
Vol.:(0123456789)

SN Computer Science (2022) 3: 372
https://doi.org/10.1007/s42979-022-01256-0

SN Computer Science

ORIGINAL RESEARCH

The Hardest Hamiltonian Cycle Problem Instances: The Plateau of Yes
and the Cliff of No

Joeri Sleegers1,2,3  · Daan van den Berg1,2,3 

Received: 14 July 2021 / Accepted: 20 June 2022 / Published online: 15 July 2022
© The Author(s) 2022

Abstract
We use two evolutionary algorithms to make hard instances of the Hamiltonian cycle problem. Hardness (or ‘fitness’), is
defined as the number of recursions required by Vandegriend–Culberson, the best known exact backtracking algorithm for
the problem. The hardest instances, all non-Hamiltonian, display a high degree of regularity and scalability across graph
sizes. These graphs are found multiple times through independent runs, and by both evolutionary algorithms, suggesting
the search space might contain monotonic paths towards the global maximum. For Hamiltonian-bound evolution, some
hard graphs were found, but convergence is much less consistent. In this extended paper, we survey the neighbourhoods of
both the hardest yes- and no-instances produced by the evolutionary algorithms. Results show that the hardest no-instance
resides on top of a steep cliff, while the hardest yes-instance turns out to be part of a plateau of 27 equally hard instances.
While definitive answers are far away, the results provide a lot of insight in the Hamiltonian cycle problem’s state space.

Keywords  Hamiltonian cycle problem · Evolutionary algorithms · Plant propagation algorithm · Instance hardness ·
NP-complete

Introduction

The Hamiltonian cycle problem involves deciding
whether an undirected and unweighted graph contains a
path that visits every vertex exactly once and returns to

the first vertex, closing the loop. In stark contrast to the
closely related Euler cycle problem, which is easy, the
Hamiltonian cycle problem is notoriously hard, and even
has an entry (number 10) on Richard Karp’s infamous
list of NP-complete problems [21]. Under the common
assumption that the classes of P and NP are not equal,
the Hamiltonian cycle problem has no subexponential
solving algorithm, but candidate solutions can still be
verified in polynomial time [8, 17]. NP-complete prob-
lems are in some sense ‘at the summit of NP’: if a poly-
nomial time algorithm is found for just one of these
problems, it can be tailored to all NP-complete prob-
lems, vanishing the class NP completely into P. Unfor-
tunately, such an algorithm is not known for any of the
myriad problems in this class, which are therefore all
intractable, even at very small instance sizes.

But the exponential runtime increase for solving algo-
rithms1 is not as crippling as it might appear on first sight.
As it turns out, there are substantial differences in instance
hardness for many NP-complete problems, and literature on
the subject is widely available [6]. One example is graph

This is paper is an extended version of the paper “Looking for
the Hardest Hamiltonian Cycle Problem Instances” [36] by
invitation following ECTA’s 2020 best paper award [13]. It thereby
contains the original results as well as an entirely new section on
neighbourhoods and a new discussion.

This article is part of the topical collection “Computational
Intelligence” guest edited by Kurosh Madani, Kevin Warwick, Juan
Julian Merelo, Thomas Bäck and Anna Kononova.

 *	 Daan van den Berg
	 daan@yamasan.nl

	 Joeri Sleegers
	 jsleegers@hotmail.com

1	 Mice & Man Software and A.I. Development, Amsterdam,
The Netherlands

2	 Yamasan Science & Education, Amsterdam, The Netherlands
3	 Department of Computer Science, Vrije Universiteit

Amsterdam, Amsterdam, The Netherlands

1  Whenever we say ‘solvers’ or ‘solving algorithms’, we always mean
exact or complete algorithms, and never their heuristic or non-deter-
ministic counterparts.

http://orcid.org/0000-0003-1701-6319
http://orcid.org/0000-0001-5060-3342
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01256-0&domain=pdf

	 SN Computer Science (2022) 3: 372372  Page 2 of 16

SN Computer Science

colourability, for which Daniel Brélaz’ algorithm performs
significantly better than the problem’s exponential upper
bound on many instances [5, 41]. For the satisfiability
problem (SAT2), which could be considered ‘the root of
all NP-completeness’, the hardness of individual instances,
measured in computational effort required for solving, criti-
cally depends on the ratio of clauses to variables in the for-
mula [24, 35]. Instances of SAT with many variables and
relatively few clauses are generally speaking easy to decide,
because they have many solutions. On the other hand,
instances with few variables but many clauses are also easy
to decide, because they can be quickly asserted to be unsolv-
able. But between these, around the clause-to-variable ratio
of � ≈ 4.26 , where a randomly generated formula has ≈ 50%
chance of being solvable, is where the hardest instances
occur3 [6, 20]. In this sense, the clause-to-variable ratio �
functions as an ‘order parameter’, or ‘predictive data ana-
lytic’, indicating where to expect the worst runtimes when
solving instances of randomly generated SAT-formulas.

For the Hamilton cycle problem, such an order parameter
also exists, and it is again related to the solvability of the
individual instance. For a randomly generated graph of V
vertices and E edges, the probability of being Hamiltonian
is given by

which is a strictly increasing function on any finite interval,
and in which c depends on E and V as

following the results of János Komlós and Endre Szemerédi
[23]. In this equation, PHamiltonian(V ,E) has its steepest deriv-
ative at c = 0 , where E = 1∕2 V ⋅ ln(V) + 1∕2 V ⋅ ln(ln(V)) .
Although this ‘threshold point’ happens to be at e−1 ≈ 0.368 ,
rather than a more intuitive 0.5 like in SAT,4 this ‘Kom-
lós–Szemerédi bound’ is considered as the central point for
the hardest Hamiltonian problem instances. The number of
edges (or equivalently: average vertex degree) is consequen-
tially proposed as its order parameter [6, 45]. As a numerical
example: for randomly generated undirected graphs of 120
vertices, the hardest Hamiltonian cycle problem instances
would occur around 381 edges, where the probability of
being Hamiltonian is ≈ 37% . Analogously to SAT, far more

(1)PHamiltonian(V ,E) = e
−e−2c

(2)E = 1∕2 V ⋅ ln(V) + 1∕2 V ⋅ ln(ln(V)) + cV

edges make for much easier problems instances, as dense
graphs contain many Hamiltonian cycles, and one is quickly
found. Graphs with far fewer edges are also easy, because
they can be dismissed as non-Hamiltonian (i.e. not having a
Hamiltonian cycle) relatively fast.

In an attempt to find the absolute hardest of the hardest
problem instances, evolutionary algorithms were used to
generate graphs requiring maximum computational effort
for the best known backtracking algorithm [37]. Starting
off from the Komlós–Szemerédi bound where traditionally
the hardest problem instances were found, a stochastic hill-
Climber and plant propagation algorithm (PPA) produced
graphs that required ever more recursions for the Vande-
griend–Culberson (henceforth ‘Vacul’) algorithm, the most
efficient backtracking algorithm for the problem known to
date [46].

But NP-completeness had not surrendered all of its
surprises yet: the resulting hardest graphs were found
nowhere near the Komlós–Szemerédi bound. They were
much denser, and displayed a high degree of structural
regularity, which might be expressed as low Kolmogorov
complexity [25]. The authors hypothesized that exactly
for this reason, these very hard problem instances had
never shown up in the large randomized ensembles of
the aforementioned research endeavours. But the study
raised more questions than answers: had the evolutionary
algorithms actually converged? Are these almost-regular
graphs really the hardest problem instances? In addition,
why are they all non-Hamiltonian? What do the hardest
Hamiltonian graphs look like? In addition, does the num-
ber of edges of the initial graph influence the outcome?

In this study, we will answer most of these ques-
tions and further deepen our knowledge of the problem.
First, we will explain the algorithms involved: Vacul’s
algorithm for solving problem instances, the stochastic
hillClimber and the plant propagation algorithms for
evolving graphs. Then, the experiment is described; we
significantly extend the scope of graph sizes, runs, start-
ing points, and evaluations. We also conduct a ‘Hamil-
tonian-bound’ experiment, in which evolving graphs are
forced to be Hamiltonian, to see how hard yes-instances
can possibly get. Hard, but not nearly as hard as the non-
Hamiltonian graphs, as we will shortly see. The paper
then reaches an intermezzo, discussing the results so far,
and reflecting on explanations for the performance of
the evolutionary algorithms. After that, a deeper inves-
tigation into the neighbourhood structure of the hardest
instances (both yes and no) is presented. The paper then
ends with a lot of open ends, but also a treatment on how
structure might be related to hardness, and some general
implications for benchmarking practices.

