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Abstract
We use two evolutionary algorithms to make hard instances of the Hamiltonian cycle problem. Hardness (or ‘fitness’), is 
defined as the number of recursions required by Vandegriend–Culberson, the best known exact backtracking algorithm for 
the problem. The hardest instances, all non-Hamiltonian, display a high degree of regularity and scalability across graph 
sizes. These graphs are found multiple times through independent runs, and by both evolutionary algorithms, suggesting 
the search space might contain monotonic paths towards the global maximum. For Hamiltonian-bound evolution, some 
hard graphs were found, but convergence is much less consistent. In this extended paper, we survey the neighbourhoods of 
both the hardest yes- and no-instances produced by the evolutionary algorithms. Results show that the hardest no-instance 
resides on top of a steep cliff, while the hardest yes-instance turns out to be part of a plateau of 27 equally hard instances. 
While definitive answers are far away, the results provide a lot of insight in the Hamiltonian cycle problem’s state space.

Keywords  Hamiltonian cycle problem · Evolutionary algorithms · Plant propagation algorithm · Instance hardness · 
NP-complete

Introduction

The Hamiltonian cycle problem involves deciding 
whether an undirected and unweighted graph contains a 
path that visits every vertex exactly once and returns to 

the first vertex, closing the loop. In stark contrast to the 
closely related Euler cycle problem, which is easy, the 
Hamiltonian cycle problem is notoriously hard, and even 
has an entry (number 10) on Richard Karp’s infamous 
list of NP-complete problems [21]. Under the common 
assumption that the classes of P and NP are not equal, 
the Hamiltonian cycle problem has no subexponential 
solving algorithm, but candidate solutions can still be 
verified in polynomial time [8, 17]. NP-complete prob-
lems are in some sense ‘at the summit of NP’: if a poly-
nomial time algorithm is found for just one of these 
problems, it can be tailored to all NP-complete prob-
lems, vanishing the class NP completely into P. Unfor-
tunately, such an algorithm is not known for any of the 
myriad problems in this class, which are therefore all 
intractable, even at very small instance sizes.

But the exponential runtime increase for solving algo-
rithms1 is not as crippling as it might appear on first sight. 
As it turns out, there are substantial differences in instance 
hardness for many NP-complete problems, and literature on 
the subject is widely available [6]. One example is graph 
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colourability, for which Daniel Brélaz’ algorithm performs 
significantly better than the problem’s exponential upper 
bound on many instances [5, 41]. For the satisfiability 
problem (SAT2), which could be considered ‘the root of 
all NP-completeness’, the hardness of individual instances, 
measured in computational effort required for solving, criti-
cally depends on the ratio of clauses to variables in the for-
mula [24, 35]. Instances of SAT with many variables and 
relatively few clauses are generally speaking easy to decide, 
because they have many solutions. On the other hand, 
instances with few variables but many clauses are also easy 
to decide, because they can be quickly asserted to be unsolv-
able. But between these, around the clause-to-variable ratio 
of � ≈ 4.26 , where a randomly generated formula has ≈ 50% 
chance of being solvable, is where the hardest instances 
occur3 [6, 20]. In this sense, the clause-to-variable ratio � 
functions as an ‘order parameter’, or ‘predictive data ana-
lytic’, indicating where to expect the worst runtimes when 
solving instances of randomly generated SAT-formulas.

For the Hamilton cycle problem, such an order parameter 
also exists, and it is again related to the solvability of the 
individual instance. For a randomly generated graph of V 
vertices and E edges, the probability of being Hamiltonian 
is given by

which is a strictly increasing function on any finite interval, 
and in which c depends on E and V as

following the results of János Komlós and Endre Szemerédi 
[23]. In this equation, PHamiltonian(V ,E) has its steepest deriv-
ative at c = 0 , where E = 1∕2 V ⋅ ln(V) + 1∕2 V ⋅ ln(ln(V)) . 
Although this ‘threshold point’ happens to be at e−1 ≈ 0.368 , 
rather than a more intuitive 0.5 like in SAT,4 this ‘Kom-
lós–Szemerédi bound’ is considered as the central point for 
the hardest Hamiltonian problem instances. The number of 
edges (or equivalently: average vertex degree) is consequen-
tially proposed as its order parameter [6, 45]. As a numerical 
example: for randomly generated undirected graphs of 120 
vertices, the hardest Hamiltonian cycle problem instances 
would occur around 381 edges, where the probability of 
being Hamiltonian is ≈ 37% . Analogously to SAT, far more 

(1)PHamiltonian(V ,E) = e
−e−2c

(2)E = 1∕2 V ⋅ ln(V) + 1∕2 V ⋅ ln(ln(V)) + cV

edges make for much easier problems instances, as dense 
graphs contain many Hamiltonian cycles, and one is quickly 
found. Graphs with far fewer edges are also easy, because 
they can be dismissed as non-Hamiltonian (i.e. not having a 
Hamiltonian cycle) relatively fast.

In an attempt to find the absolute hardest of the hardest 
problem instances, evolutionary algorithms were used to 
generate graphs requiring maximum computational effort 
for the best known backtracking algorithm [37]. Starting 
off from the Komlós–Szemerédi bound where traditionally 
the hardest problem instances were found, a stochastic hill-
Climber and plant propagation algorithm (PPA) produced 
graphs that required ever more recursions for the Vande-
griend–Culberson (henceforth ‘Vacul’) algorithm, the most 
efficient backtracking algorithm for the problem known to 
date [46].

But NP-completeness had not surrendered all of its 
surprises yet: the resulting hardest graphs were found 
nowhere near the Komlós–Szemerédi bound. They were 
much denser, and displayed a high degree of structural 
regularity, which might be expressed as low Kolmogorov 
complexity [25]. The authors hypothesized that exactly 
for this reason, these very hard problem instances had 
never shown up in the large randomized ensembles of 
the aforementioned research endeavours. But the study 
raised more questions than answers: had the evolutionary 
algorithms actually converged? Are these almost-regular 
graphs really the hardest problem instances? In addition, 
why are they all non-Hamiltonian? What do the hardest 
Hamiltonian graphs look like? In addition, does the num-
ber of edges of the initial graph influence the outcome?

In this study, we will answer most of these ques-
tions and further deepen our knowledge of the problem. 
First, we will explain the algorithms involved: Vacul’s 
algorithm for solving problem instances, the stochastic 
hillClimber and the plant propagation algorithms for 
evolving graphs. Then, the experiment is described; we 
significantly extend the scope of graph sizes, runs, start-
ing points, and evaluations. We also conduct a ‘Hamil-
tonian-bound’ experiment, in which evolving graphs are 
forced to be Hamiltonian, to see how hard yes-instances 
can possibly get. Hard, but not nearly as hard as the non-
Hamiltonian graphs, as we will shortly see. The paper 
then reaches an intermezzo, discussing the results so far, 
and reflecting on explanations for the performance of 
the evolutionary algorithms. After that, a deeper inves-
tigation into the neighbourhood structure of the hardest 
instances (both yes and no) is presented. The paper then 
ends with a lot of open ends, but also a treatment on how 
structure might be related to hardness, and some general 
implications for benchmarking practices.

