases the feature map, and SSD associates classifier 
and detector in each layer to detect an object of varying 
size. The two-stage detector, on the other hand, associates 
a preprocessing object proposal, before resolving class 

Table 1  Predominant methods of object detection

Detector/method Proposal method Pascal VOC 
2012 (mAp)

Speed (FPS) Published in Pros and cons

RCNN SS 53.3  < 0.1 CVPR14 Pros: Effectively combines DCNN with selective search (SS). 
SS gave more potential regions for the object, First fully 
evolved object detector

Cons: Heavy computational barrier since it has to scan for large 
number of frames and aspect ratio

Fast RCNN SS 68.4  < 1 ICCV15 Pros: Re-used the feature extraction from the convolution 
reduced the computation load to greater extent

Cons: Object proposal from external source like SS was dis-
closed as a computational barrier

Faster RCNN RPN 70.4  < 5 NIPS15 Pros: DCNN has an inherent object localizing ability which is 
been applied with in a DCNN pipeline to localize as well as 
classify

Cons: Speed of the detector is not applicable for real time 
applications

OverFeat No proposal  < 0.1 ICLR14 Pros: Non-proposal methods faster than proposal methods
Cons: Sequential training for localization and classification 

required more time for training
YOLO No proposal 57.9  < 25 (VGG) CVPR16 Pros: First unified framework combined both localization and 

classification
Cons: Difficulty in detecting small objects

SSD No proposal 74.9  < 60 ECCV16 Pros: Combines the advantage of faster RCNN and YOLO. 
Accuracy wise accurate than YOLO

Cons: Not accurate in detecting small object compared to faster 
RCNN
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label and bounding box regression. An external region 
proposal is the computational barrier in two-stage detec-
tor. However, these methods are preferred when accuracy 
is given major preference over speed, as object proposal 
search for the clues for an object from the image. There-
fore, it is effective in identifying even small objects which 
led to an effective approach for detecting a small object 
(nanoparticles, cells) and such application we will discuss 
in “Applications of object detection”. However, the object 
proposal initially was associated with an external proposal 
using objectness property which was based on object’s 
edge, color, texture and gradient. Through this approach, 
search space is reduced to a great extent. But, the exter-
nal object proposal was not feasible as it occupies con-
siderable time. Therefore, researchers started to associate 
object proposals within a DCNN pipeline which increased 
the performance substantially. Representative methods for 
two-stage detector include RCNN, fast RCNN [23], and 
faster RCNN as shown in Table 1. Faster RCNN evolved 
with object proposal within a DCNN pipeline.

To summarize, both single- and two-stage detectors meth-
ods: faster RCNN, YOLO and SSD, are frequently used for 
various applications as we will discuss in “Applications of 
object detection”. Faster RCNN is accurate where YOLO 
is faster. SSD combines both aspects of faster RCNN and 
YOLO.

Indirect Parameters of Object Detection

The architecture of an object detector plays a key role in the 
performance as we discussed in “Review on pre-dominant 
methods”. Two-stage detector associates object proposal 
before classification and regression as a different architec-
ture from the single-stage detector which roughly divides the 
input images to coarse grids omitting the proposal. However, 
the distinct architecture yields different results as a two-stage 
detector performs by attaining good accuracy. On the other 
hand, a single-stage detector performs at a good speed. To 
sum up, the architecture of object detectors plays a key role 
in the performance of object detection. As there are numer-
ous reviews from both the detection family, our survey tried 
to avoid reassert the same methods. Instead, we focus on 
the other parameters apart from architectural design which 
can contribute to the performance of object detectors. The 
indirect parameters includes.

• Context
• Object proposal
• Data augmentation
• Localization error
• Training strategy

Context

Context plays a significant role in object recognition, espe-
cially when the represented features are insufficient for pre-
diction, i.e., when the detection framework encounters occlu-
sion, small object or low image quality. Modeling a context 
provides additional clues for prediction. For instance, for 
detecting the objects in the kitchen, the possible objects are 
chimney, gas stove, vessels, cooker, etc.