3  For further refinement on solver performance around the phase
transition in SAT, see [1, 7].
4  The origin of this specific value is that the threshold function
becomes ever steeper exactly around e−1 as graph size increases,
approaching a step function as V → ∞.

2  Whenever we refer to ‘SAT’, we implicitly mean random 3CNF-
SAT, which is the satisfiability problem in its conjunctive normal
form with three randomly chosen literals per clause.

SN Computer Science (2022) 3: 372	 Page 3 of 16  372

SN Computer Science

Algorithms

Hamiltonian Cycle Problem Solver

Over the last century, a great number of deterministic
exact solving algorithms have been developed for the
Hamiltonian cycle problem. Rooted in dynamic program-
ming, the Help–Karp algorithm is quite memory intensive,
but by O(n2 ⋅ 2n) still holds the lowest time complexity
[19]. Later algorithms by [6, 27, 31, 45, 46] are all exact
backtracking algorithms, and therefore have a theoretical
upper runtime bound of O(v!), but perform significantly
better on large ensembles of random graphs due to clever
optimization strategies [38]. Traditionally, the hardest
graphs for all these depth-first based algorithms are found
around the Komlós–Szemerédi bound, where the probabil-
ity of a random graph being Hamiltonian goes from almost
zero to almost one as E increases (Eqs.1, 2).

Interestingly enough though, all these are applied vari-
ations and subsets of just three optimization techniques:
vertex degree preference, edge pruning, and non-Hamil-
tonicity checks. The more the better, it seems, as Vacul’s
algorithm, containing all three techniques, significantly
outperforms all the others—even though its hardest
instances are still near the Komlós–Szemerédi bound [38,
46]. It is this algorithm, the best backtracker available, that
we use for measuring the hardness of Hamiltonian cycle
problem instances in this study.

Vacul’s algorithm is a depth-first search algorithm that
uses edge pruning, non-Hamiltonicity checks and employs
a low-degree first ordering while recursing over the verti-
ces. Techniques for edge pruning and non-Hamiltonicity
checks are employed both before and during recursion.
The pruning subroutine removes edges that cannot be in
any Hamiltonian cycle, based on ‘required edges’ that must
be in a Hamilton cycle, given that a problem instance has
one. An edge is required if it is connected to a vertex with
degree two. The algorithm then uses two pruning meth-
ods; the first method seeks out vertices that have a degree
higher than two and are connected to two required edges,
rendering all other edges removable. The second method
looks for paths of required edges that do not (yet) form a
Hamilton cycle. If an edge exists that would close such a
path prematurely, it is removed (‘pruned’).

The checks for non-Hamiltonicity examine whether
the graph cannot contain a Hamilton cycle based on two
global properties: having a vertex with degree smaller than
two, or the graph being disconnected. Third, the algorithm
checks whether the graph is 1-connected, using Tarjan’s
algorithm [40]. If any of these three conditions are met,
the graph cannot be Hamiltonian and the recursive process
can be skipped or be backtracked upon.

In these routines for checking Hamiltonicity, edge prun-
ing and vertex degree preference, Vacul’s algorithm com-
bines many if not all best practices that have been developed
for the recursive class of exact algorithms for the Hamilto-
nian cycle problem. For a more in-depth treatment, please
consult [38].

Evolutionary Algorithms

Though making hard problem instances with evolutionary
algorithms is not entirely new, it has become a lot easier
during the last decade due to the enormous surge in compu-
tational power. This is necessary not because the evolution-
ary algorithms themselves consume so much budget, but as
it finds harder and harder instances, its evaluation function,
which is often an exact algorithm for solving the instances,
does tend to get close to its dire upper bound ... for every
function evaluation. A noteworthy example of such initia-
tive is the work by Krzysztof Michalak, who evolved hard
instances of the inventory routing problem, [28], while some
earlier endeavours addressed TSP, SAT, and the binary con-
straint satisfaction problem [39, 44].

The evolutionary algorithms used for making the hard
Hamiltonian cycle problem instances in this study are a
stochastic hillClimber and an implementation of the plant
propagation algorithm (PPA), a crossoverless population-
based metaheuristic [48, 49]. It has multiple implementa-
tions, sometimes substantially different for the seminal form,
but our PPA is directly adapted from an earlier application
to the travelling salesman problem [18, 34]. By mutating
the edge matrix of a graph, both algorithms try to iteratively
increase its ‘fitness’, the computational hardness measured
in number of recursions required by the Vacul-algorithm to
solve the instance. The more recursions are required, the
harder the problem instance, and the fitter the graph.

The evolutionary algorithms use three mutation types
with equal probability: to insert an edge at a random unoccu-
pied place in the graph, to randomly remove an existing edge
from the graph, and to move an edge, which is effectively
equal to a remove mutation followed by an insert mutation
(on a different unoccupied place). In the hillClimber algo-
rithm, one mutation is chosen at random after which the
graph is reevaluated. The mutation is reverted iff the result-
ing graph is unfitter than its parent, and kept otherwise. This
process is repeated for a predetermined number of evalua-
tions (or ‘iterations’, for this algorithm).

The plant propagation algorithm is a population-based
algorithm that tries to balance exploration and exploitation
by letting the fitter individuals in the population produce
many offspring with few mutations, and unfitter individuals
in the population produce few offspring with many muta-
tions. It can be applied to a broad spectrum of continuous,

	 SN Computer Science (2022) 3: 372372  Page 4 of 16

SN Computer Science

discrete and mixed objective landscapes in scientific, indus-
trial and even artistic optimization problems [12, 14–16, 18,
30, 33, 34, 47]. A most recent investigation suggested that
one version of the algorithm might be largely parameter
independent [10, 11].

The implementation of the plant propagation algorithm
used in this experiment is closely related to a discrete adap-
tation that was earlier applied to the travelling salesman
problem and the university timetabling problem [18, 34].
Each generation, the population is sorted on fitness after
which each individual produces offspring by first copying
itself, and then applying a number of mutations to the off-
spring. If any of a parent’s offspring is fitter, it replaces the
parent; if multiple offspring are fitter, the fittest replaces the
parent. The exact numbers of offspring and mutations are
predetermined for all ranks in the sorted population (see
Table 1). So in this study, the population size is 10 and
therefore the number of evaluated offspring is 25 in every
PPA generation. These parameters are chosen intuitively,
as they abide strongly by PPA’s philosophy of balancing
the powers of exploration and exploitation, but more effi-
cient parameter settings are certainly not unthinkable. The
algorithm’s source code can be accessed through a public
GitHub repository.5

Experiment

To obtain the hardest Hamiltonian cycle problem instances,
we evolve 560 graphs of sizes 8 ≤ V ≤ 14 in 560 evolution-
ary runs of 3000 evaluations. The investigation is split in
two parts: an ‘unbound’ experiment, in which the evolu-
tionary algorithms are free to modify all the edges, and a
‘Hamiltonian-bound’ experiment in which the evolutionary
algorithms are free to modify all the edges except the edges
{(1, 2), (2, 3)⋯ (v − 1, v), (v, 1)} , thereby enforcing the pres-
ence of a Hamiltonian cycle in the graph at all times.

For the hillClimber runs, 20 randomly generated graphs
were evenly dispersed in terms of edge density, ranging from
0 to 1∕2V ⋅ (V − 1) edges, corresponding to edge densities
∈ {0%, 5%, 10%⋯ 95%} . For the PPA runs, twenty initial
populations were made along the same edge density inter-
vals, with all graphs in one population having the same edge
density. It should be noted that these densities are fixed only
upon initialization, as the evolutionary algorithms are free
to insert and remove edges from graphs at every step of a
run. The rationale behind this choice of edge densities is that
earlier results could have been biased from the initializa-
tion on the Komlós–Szemerédi bound. The current approach
would cover a much wider area of the state space, at least

as seen from the initial conditions. But for the results, it did
not make much of a difference.

