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Abstract
For many everyday devices, each newly released model contains more functionality. This technological advance relies heav-
ily on software solutions of increasing complexity which results in novel challenges in the domain of software testing. Most 
prominently, while an ever higher number of test cases is required to meet quality demands, performing a large number of 
test cases frequently amounts to a significant increase in development time and costs. In order to overcome this issue, agile 
development methods such as continuous integration usually only execute a subset of important test cases to meet both time 
and testing demands. One way of selecting such a subset of important test cases is to assign priorities to all the available test 
cases and then greedily pick the ones with the highest priority until the available time budget is spent. For this, in a previous 
work, we presented a new machine learning approach based on a learning classifier system (LCS). In the present article, 
we summarize our earlier findings (which are spread over several publications) and provide insights about the most recent 
adaptations we made to the method. We also provide an extended experimental analysis that outlines more in detail how it 
compares to a state of the art artificial neural network. It can be observed that the performance of our LCS-based approach 
is often much higher than the one of the network. Since our work has already been deployed by a major company, we give 
an overview of the resulting product as well as several of its in-production quality attributes.

Keywords Evolutionary machine learning · Software testing · Continuous integration · XCSF classifier system

Introduction

In many areas of everyday life, newly developed products 
rely on more software-based solutions than ever before. The 
increasing amount of underlying program code that needs to 

be continually extended and maintained results more often 
in complex software projects. For these, a key challenge is 
integrating the code written by individual engineers into the 
overall project [7]; in order to prevent problems arising from 
merging large, diverged code bases, the common practice 
of continuous integration (CI) has been developed [36]. 
CI means to much more frequently (“continuously”—e.g., 
daily) combine source code of individual programmers into 
the central code base.

A CI process usually consists of more or less four basic 
steps: downloading the source code (the proposed integra-
tion), building the software and then testing and deploying 
it. The sequence of these steps is called the project’s (CI) 
pipeline each run of which is referred to as one CI cycle. 
A schematic of this basic pipeline can be seen in Fig. 1. 
CI pipelines are usually run on dedicated build servers by 
software such as Jenkins [31].

Software testing is a vital part of most CI pipelines; it has 
a major economic impact on a project’s lifetime and cost [8, 
9, 41]. One of the central goals of CI is speed, i. e., getting 
insights into the current state of the software quickly in order 
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to be able to react accordingly. However, as software projects 
get larger, as does the number of test cases and executing all 
test cases often becomes infeasible within CI time scales 
(e. g., new code may be merged in on a daily basis but run-
ning all test cases may require more than 24  h). One solu-
tion to this problem is to only execute a subset of test cases; 
ideally, the most relevant or crucial ones [7].

A recent approach to determine test case importance, 
and based on that select a subset of test cases, is to employ 
machine learning (ML). This is grounded on the observation 
that the testing history, that is, test case running durations 
and their likelihood to fail, can be exploited to prioritize 
test cases: Short test cases which have a high probability to 
fail can be considered to be important whilst long test cases 
which simply pass do not need to be run as urgently. One of 
the first successful implementations of such an ML approach 
has been presented by Spieker et al. [32] who employed 
an artificial neural network (NN). The quality of results of 
their approach has motivated companies such as Netflix to 
integrate the methodology in practice [12].

We were the first to use a learning classifier system (LCS) 
for this task [28]. LCSs are a powerful family of evolution-
ary ML algorithms which have found their way into various 
applications such as smart cameras [35] or traffic control 
[21]. These successes motivated us to examine LCSs on this 
use case as well. One major milestone was a solution based 
on the XCSF classifier system (XCSF) which enabled us 
to use real-valued test case priorities [29]. We were able to 
show experimentally that our XCSF-based approach is not 
only comparable to the NN-based one of Spieker et al. [32] 
but actually superior in many cases.

In a series of publications, we improved the performance 
of our approach step by step [25, 28, 30]. This work sum-
marizes our earlier findings as well as provide insights about 
the most recent adaptations we made to the method. Further, 
our work provides the following new contributions:

– We give a deeper and extended analysis of the developed 
method. While we only conducted a temporal analysis in 
earlier work, we now also employ a distributional analy-
sis based on percentiles—this delivers more smooth and 
human-interpretable results and can be seen as an orthog-
onal extension.

– Our previous work focused on the question if LCSs are 
better in terms of performance. Here, we also introduce 
a percentile-based quality measure to show by how much 
LCSs are better.

– In order to further widen our analysis we compare 
our methods against a non-ML and non-evolutionary 
approach: a pure random selection.

– Our LCS variant relies on a wide-spread ML mechanism: 
experience replay (ER). While our earlier work [25, 30] 
merely followed the ER approach of Spieker et al. [32], 
we now extend our experiments and add a critical analy-
sis of whether other ER variants perform better.

– Finally, we move beyond the experiments traditionally 
conducted. We think that, in order to have a practical 
impact, algorithmic approaches like ours need to be 
delivered to industry. We provide insight into how we 
did that for BSH Hausgeräte GmbH which is Europe’s 
biggest producer of home appliances, outlining that our 
approach is easy to use and reporting on the first real-
world results our solution achieved.

We continue this work with a formal description of the 
problem we consider (“Problem description”) followed by 
a discussion of related work (“Related work”). After that, 
we explain how the problem can be approached using ML 
(“Machine learning approach”) and introduce the LCS we 
employ (“Employed Learning Classifier System) as well as 
its parametrization (“Parametrization”). In “Evaluation”, we 
show and evaluate the results of the experiments we con-
ducted. This is followed by a brief overview of the full-stack 
solution that we deployed for BSH Hausgeräte GmbH (“An 
evolutionary computation application”). The article ends 
with an overview of future work and a conclusion.

Problem Description

We assume that, in every CI cycle i, there is a fixed, planned 
time budget C available for testing and that this time budget 
does not suffice to run all available test cases. We write Ti for 
the set of all test cases available in CI cycle i. The estimated 
execution time of test case T is d(T). The goal is to assign to 
each test case T an optimal priority in form of a rank rki(T) . 
These ranks are not necessarily unique (i. e., two or more test 
cases may be assigned the same rank) and are computed at 
the start of every CI cycle. The computed ranking is meant 
to be used to perform test case selection, that is, to compile 
a test suite greedily whilst considering the time budget C as 
follows (thereby we follow Spieker et al. [32]): 

1. The test cases at hand are sorted according to their ranks 
(in descending order).

Fig. 1  Example of a CI pipeline  (adapted from [29])
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2. Test cases are taken repeatedly from the head of that 
sorted list and added to the current CI cycle’s test suite 
TS

i
 which is initially empty. We stop this process when 

adding the next test case in the sorted list to the test 
suite would lead to the sum of the execution times of 
test cases in the test suite exceeding the time budget C.

3. If there are several test cases with the same rank at 
the head of the sorted list but there is not enough time 
budget left to add all of them to the test suite, test cases 
from that rank are repeatedly chosen uniformly at ran-
dom until the time budget is expended.

The resulting test suite TS
i
 can be represented as a list; we 

write li(T) for the index of test case T in that list. Note that 
indexing starts from 1.

After having built a test suite as described, the test cases 
it contains are executed during the testing phase of the CI 
pipeline and their results retrieved and evaluated. We denote 
by TSf

i
 the subset of the test suite TS

i
 that contains all the 

failed test cases. In contrast, we write T f
i

 for the set of failed 
test cases if all available test cases would have been exe-
cuted. Obviously, TSf

i
⊂ T

f
i

.

Based on TSf
i
 and T f

i
 we could measure the percentage of 

failures found pi as follows:

while pi may be used to measure the quality of the compiled 
test suite, it cannot be used to assess the quality of the cho-
sen prioritization as it leaves out the test cases’ ordering. A 
commonly-used metric for evaluating the quality of test suites 
generated based on test case prioritizations is the normalized 
average percentage of faults detected (NAPFD) [22]1:

This metric’s values lie in [0, 1] with high values being 
desired: Prioritizations that rank many short, failing test 
cases as important receive high scores whereas ones that rec-
ommend the execution of long, passing test cases are rated 
low. NAPFD is further equal to one for the edge case that all 
available tests would be passing if executed (this means that 
no subset of the available tests can identify a fault).

A brief look at NAPFD’s definition in (13) reveals that 
knowledge of pi and, in turn, T f

i
 is necessary in order to 

(1)p
i
=

|TSf
i
|

|T f
i
|

(2)NAPFD(TSi) =

⎧
⎪
⎨
⎪
⎩

1, �T f

i
� = 0

pi −

∑
T∈T Sf

i
li(T)

�T f

i
�⋅�Ti�

+
pi

2�Ti�
, otherwise

compute it. This means, that while NAPFD captures the 
quality of prioritizations well, it cannot be used directly in 
practice as the very problem to be solved by test selection is 
to avoid running all test cases. However, NAPFD can nev-
ertheless be used for evaluating approaches to computing 
prioritizations since these usually are performed on simula-
tions where that information is available to the experiment’s 
observer. This is also the case for the experiments that we 
conducted and whose results are presented in “Evaluation”.