3  For further refinement on solver performance around the phase 
transition in SAT, see [1, 7].
4  The origin of this specific value is that the threshold function 
becomes ever steeper exactly around e−1 as graph size increases, 
approaching a step function as V → ∞.

2  Whenever we refer to ‘SAT’, we implicitly mean random 3CNF-
SAT, which is the satisfiability problem in its conjunctive normal 
form with three randomly chosen literals per clause.
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Algorithms

Hamiltonian Cycle Problem Solver

Over the last century, a great number of deterministic 
exact solving algorithms have been developed for the 
Hamiltonian cycle problem. Rooted in dynamic program-
ming, the Help–Karp algorithm is quite memory intensive, 
but by O(n2 ⋅ 2n) still holds the lowest time complexity 
[19]. Later algorithms by [6, 27, 31, 45, 46] are all exact 
backtracking algorithms, and therefore have a theoretical 
upper runtime bound of O(v!), but perform significantly 
better on large ensembles of random graphs due to clever 
optimization strategies [38]. Traditionally, the hardest 
graphs for all these depth-first based algorithms are found 
around the Komlós–Szemerédi bound, where the probabil-
ity of a random graph being Hamiltonian goes from almost 
zero to almost one as E increases (Eqs.1, 2).

Interestingly enough though, all these are applied vari-
ations and subsets of just three optimization techniques: 
vertex degree preference, edge pruning, and non-Hamil-
tonicity checks. The more the better, it seems, as Vacul’s 
algorithm, containing all three techniques, significantly 
outperforms all the others—even though its hardest 
instances are still near the Komlós–Szemerédi bound [38, 
46]. It is this algorithm, the best backtracker available, that 
we use for measuring the hardness of Hamiltonian cycle 
problem instances in this study.

Vacul’s algorithm is a depth-first search algorithm that 
uses edge pruning, non-Hamiltonicity checks and employs 
a low-degree first ordering while recursing over the verti-
ces. Techniques for edge pruning and non-Hamiltonicity 
checks are employed both before and during recursion. 
The pruning subroutine removes edges that cannot be in 
any Hamiltonian cycle, based on ‘required edges’ that must 
be in a Hamilton cycle, given that a problem instance has 
one. An edge is required if it is connected to a vertex with 
degree two. The algorithm then uses two pruning meth-
ods; the first method seeks out vertices that have a degree 
higher than two and are connected to two required edges, 
rendering all other edges removable. The second method 
looks for paths of required edges that do not (yet) form a 
Hamilton cycle. If an edge exists that would close such a 
path prematurely, it is removed (‘pruned’).

The checks for non-Hamiltonicity examine whether 
the graph cannot contain a Hamilton cycle based on two 
global properties: having a vertex with degree smaller than 
two, or the graph being disconnected. Third, the algorithm 
checks whether the graph is 1-connected, using Tarjan’s 
algorithm [40]. If any of these three conditions are met, 
the graph cannot be Hamiltonian and the recursive process 
can be skipped or be backtracked upon.

In these routines for checking Hamiltonicity, edge prun-
ing and vertex degree preference, Vacul’s algorithm com-
bines many if not all best practices that have been developed 
for the recursive class of exact algorithms for the Hamilto-
nian cycle problem. For a more in-depth treatment, please 
consult [38].

Evolutionary Algorithms

Though making hard problem instances with evolutionary 
algorithms is not entirely new, it has become a lot easier 
during the last decade due to the enormous surge in compu-
tational power. This is necessary not because the evolution-
ary algorithms themselves consume so much budget, but as 
it finds harder and harder instances, its evaluation function, 
which is often an exact algorithm for solving the instances, 
does tend to get close to its dire upper bound ... for every 
function evaluation. A noteworthy example of such initia-
tive is the work by Krzysztof Michalak, who evolved hard 
instances of the inventory routing problem, [28], while some 
earlier endeavours addressed TSP, SAT, and the binary con-
straint satisfaction problem [39, 44].

The evolutionary algorithms used for making the hard 
Hamiltonian cycle problem instances in this study are a 
stochastic hillClimber and an implementation of the plant 
propagation algorithm (PPA), a crossoverless population-
based metaheuristic [48, 49]. It has multiple implementa-
tions, sometimes substantially different for the seminal form, 
but our PPA is directly adapted from an earlier application 
to the travelling salesman problem [18, 34]. By mutating 
the edge matrix of a graph, both algorithms try to iteratively 
increase its ‘fitness’, the computational hardness measured 
in number of recursions required by the Vacul-algorithm to 
solve the instance. The more recursions are required, the 
harder the problem instance, and the fitter the graph.

The evolutionary algorithms use three mutation types 
with equal probability: to insert an edge at a random unoccu-
pied place in the graph, to randomly remove an existing edge 
from the graph, and to move an edge, which is effectively 
equal to a remove mutation followed by an insert mutation 
(on a different unoccupied place). In the hillClimber algo-
rithm, one mutation is chosen at random after which the 
graph is reevaluated. The mutation is reverted iff the result-
ing graph is unfitter than its parent, and kept otherwise. This 
process is repeated for a predetermined number of evalua-
tions (or ‘iterations’, for this algorithm).

The plant propagation algorithm is a population-based 
algorithm that tries to balance exploration and exploitation 
by letting the fitter individuals in the population produce 
many offspring with few mutations, and unfitter individuals 
in the population produce few offspring with many muta-
tions. It can be applied to a broad spectrum of continuous, 
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discrete and mixed objective landscapes in scientific, indus-
trial and even artistic optimization problems [12, 14–16, 18, 
30, 33, 34, 47]. A most recent investigation suggested that 
one version of the algorithm might be largely parameter 
independent [10, 11].

The implementation of the plant propagation algorithm 
used in this experiment is closely related to a discrete adap-
tation that was earlier applied to the travelling salesman 
problem and the university timetabling problem [18, 34]. 
Each generation, the population is sorted on fitness after 
which each individual produces offspring by first copying 
itself, and then applying a number of mutations to the off-
spring. If any of a parent’s offspring is fitter, it replaces the 
parent; if multiple offspring are fitter, the fittest replaces the 
parent. The exact numbers of offspring and mutations are 
predetermined for all ranks in the sorted population (see 
Table 1). So in this study, the population size is 10 and 
therefore the number of evaluated offspring is 25 in every 
PPA generation. These parameters are chosen intuitively, 
as they abide strongly by PPA’s philosophy of balancing 
the powers of exploration and exploitation, but more effi-
cient parameter settings are certainly not unthinkable. The 
algorithm’s source code can be accessed through a public 
GitHub repository.5

Experiment

To obtain the hardest Hamiltonian cycle problem instances, 
we evolve 560 graphs of sizes 8 ≤ V ≤ 14 in 560 evolution-
ary runs of 3000 evaluations. The investigation is split in 
two parts: an ‘unbound’ experiment, in which the evolu-
tionary algorithms are free to modify all the edges, and a 
‘Hamiltonian-bound’ experiment in which the evolutionary 
algorithms are free to modify all the edges except the edges 
{(1, 2), (2, 3)⋯ (v − 1, v), (v, 1)} , thereby enforcing the pres-
ence of a Hamiltonian cycle in the graph at all times.