From these evenly distributed initial positions, both algo-
rithms ran 3000 function evaluations. This means 3000 itera-
tions for the stochastic hillClimber, but 120 generations of
PPA, which produces 25 offspring, and therefore performs
exactly 25 evaluations per generation (Table 1). These
numbers might look small, as do the numbers of vertices
in the graphs used, but the number of recursions required
for Vacul’s solving algorithm in every function evaluation
can still easily run in the millions (see Fig. 3). In addition,
as we are actively pushing towards the maximum, the entire
unbound experiment of 280 runs (7 graph sizes with 20 start-
ing points for two evolutionary algorithms) with 3000 func-
tion evaluations still took approximately 45 days on 16 cores
of the LISA cluster computer at Amsterdam’s Science Park.6
The 280 runs of 3000 evaluations for the Hamiltonian-bound
experiment took significantly less time, possibly because
the Hamiltonian-bound instances require significantly fewer
recursions to decide. Hamiltonian instances are easier, gen-
erally speaking. But if you want to see for yourself, all the
experiment’s resources are publicly available through an
open repository.7

Results

Unbound Experiment

The results of the unbound experiment resoundingly suggest
that the hardest problem instances are all non-Hamiltonian.
Both evolutionary algorithms produced structurally similar
graphs consisting of a ‘clique’ and a ‘wall’ for all vertex
numbers (see Fig. 1). The clique is a fully connected subset
consisting of V

c(odd) =
V−1

2
 vertices in odd-sized graphs, and

V
c(even) =

V−2

2
 vertices in even-sized graphs. Every graph of

size V is a subgraph of size V + 1 , even though the exact
addition of edges differs from odd to even graphs. The edge
number of these graphs is consequently given by

with V
c
= V

c(odd) if V is odd, and

with V
c
= V

c(even) if V is even. These quadratic results sug-
gest that the larger the graph, the further away the hardest
instances are from the Komlós–Szemerédi bound, which
only increases (double) logarithmically in V. It should be

(3)(V − V
c
) ⋅ V

c
+ 1∕2V

c
⋅ (V

c
− 1)

(4)(V − V
c
) ⋅ V

c
+ 1∕2V

c
⋅ (V

c
− 1) + 1

5  https://​github.​com/​Joeri​1324/​evolv​ing-​hard-​hamil​ton-​cycles.

6  https://​useri​nfo.​surfs​ara.​nl/​syste​ms/​lisa.
7  https://​github.​com/​Joeri​1324/​evolv​ing-​hard-​hamil​ton-​cycles.

https://github.com/Joeri1324/evolving-hard-hamilton-cycles
https://userinfo.surfsara.nl/systems/lisa
https://github.com/Joeri1324/evolving-hard-hamilton-cycles

SN Computer Science (2022) 3: 372	 Page 5 of 16  372

SN Computer Science

noted that these results strongly contradict earlier findings
that find the hardest instances close to the bound [6, 46].
This might be due to the random nature of earlier test sets,
but for the related SAT-problem, two studies led by Moshe
Vardi suggest that the hardness peak itself might also move,
depending on the specific solver used in the experiments
[1, 7].

Fitting an exponential curve through the recursions in
Fig. 3 gives functional increase in computational cost of
approximately 0.24 ⋅ 3.22V ( R2 = 0.99 ) in the number of
vertices for the unbound experiment. The base number of
3.22 appears a bit high, even for an NP-complete problem,
but significantly lower than the ‘plain’ complexity O(V!) of
an exhaustive enumeration. The number of recursions wob-
bles a bit in V, which is likely due to discrepancy between
odd- and even-sized graphs. In the odd-sized graphs, there
are slightly more vertices in the clique, which results in a
higher edge density, and possibly more required recursions.

In the unbound experiment, both the plant propagation
algorithm and the stochastic hillClimber converged multiple
times onto the same graph. HillClimber produced the same
instance between 4 and 16 times (11.3 on average) out of 20

for different V (see the bars in Fig. 3, left). In its operation,
the stochastic hillClimber is prone to get stuck in local max-
ima, but the plant propagation algorithm is better equipped
for navigating large non-convex search spaces with its highly
mutative offspring at the bottom of its population. Maybe
that is why the algorithm did solidly better, with all values
between 11 and 18 same instances (14.9 on average) out
of 20 runs converging to the (same) wall-and-clique graph
for different V. It should be noted though, that PPA only
outperforms the hillClimber after approximately 2000 evalu-
ations, an effect that was also witnessed in other problems
[18]. Because of the consistent convergence through inde-
pendent runs of both algorithms, and PPA’s ability to escape
from local maxima, it is possible that the wall-and-clique
graphs are indeed the hardest instances of the Hamiltonian
cycle problem for Vacul’s algorithm. Moreover, this maxi-
mum appears to be connected through a state path of mono-
tonically increasing fitness values, the details of which will
receive further investigation in “Larger neighbourhoods”. A
last slightly eyebrow raising observation is that both algo-
rithms converge somewhat better for even numbers of V.
Reasons for this, if any, remain unknown.

Fig. 1   The hardest instances of the Hamiltonian cycle problem are
all non-Hamiltonian, highly structured, and maximally dense. Graphs
were found with evolutionary algorithms, and the fitness measured
in recursions needed for the Vandegriend–Culberson algorithm, the

most efficient backtracker available. The dominant configuration of a
‘wall’ and a fully connected ‘clique’ was reached multiple times in
independent runs and by both algorithms

	 SN Computer Science (2022) 3: 372372  Page 6 of 16

SN Computer Science

One‑Bit Neighbourhoods

The highly structured results of the unbound experiment
allow for an exhaustive mapping of the one-bit neighbour-
hood of the most difficult instances.8 For the odd-sized
graphs, there is only one possible graph type resulting from
edge insertion. For the even-sized graphs there are two
neighbouring graph types from inserting an edge, due to
the extra edge in the wall. Both these edge insertions imme-
diately make the graph Hamiltonian and very easily decid-
able, within just V recursions (Table 2). It is a remarkable
finding, that the hardest non-Hamiltonian instances and the
easiest Hamiltonian instances are separated by just one bit
of information.

In odd-sized graphs, removal of an edge can create two
different one-bit neighbouring non-Hamiltonian graph
types, either from removal inside the clique, or removal of a
wall-clique edge. In even-sized graphs, a third and a fourth
removal are possible, from the single wall-wall edge, and
from the bridge to the clique. All edge-removal operations
lower the number of recursions needed to decide the graph,
but the effect is much less dramatic than for inserting edges.
Even though the number of recursions from edge removal
drops between 6 and 63% for the smallest instances, the dif-
ference is only between 5 and 33% for the largest instance in
this study, and is expected to become ever smaller for larger
instances, simply because larger graphs have more edges, so
the removal of one could have a smaller impact on recursion.

These neighbourhood results do show however, that the
wall-and-clique graphs are at the very least a local maximum
of instance hardness. But since both algorithms repeatedly
and independently converged to the same graph, and PPA
is not sensitive to local maxima, it might well be that these
graphs are the hardest instances of the Hamiltonian cycle
problem (for Vacul’s algorithm). These results could be
taken as a suggestion that harder problem instances for the
Vandegriend–Culberson algorithm do not exist.

Hamiltonian‑Bound Experiment

For the Hamiltonian-bound experiment, results are much
less uniform than for the unbound experiment.9 The hardest
Hamiltonian graphs found by the evolutionary algorithms
are still roughly a magnitude easier than the non-Hamilto-
nian graphs (see Fig. 3, right), with the number of recur-
sions increasing as approximately 1.99 ⋅ 10−7 ⋅ 6.90V in the
number of vertices ( R2 = 0.99 ). Again, this exponent is a fit

on only seven data points, needs future refinement, but still
serves as a rough indication. The acute reader will notice the
unlikeliness that the Hamiltonian exponent actually exceeds
the non-Hamiltonian exponent, even if accompanied by a
very small multiplicative factor but for now, these are the
facts. The authors consider it well possible though that fits
through larger numbers of data points give different expo-
nents and factors.

The structural resemblance between graphs of different
sizes is also much lower (Fig. 2). For graphs of size V = 8 ,
the maximum number of recursions was identical in two
graphs, reached in 10 out of 40 runs. For V = 9 , only 7 out
of 40 runs reached any of 4 graphs with maximum recur-
sions, and for larger V, the hardest Hamiltonian instance was
unique throughout 40, with just a single PPA run producing
that graph. These results suggest that the hardest possible
Hamiltonian instances might not yet have been found, and
that harder graphs are still possible. An extensive neighbour-
hood mapping was made for this graph, the results will be
presented in “Larger neighbourhoods”.

Intermezzo

If the problem instances found in the unbound experiment
are indeed global maxima, it could indicate that the prob-
lem space is largely convex, since the stochastic hillClimber
acquires similar results to the PPA. In this sense, the wall-
and-clique graph might be sitting on the top of mount hard-
ness, with very easy Hamiltonian instances and very hard
non-Hamiltonian instances in its immediate vicinity.