At this point, we are able to concisely define the prob-
lem that priority-based test case selection approaches try to 
solve. It is termed the adaptive test case selection problem 
(ATCS) and is defined as follows [32]:

Based on the set of available test cases Ti , use prioriti-
zations to build a test suite TS

i
 whose execution time 

is not greater than C while still maximizing NAPFD.

This can be written formally like so:

Related Work

The general task of generating a test suite, that is, selecting 
a subset of the available test cases, is commonly known as 
test selection. This section gives an overview of the differ-
ent existing approaches to doing that. Further we mention 
several other evolutionary approaches to software testing 
problems.

Test Selection in General

The survey by Yoo and Harman [40] documents that there 
are various forms that methods for test selection can take 
on: In general, test selection methods can be divided into 
whether they reduce the number of available tests, whether 
they build the test suite directly or—as is the case for the 
method we propose in the present article—compute first a 
test case prioritization (i. e., assign a priority to each test 
case) to then choose test cases accordingly. An example of 
a method that permanently reduces the number of avail-
able tests is specification-based filtering whereas direct test 
case selection methods may for example be based on data 
flow analysis. Test selection methods can be divided further 
into white box and black box methods, the first taking into 
account the source code of the software being tested while 
the latter does not. Since the method we analyse solely relies 

(3)

maxNAPFD(TS
i
)

subject to
∑

T∈TS
i

d(T) ≤ C

TS
i
⊆ T

i

1 Note that, despite its name, NAPFD actually measures test case 
failures and not faults. Faults are system errors caused by bugs etc. 
and each fault may result in multiple test cases failing.
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on CI metadata such as previous test outcomes and runtimes, 
it classifies as a black box method.

There is currently no consensus on what exactly makes a 
certain test case important. Existing research focuses on cov-
erage criteria, failure revealing capabilities or use case–spe-
cific objectives which can also be considered in combination 
by employing multi-objective optimization algorithms. For 
example, Lachmann et al. [14] and Arrieta et al. [2] identify 
six and five such criteria, respectively. It is worth mention-
ing that some of these criteria require a certain maintenance 
effort (e.g., identification or update of business relevance).

Evolutionary Computing and Software Testing

Employing evolutionary techniques to testing problems such 
as test selection is an active field of research. For exam-
ple, the aforementioned works of Lachmann et al. [14] and 
Arrieta et al. [2] employ a non-dominated sorting genetic 
algorithm II (NSGA-II) to optimize test suites. Both show 
that the test suites created outperform random selection. 
However, computing test suites of decent quality using their 
approach is too computationally expensive to be feasible 
for the CI use case (keep in mind CI is all about speed and 
getting insights fast). We determined this in one of our pre-
vious studies where we proposed artificial immune systems 
(AIS) for multi-objective test selection use cases where the 
test suite computation time is not critical [24, 27]2. Note 
that our approach does not share this problem; LCSs have a 
more limited computation time and have been used in real-
time critical applications [37] such as traffic control [17] in 
the past.

We further want to mention a few other applications of 
evolutionary computation (EC) to testing problems. The sur-
vey of Anand et al. [1] gives an overview of test case genera-
tion techniques based on EC. Such methodologies usually 
involve a search heuristic which tries to construct test cases 
which cover some abstract code representation such as the 
control graph. It is also worth mentioning that sometimes 
programming language specifics must be taken into account 
such as for Python [16] or Java [1].

Another approach to test case generation is mutation test-
ing where the focus lies on identifying weak tests as well as 
paths in the software that are not covered by tests [18]. In 
order to do so, changes or bugs (mutations) are introduced 
to the software automatedly and an evaluation of whether 
existing tests are capable of identifying them is performed. 
Papadakis et  al. [18] give an overview of research into 
EC-based approaches to this. Overall, generating a small, 

permanent test suite of crucial test cases via mutation test-
ing may be seen as a valid alternative to test case selection. 
However, it requires knowledge of the underlying code base 
(and is thus a white-box approach) whereas the present work 
considers black box methods. We decided to use a black 
box testing method as the test levels our industrial partner 
is interested is are usually black box ones (such as system 
level testing).

Another field of testing application for EC is random test-
ing which focuses on generating optimally distributed test 
inputs [10]. At that, an input distribution’s fitness is based 
on its capabilities to reveal failures. One drawback of this 
approach is that detailed knowledge of the possible inputs 
(domains) of the available test cases is required which may 
lead to a considerable maintenance effort if the set of avail-
able tests is large and heterogeneous; since this is exactly 
the case for the test cases of our industrial partner (i. e., het-
erogeneous tests whose domains have not been documented 
with enough scrutiny in the past), a solution based on ran-
dom testing could be ruled out early.

Machine Learning Approaches to Test Case Selection

The black box approach of Spieker et al. [32] for test selec-
tion has already been mentioned in the introduction. It is 
rather minimal in terms of data requirements as it only 
requires CI metadata that usually gets recorded anyway (e. g. 
by CI software such as Jenkins [31]). Spieker et al.’s system 
tries to find a test suite of short test cases which are failing 
which is very close to Dijkstra’s well-known testing objec-
tive which states that the goal of testing is to reveal bugs and 
not show their absence [4]. While our approach follows this 
objective as well and has the same requirements towards the 
testing environment, our system differs from Spieker et al.’s 
in that it employs an LCS instead of an NN.

Our approach makes use of the XCSF classifier system 
which was originally introduced by Wilson [38] as an exten-
sion of the earlier XCS classifier system (XCS) [39] to the 
domain of function approximation. The system we built also 
takes advantage of ER, a well-studied mechanism for NNs [5] 
that, quite recently, saw inclusion into LCSs. Stein et al. [33] 
performed a first study on combining XCS with ER showing 
that, under certain circumstances, ER is beneficial for XCS. 
In another study, we underlined this for XCSF and the task 
of test case selection [30]. We also introduced and evaluated 
a simplistic form of transfer learning for our method [25].

Since our ultimate aim is a full-stack solution for test case 
selection in CI environments, we also designed a system 
architecture which encapsulates the LCS-based method pre-
sented herein [26]. At that, we employ techniques and ideas 
from the systems engineering discipline Organic Computing 
[17].

2 In those publications we report on the AIS approach performing 
equal to or better than the NSGA-II of Lachmann et  al. [14]. The 
NSGA-II used by Arrieta et al. [2] differs from the one used by Lach-
mann et al. only in the employed crossover operator.



SN Computer Science (2022) 3:373 Page 5 of 24 373

SN Computer Science

Machine Learning Approach

Many ML problems can be seen as a form of function 
approximation. This is also the case for our approach: We 
try to find an optimal mapping V(⋅) from test cases to their 
respective value (in a sense similar to the reinforcement 
learning semantics of a state’s or an action’s value). Given 
such a mapping, we follow a simple heuristic to assignment 
priorities to test cases: a test case valued highly should have 
a high priority, we thus set the priority �(T) of test case T to 
the estimated value of that test case V(T).

The domain of V(⋅) is the test case state space S whereas 
the codomain is ℝ ; test case values (and thus priorities) may 
thus be continuous. In the following we describe both S and 
several possible choices for V(⋅).

In the ML model for ATCS of Spieker et al. [32]3, each 
test case T corresponds to one state s. That state is a vector 
comprising the test case’s

– Relative execution time which is expressed relative to the 
overall execution time of all available test cases (and thus 
is a number between 0 and 1).

– Testing history, a snapshot of the test case’s result in its k 
last executions. This is represented as a binary vector of 
length k (0 indicating failed, 1 indicating passed) which, 
if there have not yet been k executions, we pad to length 
k by filling it with zeros.

– Last execution time which is the normalized index of 
the most recent CI cycle during which the test case was 
run (normalized by dividing by the overall number of CI 
cycles that occurred so far).

Thus the state space S can be defined formally as follows:

and has dimensionality k + 2.
In order to ease the understanding of the state space we 

give an explicit example of a state vector. Assume there are 
test cases whose execution times sum up to 1000 minutes 
and that there have already been 100 CI cycles. Suppose 
we have a history length of k = 4 and a test case T at hand 
that lasts 10 minutes. T’s relative execution time as denoted 
in the state vector is thus 10

1000
= 0.01 . Assume that the test 

case failed the last two times it was executed and before that 
it passed; this results in a history component of [0, 0, 1, 1]. 
Further suppose the last time it was run was in CI cycle 90, 
its last execution value is thus 1 − 90

100
= 0.1 . In summary, the 

state corresponding to T is s = [0.01, 0, 0, 1, 1, 0.1].