The context broadly falls into two categories: (a) global 
context and (b) local context.

a. Global context: It models an entire scene. Detection 
in office premises will predict the presence of cubicle 
and laptop and system. Contextual details are combined 
with the regular feature representation for final predic-
tion [18].

b. Local context: It represents the relationship between 
the objects. Object’s boundary gives additional details 
about its interaction with other objects. Expanding 
objects boundary and exploiting in the boundary regions 
will provide more supplementary information such as 
object’s above, below, behind, right and left with other 
objects which provides a additional clue for prediction 
from its structural constraints. For example, the pro-
posed object can be a door locker if the object behind is 
a door, and the proposed object is smaller than a door 
[18].

DCNN exploits contextual details without explicit mod-
eling since the CNN architectural setup enforces hierar-
chical feature representation. Notwithstanding, dedicated 
research has been carried out by explicitly modeling local 
and global context; the representative framework includes 
CoupleNet [65], ORN [29], DeepIDNet [30], ION [5]. How-
ever, in addition to CNNs hierarchical feature representation, 
both the detectors (single- and two-stage detectors) have an 
implicit context modeling. In particular, the single-stage 
detector looks entire image for detection, thereby modeling 
a global context. In the two-stage detector, the regressor’s 
subnetwork appropriates the object boundary by exploiting 
object boundary.

Object Proposal

Object proposal is a preprocessing step before actual detec-
tion. In the absence of object proposal, the detector scans 
different scale and aspect ratios [12, 15, 59, 66] which leads 
to computation load and makes the entire process very slow. 
Object proposal eases the detection framework by selectively 
giving a few proposals [58] from objectness property (edge, 
texture, color, gradient) [35]. After the growth of DCCN, 
the selective search was the computation bottleneck for the 
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entire detection framework. It is being proved that DCNN 
has excellent proficiency in locating an object from their 
conv layers [46]. Later this idea turned to propose the 
object within the detection framework. DCNN proposal has 
a computational advantage over external proposal methods 
(selective search, MCG and EdgeBoxes [30]) and provides 
a unified framework. Combining proposal, classification and 
bounding box regression, the first such method of a proposal 
using DCNN was the region proposal network (RPN) [46] 
which combined RPN with RCNN and is a milestone in 
object detection (faster RCNN) [46]. Consequently, many 
DCNN-based proposal methods have arrived, representa-
tive methods include DeepProposal [19], ZIP [32], DeNet 
[56], etc., which further improved the performance of object 
proposal. A two-stage detector with RPN is the key for many 
detection challenges, including Pascal VOC and COCO. 
Notwithstanding, DeepProposal [19], ZIP [32], DeNet [56], 
etc.., have a performance gain in comparison with RPN with 
slight computation load.

Data Augmentation

Data augmenting refers to artificially stressing the training 
data to the various transformations. Such as scaling, crop-
ping, rotating, flipping, distorting and adding noise, leaving 
the underline category unchanged as augmentation produces 
more training samples, helps in generalization and avoids 
over fitting [41, 61]. Researchers [14, 24] proposed adding a 
datasets by pasting segmented objects into realistic images. 
Further, Dvornik et al. showed [13] that correctly modeling 
objects local context is a key to place them in the right sur-
rounding [34].

Localization Error

IOU is an evolution matrix for localization whose perfor-
mance can eventually affect the detection framework. Inter-
section over union compares the predicted bounding box 
and ground truth and, ordinally, expected to be more than 
or equal to 0.5. The bounding box regressor optimizes the 
bounding area aiming to increase IOU in parallel with clas-
sification. Bounding boxes are a coarse estimation. There-
fore, background pixels are combined with a bounding box, 
which affects the performance of localization. Usually, some 
post-processing step, such as non-maximum suppression [8, 
28, 34], is applied to remove inappropriate bounding box. 
But, the excellent localization can be suppressed due to the 
wrong alignment. However, few approaches are developed 
to minimize localization error. Representative methods 
include MRCNN [20], CRAFT [62], cascade RCNN [9]. 
In MRCNN, RCNN is applied several times to adjust the 
boundingbox iteratively. CRAFT [62] and AttractioNet [21] 
adopts a multistage detection to bring the best proposals, 

handover to fast RCNN. CaiVasconceolos proposed cascade 
RCNN, an extension of multistage RCNN, where cascading 
RCNN is trained sequentially with each RCNN increasing 
IOU threshold.