For the Hamiltonian-bound experiment, such observa-
tions are less expedient, because convergence of the algo-
rithms appears much less convincing. So what makes these
algorithms perform so bad on the Hamiltonian-bound prob-
lem instances? Surely, less freedom from fixing immutable
edges would make a problem easier, right? The converse
might actually be true, and the argument is a somewhat
bewildering and counterintuitive numerical elaboration
emanating from Komlós and Szemerédi’s early results and
some basic combinatorics.

As presented in Eq. 1, the probability of a random graph
being Hamiltonian sigmoidally depends on the number of
edges. But for a complete edge-independent search space
such as ours, this probability might also be seen as a fre-
quency. As a numerical example: for V = 8 and E = 14 ,
Komlós and Szemerédi’s equations predict an approximate
61% chance of Hamiltonicity. Equivalently, one could say
that 61% of all existable graphs with V = 8 and E = 14 are
Hamiltonian. Now the number of graphs is equivalent to
the number of options for placing the E edges between V
vertices:9  Some of the results from this section (too) have been expanded in

“Larger neighbourhoods”.

8  Some of the results from this section have been expanded in
“Larger neighbourhoods”.

SN Computer Science (2022) 3: 372	 Page 7 of 16  372

SN Computer Science

Fig. 2   The hardest yes-instances of the Hamiltonian cycle problem (these forcibly do contain a Hamiltonian cycle). Structure is much less obvi-
ous than for the non-Hamiltonian instances, although some premature tendencies towards cliquing might be discerned

Fig. 3   Recursions required for the hardest graph on the right-side ver-
tical axis versus their corresponding graph size on the horizontal axis.
The left graph shows results of the experiment without restrictions on
edge mutation, the right graph shows the results of the experiment in

which graphs forcibly retained an immutable Hamiltonian cycle at
all times. The bars represent the number of multiple times a graph of
maximum recursions was found

	 SN Computer Science (2022) 3: 372372  Page 8 of 16

SN Computer Science

which for V = 8 and E = 14 , amounts to 40,116,600 graphs.
Of these, approximately 61%, or 24,274,846 graphs are
Hamiltonian, the remaining 39%, or 15,841,754 graphs, are
non-Hamiltonian. Summing these results over all possible
values of E for a given V gives us the number (or percent-
age) of Hamiltonian graphs in the entire edge-independent
search space (Table 3).

As it turns out, the number of Hamiltonian instances ever
more outweigh the number of non-Hamiltonian instances as
graphs get larger. So by forcing the evolutionary algorithms
into the Hamiltonian part of the combinatorial state space,
we actually make it harder to navigate landscapes for increas-
ing V, as all runs have identical numbers of evaluations. This
observation might also account for the slightly diminishing
returns as V increases, for both algorithms in both experiments
but contrarily, these numbers do not account for graph iso-
morphism. It is an interesting and non-trivial question to see
whether other (meta)heuristic algorithms such as a properly
parameterized simulated annealing [9, 22] or genetic algo-
rithms [2] do better for this problem. It is also plausible that

(5)
(

1∕2 ⋅ V ⋅ (V − 1)

E

) metaheuristic parameter tuning and/or control might set some
serious sods to the dyke, as the problem space clearly changes
rapidly as V increases.

On a final note, these graphs might be difficult for Vacul’s
solving algorithm because its efficiency heavily depends on
pruning off edges that cannot be in any Hamilton cycle, which
only occurs when a vertex is connected by two required edges.
Because of the compact structure of the wall-and-clique graph,
this will only happen near the full depth of the search tree,
when all but two vertices of the maximum clique are included
in a partial solution. But just the ubiquity of pruning tech-
niques throughout history does not spell much good for other
exact algorithms either when it comes to these graphs. The
non-Hamiltonian instances in this study might thereby actually
be the hardest around, but more evidence, or perhaps even a
proof, is needed to solidify this conjecture. One way to move
forward is to have a look at larger neighbourhoods.

Table 1   The number and
mutability of offspring produced
by PPA’s individuals are based
on its fitness rank (1 = fittest)

Rank 1 2 3 4 5 6–10

offspring 6 5 4 3 2 1
mutations 1 2 5 5 10 20

Table 2   The smallest distance
between hardest and easiest
problem instances for the
Hamiltonian cycle problem is
(in at least one place) just one
bit: inserting an edge on either
of the two possible insertion
point types makes the hardest
(non-Hamiltonian) instance
trivially Hamiltonian

Removing an edge from either of the four possible types will make for a (just slightly) easier non-Hamilto-
nian instance. Only six different one-bitflip operations are possible, due to the highly structured nature of
the results. Instance hardness is measured in number of recursions required by Vacul’s algorithm

Graph size 8 9 10 11 12 13 14

Most difficult 67 785 1673 25,061 61,051 1,139,785 3,091,141
Insert wall #1 8 9 10 11 12 13 14
Insert wall #2 8 9 10 11 12 13 14
Remove clique-clique 63 717 1577 23,261 57,799 1,071,037 2,943,549
Remove wall-wall 43 – 1081 – 39,591 – 2,016,877
Remove wall-clique 25 529 1015 18,561 43,513 894,861 2,387,791
Remove bridge-clique 49 – 1267 – 47,655 – 2,478,947

Table 3   The edge-independent search space increases faster than exponential in the number of vertices, but the percentage of Hamiltonian
instances increases also

This results in an ever denser volume of Hamiltonian graphs, which might explain a possible lack of convergence in the evolutionary algorithms
for the Hamiltonian-bound experiment. Numbers are rounded

Vertices 8 9 10 11 12 13 14

Graphs 2.68 ⋅ 10
8

6.87 ⋅ 10
10

3.52 ⋅ 10
13

3.60 ⋅ 10
16

7.38 ⋅ 10
19

3.02 ⋅ 10
23

2.48 ⋅ 10
27

Hamiltonian 57.9% 66.5% 74.4% 81.0% 86.3% 90.4% 93.4%

SN Computer Science (2022) 3: 372	 Page 9 of 16  372

SN Computer Science

Larger Neighbourhoods

These graphs found by the evolutionary algorithms provide
us some food for thought. Clearly, the hardest no-instances
of the problem (for Vacul’s algorithm) are extremely edge
dense, and found far beyond the Komlós–Szemerédi bound,
in a region where they are theoretically least likely to exist.
The situation with the hardest yes-instances though, is much
less conclusive as convergence is much less uniform, possi-
bly due to the vast majority of Hamiltonian graphs over non-
Hamiltonian graphs within the combinatorial state space.
Nonetheless, the discovered Hamiltonian graphs are also
situated far beyond the Komlós–Szemerédi bound.

In an extension to these results, we set out to explore
the neighbourhoods of these hardness optima, but by a
different approach for each instance type. For the larg-
est ( V = 14 ) non-Hamiltonian instance, which we will
call ‘ nonHam0 ’ (see Fig. 1, bottom-right subfigure) we
stochastically sample neighbourhoods with Hamming
distances between 1 to 10 bits. Neighbourhood explora-
tion on the hardest (again V = 14 ) Hamiltonian instance
(see Fig. 2, bottom-right subfigure) requires a different
approach, in recursively making all 1-bit neighbours
of the instance at hand. Looking forward, these differ-
ences stem from the structural properties of the optima
for both instance types: the hardest no-instances form
a cliff with a narrowing ascending path of 1-bit muta-
tions leading to a single pinnacle with an extremely
hard instance, whereas the hardest yes-instance turns
out to be just one of 27 equally hard graphs, that are all
reachable by making 1-bit mutations, thereby forming

a sizeable plateau. The forthcoming subsections, which
were produced as a later extension to the earlier results,
encompass a complete structural treatment of both
hardness-neighbourhoods and the methods deployed to
discover them.

The Hardest ‘No’‑Instances

A bitwise mutation in the Hamiltonian cycle problem is the
smallest mutation one can make, and it comes in the form of
either an edge-insert or an edge-remove (to ‘move’ an edge,
such as done by our PPA-algorithm, is equivalent to simul-
taneously removing an edge and inserting another, thereby
creating a graph with maximum Hamming distance two,
and is therefore omitted in the neighbourhood sampling). To
explore the neighbourhood of the hardest non-Hamiltonian
instance nonHam0 , we create 100 new instances for every
possible combination of between 1 and 10 mutations, either
insert or remove, thereby sampling all neighbourhoods of
Hamming distance 1 through 10.