(4)S∶=[0,C] × {0, 1}k × [0, 1]

Finally we have to define the already mentioned value 
function V . A feasible thought would be trying to use the 
NAPFD metric. However, as stated earlier, NAPFD requires 
knowledge of the outcomes of all the available test cases 
which renders it unfeasible to compute in practice—and thus 
cannot be used as the value function either. Spieker et al. 
instead propose to use one of the following three (approxi-
mate) value functions as drop-in replacements for NAPFD 
[32]:

– Failure count 

– Test failure 

– Time ranked 

where vi(T) is the binary verdict of test case T for CI cycle 
i. A 0 indicates that the test case failed whereas a 1 means 
either that it passed or that there was not enough time to 
execute it.

The failure count function is rather coarse-grained as the 
same value (the number of failed test cases found) is assigned 
to all test cases encountered during a CI cycle. The test fail-
ure function, on the other hand, is more fine-grained as it 
values test cases individually based on their outcome. Finally, 
the time ranked function takes it another step further as it also 
considers the prioritization itself by punishing high-ranked 
passing test cases using the number of lower-ranked failing 
test cases in the test suite currently considered.

Note that, since the software being tested as well as the 
available test cases may change between two CI cycles, each 
of the value functions defines a non-stationary learning task. 
We deem it to be non-stationary due to the fact that, between 
two cycles, the software to be tested or the available tests may 
change. Thus the learning environment can be vastly different.

Employed Learning Classifier System

LCSs belong to the field of evolutionary ML algorithms. 
While there are many different LCS algorithms for different 
domains, the most-used and -investigated LCS so far is the 
XCS classifier system [37, 39]. In this work we use one of 
its derivatives, the XCSF classifier system, or simply XCSF, 
which is an extension of XCS to the problem of function 

(5)V
fc

i
(T) = |TSf

i
|

(6)V
tcf

i
(T) =

{
1 − v

i
(T), T ∈ TS

i

0, otherwise

(7)
V

trk

i
(T) = |TSf

i
| − v

i
(T) ⋅

∑

T
� ∈ TS

f

i
,

rk(T) < rk(T �)

1,

3 Spieker et al. [32] originally formulated the use case as a reinforce-
ment learning one. We intend to provide a more high-level machine 
learning view.
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approximation [38]. In a previous publication it has already 
been shown that XCSF outperforms XCS on the ATCS [29].

Before we jump into the details of LCS we intend to give 
an overview of its role in the testing workflow (Fig. 2). The 
process begins by retrieving the test cases at hand and com-
puting the corresponding states. This information is given to 
the function approximator (in our case an LCS and for Spieker 
et al. [32] an NN) which in turn computes the prioritization. 
Thereafter the test cases are selected accordingly and exe-
cuted. Based on the outcomes, the actual value V(T) of each 
test T that was run is retrieved and given to the approximator 
which uses that data to refine the value function estimate.

We further want to point out that this workflow implicitly 
introduces a time axis for the test cases as these are given in 
a certain ordering to the approximator. We denote this time 
as t and the corresponding state and priority as st and �t but 
only in case of ambiguity to keep the notation uncluttered. 
Our later experiments reuse the source code of Spieker et al. 
[32] and sort the test cases by their numerical ID. Further, it 
is worth stressing that this time is not resetted from CI cycle 
to CI cycle but instead further incremented.

Overview of XCSF

We loosely follow Wilson [38] and Urbanowicz and Browne 
[37] for the introduction of XCSF.

XCSF evolves a population P of rules which are histori-
cally called classifiers (a rule is denoted in the following for-
mal expressions by cl ). The two main components of a rule are

– A condition that is essentially a predicate S → � (i. e., 
a function from the input space to the Boolean domain 
( {true, false} ) and

– A local model (i.  e., a function cl.p ∶ S → ℝ ) which 
serves as a local function approximation.

Essentially, a rule cl can be seen as a partial function that is 
only defined on {s ∈ S ∣ cl’s condition matchess} . In addi-
tion to conditions and local models, rules contain bookkeep-
ing parameters which play a role when performing learning 
updates or making decisions. Examples are how often a rule 
has been applied or how accurate it is (in XCSF, the latter is 

known as the rule’s fitness, cl.F ). XCSF has a rule limit N 
which is periodically checked and if the population grows 
too big then classifiers are removed. We call this mechanism 
pruning.

The individual rules are fit to the inputs for which their 
conditions evaluate to true (i. e., the inputs that the rules 
match) by a locally acting learning mechanism that trains 
each rule independently of the other rules. In addition to 
that, a genetic algorithm (GA) optimizes the rules’ condi-
tions, that is, the (in general, non-disjoint) segmentation of 
the input space described by the set of the conditions of all 
rules in the population.

For the rules’ local models cl.p ∶ S → ℝ , we follow the 
original XCSF formulation [38] which uses linear models:

where the wi are real-valued weights which are initialized 
randomly, k + 2 denotes the state space’s dimensional-
ity as before and the additional weight w0 is used to fit the 
intercept.

Given an input s, XCSF first computes the set M of 
matching rules (called match set). If M holds too few classi-
fiers then new ones are constructed randomly and added to 
M (at that, new rules created at this stage always match s); 
this process is called covering. Since rules may overlap, M 
usually contains more than one rule which means that, next, 
multiple rules have to be mixed in order to get an overall 
system prediction. This is done by performing a fitness-
weighted sum of the matching rules’ predictions:

At that, cl.F is the aforementioned fitness value of rule cl , 
that is, a heuristic approximation of its accuracy.

The classifier keeps track of several other magnitudes 
except fitness which are worth mentioning:

– cl.exp : Its experience which counts the number of times 
the rule has been used.

– cl.� : estimates the error of the predictions made.

(8)cl.p(s) = w0 +

k+2∑

i=1

wi ⋅ si

(9)P(s) =

∑
cl∈M cl.p(s) ⋅ cl.F
∑

cl∈M cl.F

Fig. 2  Workflow for solving ATCS using ML
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– cl.t : the last time the classifier interacted with the GA.
– cl.ms : an estimation of the size of match sets that use cl.

Learning Mechanism

XCSF is fitted to training data in a supervised but iterative 
manner. This means that for each example (s, v) (i. e. state, 
value), the prediction functions of all classifiers matching s 
(i. e., all classifiers in the match set M computed for s) are 
updated using a gradient descent–based approach which is 
known as the modified delta rule:

where ‖ ⋅ ‖ is the Euclidean norm, � is a learning rate and 
s̃ is the state vector s augmented with an additional entry 
containing 1 at the front:

This augmentation of s fulfills the following two purposes:

(10)Δwi =
𝜂

‖s̃‖2
(v − cl.p(s))s̃i

(11)s̃ =

[
1

s

]

– The intercept (the additional weight w0 of cl.p(⋅) ) can be 
fitted.

– The numerical stability of the modified delta rule is 
ensured as, this way, the Euclidean norm is always at 
least 1. The norm of s itself may be very small (con-
sider a frequently used, short test that always fails) which 
could result in arithmetic overflows.

The weights of cl.p(⋅) are updated for each training exam-
ple by simply adding the corresponding Δwi to their current 
value.

Whenever XCSF updates the weights it also refines other 
classifier attributes such as the match set size and the predic-
tion error. This also takes the match set corresponding to the 
state along with the value used for the gradient descent into 
account. This is done by adding a fraction of the deviation 
of the actual value. The fraction depends on the experience 
of the classifier encountered. For inexperienced rules this 
fraction is usually bigger and for experienced smaller. This 
is controlled by the variable � in Algorithm 1. Note that the 
experience is also incremented in this procedure.
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After the match set’s classifiers have been adjusted using 
Algorithm 1 the fitness is recomputed. Here, fitness is an 
accuracy-based metric which takes the classifiers’ prediction 
error and an error level �0 into account. First an accuracy 
value is computed for each rule. If cl.� is below the error 
level then the maximum accuracy of 1 is assigned (these 
rules are considered to be accurate). If not, a fraction � of 
the error ratio cl.�

�0

 exponated by −� is used. Note that 𝜈 > 0 
and thus the accuracy is smaller than 1. The fitness is 
updated by the classifier’s normalized accuracy in a similar 
fashion as the metrics in the previous algorithm. We sum-
marized this methodology in Algorithm 2.