For the hillClimber runs, 20 randomly generated graphs 
were evenly dispersed in terms of edge density, ranging from 
0 to 1∕2V ⋅ (V − 1) edges, corresponding to edge densities 
∈ {0%, 5%, 10%⋯ 95%} . For the PPA runs, twenty initial 
populations were made along the same edge density inter-
vals, with all graphs in one population having the same edge 
density. It should be noted that these densities are fixed only 
upon initialization, as the evolutionary algorithms are free 
to insert and remove edges from graphs at every step of a 
run. The rationale behind this choice of edge densities is that 
earlier results could have been biased from the initializa-
tion on the Komlós–Szemerédi bound. The current approach 
would cover a much wider area of the state space, at least 

as seen from the initial conditions. But for the results, it did 
not make much of a difference.

From these evenly distributed initial positions, both algo-
rithms ran 3000 function evaluations. This means 3000 itera-
tions for the stochastic hillClimber, but 120 generations of 
PPA, which produces 25 offspring, and therefore performs 
exactly 25 evaluations per generation (Table 1). These 
numbers might look small, as do the numbers of vertices 
in the graphs used, but the number of recursions required 
for Vacul’s solving algorithm in every function evaluation 
can still easily run in the millions (see Fig. 3). In addition, 
as we are actively pushing towards the maximum, the entire 
unbound experiment of 280 runs (7 graph sizes with 20 start-
ing points for two evolutionary algorithms) with 3000 func-
tion evaluations still took approximately 45 days on 16 cores 
of the LISA cluster computer at Amsterdam’s Science Park.6 
The 280 runs of 3000 evaluations for the Hamiltonian-bound 
experiment took significantly less time, possibly because 
the Hamiltonian-bound instances require significantly fewer 
recursions to decide. Hamiltonian instances are easier, gen-
erally speaking. But if you want to see for yourself, all the 
experiment’s resources are publicly available through an 
open repository.7

Results

Unbound Experiment

The results of the unbound experiment resoundingly suggest 
that the hardest problem instances are all non-Hamiltonian. 
Both evolutionary algorithms produced structurally similar 
graphs consisting of a ‘clique’ and a ‘wall’ for all vertex 
numbers (see Fig. 1). The clique is a fully connected subset 
consisting of V

c(odd) =
V−1

2
 vertices in odd-sized graphs, and 

V
c(even) =

V−2

2
 vertices in even-sized graphs. Every graph of 

size V is a subgraph of size V + 1 , even though the exact 
addition of edges differs from odd to even graphs. The edge 
number of these graphs is consequently given by

with V
c
= V

c(odd) if V is odd, and

with V
c
= V

c(even) if V is even. These quadratic results sug-
gest that the larger the graph, the further away the hardest 
instances are from the Komlós–Szemerédi bound, which 
only increases (double) logarithmically in V. It should be 

(3)(V − V
c
) ⋅ V

c
+ 1∕2V

c
⋅ (V

c
− 1)

(4)(V − V
c
) ⋅ V

c
+ 1∕2V

c
⋅ (V

c
− 1) + 1

5  https://​github.​com/​Joeri​1324/​evolv​ing-​hard-​hamil​ton-​cycles.

6  https://​useri​nfo.​surfs​ara.​nl/​syste​ms/​lisa.
7  https://​github.​com/​Joeri​1324/​evolv​ing-​hard-​hamil​ton-​cycles.

https://github.com/Joeri1324/evolving-hard-hamilton-cycles
https://userinfo.surfsara.nl/systems/lisa
https://github.com/Joeri1324/evolving-hard-hamilton-cycles
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noted that these results strongly contradict earlier findings 
that find the hardest instances close to the bound [6, 46]. 
This might be due to the random nature of earlier test sets, 
but for the related SAT-problem, two studies led by Moshe 
Vardi suggest that the hardness peak itself might also move, 
depending on the specific solver used in the experiments 
[1, 7].

Fitting an exponential curve through the recursions in 
Fig. 3 gives functional increase in computational cost of 
approximately 0.24 ⋅ 3.22V  ( R2 = 0.99 ) in the number of 
vertices for the unbound experiment. The base number of 
3.22 appears a bit high, even for an NP-complete problem, 
but significantly lower than the ‘plain’ complexity O(V!) of 
an exhaustive enumeration. The number of recursions wob-
bles a bit in V, which is likely due to discrepancy between 
odd- and even-sized graphs. In the odd-sized graphs, there 
are slightly more vertices in the clique, which results in a 
higher edge density, and possibly more required recursions.

In the unbound experiment, both the plant propagation 
algorithm and the stochastic hillClimber converged multiple 
times onto the same graph. HillClimber produced the same 
instance between 4 and 16 times (11.3 on average) out of 20 

for different V (see the bars in Fig. 3, left). In its operation, 
the stochastic hillClimber is prone to get stuck in local max-
ima, but the plant propagation algorithm is better equipped 
for navigating large non-convex search spaces with its highly 
mutative offspring at the bottom of its population. Maybe 
that is why the algorithm did solidly better, with all values 
between 11 and 18 same instances (14.9 on average) out 
of 20 runs converging to the (same) wall-and-clique graph 
for different V. It should be noted though, that PPA only 
outperforms the hillClimber after approximately 2000 evalu-
ations, an effect that was also witnessed in other problems 
[18]. Because of the consistent convergence through inde-
pendent runs of both algorithms, and PPA’s ability to escape 
from local maxima, it is possible that the wall-and-clique 
graphs are indeed the hardest instances of the Hamiltonian 
cycle problem for Vacul’s algorithm. Moreover, this maxi-
mum appears to be connected through a state path of mono-
tonically increasing fitness values, the details of which will 
receive further investigation in “Larger neighbourhoods”. A 
last slightly eyebrow raising observation is that both algo-
rithms converge somewhat better for even numbers of V. 
Reasons for this, if any, remain unknown.

Fig. 1   The hardest instances of the Hamiltonian cycle problem are 
all non-Hamiltonian, highly structured, and maximally dense. Graphs 
were found with evolutionary algorithms, and the fitness measured 
in recursions needed for the Vandegriend–Culberson algorithm, the 

most efficient backtracker available. The dominant configuration of a 
‘wall’ and a fully connected ‘clique’ was reached multiple times in 
independent runs and by both algorithms
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One‑Bit Neighbourhoods

The highly structured results of the unbound experiment 
allow for an exhaustive mapping of the one-bit neighbour-
hood of the most difficult instances.8 For the odd-sized 
graphs, there is only one possible graph type resulting from 
edge insertion. For the even-sized graphs there are two 
neighbouring graph types from inserting an edge, due to 
the extra edge in the wall. Both these edge insertions imme-
diately make the graph Hamiltonian and very easily decid-
able, within just V recursions (Table 2). It is a remarkable 
finding, that the hardest non-Hamiltonian instances and the 
easiest Hamiltonian instances are separated by just one bit 
of information.