There are 65 such mutation sequences, like ‘remove 10
edges’ through ‘remove 3 and insert 2 edges’ and ‘remove
3 and insert 6 edges’ all the way to ‘insert 10 edges’, all
creating one 100-instance sampled neighbourhood from
nonHam0 . The maximum Hamming distance from nonHam0
for any 100-instance neighbourhood we created is thereby
10. There are 11 such maximum-distance neighbourhoods
(bottom row of Fig. 4), ranging from ‘10 edge removals’,
which creates a purely non-Hamiltonian neighbourhood,
through neighbourhoods like ‘7 removals and 3 inserts’ or ‘1
removal and 9 inserts’ which both yield 100% Hamiltonian

Fig. 4   In the neighbourhood of the hardest non-Hamiltonian graph
( nonHam

0
 , on top), nearly all instances are Hamiltonian. Neigh-

bourhoods produced by only removing edges are non-Hamiltonian
(primary diagonal, completely red), as is a very small fraction of
neighbours which also received 1 edge insert (secondary diagonal,
slightly red). Numbers on the neighbourhood blocks are Hamiltonian

instances, out of 100, in the generated neighbourhood. The vertical
axis has the number of bitflips to produce a neighbourhood, the hori-
zontal axis has the number of edges of graphs therein. For example:
right above the central ‘64’ is a cohort of 100 Hamiltonian graphs,
made by 10 bitflips, 5 random edge inserts and 5 edge random
removes from nonHam

0
—because it has the same number of edges

	 SN Computer Science (2022) 3: 372372  Page 10 of 16

SN Computer Science

neighbourhoods. There is an asymmetry in this method, as
odd mutation numbers can only produce odd Hamming dis-
tances and odd edge number shifts, which reflects in the
chequeredness of Fig. 4. Furthermore, the resulting graphs
are not uniformly distributed over the various connectivities;
there is only one way of making graph neighbourhoods with
10 edges less than nonHam0 : by 10 removal mutations. But
there are five ways of making graph neighbourhoods with 2
edges more than nonHam0 , ranging from 2 insert mutations,
to 6 inserts and 4 removals. Finally, mutations were exclu-
sive, in the sense that the same edge can not be removed and
inserted by the same series of mutations. In other words:
when m mutations are made, m distinct locations in the edge
matrix are flipped, and the Hamming distances of all graphs
inside that neighbourhood is exactly m, and no less.

The results of this experiment are quite uniform: of the
6500 new graphs we made out of nonHam0 , the vast major-
ity was Hamiltonian (Fig. 4). More particular, not a single
non-Hamiltonian graph was found in areas with higher edge
density than nonHam0 . We know they must exist though;
one example is a fully connected V − 1 clique and a loose
vertex, or a connected vertex with degree one. Such graph
types however, are not obtainable from nonHam0 within 10
mutations and are not Vacul-hard, but they exist. Different
non-Hamiltonian graph types might also exist in this region
of higher density, and it is technically speaking even possible
that such graphs are harder than nonHam0 , but consider-
ing the strongly coherent convergence results in Fig. 3, this
seems highly unlikely.

In regions sparser than or equally sparse to nonHam0 ,
again almost every generated graph was Hamiltonian. In
fact, the only non-Hamiltonian instances were found in two
places. The upper left ‘primary’ diagonal, completely red
in Fig. 4, consisting of neighbourhoods made by between
1 and 10 removal mutations, and the secondary diagonal
directly below it (slightly reddish), which consists of neigh-
bourhoods made by 1 insert-mutation, and between 1 and 9
removal mutations. We will further explore the top diago-
nal shortly, but it is important to note that these results are
closely related to Komlós and Szemerédi’s theoretical results
for Hamiltonicity in random graphs. In the span of these
neighbourhoods, where V = 14 and 54 ≤ E ≤ 74 , the chance
of a random graph being Hamiltonian ranges from 99.39 to
99.97%. So from a theoretical standpoint, it is not a complete
surprise that so many graphs in the vicinity of nonHam0 are
Hamiltonian. Apparently, the very small fraction of graphs
that are non-Hamiltonian are mostly, if not all, structurally
very closely related to nonHam0.

Summarizing, these 65 neighbourhoods in the immediate
vicinity of nonHam0 contain 6500 graphs, 5426 of which
are Hamiltonian and 1074 are non-Hamiltonian. Of these
non-Hamiltonians, 1000 were found in the top-left diago-
nal, the other 74 were found in the secondary diagonal

directly below it. Of the 5426 Hamiltonian instances, 5423
were decided in 14 recursions only, which could be accred-
ited either to the efficiency of the Vandegriend–Culberson
algorithm, or to the high number of Hamiltonian cycles in
these instances. Only 3 Hamiltonian instances required more
than 14 recursions, and they were all found in the secondary
diagonal: 106 recursions (a graph made from nonHam0 by
1 insert and 7 removes), 2128 recursions and 69,370 recur-
sions (both made from nonHam0 by 1 insert and 6 removes).

The Non‑Hamiltonian Cliff

These results show that the hardest non-Hamiltonian
instances narrow up along an ascending path of increasing
edges density ending in a peak of hardness, much like a
Dover cliff. At the pinnacle sits nonHam0 , a non-Hamilto-
nian graph requiring over 3 million recursions, surrounded
by very easy Hamiltonian instances on almost all sides.
Closely related hard graphs are found on and near the path
only, and are almost exclusively non-Hamiltonian instances
made by removing one or more edges from nonHam0 . A very
low number of somewhat hard Hamiltonian instances result-
ing from a number of removals plus one insert also exist near
the cliff path, in the secondary diagonal.

Upon closer inspection of the path itself, its structure
shows an intriguing hierarchical pattern of increasing diver-
sity as we descend from the cliff (Fig. 5). The 100 instances
emanating from nonHam0 by removal of a single edge are
between 4.8 and 34.8% easier than nonHam0 , but there are
only 4 distinct values in this range, possibly reflecting large
isomorphic graph clusters. This would be not completely
surprising, as nonHam0 itself is highly regular, and many
different edge removal mutations could result in the same
(isomorphic) graph. The extent to which isomorphism and
hardness equality coincide in the combinatorial state space
is as yet unknown.

Descending further down the path by removing more
edges, the resulting hardnesses become ever more diverse
(Fig. 5). Non-Hamiltonian graphs with 59 edges or fewer
have over 90 different hardness values, which are very prob-
ably structurally different. Non-Hamiltonian graphs with
57, 55 or 54 edges have 100 different hardness values; 56
edges has 99 different values. These numbers suggest that
the path widens in instance diversity on decreasing edge
numbers. Still, ‘widening’ should be considered a very rela-
tive term. For 14 vertices with 54 edges, 4.26 ⋅ 1023 graphs
exist, and even though Komlós and Szemerédi’s results
predict that only 0.61% of these are non-Hamiltonian, that
still accounts for a staggering number of 2.60 ⋅ 1021 graphs.
How many of these are isomorphic, and how precise Kom-
lós and Szemerédi’s theoretical results are on such a small
scale is all open for further analysis, but it surely gives
some kind of indication. Besides, a significant number of

SN Computer Science (2022) 3: 372	 Page 11 of 16  372

SN Computer Science

existable non-Hamiltonian graphs in this region is not hard
for Vacul’s algorithm—disconnected graphs, or degree-one
graphs, for instance. On the other hand, the convergence of
the evolutionary algorithms onto nonHam0 seems to suggest
that this is truly the hardest instance, but the magnitude of
these numbers are too compelling to make any definitive
statements as yet.

The Hardest ‘Yes’‑Instances

For the Hamiltonian instances, the approach was a little dif-
ferent. After all, whereas the hardest non-Hamiltonian graph
was quite consistently converged upon by our evolutionary
algorithms, the hardest Hamiltonian graph for V = 14 (which
we named “ Ham0 ”) was found only once in the 40 runs
(Fig. 3, right-hand side, rightmost column). Reasons for this
could be purely numerical, as discussed in “Intermezzo”: the
number of yes-instances (or: Hamiltonian graphs) greatly
outweighs the no-instances (or non-Hamiltonian graphs) in
the combinatorial state space. For V = 10 vertices, already
≈ 74.4% of all graphs are Hamiltonian, and this fraction
increases as graphs get bigger. Our focus lies on the Ham0 ,
the hardest Hamiltonian instance of V = 14 , where the bal-
ance of yes- to no-instances is approximately 93.4% versus
6.6%. That is, of all existable undirected graphs of V = 14 ,
irrespective of the number of edges, approximately 93.4%
is Hamiltonian—a huge portion.