Classifier Generation

In Sect. 5.1 we focused on a rather high-level description 
and only briefly mentioned the two mechanisms XCSF uses 
to create new classifiers: covering and GA. Here we give 
a more precise insight about covering and how the GA we 
chose works.

The GA optimizes the set of rule conditions whereas cov-
ering generates entirely new rules (and thus, conditions). In 
order to be able to describe their functioning we now first 
describe how rule conditions are encoded. As was seen in 
Sect. 2, the state space S (which is the input space to our 
XCSF-based regression) is a mix of binary and continu-
ous components. We thus chose to represent the classifiers’ 
conditions as disjunctions of interval (for the continuous 
parts, i. e. everything but the state’s testing history; see, 
e. g., [38]) and ternary subconditions (for the binary parts, 
i. e. the state’s testing history; see, e. g., [39]). An interval 
subcondition evaluates to true if and only if the given value 
lies within the subcondition’s interval. A ternary subcondi-
tion may take on one of three possible values: 0, 1 and # . 
At that, # is a don’t care symbol (true for either of 0 and 1), 
whereas 0 and 1 are only true if the corresponding element 
of the state is 0 or 1, respectively (i. e. they only allow an 
exact match). A rule condition thus consists of two interval 
subconditions and k ternary subconditions.

Covering creates a new classifier cl for a given state st . It 
assigns the cl an experience of zero and t for cl.t . Further, 
�I and FI are assigned as default values for cl.� , cl.F . Novel 
ternary subconditions are created by either taking the corre-
sponding value from st or by setting it to # with a probability 
of P# . For example if the last test result of st was failed ( = 0 ), 
then we set the first ternary subcondition to either 0 or # . 
For new interval subconditions we simply create a random 
interval that contains the corresponding state value. Finally, 
the new classifier’s prediction function’s weights are drawn 
uniformly at random from a predefined interval.

GAs are iterative, population-based metaheuristics that, 
in each iteration, typically perform the following computa-
tional steps:

– Selection: This operation selects two classifiers from the 
population. These are called parents.

– Crossover: This operator combines the two parents to 
create two new classifiers (the so called offspring). Note 
that we use the crossover operator only with a probabil-
ity � (Similar to the well-known XCS classifier system 
[39]).

– Mutation: Here the offspring might be randomly changed 
in order to perform exploration.

It is important to note that XCSF’s GA does not work on the 
entire classifier population, but only on the current match 
set M and state st.

Our GA employs a fitness-proportionate selection which 
means that the probability of any one classifier being chosen 
as a parent is directly proportional to that classifier’s fitness 
(also known as roulette-wheel selection).

We use two different crossover operators. For the interval-
based subconditions we use an arithmetic crossover. Sup-
pose [l1, u1) and [l2, u2) are the subconditions of the two par-
ents referring to the last execution time. The first offspring’s 
lower bound is � l1 + (1 − �)l2 , the second offspring’s lower 
bound is (1 − �)l1 + � l2 . Analogously for the upper bounds 
of the offspring. Note that � ∈ (0, 1).

The testing histories (ternary strings of length k) are 
recombined using two-point crossover with crossover points 
c1 , c2 chosen uniformly at random from {1, 2,… , k} . Suppose 
c1 < c2 . The first offspring receives the first c1 − 1 and the 
last k − c2 − 1 ternary subconditions from the first parent. 
The middle ternary subconditions ( c1 to c2 − 1 ) are taken 
from the second parent. For the second offspring the roles 
of the parents are reversed.

We further use a creep mutation: We iterate over all 
subconditions and mutate each independently at random 
with a fixed probability of � . If a ternary conditions is to 
be mutated, we either change it to # if it had previously not 
been a # or we use the concrete value of the current state st . 
in order to mutate an interval condition we simply assign a 
new random interval that fits the corresponding value of the 
current state s.

Our GA further sets the offspring’s fitness and error val-
ues to a fraction of the respective mean values of the parents. 
This is meant to model the uncertainty attributed to the new 
combinations and mutations not having been tried out yet 
(unlike their parents).
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For XCSF [38] the GA can further be used to optimize 
the prediction function cl.p(⋅) which we do at the same time 
as optimizing the conditions (i. e., we work on the same off-
spring, here). We employ the same crossover and mutation 
operators as for the conditions4.

When to run XCSF’s GA depends on the match set’s size 
as well as how long ago the match set’s classifiers took part 
in the GA the last time. Therefore each classifier tracks the 
time of its last participation in the GA as cl.t (already men-
tioned earlier). The execution condition can be formulated 
as follows:

whereas �GA is a hyperparameter. In the literature [38, 39] 
this condition is checked every time a match set is computed.

Population Pruning

As mentioned earlier, XCSF’s population has a fixed capac-
ity N which is periodically checked for being exceeded and 
if it is, classifiers are removed. The selection of the classi-
fiers to be deleted is roulette wheel–based similar to the GA. 
However, it is not using fitness as a metric, but the so-called 
deletion vote of the classifiers which is computed as follows:

where �del is a deletion threshold and � is a real number 
controlling the influence of the average population fitness.

A closer look at the formula reveals that experienced clas-
sifiers with a relatively low fitness receive a much higher 
vote as cl.ms is multiplied by a number bigger than one (the 
factor is the average population fitness divided by the clas-
sifier’s fitness). This makes it much more likely for an ill-
performing rule to be deleted.

(12)t −

∑
cl∈M cl.t

�M�
> 𝜃GA,

(13)

Deletion vote(cl) =

�
cl.ms

∑
cl∈P cl.F

cl.F�P�
, cl.exp > 𝜃del ∧ cl.F < 𝛿

∑
cl∈M cl.F

�P�

cl.ms, otherwise,

The match set size is also included. If a rule is often a 
part of large match sets then it is more likely to be removed. 
This introduces an evolutionary pressure towards an even 
distribution of the rules across the state space.

Extending XCSF with a Replay Memory

While, in a previous study [29], we used the information 
from all states and values encountered during one CI cycle 
to update the rules’ parameters, we later found out that expe-
rience replay (ER) is better suited [30]. ER is a technique 
widely used for NNs, especially for deep Q-learning [5], 
which just recently got into the focus of LCS research: Stein 
et al. [33] performed a first study on its effects on LCS per-
formance and outlined that for use cases such as ours the 
technique is beneficial in terms of performance. Our imple-
mentation of ER saves past experiences of the form (s, v) 
(i. e. state, value) in a first in, first out (FIFO) buffer B of 
fixed capacity; whenever the model’s parameters are to be 
updated, a batch of training examples is sampled from this 
buffer.

Algorithmically, the main functionality of our XCSF-ER 
is split into two parts: Choosing a priority and remembering 
the state in the buffer (see Algorithm 3) as well as an update 
procedure (Algorithm 4). During the update, the observed 
states are linked with their respective observed values; the 
resulting pairs of the form (s, v) are then inserted into the 
buffer. To perform the actual ER-based update, we draw a 
sample of a fixed size from the buffer. We then compute for 
each pair (s, v) in this sample the match set M for s and run 
updates on the local models of all the classifiers in M (i. e., 
update both quality and bookkeeping parameters [38]). It is 
worth mentioning that we also run the GA there (Lines 9 and 
10 of Algorithm 4).

It is also worth mentioning that the ER-based update is 
not performed after every CI cycle in order to avoid overfit-
ting (note the condition in Line 4 of Algorithm 4).

4 Of course they are adapted to numbers. Mutating a number trans-
lates to drawing a new random number. Crossover consists of first 
performing an arithmetic crossover (for two numbers x,  y, this cor-
responds to �x + (1 − � )y and �y + (1 − � )x ) and then the same two-
point crossover as used for the ternary subconditions.
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Our algorithmic description yet lacks the vital informa-
tion of how we draw the random batch from the buffer. For 
this mechanism we examine three different options:

– Uniform: All data points have the same probability to be 
drawn: 

– Buffer index prioritized: The probability to choose the 
data point at position j in the buffer is 

– CI cycle prioritized: The probability to draw a data point 
injected within CI cycle i is 

where � is the smallest CI cycle which still has samples 
in the buffer and Γ the latest5. Further, CIi denotes the 
number of data points in the buffer that were collected 
during CI cycle i.

We selected uniform ER as it was one of the first versions 
described by Lin [15] and we see it as a default option. The 
other strategies both use a form of sampling prioritization. 
The first (buffer index priorization) was used by Spieker 
et al. [32] for their ML approach towards ATCS. Empirically 
it showed good results which motivated us to consider it as 

(14)
1

|B|

(15)
j

∑�B�

i=1
i
.