Training Strategy

A deep learning detection framework requires massive data 
to perform well. Moreover, data augmentation is commonly 
applied during training to alleviate scale variations prob-
lems. Training with massive data tends to complicate and 
overload the process. Effective training and fast convergence 
are at most concern during training. A few training strategies 
is proved effective in literature. Singh and Davis proposed 
SNIP [8, 50–52] that introduced an innovative training tech-
nique that decreases scale variations without shrinking the 
training data. Sing et al. proposed SNIPER, which efficiently 
processes only context area about ground truth by the rel-
evant scale instead of dealing with the entire image pyramid. 
MiniBatch size plays a key role in past convergence. Peng 
et al. proposed MegDet that enabled a large MiniBatch size, 
effective in faster training and rapid convergence. Further, 
Peng et al. introduced concurrent GPU training that eases 
the COCO dataset training by finishing the training in four 
hours by concurrently processing in 128 GPUs, with the help 
of GPU batch normalization and novel learning rate policy, 
impressive in winning the COCO 2017 detection challenge 
[40].

Comparative Analysis of Indirect‑Performance

From sections “Context”, “Object proposal”, “Data aug-
mentation”, “Localization error” and “Training strategy”, 
we have discussed indirect performance parameters and 
the corresponding representative methods. To highlight 
the effectiveness of these parameters and the environment 
where it can yield more performance in comparison with 
general detectors are analyzed with the recent works as 
shown in Table 2. Comparison follows the standard evolu-
tion sequences as depicted in Fig. 1.

After the comparative analysis on the indirect perfor-
mance parameters with different problem scenarios such as 
insufficient datasets, insufficient feature extraction, detect-
ing small objects, localization error, training massive deep 
learning models, results from the comparative analysis as 
shown in Table 2 highlight indirect parameters can signifi-
cantly contribute to the performance when the generic detec-
tor algorithm drops the performance due to the lack of data 
samples, feature extraction, class imbalance, etc. Moreover, 
from the comparative analysis we suggest specific parameter 
for different problem scenarios.
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• Data augmentation approach: when lack of training data.
• Context modeling: Feature extraction is not sufficient or 

quality of the image is not up to the mark.
• Object proposal: When detecting very small or tiny 

objects.
• Effective localization methods: When there is huge class 

imbalance among the different class in the dataset.
• Training strategy: Training huge volume of dataset.

Applications of Object Detection

Object detection has been widely used in numerous applica-
tions, especially in the field of medical, military, security, 
anomaly detection and science and engineering as shown 
in Fig. 2.

Medical Field

Brain Tumor

Manual segmentation of brain tumors is a laborious and time-
consuming task for radiologists. A deep learning paradigm is 
developed as a feasible preference for applications in medical 
imaging. They can grasp discerning features instinctively, as 
a neural network can learn a brain’s essential features in regu-
lation to classify and segment tumors. This approach outper-
forms manual segmentation and the classical machine learning 
approach in stipulations of false-positive decline. Among the 

deep learning established ways, CNNs have provided supreme 
performance for brain tumor segmentation [44].

Radiolucent Lesions

Identification and segmentation of mandibular radiolucent 
lesions on panoramic radiographs: It aims at five radiolucent 
lesions (radicular cysts, dentigerous cysts, ameloblastomas, 
odontogenickeratocysts and simple bone cysts) which takes 
place regularly in the mandible. A deep learning approach 
had proven a high standard of detection and classification 
awareness in the detection of radiolucent lesions of the man-
dible [3].

Cell Biology

Segmenting a cell from blood or other tissue has significant 
challenges due to morphology, color intensity, and cell size 
variability but with the precise accuracy of deep vision. It 
has displayed outstanding accuracy in classifying and detect-
ing B cells and T cells, detached by a micro-microfluidic 
chip [55].