Whether these numbers are one explanation or the expla-
nation for the poor convergence of the evolutionary algo-
rithms onto Ham0 is still unclear, but it does prescribe a
somewhat different approach in order to get meaningful
results from its immediate vicinity. So for the hardest Hamil-
tonian graph for V = 14 , we first made all 7 ⋅ 13 = 91 graphs
which can be obtained by flipping exactly one bit of informa-
tion in Ham0 , coinciding with either inserting exactly one
edge or a removing exactly one edge. This operation did

not yield any harder graphs. But it did yield two different
graphs of the exact same hardness of Ham0 , being 109,632
recursions for Vacul’s algorithm. Both of these were Hamil-
tonian, and we dubbed them Ham1 and Ham2 . We progressed
by generating all 2 ⋅ 91 = 182 neighbouring graphs for both
Ham1 and Ham2 , which yielded another 4+3=7 equally hard
graphs besides Ham0 . Continuing on in similar fashion, we
found 160 graphs of hardness equal to Ham0 , all reachable
by a single bitflip from earlier found graphs. Considering the
importance of this group, we performed a check for isomor-
phism, which is conveniently provided in an off-the-shelf
function from the networkx package [29]. After filtering out
the isomorphs without damaging the connectivity, an inter-
connected network of 27 equally hard graphs emerged, all
separated by one bitflip from between 4 and 7 neighbours.
Such a connected equal-fitness-neighbour-area is appropri-
ately enough called a ‘plateau’ in evolutionary computing,
and a notorious hassle for iteratively improving algorithms
such as ours [26, 32]. In the next section, we’ll set out to give
some structural insights into this plateau. The lookahead
conclusion however is: instances Ham0 through Ham26 are
currently the hardest known yes-instances for the Hamilto-
nian cycle problem under Vacul’s algorithm for V = 14 , and
they form a 1-bit connected plateauic network of equally
hard instances (Fig. 7).

The Hamiltonian Plateau

The plateau of 27 non-isomorphic yes-instances of the Hamil-
tonian cycle problem for Vacul’s algorithm all require 109,632
recursions, making them approximately 28 times easier than
the corresponding hardest no-instances for V = 14 . Although
the convergence results in Fig. 3 are somewhat inconclusive,
the exponentiality of the trend suggests that this difference
might increase for larger V. So while the yes-instances of this
decision problem vastly outnumber the no-instances for any

Fig. 5   Except the rightmost,
each slice in this figure repre-
sents 100 graphs generated by
removing 1 or more edges from
nonHam

0
 (which is the right-

most slice). In general, the hard-
ness of these neighbourhoods
decreases, while the variety of
hardness values widens. Adding
an edge nearly anywhere in
these graph neighbourhoods
however results in very easy
Hamiltonian instances. As such,
nonHam

0
 can be thought of as

being perched on top of a steep
narrow cliff of non-Hamiltonian
hardness, surrounded by a deep
abyss of easiness

	 SN Computer Science (2022) 3: 372372  Page 12 of 16

SN Computer Science

reasonable V, the hardest ‘no’-instances (non-Hamiltonian
graphs) are apparently exponentially harder than the hardest
yes-instances; a remarkable observation.

The 27 Hamiltonian graphs on the plateau can be thought
of as a network10 with problem instances embedded in its
nodes, and its links symbolizing a 1-bit mutation (edge-
insert or edge-removal). This plateau network is connected,
and has 64 links between its 27 nodes with connection
degrees ranging from 2 to 7. Remarkably enough, Ham0
itself has only degree 2 and is on the edge of the plateau.
This could merely be an unlikely coincidence, as the conver-
gence results were not very consistent for the yes-instances,
but it could also be that mutations from lower hardness
Hamiltonian instances funnel the algorithm towards Ham0 ,
in similar fashion to the non-Hamiltonian cliff.

The structure itself has a somewhat three dimensional feel
to it (Fig. 6, left-hand side), but to what extent it can actually
be mapped onto a mesh is unknown. Every problem instance
inside a plateau node is quite dense, having 55 ≤ E ≤ 59
edges between its V = 14 vertices. On the eye, these hardest
yes-instances (Fig. 6, thrice in the right-hand side) indeed

look very much like the hardest no-instances , sporting a
highly connected core of 5 vertices, and a ‘wall’ of 9 vertices
having degree 5, 6, 7 or 8. Though it is tempting to think
that the hardest yes-instances and the hardest no-instances
might therefore be closely intertwined, current evidence
does not support this idea. Even for the densest yes-instance
(59 edges), the Hamming distance to the hardest no-instance
(64 edges for nonHam0 ) is at least 5, but likely higher. What
can be said though, is that the hardest yes- and the hardest
no-instance are both located in a very edge dense region, far
beyond the Komlós–Szemerédi bound, which was previously
thought to hold the hardest instances. Another open issue is
that we can not rule out the existence of other (plateaus of)
hard(er) yes-instances anywhere in the combinatorial state
space.

A seemingly insignificant frolic is that the plateau net-
work itself is non-Hamiltonian—the four nodes at the bot-
tom of Fig. 6’s left-hand side cannot be in any Hamiltonian
cycle together.

Around the Hamiltonian Plateau

At this stage, we can not rule out that other yes-instances
of the same or even higher hardness exist, but if they do,
they are not connected to this plateau. In the direct 1-bit

Fig. 6   Left: the 27 hardest
yes-instances of the Hamilto-
nian cycle problem all require
109,632 recursions. When
linked by their 1-bit differ-
ences, they constitute a plateau
with diameter 6 and average
path length 2.55. Right: three
members of the plateau are
shown in detail. Although some
resemblance with nonHam

0
 is

apparent, the Hamming distance
towards the non-Hamiltonian
cliff is still quite significant

10  We intentionally omit the terms ‘graph’, ‘vertex’ and ‘edge’ here,
to distinguish the plateau structure from the structure of the problem
instances.

SN Computer Science (2022) 3: 372	 Page 13 of 16  372

SN Computer Science

vicinity of the 27-plateau are exactly 27 ⋅ 91 = 2430 graphs
that make up the plateau’s 1-bit neighbourhood. The vast
majority of these, 2406 instances ( ≈ 99.0% ) is Hamiltonian
too. Of these 2406 plateau-adjacent Hamiltonian instances,
1507 (61.3 %) graphs are trivially easy, requiring 14 recur-
sions only. In such cases, Vacul’s algorithm finds a Ham-
iltonian cycle almost instantly, without backtracking upon
a single branch. The other 1070 plateau-adjacent Hamil-
tonian instances require between 2914 and 109,632 recur-
sions, with an average and median relatively close to the
maximum, (90,457 and 101,504 recursions respectively).
There are 27 different values, which may or may not be a
coincidence as the plateau itself also consists of 27 nodes.
Some of these values occur only once, like 51,644, 51,760
and 58,694 recursions, and some values occur more often,
most prominently 109,632 recursions, which was found 161
times—these are all plateau graphs, or isomorphs thereof.
The remaining 909 instances come in 26 different recursion
values and might therefore also contain some degree of iso-
morphism, but that has yet to be seen.

A somewhat more puzzling finding is the finding of
exactly 24 non-Hamiltonian instances directly connected
to the plateau, mainly because these are all significantly
harder than the plateau itself. The number of required
recursions ranges from 229,251 to 718,745 thereby being
between 2.09 and 5.56 times as hard as the plateau instances.
Moreover, every recursion value is unique, and a check
yields that these 24 instances do not contain a single iso-
morphic pair. Furthermore, these 24 graphs come in only
four groups of 6, 6, 6, and 2 instances with E = 54 edges
and APL = 1.41,

11 E = 55 edges and APL = 1.40 , E = 56
edges and APL = 1.38 , and E = 57 edges and APL = 1.37 .
Furthermore, many identical degree distributions are to be
found, most notably within one group. So the takeaway here

is that even with exactly identical values for number of ver-
tices, edges, diameter, APL and even degree distributions,
graphs might still be very different in terms of hardness, and
definitely not isomorphic.