(16)
i − � + 1

CIi
∑Γ−�

l=1
l
,

5 Note that the normalization by � and Γ is necessary to ensure that 
the result is indeed a probability distribution.

well. However, it treats the samples of one CI cycle differ-
ently as the first test case of a cycle receives a lower prob-
ability then the last of the same cycle. Note that the ordering 
of samples in the buffer is determined by the way the test 
cases are passed to the ML algorithm (consider our discus-
sion at the start of Chapter 5) which might be problematic as 
it could introduce some form of bias. The other prioritized 
ER version that we consider is a refinement of the buffer 
index prioritization. It still prefers to draw samples from 
newer CI cycles, but treats the samples of one cycle equally.

Overall, we coin the resulting XCSF adaptation XCSF-ER.

Reusing Classifier Populations

Due to the use of XCSF, it is possible to reuse an already-
trained model (i. e., a classifier population) for novel soft-
ware projects by using a straightforward population trans-
formation. This is a form of transfer learning.

First of all we intend to keep the prediction functions 
as they encapsulate how the local prediction is computed. 
Thus we also keep the rules’ conditions as they also hold 
the information when we should use the local prediction 
functions. In 5.4 we underlined that the match set size holds 
the information on how the classifiers are distributed among 
the state space which is an important information we intend 
to conserve.

We further mentioned in 5.4 the importance of fitness val-
ues as they have an impact on which classifiers are kept and 
which are removed. However, fitness is an accuracy-based 
metric which was computed for the old software project (for 
our use case) and not the novel one. The same is valid for the 
classifier’s prediction error cl.� which is the basis to compute 
the aforementioned accuracy. Additionally the old rules are 
unexperienced for the novel problems. Hence we do not want 
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to reuse those values as they might not be suitable for the 
new project.

The transformation we devised simply resets the afore-
mentioned magnitudes to the default values (as used during 
covering) whilst the match set sizes, prediction functions, 
and conditions are kept as they are.

This mechanism follows a simple notion: a reused classi-
fier that performs well for a new project regains high quality 
values. On the other hand a badly performing one is deleted 
earlier. As we additionally keep the match set sizes the prun-
ing mechanism can combine them with the new fitness val-
ues. Thereby the subspaces lacking well-performing rules 
and locations containing a too high number of good rules 
can be identified faster. This further supports in the decision 
where to sort out rules in order to achieve a decent perfor-
mance throughout the entire state space.

Further, we set the hyperparameter � that determines the 
update fraction to 0.1. The last LCS parameter is the deletion 
threshold �del which equals 20.

The only parameter purely related to ATCS is the history 
length k which we set to 6, a value that we determined in 
hyperparameter studies in our previous works [29, 30].

XCSF-ER shares the aforementioned configurations with 
XCSF. Hence it only differs by the fact that it uses ER and 
XCSF does not. Thereby a ceteris paribus environment is 
created and we can later observe its effects in an isolated 
way. The used ER buffer has a maximum capacity of 12, 000 
and we draw batches of size 2000. Further, updates using ER 
are performed every third CI cycle.

Spieker et al. [32] employ a rather small NN using one 
hidden layer containing 12 nodes and the RELU activation 
function. They use the well-known ADAM optimizer to 

6 Our code is available here: https:// github. com/ LagLu kas/ trans fer_ 
learn ing.
7 The data sets can be downloaded here: https:// bitbu cket. org/ Hel-
geS/ atcs- data/ src/ master/.

We summarized the transformation of a single classifier 
(which simply is applied to all classifiers in the population) 
in Algorithm 5 and refer interested readers to [25] for more 
details. We reuse the entire population.

Parametrization

We adopted the hyperparameter and evolutionary operators 
from our previous works [29, 30]. Here we describe their 
concrete values starting with XCSF. For its GA we set the 
arithmetic crossover parameter � to 0.6. The crossover prob-
ability � equals 0.75 and the mutation probability � is 0.015. 
Its execution threshold �GA is 25.

Overall the classifier population has a maximum capacity 
of N = 2000 . We draw new prediction function weights from 
[−10, 10] and use the learning rate � = 0.1 to train them. 
When we create new covering classifiers we use the ini-
tial fitness FI = 0 and error � = 0 as default values. Further, 
whilst creating new ternary conditions we switch them to # 
with a probability P# = 0.33 (also during covering).

For the accuracy computation used for updating the 
fitness values we employ � = 0.15 , � = 5 , and �0 = 0.01 . 

train the weights with a learning rate of 0.05. They employ 
a history length k of 4 and use buffer index prioritized ER 
with a buffer size of 10, 000 and a batch size of 1000. ER is 
performed every fifth CI cycle and after the first.

Our initial version of XCSF-ER [30] had the same buffer 
mechanism as the NN of Spieker et al. [32] (buffer index pri-
oritized). For the majority of our experiments we rely on that 
approach. However, in a dedicated experiment we bench-
mark said approach against others due to the possible issues 
of the buffer index prioritization (as discussed in Sect. 5.5).

To make our study repeatable and increase reproducibil-
ity, we publish our implementation as open source6.

Evaluation

We evaluate our approach using three open source data sets7 
that were collected during development of three industrial 
software projects (two by a Scandinavian robot company 

https://github.com/LagLukas/transfer_learning
https://github.com/LagLukas/transfer_learning
https://bitbucket.org/HelgeS/atcs-data/src/master/
https://bitbucket.org/HelgeS/atcs-data/src/master/
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called ABB and one by Google). Each of the data sets con-
tains the outcomes of all available test cases for every CI 
cycle. This enables us to simulate the use case (i. e., select-
ing and executing only a subset of test cases) but still evalu-
ate the performance of the ML methods considered using 
the NAPFD metric (which requires all test results to be com-
puted). An overview of the data sets’ sizes and additional 
statistics is given in Table 1.

We compare our approaches (both XCSF without ER [29] 
and XCSF-ER) with the NN-based solution of Spieker et al. 
[32]. The latter can be seen as the current state of the art not 
only with respect to using reinforcement learning for ATCS 
but also more in general, as it has been shown to be superior 
to a Q-learning-based approach as well as several traditional 
techniques such as a greedy selection [32]. In addition, as 
mentioned before, it has been adopted by major software 
companies such as Netflix [12].

The data sets we chose for performing the evaluation are 
exactly the ones used by Spieker et al. [32] which makes it 
possible to have a fair comparison with our approach. We 
further rely on Spieker et al.’s original implementation of 
their NN which is available open source8 and, instead of 
relying on the results reported in their paper, repeated all 
the necessary experiments.

We perform 30 independent and identically distributed 
runs of each experiment. We examine the following five dif-
ferent issues:

Temporal behaviour Here we concentrate on the evolu-
tion of the performance over time with the intention to 
find out which approach is better.
Performance distribution We switch from a temporal to 
a percentile-based axis, trading the temporal information 
for deeper insights into the NAPFD distributions.
Buffer mechanism In our original work [30] we merely 
followed the ER approach of Spieker et al. [32]. In an 

additional deeper analysis we consider the two other ER 
mechanisms introduced in Sect. 5.5 and compare them 
with each other.
Transfer learning An evaluation of the benefits of our 
transfer learning method for XCSF-ER.
Random selection We verify our methodology against 
this approach since we explicitly wanted to benchmark 
against an algorithm outside of the EC and ML world. 
Thus we widen our view by comparing against a standard 
method.

All visualizations have been created using matplotlib [11].

Temporal Behaviour

The averaged (over the 30 runs performed), smoothed9 tem-
poral behaviour of the examined ML methods is shown in 
Fig. 3. In each row, the used value function is kept fixed, 
whereas each column deals with one of the three data sets. 
It is worth mentioning that there is still a high total variation 
in the averaged NAPFD values due to the nature of software 
development (new bugs are introduced and old ones fixed).

For the paint control data set (first column), we can 
observe that only the test case failure value function is ben-
eficial for the NN; for the other two value functions, the 
performance declines over time. We see something similar 
for XCSF with the time ranked value function. Visually, both 
LCSs seem to be comparable with the NN as long as appro-
priate value functions are chosen.

The trend lines for the IOF/ROL data set (second column) 
all have a very similar slope (very small or visually close to 
zero). For the LCSs, the intercepts seems to be higher and 
keep outperforming the NN over time. However, we can-
not identify major differences between the two LCSs solely 
based on the graphs.

The most striking differences can be seen for the 
GSDTSR experiments (last column). There is a considerable 
performance gap between the LCSs and the NN. The usage 
of ER can further correct bad behaviour, for example, for the 
time rank value function (XCSF’s performance with respect 
to NAPFD declines whilst XCSF-ER is able to uphold val-
ues). Furthermore, the best performance on GSDTSR can 
be achieved if XCSF-ER is combined with either the failure 
count or the time ranked value function.