Security Field

Luggage Scanner

In the international travel web, the increased traveller 
throughput and enlarged border security (e.g., postal, sailing 

Fig. 1  Comparative analysis of indirect performance parameter
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and freight). The consequences in demanding a well-timed 
computerized image identification. Convolution neural net-
works (CNN), a leading in modern object detection prob-
lems, are also used in X-ray baggage images for identify-
ing a potential object of threat (gun, shuriken, razor blade 
and knife) objects. The research result highlights that CNN 
achieves exceptional accuracy in detecting threat objects [2].

Anomaly Detection

Identification of Defects in Tiny Particles

Tiny tools (less than 1 cm) particles can flaw due to working 
conditions and poor design. Due to holes, sags, and abra-
sions, mass-produced products are prone to fault. Decay 
and lethargy damage arise in day-to-day functions; deep 
learning’s effective feature extraction capability is utilized 
to identify tiny particles defects. An SSD object detector 
proved to detect the flaw of 0.8-cm darning needles accu-
rately [63].

Anomaly in Steel Structure

Bolt loosing will affect the safety of the steel arrangement 
and may lead to severe accidents. Due to the bolt joints, 
complicated fluctuation properties, it is hard to recognize 
the bolt loosening in steel structures from a conventional 
dynamics perspective. However, deep learning’s intense 
feature extraction capability is used to detect the screw and 

screw number. From the detected set, bolt loosening is effec-
tively identified using trigonometric relationships [64].

Anomaly in Food Particles

The identification of an external object plays an essential 
part in the agriculture commodity. In various ways, exter-
nal particles are brought into food brands; foreign objects 
in foods are the sole means of customer complaints. The 
identification of external particles is hugely significant for 
quality and health. It is a major concern for the food secu-
rity convention. Manual extraction of foreign objects from 
food material is a time-consuming and labors task. Foreign 
object segregation from walnuts using DCNN is applied. 
DCNN overcomes the cumulating phenomenon between 
walnuts and external particles, which was a challenging task 
in manual feature engineering. The DCNN performed with 
above 99% in more than 100 test images [47].

Science and Engineering

Nanoparticles Segmentation

Images produced from the microscopes are large in number 
and resolution. Shapes and size distributions and proper-
ties of nanoparticles play an essential part in interpreting 
the material. Hence, each image of nanoparticles should 
be identified and detected for giving a measurable guide. 
These particles segmentation is challenging because of the 

Fig. 2  Applications of an object 
detector
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overlapping instances, changeable particle sizes and shapes. 
Moreover, manual detection and segmentation of nanopar-
ticles are laborious and time-consuming. A deep learning 
paradigm is used for detecting and segmenting the nanopar-
ticles from TEM (transmission electron microscopy) images. 
Multiple output convolution neural networks (MO-CNN) are 
used, for concurrent recognition and segmentation of nano-
particles. The proposed deep learning approach is powerful 
and efficient, with immense precision and capable of study-
ing nanoparticles, even in overlapping particles and complex 
backgrounds [38].

Military

Surveillance

Surveillance plays a crucial role in the continuous analysis 
of massive amounts of critical visual information. Detect-
ing targets, monitoring security-sensitive areas, and suspects 
possible suspicious activities lead to an increase in cognitive 
load and exhaustion in energy level; moreover, it is prone 
to error. The best alternative is to replace, with a computer 
vision, to detect suspects and monitor with ease. Further-
more, the probability of error will be lesser [4].

Conclusions

This survey briefly reviewed predominant methods of object 
detection from pre-deep learning methods. Most impor-
tantly, we have given preference for the indirect parameters. 
From the review and comparative analysis, we conclude 
indirect performance parameters plays a crucial role in vari-
ous problems across different areas by boosting the perfor-
mance in comparison with generic detector. Furthermore, we 
have highlighted which parameters can be the appropriate 
choice for different problem conditions.

Moreover, we have shown the best characteristics of 
object detection in various domains. Results from the vari-
ous applications showed deep learning methods outper-
formed conventional methods and goes behind the human 
visual perception. Therefore, the transition of technological 
intervention from assisting to completely depending brought 
serious anxiety on the future role of human intervention for 
various tasks. Nevertheless, it is essential to associate with 
the evolving technology to give continuity against the fast-
evolving machine-centric period.
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