This find is remarkable, because the plateau-connected
Hamiltonian graphs shows strong homogeneity in recursion
values, while the adjacent non-Hamiltonian instances show
maximum diversity. Although all 24 adjacent non-Hamil-
tonians are unique, and their recursion numbers vary a lot,
they cannot be wildly different, because they are all just one
bit away from the plateau, which has a diameter of 6, and an
APL of only 2.55. In addition, there’s another remarkable
fact: although the increased hardness and non-Hamiltonicity
might suggest that these problem instances might be closer
to the non-Hamiltonian cliff, this could very well not be
the case. Judging by edge numbers, the minimal Hamming
distance from these instances to nonHam0 is between 7 and
10. The Hamiltonian instances on the plateau’s Hamming
distances to nonHam0 is between 5 and 9.

So although the adjacent non-Hamiltonians’ recursion
values are closer to the cliff, and they look structurally
alike, they are actually further away than the plateau itself.
At this point, we have no idea how to interpret these find-
ings (Fig. 7).

Discussion

Is Hardness Related to Structure?

It’s time for a redefinition. Clearly, the paradigm that “the
hardest instances of the Hamiltonian cycle problem reside
around the phase transition (or: Komlós–Szemerédi bound)”
is no longer unequivocally true. For at least one algorithm, the
highly efficient backtracker by Vandegriend–Culberson, the
hardest instances, both Hamiltonian and non-Hamiltonian,
are situated in a very edge dense region of the combinatorial

Fig. 7   Directly besides the Hamiltonian plateau lie 24 non-Hamilto-
nian instances, all of which are much harder than the plateau itself.
They come in 4 groups, all with identical edge numbers, diameter,
average path length and strongly similar (sometimes even identi-

cal) degree distributions. Still, within these 24 graphs, not one pair
is isomorphic. Counterintuitively, their minimum Hamming distance
towards nonHam

0
 , on the Hamiltonian cliff, is greater than that of the

plateau instances

11  Average path length (APL) is the minimum number of links to
traverse from one randomly picked node to another.

	 SN Computer Science (2022) 3: 372372  Page 14 of 16

SN Computer Science

state space, far beyond the Komlós–Szemerédi bound. Judg-
ing from the generality of the structure, these instances could
well be very hard for all reasonable backtracking algorithms
and all instances sizes, but this is yet to be investigated.

So do these results invalidate Cheeseman et al.’s results
then? Not at all. Although the hardest instances, both yes
and no, lie very far away from the Komlós–Szemerédi bound,
they are probably very rare. By an argument from Kolmogo-
rov complexity, these graphs are to some extent structured,
and can be recreated by a small computer program containing
some for loops and a few explicit edge definitions. This is
very different from unstructured graphs, whose smallest com-
puter program must explicitly contain its entire edge matrix to
accurately recreate it. In addition, by a simple counting argu-
ment, the number of computer programs that is significantly
shorter (in bits) than the number of graphs is extremely small.
Therefore, structured graphs must be rare too in the combi-
natorial state space. In addition, if structure is indeed related
to hardness, this also means that the easy problem instances
greatly outnumber the hard problem instances.

Highly problematic with these conjectures though, is
that they are nearly untestable due to a number of serious
obstacles. First, exhaustively enumerating the graphs is not
an option for any number of vertices over 20 or so (that’s
already ≈ 1035 graphs). Pure random generation or random
generation in columns of fixed edge degree is not viable
either, because it likely produces relatively easy instances,
as hard instances, if indeed related to structure, could well be
extremely rare. Evolutionary algorithms provide some solu-
tion to finding these, but take a very long time to converge
because of the extremely high costs of individual evalua-
tions, the ginormous state space, and the lack of guarantee
in finding the hardest instances. But thirdly, and this is not
unimportant: Kolmogorov complexity is practically incom-
putable. There is absolutely no way of telling how short the
shortest program for any given graph is, or conversely: what
short programs are amenable to producing interesting (hard)
instances at all. So if structure is indeed related to hardness,
an exact approach is almost certainly doomed to fail.

There is a bit of hope for an a posteriori approach
though: a short program (of say, length b) for the wall-and-
clique graph, which likely exists, produces some bound on
the complexity, a program for an arbitrary random graphs
likely needs around 91 bits (one bit for each vertex pair)
for V = 14 , the difference must be at least 91 − b , but could
well be greater. Assuming that such a program also exists
for the Hamiltonian instances, and given we can find it a
posteriori, and it is significantly short, then this would not
only confirm that structure is related to hardness, but also
enable us to create hard instances for any number of V,
both Hamiltonian and non-Hamiltonian.

Taking this argument one step further, if either enumera-
tion, algorithmics or randomness could account for making

a cloud of hard yes- or no-instances, it would be interest-
ing to see how those output clouds mingle. Looking at the
structures presented in this paper, it is imaginable that at
some point, the hardest yes- and no-instances might be close
together, both in Hamming distance and in computational
hardness (for a similar discussion, see [4, 42]).

Implications for Benchmarking

Another consequence of these results is that we might
add a serious consideration to our best benchmarking
practices [3]. At the very least, we could ask ourselves
the question “what is it that constitutes a good bench-
mark set?”. If “being representative” is considered a
requirement, than we should consider whether random
generation of instances is a good idea in the first place.
Random generation, even random generation in degree
columns, has almost zero chance of creating structured
instances, which might (partially) coincide with the class
of hard instances. For the Hamiltonian cycle problem,
but possibly also for other ((harder than) NP-complete)
problems, they are simply too rare to show up in ran-
domly generated benchmark sets.

But an immediate deeper question here is: do you want
to have the hardest instances in your benchmark set, and
if yes, which hardest instances? For the Hamiltonian cycle
problem, generating random graphs in degree columns, a
column with a degree near the Komlós–Szemerédi bound
may well contain the hardest instances on average, but the
hardest single individuals might be in the edge-dense regions
far away—possibly in a column together with a host of
very easy instances, considering Cheeseman’s results. So a
redefinition of “where the really hard problem instances are”
might incorporate maxima, minima, standard deviations or
possibly a complete hardness frequency spectrum of degree
columns for better answers.

It is well known that many “real world graphs” have a
‘small-world’ structure, which translates to relatively low
Kolmogorov complexity [43]. Therefore, data on randomly
generated benchmark sets might produce absolutely zero
useful information for real-world graph applications. Simi-
larly, for finding the hardest possible instances for a class of
algorithms, random generation does not seem suitable either.
Thankfully, evolutionary algorithms which provide us with
a quantum of solace and a way forward. Even though we
have few definitive answers yet, there is some indication of
direction and as for future work, one of the tasks will be to
more sharply define the hardest instances, and if possible,
describe them with small computer programs.12

12  ECTA 2020 is part of the larger conference IJCCI 2020, see http://​
www.​ecta.​ijcci.​org/.

http://www.ecta.ijcci.org/
http://www.ecta.ijcci.org/

SN Computer Science (2022) 3: 372	 Page 15 of 16  372

SN Computer Science

Acknowledgements  ECTA’s reviewers really made an effort to under-
stand and thoroughly annotate the predecessor of this paper which
led to this extended version. For the journal paper, two reviewers of
Springer Nature Computer Science did an excellent job by not only
reading, but recalculating, interpreting and discussing our findings.
Thank you all, for adding your fruits of thought to our pie.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Aguirre ASM, Vardi M. Random 3-sat and bdds: the plot thickens
further. In: International conference on principles and practice of
constraint programming. Springer; 2001. p. 121–36.

	 2.	 Bäck T, Fogel DB, Michalewicz Z. Handbook of evolutionary
computation. Release. 1997;97(1):B1.

	 3.	 Bartz-Beielstein T, Doerr C, Berg D, Bossek J, Chandrasekaran
S, Eftimov T, Fischbach A, Kerschke P, La Cava W, Lopez-Ibanez
M et al (2020) Benchmarking in optimization: best practice and
open issues. arXiv:​2007.​03488.

	 4.	 Braam F, van den Berg D. Which rectangle sets have perfect pack-
ings? Oper Res Perspect. 2022;9: 100211.

	 5.	 Brélaz D. New methods to color the vertices of a graph. Commun
ACM. 1979;22(4):251–6.

	 6.	 Cheeseman P, Kanefsky B, Taylor WM. Where the really hard
problems are. In: Proceedings of the 12th international joint con-
ference on artificial intelligence, vol 1, IJCAI’91. San Francisco:
Morgan Kaufmann Publishers Inc.;1991. p. 331–37.