The previous observations were purely made on visual 
insights and trend lines. This bears some risks as follows: 
For one, trend lines can be disturbed by outliers. Secondly, 
instead of the raw results, we only examined averages which 
can be similarly misleading. In order to more critically 

Table 1  Summary of the three examined data sets (paint control, 
IOF/ROL, GSDTSR). Note that the number of test executions is not 
a multiple of the number of test cases as the latter increased over each 
project’s lifetime

Paint control IOF/ROL GSDTSR

Company ABB ABB Google
CI cycles 312 320 336
Test cases 114 2 086 5 555
Test executions 25 594 30 319 1 260 617
Failed (%) 19.36 28.43 0.25

8 Spieker et al.’s implementation of their NN-based approach can be 
found here https:// bitbu cket. org/ HelgeS/ retecs.

9 We take the average over three succeeding values. We consider dis-
joint CI cycle sets with indexes {3k, 3k + 1, 3k + 2}.

https://bitbucket.org/HelgeS/retecs
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evaluate our observations, we thus perform a series of sta-
tistical tests. In particular, we want to be able to make a 
recommendation as to which value function is best suited 
for usage with XCSF-ER. Based on Fig. 3, we can deduce 
that the failure count and time ranked value are the two more 
interesting options. Thus we now statistically compare the 
performance of XCSF-ER when using these with the two 
other approaches (XCSF and NN); at that, we combine the 
latter with any of the value functions. In doing so, we rely on 
a one-sided Student’s t tests with a significance level of 0.05. 
Student’s t tests have the precondition of normally distrib-
uted data; we examined that property for each test conducted 
using Shapiro–Wilk tests.

We show the p values of the one-sided Student’s t tests in 
Table 2. A definite improvement of XCSF-ER over XCSF 
can be seen for GSDTSR as the p values are basically zero. 
A similar observation can be made for two out of three cases 
on the paint control data set. On the IOF/ROL data set, how-
ever, we cannot determine which approach is better. When 
comparing XCSF-ER with the NN, the p values indicate that 
XCSF-ER is superior in all but one case. Note, however, 
that a non-significant test does not imply that the NN per-
forms better. In general, the statistical evaluation is in line 
with the visual one performed above. Based on that, we can 
make a recommendation for the combination of ML method 
and value function as folows: XCSF-ER with either the time 

ranked or failure count value function (which is something 
that we cannot do for XCSF and the NN).

Performance Distribution

While the previous analysis established that XCSF-ER is 
often better than the other two approaches, it did not meas-
ure by how much it is better. This is hard to examine based 
solely on the temporal data because of the high variation 
in the observed NAPFD values, which is due to the afore-
mentioned non-stationary nature of the problem (software 
and test cases change frequently between CI cycles). We 
thus continue with analyzing the distributions of the set of 
NAPFD values achieved at any time in any of the 30 runs 
we performed. At that, we rely on empirical quantiles (the 
percentiles) which express cut points dividing the (sorted) 
observations into intervals with certain relative frequen-
cies. For example, the 50th percentile indicates the lowest 
observed value that is greater than 50% of the observed val-
ues. In our case, high percentile values are desired as this 
translates to many CI cycles where a good NAPFD score has 
been achieved. Instead of only investigating selected quan-
tiles, we will plot the overall NAPFD distribution and with 
that visualize all quantiles.

Before diving into the explorative data analysis, we 
briefly want to outline why we do not use a more sophis-
ticated visualization technique such as box plots. A box 

Fig. 3  Time series and trend lines of the averaged (30 runs) and smoothed8 NAPFDs of the considered approaches. This is an improved version 
of the graph shown in [30]
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plot displays the median, quartiles as well as the so-called 
whiskers (the quartiles ± the interquartile range). Sample 
points beyond the whiskers are seen as outliers and visual-
ized as that. However, due to the limited NAPFD range and 
the non-stationary nature of the problem (which leads to a 
high interquartile range), there are no outliers in the box plot 
sense. Our visualization is thus more rich than correspond-
ing box plots since all the information found in a box plot of 
our data can be easily accessed (e. g., quartiles are the 25th, 
50th and 75th percentile which are readily available) while 
at the same time we display the complete distribution instead 
of only isolated points of the distribution.

Figure 4 shows plots of the NAPFD percentiles of the 
different combinations of ML methodology, value functions 
(rows) and data sets (columns). Each point on one of the 
graphs relates a percentage of measured NAPFD values (X 
axis) to the NAPFD value that is greater than all of them (Y 
axis). Most of the graphs show plateaus at the left and right 
side which we will call the 0- and 1-plateau respectively 

based on the NAPFD values they are located at. Having a 
longer 1-plateau is desirable as it corresponds to the func-
tion approximator being able to hit a NAPFD value of 1 
more often, which is the best possible value for this metric. 
0-plateaus, on the other hand, should be as short as possi-
ble as they indicate the number of times that the approach 
completely failed at its task (the minimum NAPFD value is 
0). Overall, a first look at the percentile-based perspective 
already establishes that the visual evaluation of these is eas-
ier than of the temporal plots as the plots are much smoother.

The distribution plots reveal that the workflow used in 
a software project has an impact on an ML algorithm’s 
NAPFD scores. For example all three methods have a harder 
time on the IOF/ROL data set than on the GSDTSR data set. 
A key difference between these projects is the rate at which 
testing was performed. Upon inspection of the data sets, it 
can be seen that the IOF/ROL project did not perform CI 
cycles daily whereas the GSDTSR project sometimes even 
performed several CI cycles within one day. Thus, the dif-
ferences between temporally close CI cycles are smaller for 
the GSDTSR software which can be seen as an indicator of 
why the ML approaches perform better. Furthermore, the 
LCS percentiles are consistently higher in the range of the 
20th to the 80th percentile which corresponds to more than 
60% of the samples. The 1-plateaus are very similar for all 
three methodologies.

For the GSDTSR data set, we can see that XCSF-ER 
has almost no NAPFD breakdowns (and if using one of the 
recommended value functions, i. e., failure count or time 
ranked value, actually none). Furthermore the 1-plateau of 
both LCSs is longer than the one of the NN. For every value 
function, the NN is inferior to XCSF-ER. Positive effects of 
using ER in XCSF can be seen clearly in the experiments 
using the failure count and the time ranked value functions: 
ER pushes the performance across the entire bandwidth. 
Finally, we can see that XCSF-ER is by far the best choice 
for this data set.

The plots of the paint control data set show great differ-
ences as well. These become evident when using the time 
ranked or the failure count value function where both LCSs 
are superior. For the latter we can observe ER once more 
having a positive effect; on the former, however, we can-
not visually see any effect of using ER in XCSF. Again, we 
notice that the 0-plateau of XCSF and XCSF-ER is shorter 
than on the IOF/ROL data set, indicating far fewer perfor-
mance breakdowns. Additionally we can see that almost 
40 percent of the samples have the highest NAPFD value 
(for the respective most suitable value function). This dif-
fers from the behaviour on GSDTSR where almost all the 
percentiles are higher but the 1-plateau is shorter. Also, the 
distribution-based view allows us to more closely examine 
the non-significant difference between the NN (with test case 

Table 2  p values for H0 : “Method M
A
 with value function V

A
(⋅) per-

forms better on data set d than method M
B
 with value function V

B
(⋅)”

Significant entries in bold

M
B

XCSF-ER XCSF-ER
V
B
(⋅) Time 

ranked
Failure count

M
A

V
A
(⋅) d

XCSF Failure 
count

Paint con-
trol

0.00681 0.00269

IOF/ROL 0.15045 0.52413
GSDTSR 7.31e–58 6.35e–63

Test failure Paint con-
trol

1.99e–05 5.224e-06

IOF/ROL 0.08591 0.40465
GSDTSR 5.41e–15 2.81e-18

Time 
ranked

Paint con-
trol

0.47241 0.34184

IOF/ROL 0.55662 0.88968
GSDTSR 1.11e–29 1.56e–33

NN Failure 
count

Paint con-
trol

1.47e–33 4.19e–34

IOF/ROL 0.00072 0.01779
GSDTSR 1.41e–66 5.68e–71

Test failure Paint con-
trol

0.2248 0.14179

IOF/ROL 7.73e–07 0.0001
GSDTSR 1.60e–100 2.71e–105

Time 
ranked

Paint con-
trol

1.62e–34 2.35e–35

IOF/ROL 0.00121 0.02691
GSDTSR 1.21e–106 1.75e–111
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failure value function) and XCSF-ER (with either the failure 
count or the time ranked value functions) that was identi-
fied in the previous section: Their percentile curves have the 
same shape and magnitude.