In odd-sized graphs, removal of an edge can create two 
different one-bit neighbouring non-Hamiltonian graph 
types, either from removal inside the clique, or removal of a 
wall-clique edge. In even-sized graphs, a third and a fourth 
removal are possible, from the single wall-wall edge, and 
from the bridge to the clique. All edge-removal operations 
lower the number of recursions needed to decide the graph, 
but the effect is much less dramatic than for inserting edges. 
Even though the number of recursions from edge removal 
drops between 6 and 63% for the smallest instances, the dif-
ference is only between 5 and 33% for the largest instance in 
this study, and is expected to become ever smaller for larger 
instances, simply because larger graphs have more edges, so 
the removal of one could have a smaller impact on recursion.

These neighbourhood results do show however, that the 
wall-and-clique graphs are at the very least a local maximum 
of instance hardness. But since both algorithms repeatedly 
and independently converged to the same graph, and PPA 
is not sensitive to local maxima, it might well be that these 
graphs are the hardest instances of the Hamiltonian cycle 
problem (for Vacul’s algorithm). These results could be 
taken as a suggestion that harder problem instances for the 
Vandegriend–Culberson algorithm do not exist.

Hamiltonian‑Bound Experiment

For the Hamiltonian-bound experiment, results are much 
less uniform than for the unbound experiment.9 The hardest 
Hamiltonian graphs found by the evolutionary algorithms 
are still roughly a magnitude easier than the non-Hamilto-
nian graphs (see Fig. 3, right), with the number of recur-
sions increasing as approximately 1.99 ⋅ 10−7 ⋅ 6.90V in the 
number of vertices ( R2 = 0.99 ). Again, this exponent is a fit 

on only seven data points, needs future refinement, but still 
serves as a rough indication. The acute reader will notice the 
unlikeliness that the Hamiltonian exponent actually exceeds 
the non-Hamiltonian exponent, even if accompanied by a 
very small multiplicative factor but for now, these are the 
facts. The authors consider it well possible though that fits 
through larger numbers of data points give different expo-
nents and factors.

The structural resemblance between graphs of different 
sizes is also much lower (Fig. 2). For graphs of size V = 8 , 
the maximum number of recursions was identical in two 
graphs, reached in 10 out of 40 runs. For V = 9 , only 7 out 
of 40 runs reached any of 4 graphs with maximum recur-
sions, and for larger V, the hardest Hamiltonian instance was 
unique throughout 40, with just a single PPA run producing 
that graph. These results suggest that the hardest possible 
Hamiltonian instances might not yet have been found, and 
that harder graphs are still possible. An extensive neighbour-
hood mapping was made for this graph, the results will be 
presented in “Larger neighbourhoods”.

Intermezzo

If the problem instances found in the unbound experiment 
are indeed global maxima, it could indicate that the prob-
lem space is largely convex, since the stochastic hillClimber 
acquires similar results to the PPA. In this sense, the wall-
and-clique graph might be sitting on the top of mount hard-
ness, with very easy Hamiltonian instances and very hard 
non-Hamiltonian instances in its immediate vicinity.

For the Hamiltonian-bound experiment, such observa-
tions are less expedient, because convergence of the algo-
rithms appears much less convincing. So what makes these 
algorithms perform so bad on the Hamiltonian-bound prob-
lem instances? Surely, less freedom from fixing immutable 
edges would make a problem easier, right? The converse 
might actually be true, and the argument is a somewhat 
bewildering and counterintuitive numerical elaboration 
emanating from Komlós and Szemerédi’s early results and 
some basic combinatorics.

As presented in Eq. 1, the probability of a random graph 
being Hamiltonian sigmoidally depends on the number of 
edges. But for a complete edge-independent search space 
such as ours, this probability might also be seen as a fre-
quency. As a numerical example: for V = 8 and E = 14 , 
Komlós and Szemerédi’s equations predict an approximate 
61% chance of Hamiltonicity. Equivalently, one could say 
that 61% of all existable graphs with V = 8 and E = 14 are 
Hamiltonian. Now the number of graphs is equivalent to 
the number of options for placing the E edges between V 
vertices:9  Some of the results from this section (too) have been expanded in 

“Larger neighbourhoods”.

8  Some of the results from this section have been expanded in 
“Larger neighbourhoods”.
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Fig. 2   The hardest yes-instances of the Hamiltonian cycle problem (these forcibly do contain a Hamiltonian cycle). Structure is much less obvi-
ous than for the non-Hamiltonian instances, although some premature tendencies towards cliquing might be discerned

Fig. 3   Recursions required for the hardest graph on the right-side ver-
tical axis versus their corresponding graph size on the horizontal axis. 
The left graph shows results of the experiment without restrictions on 
edge mutation, the right graph shows the results of the experiment in 

which graphs forcibly retained an immutable Hamiltonian cycle at 
all times. The bars represent the number of multiple times a graph of 
maximum recursions was found
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which for V = 8 and E = 14 , amounts to 40,116,600 graphs. 
Of these, approximately 61%, or 24,274,846 graphs are 
Hamiltonian, the remaining 39%, or 15,841,754 graphs, are 
non-Hamiltonian. Summing these results over all possible 
values of E for a given V gives us the number (or percent-
age) of Hamiltonian graphs in the entire edge-independent 
search space (Table 3).

As it turns out, the number of Hamiltonian instances ever 
more outweigh the number of non-Hamiltonian instances as 
graphs get larger. So by forcing the evolutionary algorithms 
into the Hamiltonian part of the combinatorial state space, 
we actually make it harder to navigate landscapes for increas-
ing V, as all runs have identical numbers of evaluations. This 
observation might also account for the slightly diminishing 
returns as V increases, for both algorithms in both experiments 
but contrarily, these numbers do not account for graph iso-
morphism. It is an interesting and non-trivial question to see 
whether other (meta)heuristic algorithms such as a properly 
parameterized simulated annealing [9, 22] or genetic algo-
rithms [2] do better for this problem. It is also plausible that 

(5)
(

1∕2 ⋅ V ⋅ (V − 1)

E

) metaheuristic parameter tuning and/or control might set some 
serious sods to the dyke, as the problem space clearly changes 
rapidly as V increases.

On a final note, these graphs might be difficult for Vacul’s 
solving algorithm because its efficiency heavily depends on 
pruning off edges that cannot be in any Hamilton cycle, which 
only occurs when a vertex is connected by two required edges. 
Because of the compact structure of the wall-and-clique graph, 
this will only happen near the full depth of the search tree, 
when all but two vertices of the maximum clique are included 
in a partial solution. But just the ubiquity of pruning tech-
niques throughout history does not spell much good for other 
exact algorithms either when it comes to these graphs. The 
non-Hamiltonian instances in this study might thereby actually 
be the hardest around, but more evidence, or perhaps even a 
proof, is needed to solidify this conjecture. One way to move 
forward is to have a look at larger neighbourhoods.