	 7.	 Coarfa C, Demopoulos DD, Aguirre AS M, Subramanian D, Vardi
MY. Random 3-sat: the plot thickens. In: International conference
on principles and practice of constraint programming. Springer;
2000. p. 143–59.

	 8.	 Cook SA. The complexity of theorem-proving procedures. In:
Proceedings of the third annual ACM symposium on theory of
computing, STOC ’71. New York: ACM; 1971. p. 151–58.

	 9.	 Dahmani R, Boogmans S, Meijs A, van den Berg D. Paintings-
from-polygons: simulated annealing. In: International conference
on computational creativity (ICCC’20). 2020.

	10.	 De Jonge M, van den Berg D. Parameter sensitivity patterns in the
plant propagation algorithm. In: IJCCI. 2020. p. 92–9.

	11.	 de Jonge M, van den Berg D. Plant propagation parameterization:
offspring & population size. In: Evo* 2020. 2020. p. 19 .

	12.	 Dijkzeul D, Brouwer N, Pijning I, Koppenhol L, van den Berg D.
Painting with evolutionary algorithms. In: International confer-
ence on computational intelligence in music, sound, art and design
(Part of EvoStar). Springer; 2022. p. 52–67.

	13.	 ECTA (2020) Ecta website. http://​www.​ecta.​ijcci.​org/​Previ​ousAw​
ards.​aspx. Accessed 18 June 2021.

	14.	 Fraga E. Fresa: a plant propagation algorithm for black-box single
and multiple objective optimization. Int J Eng Tech Inf (Skeena).
2021;2(4):110–1.

	15.	 Fraga ES. An example of multi-objective optimization for
dynamic processes. Chem Eng Trans (AIDIC). 2019;74:601–6.

	16.	 Fraga ES. Multiple simultaneous solution representations in a
population based evolutionary algorithm. 2021. arXiv:​2106.​
05096. Accessed 21 Feb 2022.

	17.	 Garey MR. Johnson DS. Computers and intractability; a guide to
the theory of NP-completeness. New York: W. H. Freeman & Co.;
1990.

	18.	 Geleijn R, van der Meer M, van der Post Q, van den Berg D. The
plant propagation algorithm on timetables: first results. In: EVO*
2019. 2019. p. 2.

	19.	 Held M, Karp RM. A dynamic programming approach to sequenc-
ing problems. J Soc Ind Appl Math. 1962;10(1):196–210.

	20.	 Hutter F, Xu L, Hoos HH, Leyton-Brown K. Algorithm runtime
prediction: methods & evaluation. Artif Intell. 2014;206:79–111.

	21.	 Karp RM. Reducibility among combinatorial problems. In:
Miller RE., Thatcher JW, Bohlinger, JD, editors. Proceedings
of a symposium on the Complexity of Computer Computations,
held March 20–22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, and sponsored by the Office
of Naval Research, Mathematics Program, IBM World Trade Cor-
poration, and the IBM Research Mathematical Sciences Depart-
ment, Boston. Springer US; 1972.

	22.	 Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated
annealing. Science. 1983;220(4598):671–80.

	23.	 Komlós J, Szemerédi E. Limit distribution for the existence
of Hamiltonian cycles in a random graph. Discrete Math.
1983;43(1):55–63.

	24.	 Larrabee T, Tsuji Y. Evidence for a satisfiability threshold for
random 3cnf formulas. Technical report. 1993.

	25.	 Li M, Vitányi P, et al. An introduction to Kolmogorov complexity
and its applications, vol 3. Springer; 2008.

	26.	 Malan KM, Engelbrecht AP. A survey of techniques for charac-
terising fitness landscapes and some possible ways forward. Inf
Sci. 2013;241:148–63.

	27.	 Martello S. Algorithm 595: an enumerative algorithm for finding
Hamiltonian circuits in a directed graph. 1983.

	28.	 Michalak K. Generating hard inventory routing problem instances
using evolutionary algorithms. In: Proceedings of the genetic and
evolutionary computation conference. 2021. p. 243–51.

	29.	 NetworkX. Python’s NetworkX package. 2021. https://​netwo​rkx.​
org/. Accessed 18 June 2021.

	30.	 Paauw M. van den Berg D. Paintings, polygons and plant propaga-
tion. In: International conference on computational intelligence in
music, sound, art and design (Part of EvoStar). Springer; 2019. p.
84–97.

	31.	 Rubin F. A search procedure for Hamilton paths and circuits. J
ACM. 1974;21(4):576–80.

	32.	 Russell S. Norvig P. Artificial intelligence: a modern approach.
2002. p. 123.

	33.	 Salhi A. Fraga ES. Nature-inspired optimisation approaches and
the new plant propagation algorithm. 2011.

	34.	 Selamoğlu B.İ, Salhi A. The plant propagation algorithm for dis-
crete optimisation: the case of the travelling salesman problem.
In: Nature-inspired computation in engineering. Springer; 2016.
p. 43–61.

	35.	 Selman B, Mitchell DG, Levesque HJ. Generating hard satisfi-
ability problems. Artif Intell. 1996;81(1):17–29 (Frontiers in
Problem Solving: Phase Transitions and Complexity).

	36.	 Sleegers J, vanden Berg D. Looking for the hardest Hamiltonian
cycle problem instances. 2020.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2007.03488
http://www.ecta.ijcci.org/PreviousAwards.aspx
http://www.ecta.ijcci.org/PreviousAwards.aspx
http://arxiv.org/abs/2106.05096
http://arxiv.org/abs/2106.05096
https://networkx.org/
https://networkx.org/

	 SN Computer Science (2022) 3: 372372  Page 16 of 16

SN Computer Science

	37.	 Sleegers J, van den Berg D. Plant propagation & hard Hamiltonian
graphs. In: Evo* 2020. 2020. p. 10.

	38.	 Sleegers J, Van den Berg D. Backtracking (the) algorithms on the
Hamiltonian cycle problem. Int J Adv Intell Syst. 2021;14:1–13.

	39.	 Smith-Miles K, van Hemert J, Lim XY. Understanding tsp diffi-
culty by learning from evolved instances. In: International confer-
ence on learning and intelligent optimization. Springer; 2010. p.
266–280.

	40.	 Tarjan R. Depth-first search and linear graph algorithms. SIAM J
Comput. 1972;1(2):146–60.

	41.	 Turner JS. Almost all k-colorable graphs are easy to color. J Algo-
rithms. 1988;9(1):63–82.

	42.	 Van Den Berg D, Adriaans P. Subset sum and the distribution of
information. In: Proceedings of the 13th international joint confer-
ence on computational intelligence. 2021. p. 135–141.

	43.	 van den Berg D, Gong P, Breakspear M, van Leeuwen C. Frag-
mentation: loss of global coherence or breakdown of modularity
in functional brain architecture? Front Syst Neurosci. 2012;6:20.

	44.	 van Hemert JI. Evolving combinatorial problem instances that are
difficult to solve. Evol Comput. 2006;14(4):433–62.

	45.	 van Horn G, Olij R, Sleegers J, van den Berg D. A predictive data
analytic for the hardness of Hamiltonian cycle problem instances.
In: Data Analytics 2018: the seventh international conference on
data analytics. 2018.

	46.	 Vandegriend B. Culberson JC. The gn,m phase transition is
not hard for the Hamiltonian cycle problem. arXiv:​1105.​5443
[CoRR]. 2011. Various sources report reversals of author order.
Basil Vandegriend is the first author of this paper.

	47.	 Vrielink W, van den Berg D. Fireworks algorithm versus plant
propagation algorithm. 2019.

	48.	 Vrielink W, van den Berg D. A dynamic parameter for the plant
propagation algorithm. 2021.

	49.	 Vrielink W, van den Berg D. Parameter control for the plant propa-
gation algorithm. 2021.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1105.5443

	The Hardest Hamiltonian Cycle Problem Instances: The Plateau of Yes and the Cliff of No
	Abstract
	Introduction
	Algorithms
	Hamiltonian Cycle Problem Solver
	Evolutionary Algorithms

	Experiment
	Results
	Unbound Experiment
	One-Bit Neighbourhoods
	Hamiltonian-Bound Experiment

	Intermezzo
	Larger Neighbourhoods
	The Hardest ‘No’-Instances
	The Non-Hamiltonian Cliff
	The Hardest ‘Yes’-Instances
	The Hamiltonian Plateau
	Around the Hamiltonian Plateau

	Discussion
	Is Hardness Related to Structure?
	Implications for Benchmarking

	Acknowledgements
	References