We further defined a key performance indicator (KPI) to 
compress the empirical percentiles into a single number. At 
that, we rely on calculus and compute the integrals of the 
NAPFD distributions. We define p(M,V , x) as the percentile 
function of an ML method M using a value function V. The 
input x is the desired percentile, e. g., 50 for the median. We 
define the KPI as follows:

which we coin the NAPFD ratio. Thus we compare the 
relation of the percentile area of one ML method with the 
state-of-the-art NN proposed by Spieker et al. [32] (using 
the value function where it performed best). Values higher 
than 1 indicate that M outperforms the NN-based solu-
tion. It is worth mentioning that we have to approximate 
the integrals as we lack the actual percentile functions; to 
do so, we rely on the well-known trapezoidal rule and use 
a mesh of 100.

The NAPFD ratios of XCSF and XCSF-ER for each value 
function and data set are given in Table 3. We can see that 

(17)NAPFD ratio(M,V) =
∫

100

0
p(M,V , x)dx

∫
100

0
p(NN,V tcf

i
, x)dx

,

for every data set, a combination of LCS and value function 
exists which outperforms the NN (i. e., which have a NAPFD 
ratio higher than 1). On the paint control data set these differ-
ences are rather minor (they should probably be regarded as 
equivalent), but on the other two data sets they become more 
distinctive. For IOF/ROL, we can observe up to 35% more 
performance and on GSDTSR, XCSF-ER even achieves up 
to 2.7 times the output of the NN. We can once more see that 
XCSF-ER achieves good results even if we select the value 

Fig. 4  Percentiles of the considered ML methods on the three data sets (columns) for each of the three value functions (rows). The kth percentile 
of an ordered sample x1 ≤ x2 ≤ ⋯ ≤ x

n
 is defined as x⌈ kn

100

⌉ , i. e., the kth percentile is the value for which k % of values in the sample are smaller 

and (100 − k) % are larger

Table 3  NAPFD ratio for XCSF and XCSF-ER for the different data 
sets and value functions

The two best values per data set are marked bold

Data set Value function XCSF-ER XCSF

Paint control Failure count 1.032 0.876
Test case failure 0.852 0.911
Time ranked 1.022 1.018

IOF/ROL Failure count 1.258 1.266
Test case failure 1.229 1.252
Time ranked 1.335 1.356

GSDTSR Failure count 2.740 1.726
Test case failure 2.260 2.356
Time ranked 2.708 2.083
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function a priori and keep it fixed. Further, XCSF-ER per-
forms equally or better than XCSF on the data sets considered.

In summary, we extended our temporal evaluation by 
taking a special focus on the distribution of the NAPFD 
results achieved. Thereby we could see a large amount of CI 
cycles where the LCS-based methods (especially XCSF-ER) 
outperformed the NN. For a considerable range of percen-
tiles we could observe optimal results. Generally we could 
observe that the workflow used by a software project (i. e., 
the number of CI cycles per day) has an impact on the per-
formance of all the approaches considered. For example, on 
IOF/ROL, there were several CI cycles where all techniques 
had performance breakdowns. We could additionally com-
pare the ML algorithms with each other using a KPI that 
takes the NN as a baseline. Based on that, we were able to 
conclude that LCSs are in most cases not only equivalent but 
superior to the NN.

Buffer Mechanism

In our previous experiments we merely followed the ER 
mechanism of Spieker et al. [32] (as stated in Chapter 6). We 
already mentioned that the buffer index prioritization per-
formance might be influenced by the test case order which 
induces the buffer index. Therefore, we empirically analyse 
if this is indeed the case by comparing the approach with the 
two alternatives stated in Chapter 5.5 (uniform and CI cycle 
prioritized). We reuse the buffer and batch size described 
in Chapter 6.

Figure 5 once more consists of has nine plots with col-
umns corresponding to data sets and rows corresponding to 
value functions. For the following analysis, we found box-
plots to be more suitable than temporal behaviour or per-
centile graphs. We decided to do so as the percentile graphs 
were heavily overlapping and thus visually hard to examine. 
Further, we wanted to measure the overall impact of the 
buffer mechanism throughout the projects’ lifetime and not 
at individual time points (thus we decided against a temporal 
analysis).

For the time-ranked value function (third row) we can 
observe no visual difference between the individual buffer 
mechanisms considered. All have similar quartiles, whisk-
ers, and medians. Thus the chosen batch drawing method 
has no impact. For the failure count value function (first 
row) we can see nearly the identical behaviour, except that 
uniform ER leads to one negative outlier that the other two 
ER mechanisms do not have.

Visual differences can only be seen if we consider the 
test case failure value function (second row). On the Paint 
control task, the CI prioritized method yields the best results 
while the other two perform equally well. On the IOF/ROL 
task, similar medians can be observed whilst the buffer index 
prioritization has a better third quartile. Further, buffer index 

prioritization has higher upper whiskers than the other two 
methods which indicates that more CI cycles with NAPFD 
values in that region occurred. In the higher NAPFD region 
uniform and CI cycle prioritized ER merely have a few outli-
ers. On the GSDTSR task, three ER approaches have similar 
whiskers. Differences can be seen in terms of the quartiles 
and medians where uniform ER comes in first, buffer index 
prioritization second and CI cycle prioritization last.

Overall, our visual analysis underlined that only for the 
test case failure value function differences can be observed. 
However, this is of minor importance of this applied work 
as we are interested in one value function that performs best 
across all given data sets. Our previous experiments showed 
that that value function is not the test case failure value func-
tion; this can also be seen in Fig. 5 as both the time ranked 
and failure count value functions perform better than the test 
case failure value function. Corresponding statistical tests 
indicate the same10. Thus we pragmatically concentrate once 
more on the failure count and time-ranked approach.

Based on our visual evaluation we form the hypothesis 
that the choice of ER mechanism does not matter (for the 
better performing value functions) for a specific data set with 
respect to performance. Statistically formulated, we conjec-
ture that for each data set the performance measurements 
collected any of the three ER mechanisms are from the same 
distribution. This can be examined using the Kruskal–Wallis 
test [13]. We decided against the more well-known ANOVA 
since the Kruskal–Wallis test is parameter-free and ANO-
VA’s preconditions (normality, equality of variance, inde-
pendence) cannot be ensured in our setting.

Table 4 shows the corresponding p values. We can see in 5 
out of 6 cases high p values (between 0.96 and 0.9788). Only 
for one case (GSDTSR and time ranked) we observe a medium 
p value of 0.475280 which we attribute to the slightly higher 
quartiles of the two prioritized ER variants when compared to 
uniform ER (if we left out uniform ER then the p value would 
be 0.996). In order to properly interpret the p values we have to 
reconsider their meaning. For this test, the p value is the prob-
ability of observing similar or more extreme NAPFD data under 
the assumption that the three groups considered are from the 
same distribution. Since the p values are quite high, we can con-
clude that if our hypothesis is true then the observed NAPFD 
values are quite likely. This may be seen as very weak evidence 
in favor of our hypothesis which adds to the evidence we gath-
ered from the visual analysis.

10 We used one-sided Wilcoxon tests to compare each combina-
tion of one of the three ER methods with one of the failure count 
or time ranked value functions with each combination of the three 
ER methods with the test case failure value function (a total of 
(3 × 2) × (3 × 1) = 18 comparisons) and for each checked the null 
hypothesis of whether the first performs worse than the second. Since 
all the p-values are less than 10−21 , we conclude that the failure count 
and time-ranked value functions yield significantly better results.
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In summary, we conclude that for the two value func-
tions that are of interest for practitioners (due to their per-
formance) the three ER mechanisms we considered perform 
equivalently. If we combine this with our previous analysis 
(Sects. 7.1–7.2) then we can infer that while it is important 
that ER is used in order to achieve a higher performance, the 
exact mechanism seems to play a minor role.

Transfer Learning

Many companies such as Bosch or Microsoft do not solely 
develop one product. Hence a reuse of previously acquired 
testing knowledge is of interest. This motivated us to develop 
the population transformation described in Sect. 5. Here we 
examine this transformation’s effects.

In one of our previous works we determined that the 
GSDTSR data set is suited best for pretraining the LCSs 
[25]. Certain data sets being better suited for pretraining 
than others is in line with other transfer learning approaches 
such as NN-based object recognition where a well-known 
approach is to use a model pretrained on the large ImageNet 
data set (note that, in our case, GSDTSR being suited best 
for pretraining also coincides with it being the largest data 
set). In the following, we evaluate the performance of an 
XCSF-ER that was pretrained on GSDTSR by comparing it 
to plain XCSF-ER.