Table 1   The number and 
mutability of offspring produced 
by PPA’s individuals are based 
on its fitness rank (1 = fittest)

Rank 1 2 3 4 5 6–10

# offspring 6 5 4 3 2 1
# mutations 1 2 5 5 10 20

Table 2   The smallest distance 
between hardest and easiest 
problem instances for the 
Hamiltonian cycle problem is 
(in at least one place) just one 
bit: inserting an edge on either 
of the two possible insertion 
point types makes the hardest 
(non-Hamiltonian) instance 
trivially Hamiltonian

Removing an edge from either of the four possible types will make for a (just slightly) easier non-Hamilto-
nian instance. Only six different one-bitflip operations are possible, due to the highly structured nature of 
the results. Instance hardness is measured in number of recursions required by Vacul’s algorithm

Graph size 8 9 10 11 12 13 14

Most difficult 67 785 1673 25,061 61,051 1,139,785 3,091,141
Insert wall #1 8 9 10 11 12 13 14
Insert wall #2 8 9 10 11 12 13 14
Remove clique-clique 63 717 1577 23,261 57,799 1,071,037 2,943,549
Remove wall-wall 43 – 1081 – 39,591 – 2,016,877
Remove wall-clique 25 529 1015 18,561 43,513 894,861 2,387,791
Remove bridge-clique 49 – 1267 – 47,655 – 2,478,947

Table 3   The edge-independent search space increases faster than exponential in the number of vertices, but the percentage of Hamiltonian 
instances increases also

This results in an ever denser volume of Hamiltonian graphs, which might explain a possible lack of convergence in the evolutionary algorithms 
for the Hamiltonian-bound experiment. Numbers are rounded

Vertices 8 9 10 11 12 13 14

Graphs 2.68 ⋅ 10
8

6.87 ⋅ 10
10

3.52 ⋅ 10
13

3.60 ⋅ 10
16

7.38 ⋅ 10
19

3.02 ⋅ 10
23

2.48 ⋅ 10
27

Hamiltonian 57.9% 66.5% 74.4% 81.0% 86.3% 90.4% 93.4%
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Larger Neighbourhoods

These graphs found by the evolutionary algorithms provide 
us some food for thought. Clearly, the hardest no-instances 
of the problem (for Vacul’s algorithm) are extremely edge 
dense, and found far beyond the Komlós–Szemerédi bound, 
in a region where they are theoretically least likely to exist. 
The situation with the hardest yes-instances though, is much 
less conclusive as convergence is much less uniform, possi-
bly due to the vast majority of Hamiltonian graphs over non-
Hamiltonian graphs within the combinatorial state space. 
Nonetheless, the discovered Hamiltonian graphs are also 
situated far beyond the Komlós–Szemerédi bound.

In an extension to these results, we set out to explore 
the neighbourhoods of these hardness optima, but by a 
different approach for each instance type. For the larg-
est ( V = 14 ) non-Hamiltonian instance, which we will 
call ‘ nonHam0 ’ (see Fig. 1, bottom-right subfigure) we 
stochastically sample neighbourhoods with Hamming 
distances between 1 to 10 bits. Neighbourhood explora-
tion on the hardest (again V = 14 ) Hamiltonian instance 
(see Fig. 2, bottom-right subfigure) requires a different 
approach, in recursively making all 1-bit neighbours 
of the instance at hand. Looking forward, these differ-
ences stem from the structural properties of the optima 
for both instance types: the hardest no-instances form 
a cliff with a narrowing ascending path of 1-bit muta-
tions leading to a single pinnacle with an extremely 
hard instance, whereas the hardest yes-instance turns 
out to be just one of 27 equally hard graphs, that are all 
reachable by making 1-bit mutations, thereby forming 

a sizeable plateau. The forthcoming subsections, which 
were produced as a later extension to the earlier results, 
encompass a complete structural treatment of both 
hardness-neighbourhoods and the methods deployed to 
discover them.

The Hardest ‘No’‑Instances

A bitwise mutation in the Hamiltonian cycle problem is the 
smallest mutation one can make, and it comes in the form of 
either an edge-insert or an edge-remove (to ‘move’ an edge, 
such as done by our PPA-algorithm, is equivalent to simul-
taneously removing an edge and inserting another, thereby 
creating a graph with maximum Hamming distance two, 
and is therefore omitted in the neighbourhood sampling). To 
explore the neighbourhood of the hardest non-Hamiltonian 
instance nonHam0 , we create 100 new instances for every 
possible combination of between 1 and 10 mutations, either 
insert or remove, thereby sampling all neighbourhoods of 
Hamming distance 1 through 10.

There are 65 such mutation sequences, like ‘remove 10 
edges’ through ‘remove 3 and insert 2 edges’ and ‘remove 
3 and insert 6 edges’ all the way to ‘insert 10 edges’, all 
creating one 100-instance sampled neighbourhood from 
nonHam0 . The maximum Hamming distance from nonHam0 
for any 100-instance neighbourhood we created is thereby 
10. There are 11 such maximum-distance neighbourhoods 
(bottom row of Fig. 4), ranging from ‘10 edge removals’, 
which creates a purely non-Hamiltonian neighbourhood, 
through neighbourhoods like ‘7 removals and 3 inserts’ or ‘1 
removal and 9 inserts’ which both yield 100% Hamiltonian 

Fig. 4   In the neighbourhood of the hardest non-Hamiltonian graph 
( nonHam

0
 , on top), nearly all instances are Hamiltonian. Neigh-

bourhoods produced by only removing edges are non-Hamiltonian 
(primary diagonal, completely red), as is a very small fraction of 
neighbours which also received 1 edge insert (secondary diagonal, 
slightly red). Numbers on the neighbourhood blocks are Hamiltonian 

instances, out of 100, in the generated neighbourhood. The vertical 
axis has the number of bitflips to produce a neighbourhood, the hori-
zontal axis has the number of edges of graphs therein. For example: 
right above the central ‘64’ is a cohort of 100 Hamiltonian graphs, 
made by 10 bitflips, 5 random edge inserts and 5 edge random 
removes from nonHam

0
—because it has the same number of edges
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neighbourhoods. There is an asymmetry in this method, as 
odd mutation numbers can only produce odd Hamming dis-
tances and odd edge number shifts, which reflects in the 
chequeredness of Fig. 4. Furthermore, the resulting graphs 
are not uniformly distributed over the various connectivities; 
there is only one way of making graph neighbourhoods with 
10 edges less than nonHam0 : by 10 removal mutations. But 
there are five ways of making graph neighbourhoods with 2 
edges more than nonHam0 , ranging from 2 insert mutations, 
to 6 inserts and 4 removals. Finally, mutations were exclu-
sive, in the sense that the same edge can not be removed and 
inserted by the same series of mutations. In other words: 
when m mutations are made, m distinct locations in the edge 
matrix are flipped, and the Hamming distances of all graphs 
inside that neighbourhood is exactly m, and no less.

The results of this experiment are quite uniform: of the 
6500 new graphs we made out of nonHam0 , the vast major-
ity was Hamiltonian (Fig. 4). More particular, not a single 
non-Hamiltonian graph was found in areas with higher edge 
density than nonHam0 . We know they must exist though; 
one example is a fully connected V − 1 clique and a loose 
vertex, or a connected vertex with degree one. Such graph 
types however, are not obtainable from nonHam0 within 10 
mutations and are not Vacul-hard, but they exist. Different 
non-Hamiltonian graph types might also exist in this region 
of higher density, and it is technically speaking even possible 
that such graphs are harder than nonHam0 , but consider-
ing the strongly coherent convergence results in Fig. 3, this 
seems highly unlikely.

In regions sparser than or equally sparse to nonHam0 , 
again almost every generated graph was Hamiltonian. In 
fact, the only non-Hamiltonian instances were found in two 
places. The upper left ‘primary’ diagonal, completely red 
in Fig. 4, consisting of neighbourhoods made by between 
1 and 10 removal mutations, and the secondary diagonal 
directly below it (slightly reddish), which consists of neigh-
bourhoods made by 1 insert-mutation, and between 1 and 9 
removal mutations. We will further explore the top diago-
nal shortly, but it is important to note that these results are 
closely related to Komlós and Szemerédi’s theoretical results 
for Hamiltonicity in random graphs. In the span of these 
neighbourhoods, where V = 14 and 54 ≤ E ≤ 74 , the chance 
of a random graph being Hamiltonian ranges from 99.39 to 
99.97%. So from a theoretical standpoint, it is not a complete 
surprise that so many graphs in the vicinity of nonHam0 are 
Hamiltonian. Apparently, the very small fraction of graphs 
that are non-Hamiltonian are mostly, if not all, structurally 
very closely related to nonHam0.

Summarizing, these 65 neighbourhoods in the immediate 
vicinity of nonHam0 contain 6500 graphs, 5426 of which 
are Hamiltonian and 1074 are non-Hamiltonian. Of these 
non-Hamiltonians, 1000 were found in the top-left diago-
nal, the other 74 were found in the secondary diagonal 

directly below it. Of the 5426 Hamiltonian instances, 5423 
were decided in 14 recursions only, which could be accred-
ited either to the efficiency of the Vandegriend–Culberson 
algorithm, or to the high number of Hamiltonian cycles in 
these instances. Only 3 Hamiltonian instances required more 
than 14 recursions, and they were all found in the secondary 
diagonal: 106 recursions (a graph made from nonHam0 by 
1 insert and 7 removes), 2128 recursions and 69,370 recur-
sions (both made from nonHam0 by 1 insert and 6 removes).

The Non‑Hamiltonian Cliff

These results show that the hardest non-Hamiltonian 
instances narrow up along an ascending path of increasing 
edges density ending in a peak of hardness, much like a 
Dover cliff. At the pinnacle sits nonHam0 , a non-Hamilto-
nian graph requiring over 3 million recursions, surrounded 
by very easy Hamiltonian instances on almost all sides. 
Closely related hard graphs are found on and near the path 
only, and are almost exclusively non-Hamiltonian instances 
made by removing one or more edges from nonHam0 . A very 
low number of somewhat hard Hamiltonian instances result-
ing from a number of removals plus one insert also exist near 
the cliff path, in the secondary diagonal.

Upon closer inspection of the path itself, its structure 
shows an intriguing hierarchical pattern of increasing diver-
sity as we descend from the cliff (Fig. 5). The 100 instances 
emanating from nonHam0 by removal of a single edge are 
between 4.8 and 34.8% easier than nonHam0 , but there are 
only 4 distinct values in this range, possibly reflecting large 
isomorphic graph clusters. This would be not completely 
surprising, as nonHam0 itself is highly regular, and many 
different edge removal mutations could result in the same 
(isomorphic) graph. The extent to which isomorphism and 
hardness equality coincide in the combinatorial state space 
is as yet unknown.

Descending further down the path by removing more 
edges, the resulting hardnesses become ever more diverse 
(Fig. 5). Non-Hamiltonian graphs with 59 edges or fewer 
have over 90 different hardness values, which are very prob-
ably structurally different. Non-Hamiltonian graphs with 
57, 55 or 54 edges have 100 different hardness values; 56 
edges has 99 different values. These numbers suggest that 
the path widens in instance diversity on decreasing edge 
numbers. Still, ‘widening’ should be considered a very rela-
tive term. For 14 vertices with 54 edges, 4.26 ⋅ 1023 graphs 
exist, and even though Komlós and Szemerédi’s results 
predict that only 0.61% of these are non-Hamiltonian, that 
still accounts for a staggering number of 2.60 ⋅ 1021 graphs. 
How many of these are isomorphic, and how precise Kom-
lós and Szemerédi’s theoretical results are on such a small 
scale is all open for further analysis, but it surely gives 
some kind of indication. Besides, a significant number of 
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existable non-Hamiltonian graphs in this region is not hard 
for Vacul’s algorithm—disconnected graphs, or degree-one 
graphs, for instance. On the other hand, the convergence of 
the evolutionary algorithms onto nonHam0 seems to suggest 
that this is truly the hardest instance, but the magnitude of 
these numbers are too compelling to make any definitive 
statements as yet.

The Hardest ‘Yes’‑Instances

For the Hamiltonian instances, the approach was a little dif-
ferent. After all, whereas the hardest non-Hamiltonian graph 
was quite consistently converged upon by our evolutionary 
algorithms, the hardest Hamiltonian graph for V = 14 (which 
we named “ Ham0 ”) was found only once in the 40 runs 
(Fig. 3, right-hand side, rightmost column). Reasons for this 
could be purely numerical, as discussed in “Intermezzo”: the 
number of yes-instances (or: Hamiltonian graphs) greatly 
outweighs the no-instances (or non-Hamiltonian graphs) in 
the combinatorial state space. For V = 10 vertices, already 
≈ 74.4% of all graphs are Hamiltonian, and this fraction 
increases as graphs get bigger. Our focus lies on the Ham0 , 
the hardest Hamiltonian instance of V = 14 , where the bal-
ance of yes- to no-instances is approximately 93.4% versus 
6.6%. That is, of all existable undirected graphs of V = 14 , 
irrespective of the number of edges, approximately 93.4% 
is Hamiltonian—a huge portion.

Whether these numbers are one explanation or the expla-
nation for the poor convergence of the evolutionary algo-
rithms onto Ham0 is still unclear, but it does prescribe a 
somewhat different approach in order to get meaningful 
results from its immediate vicinity. So for the hardest Hamil-
tonian graph for V = 14 , we first made all 7 ⋅ 13 = 91 graphs 
which can be obtained by flipping exactly one bit of informa-
tion in Ham0 , coinciding with either inserting exactly one 
edge or a removing exactly one edge. This operation did 

not yield any harder graphs. But it did yield two different 
graphs of the exact same hardness of Ham0 , being 109,632 
recursions for Vacul’s algorithm. Both of these were Hamil-
tonian, and we dubbed them Ham1 and Ham2 . We progressed 
by generating all 2 ⋅ 91 = 182 neighbouring graphs for both 
Ham1 and Ham2 , which yielded another 4+3=7 equally hard 
graphs besides Ham0 . Continuing on in similar fashion, we 
found 160 graphs of hardness equal to Ham0 , all reachable 
by a single bitflip from earlier found graphs. Considering the 
importance of this group, we performed a check for isomor-
phism, which is conveniently provided in an off-the-shelf 
function from the networkx package [29]. After filtering out 
the isomorphs without damaging the connectivity, an inter-
connected network of 27 equally hard graphs emerged, all 
separated by one bitflip from between 4 and 7 neighbours. 
Such a connected equal-fitness-neighbour-area is appropri-
ately enough called a ‘plateau’ in evolutionary computing, 
and a notorious hassle for iteratively improving algorithms 
such as ours [26, 32]. In the next section, we’ll set out to give 
some structural insights into this plateau. The lookahead 
conclusion however is: instances Ham0 through Ham26 are 
currently the hardest known yes-instances for the Hamilto-
nian cycle problem under Vacul’s algorithm for V = 14 , and 
they form a 1-bit connected plateauic network of equally 
hard instances (Fig. 7).

The Hamiltonian Plateau

The plateau of 27 non-isomorphic yes-instances of the Hamil-
tonian cycle problem for Vacul’s algorithm all require 109,632 
recursions, making them approximately 28 times easier than 
the corresponding hardest no-instances for V = 14 . Although 
the convergence results in Fig. 3 are somewhat inconclusive, 
the exponentiality of the trend suggests that this difference 
might increase for larger V. So while the yes-instances of this 
decision problem vastly outnumber the no-instances for any 

Fig. 5   Except the rightmost, 
each slice in this figure repre-
sents 100 graphs generated by 
removing 1 or more edges from 
nonHam

0
 (which is the right-

most slice). In general, the hard-
ness of these neighbourhoods 
decreases, while the variety of 
hardness values widens. Adding 
an edge nearly anywhere in 
these graph neighbourhoods 
however results in very easy 
Hamiltonian instances. As such, 
nonHam

0
 can be thought of as 

being perched on top of a steep 
narrow cliff of non-Hamiltonian 
hardness, surrounded by a deep 
abyss of easiness
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reasonable V, the hardest ‘no’-instances (non-Hamiltonian 
graphs) are apparently exponentially harder than the hardest 
yes-instances; a remarkable observation.

The 27 Hamiltonian graphs on the plateau can be thought 
of as a network10 with problem instances embedded in its 
nodes, and its links symbolizing a 1-bit mutation (edge-
insert or edge-removal). This plateau network is connected, 
and has 64 links between its 27 nodes with connection 
degrees ranging from 2 to 7. Remarkably enough, Ham0 
itself has only degree 2 and is on the edge of the plateau. 
This could merely be an unlikely coincidence, as the conver-
gence results were not very consistent for the yes-instances, 
but it could also be that mutations from lower hardness 
Hamiltonian instances funnel the algorithm towards Ham0 , 
in similar fashion to the non-Hamiltonian cliff.

The structure itself has a somewhat three dimensional feel 
to it (Fig. 6, left-hand side), but to what extent it can actually 
be mapped onto a mesh is unknown. Every problem instance 
inside a plateau node is quite dense, having 55 ≤ E ≤ 59 
edges between its V = 14 vertices. On the eye, these hardest 
yes-instances (Fig. 6, thrice in the right-hand side) indeed 

look very much like the hardest no-instances , sporting a 
highly connected core of 5 vertices, and a ‘wall’ of 9 vertices 
having degree 5, 6, 7 or 8. Though it is tempting to think 
that the hardest yes-instances and the hardest no-instances 
might therefore be closely intertwined, current evidence 
does not support this idea. Even for the densest yes-instance 
(59 edges), the Hamming distance to the hardest no-instance 
(64 edges for nonHam0 ) is at least 5, but likely higher. What 
can be said though, is that the hardest yes- and the hardest 
no-instance are both located in a very edge dense region, far 
beyond the Komlós–Szemerédi bound, which was previously 
thought to hold the hardest instances. Another open issue is 
that we can not rule out the existence of other (plateaus of) 
hard(er) yes-instances anywhere in the combinatorial state 
space.

A seemingly insignificant frolic is that the plateau net-
work itself is non-Hamiltonian—the four nodes at the bot-
tom of Fig. 6’s left-hand side cannot be in any Hamiltonian 
cycle together.

Around the Hamiltonian Plateau

At this stage, we can not rule out that other yes-instances 
of the same or even higher hardness exist, but if they do, 
they are not connected to this plateau. In the direct 1-bit 

Fig. 6   Left: the 27 hardest 
yes-instances of the Hamilto-
nian cycle problem all require 
109,632 recursions. When 
linked by their 1-bit differ-
ences, they constitute a plateau 
with diameter 6 and average 
path length 2.55. Right: three 
members of the plateau are 
shown in detail. Although some 
resemblance with nonHam

0
 is 

apparent, the Hamming distance 
towards the non-Hamiltonian 
cliff is still quite significant

10  We intentionally omit the terms ‘graph’, ‘vertex’ and ‘edge’ here, 
to distinguish the plateau structure from the structure of the problem 
instances.
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vicinity of the 27-plateau are exactly 27 ⋅ 91 = 2430 graphs 
that make up the plateau’s 1-bit neighbourhood. The vast 
majority of these, 2406 instances ( ≈ 99.0% ) is Hamiltonian 
too. Of these 2406 plateau-adjacent Hamiltonian instances, 
1507 (61.3 %) graphs are trivially easy, requiring 14 recur-
sions only. In such cases, Vacul’s algorithm finds a Ham-
iltonian cycle almost instantly, without backtracking upon 
a single branch. The other 1070 plateau-adjacent Hamil-
tonian instances require between 2914 and 109,632 recur-
sions, with an average and median relatively close to the 
maximum, (90,457 and 101,504 recursions respectively). 
There are 27 different values, which may or may not be a 
coincidence as the plateau itself also consists of 27 nodes. 
Some of these values occur only once, like 51,644, 51,760 
and 58,694 recursions, and some values occur more often, 
most prominently 109,632 recursions, which was found 161 
times—these are all plateau graphs, or isomorphs thereof. 
The remaining 909 instances come in 26 different recursion 
values and might therefore also contain some degree of iso-
morphism, but that has yet to be seen.

A somewhat more puzzling finding is the finding of 
exactly 24 non-Hamiltonian instances directly connected 
to the plateau, mainly because these are all significantly 
harder than the plateau itself. The number of required 
recursions ranges from 229,251 to 718,745 thereby being 
between 2.09 and 5.56 times as hard as the plateau instances. 
Moreover, every recursion value is unique, and a check 
yields that these 24 instances do not contain a single iso-
morphic pair. Furthermore, these 24 graphs come in only 
four groups of 6, 6, 6, and 2 instances with E = 54 edges 
and APL = 1.41,

11 E = 55 edges and APL = 1.40 , E = 56 
edges and APL = 1.38 , and E = 57 edges and APL = 1.37 . 
Furthermore, many identical degree distributions are to be 
found, most notably within one group. So the takeaway here 

is that even with exactly identical values for number of ver-
tices, edges, diameter, APL and even degree distributions, 
graphs might still be very different in terms of hardness, and 
definitely not isomorphic.

This find is remarkable, because the plateau-connected 
Hamiltonian graphs shows strong homogeneity in recursion 
values, while the adjacent non-Hamiltonian instances show 
maximum diversity. Although all 24 adjacent non-Hamil-
tonians are unique, and their recursion numbers vary a lot, 
they cannot be wildly different, because they are all just one 
bit away from the plateau, which has a diameter of 6, and an 
APL of only 2.55. In addition, there’s another remarkable 
fact: although the increased hardness and non-Hamiltonicity 
might suggest that these problem instances might be closer 
to the non-Hamiltonian cliff, this could very well not be 
the case. Judging by edge numbers, the minimal Hamming 
distance from these instances to nonHam0 is between 7 and 
10. The Hamiltonian instances on the plateau’s Hamming 
distances to nonHam0 is between 5 and 9.

So although the adjacent non-Hamiltonians’ recursion 
values are closer to the cliff, and they look structurally 
alike, they are actually further away than the plateau itself. 
At this point, we have no idea how to interpret these find-
ings (Fig. 7).

Discussion

Is Hardness Related to Structure?

It’s time for a redefinition. Clearly, the paradigm that “the 
hardest instances of the Hamiltonian cycle problem reside 
around the phase transition (or: Komlós–Szemerédi bound)” 
is no longer unequivocally true. For at least one algorithm, the 
highly efficient backtracker by Vandegriend–Culberson, the 
hardest instances, both Hamiltonian and non-Hamiltonian, 
are situated in a very edge dense region of the combinatorial 

Fig. 7   Directly besides the Hamiltonian plateau lie 24 non-Hamilto-
nian instances, all of which are much harder than the plateau itself. 
They come in 4 groups, all with identical edge numbers, diameter, 
average path length and strongly similar (sometimes even identi-

cal) degree distributions. Still, within these 24 graphs, not one pair 
is isomorphic. Counterintuitively, their minimum Hamming distance 
towards nonHam

0
 , on the Hamiltonian cliff, is greater than that of the 

plateau instances

11  Average path length (APL) is the minimum number of links to 
traverse from one randomly picked node to another.
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state space, far beyond the Komlós–Szemerédi bound. Judg-
ing from the generality of the structure, these instances could 
well be very hard for all reasonable backtracking algorithms 
and all instances sizes, but this is yet to be investigated.

So do these results invalidate Cheeseman et al.’s results 
then? Not at all. Although the hardest instances, both yes 
and no, lie very far away from the Komlós–Szemerédi bound, 
they are probably very rare. By an argument from Kolmogo-
rov complexity, these graphs are to some extent structured, 
and can be recreated by a small computer program containing 
some for loops and a few explicit edge definitions. This is 
very different from unstructured graphs, whose smallest com-
puter program must explicitly contain its entire edge matrix to 
accurately recreate it. In addition, by a simple counting argu-
ment, the number of computer programs that is significantly 
shorter (in bits) than the number of graphs is extremely small. 
Therefore, structured graphs must be rare too in the combi-
natorial state space. In addition, if structure is indeed related 
to hardness, this also means that the easy problem instances 
greatly outnumber the hard problem instances.

Highly problematic with these conjectures though, is 
that they are nearly untestable due to a number of serious 
obstacles. First, exhaustively enumerating the graphs is not 
an option for any number of vertices over 20 or so (that’s 
already ≈ 1035 graphs). Pure random generation or random 
generation in columns of fixed edge degree is not viable 
either, because it likely produces relatively easy instances, 
as hard instances, if indeed related to structure, could well be 
extremely rare. Evolutionary algorithms provide some solu-
tion to finding these, but take a very long time to converge 
because of the extremely high costs of individual evalua-
tions, the ginormous state space, and the lack of guarantee 
in finding the hardest instances. But thirdly, and this is not 
unimportant: Kolmogorov complexity is practically incom-
putable. There is absolutely no way of telling how short the 
shortest program for any given graph is, or conversely: what 
short programs are amenable to producing interesting (hard) 
instances at all. So if structure is indeed related to hardness, 
an exact approach is almost certainly doomed to fail.

There is a bit of hope for an a posteriori approach 
though: a short program (of say, length b) for the wall-and-
clique graph, which likely exists, produces some bound on 
the complexity, a program for an arbitrary random graphs 
likely needs around 91 bits (one bit for each vertex pair) 
for V = 14 , the difference must be at least 91 − b , but could 
well be greater. Assuming that such a program also exists 
for the Hamiltonian instances, and given we can find it a 
posteriori, and it is significantly short, then this would not 
only confirm that structure is related to hardness, but also 
enable us to create hard instances for any number of V, 
both Hamiltonian and non-Hamiltonian.

Taking this argument one step further, if either enumera-
tion, algorithmics or randomness could account for making 

a cloud of hard yes- or no-instances, it would be interest-
ing to see how those output clouds mingle. Looking at the 
structures presented in this paper, it is imaginable that at 
some point, the hardest yes- and no-instances might be close 
together, both in Hamming distance and in computational 
hardness (for a similar discussion, see [4, 42]).

Implications for Benchmarking

Another consequence of these results is that we might 
add a serious consideration to our best benchmarking 
practices [3]. At the very least, we could ask ourselves 
the question “what is it that constitutes a good bench-
mark set?”. If “being representative” is considered a 
requirement, than we should consider whether random 
generation of instances is a good idea in the first place. 
Random generation, even random generation in degree 
columns, has almost zero chance of creating structured 
instances, which might (partially) coincide with the class 
of hard instances. For the Hamiltonian cycle problem, 
but possibly also for other ((harder than) NP-complete) 
problems, they are simply too rare to show up in ran-
domly generated benchmark sets.

But an immediate deeper question here is: do you want 
to have the hardest instances in your benchmark set, and 
if yes, which hardest instances? For the Hamiltonian cycle 
problem, generating random graphs in degree columns, a 
column with a degree near the Komlós–Szemerédi bound 
may well contain the hardest instances on average, but the 
hardest single individuals might be in the edge-dense regions 
far away—possibly in a column together with a host of 
very easy instances, considering Cheeseman’s results. So a 
redefinition of “where the really hard problem instances are” 
might incorporate maxima, minima, standard deviations or 
possibly a complete hardness frequency spectrum of degree 
columns for better answers.

It is well known that many “real world graphs” have a 
‘small-world’ structure, which translates to relatively low 
Kolmogorov complexity [43]. Therefore, data on randomly 
generated benchmark sets might produce absolutely zero 
useful information for real-world graph applications. Simi-
larly, for finding the hardest possible instances for a class of 
algorithms, random generation does not seem suitable either. 
Thankfully, evolutionary algorithms which provide us with 
a quantum of solace and a way forward. Even though we 
have few definitive answers yet, there is some indication of 
direction and as for future work, one of the tasks will be to 
more sharply define the hardest instances, and if possible, 
describe them with small computer programs.12

12  ECTA 2020 is part of the larger conference IJCCI 2020, see http://​
www.​ecta.​ijcci.​org/.

http://www.ecta.ijcci.org/
http://www.ecta.ijcci.org/
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