We focus on the time ranked value as the previous 
experiments revealed that it is well-suited for XCSF-ER11. 
Figure 6a and b display the smoothed temporal behaviour 
(averaged over 30 runs) while 6c and d show the NAPFD 
distribution. Note that XCSF-TL denotes XCSF-ER with 
transfer learning.

Figure 6a and b reveal that positive effects of transfer 
learning can be seen across the entire time line and not just 
at the start. XCSF-TL seems to have smaller performance 
breakdowns, especially for the paint control data set. On the 
IOF/ROL data set, these positive effects are smaller.

Figure 6c and d underline this generally positive influ-
ence. For both distributions, the XCSF-TL graph lies above 

Fig. 5  Boxplots of the considered buffer mechanisms on the three data sets (columns) for each of the three value functions (rows). Note that 
Cycle stands for CI cycle prioritized and Buffer for buffer index prioritized

11 For the failure count value we can observe similar results; the cor-
responding plots can be found in Appendix A.

Table 4  p values for different Kruskal-Wallis tests. H0 : “For data set 
d and value function V, the NAPFD performances of the three ER 
approaches considered are from the same distribution”

Data set Failure count Time 
ranked

Paint Control 0.978821 0.970148
IOF/ROL 0.978822 0.967298
GSDTSR 0.960042 0.475280
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the XCSF-ER graph indicating an overall higher NAPFD 
level. Aside from that, we can observe a shorter 0-plateau 
for the paint control data set which confirms the decreased 
amount of performance breakdowns in that case. On the 
paint control data set this leads to less performance break-
downs as the percentage of CI cycles with a NAPFD of zero 
becomes smaller.

Both the temporal and distribution plots give rise to the 
hypothesis that transfer learning is beneficial in terms of 
NAPFD. We evaluated that hypothesis with corresponding 
Wilcoxon signed rank tests12. The corresponding p-values 
were below 0.05. Thus we infer that transfer learning indeed 
delivers a performance boost.

We once more want to measure how big this performance 
increase is. Therefore we reuse our KPI, but exchange the 
baseline. We do not normalize with the integral of the NN 
but with XCSF-ER’s integral. For paint control, we could 
increase the output by about 3.4 % and for IOF/ROL by 
about 2 %.

Random Selection

The previous analysis compared different LCSs and an NN 
with each other. These have all in common that they are a 
version of artificial intelligence (AI). In order to widen our 
view we look outside and compare our approaches against a 
standard approach which is used in many sources for bench-
marking: a pure random selection [2, 14, 27]. Here, the 
method assigns a priority drawn uniformly at random from 
[0, 1). We focus on the time ranked value, the observations 
for the failure count value are similar (those results can be 
found in Appendix B).

We begin with a visual analysis by employing a series 
of boxplots (Fig. 7). We can see throughout all plots that 
the medians of the LCSs are always above the ones of the 
random selection. For XCSF-ER we can see in two cases 
that even the lower quartiles are higher. The LCSs show a 
wider bandwidth of values, but have fewer outliers. How-
ever, the mass of the distribution is on higher NAPFD values 
(Table 5).

The previous observation leads to the speculation that 
LCSs perform better than a pure random selection. In order 
to back this statistically we investigate the null hypotheses 

Fig. 6  Overview of the effects of transfer learning on XCSF-ER. a and b show time series and trend lines of the averaged (30 runs) and 
smoothed NAPFDs. c and d show NAPFD distributions in the form of a percentile plot as described in Sect. 7.2. Note that XCSF-TL denotes 
XCSF-ER with transfer learning. The temporal plots are based on [25]

(a) (b)

(c) (d)

12 We examined null hypotheses of the form: Our transfer learning 
approach leads to worse results than the raw XCSF-ER on data set x 
with value function y.
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that the random selection performs equally well or better 
than XCSF on each specific data set (analogously for XCSF-
ER). To do so, we use Wilcoxon signed rank tests and report 
the p-values in Table 6. It is worth mentioning that this sta-
tistical test has no preconditions that must be checked. The 
p-values are all close to zero and we can hence reject the null 
hypothesis and infer that the LCSs indeed perform better.

An Evolutionary Computation Application

In our previous experiments we underlined the performance 
of our approach. This, however, does not yet answer one 
vital question: How do we deliver the scientific value created 

to the industry? One step in that direction has been creat-
ing a system architecture and design specification; we refer 
the reader to the corresponding publication [26]. However, 
software architecture exceeds mere design documents. The 
architectural properties of the solution created are often 
regarded as more important [23]. These are also known as 
quality attributes [6].

In order to determine the desirable architectural proper-
ties we first want to outline for whom we deployed our solu-
tion. BSH Hausgeräte GmbH (BSH) develops and produces 
various kinds of embedded systems (home appliances). 
Therefore the developers need a wide range of knowledge 
(electronics, mechanics, C/C++ software development etc.). 
However, based on our personal experience, this usually 
does not include ML or EC. Thus the solution must be easy 
to operate even without such knowledge, making usability 
our primary quality property.

Usability is linked to other architectural properties such 
as accessibility and installability. Our solution is written in 
Python 3 and hosted on a company-internal Python package 
management system which is accessible from every BSH 
computer. It can be installed via Python’s package manager 
pip using a one-line command.

The software itself is a simple command line tool. 
This matches the workflow of CI servers such as Jenkins 

Fig. 7  Boxplots displaying the performance of the used LCSs and random selection

(a) (b)

(c)

Table 5  p values for comparing XCSF and XCSF-ER to pure random 
selection. For the ML methods we consider the time ranked value 
function

Note that all are significant

Data set XCSF-ER XCSF

Paint control 2.80e–23 5.60e–22
IOF/ROL 2e–4 9.04e–05
GSDTSR 1.98e–71 7.36e–15
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or Bamboo well as these define CI pipelines in the form 
of scripts (similar to .sh or .bat files). We coined our tool 
Q_auto after the engineer Q from the James Bond movies 
(as he equips the LCSs with the necessary equipment to 
do their job). Q_auto just takes three arguments: The name 
of the pipeline, the CI cycle index and the available time 
budget, the first two of which are usually provided as envi-
ronment variables. Since BSH employs a testing process 
which predefines the location of test cases, Q_auto can parse 
them from there automatically. Overall, in order to use our 
software in practice, an operator simply has to integrate the 
following commands into the corresponding pipeline script:

– pip install test_abstraction_layer: 
Installs the Python package.

– Q_auto pipeline_name CI_cycle time_
budget: Runs the prioritization, selects the test cases, 
executes them, retrieves the results and performs the 
learning updates.

Thus it boils down to two commands which require no 
knowledge of ML or EC whatsoever.The documentation 
is hosted on internal servers that the engineers are used to 
work with; this allows access to the newest documentation 
if changes come up. Overall, we conclude that our usabil-
ity goal is satisfied. As a side-effect, we also enabled good 
accessability and installability.

It is worth outlining that many more architectual prop-
erties exist, for example, security. Since our application is 
not directly connected to the internet but instead hidden 
behind BSH’s corporate security measures, this vital goal 
can be seen as having already been achieved by BSH’s IT 
department. Other quality attributes such as maintainablity 
or adaptability depend more on the used design; for an over-
view of these, we recommend our publication that focuses 
on that topic [26].

Performance-related quality attributes such as fault-
tolerance or robustness are more related to our algorithmic 
approach and can already be seen in our experimental evalu-
ation. However, we still want to give an overview of how 
our system performs for our industrial partner. We started a 

pilot phase with three different projects across differing test 
levels. A dishwasher system test (DC ST), a dishwasher user 
interface test (DC UI) and a control and power module test 
(CPM) of an oven.

As mentioned before, in practice, we cannot evaluate 
the system’s performance using NAPFD as it requires the 
knowledge of the outcomes of all possible test cases. Instead 
we use a metric that we coin the failure velocity at CI cycle 
i which computes the quotient of failed tests and execution 
time of the chosen test suite:

where dactual(T) denotes the measured runtime of T. This is 
analogous to velocity; however, instead of measuring how 
far we went per time, we measure how many failing test 
cases the system found in the given time. Thus the metric 
takes both objectives into account (failure revealing capabili-
ties, limited time budget).

Figure 8 displays the failure velocity for the three afore-
mentioned projects. We decided to use a logarithmic scale 
since our metric is not normalized and might have high val-
ues (see DC UI); this slightly dampens the visibility of the 
system learning. Also, two of the graphs end early as—at 
the time of this writing—no more recent results were avail-
able for them. Over the up to 40 CI cycles, we can see some 
variation in failure velocity but, even if performance breaks 
down, the system is capable to recover just as we could see 
in the robustness experiments in Chapter 7. Even though, 
in the middle of the timeline, the testers decided to reduce 
the available testing time (by roughly 50 %), the system is 
still capable to achieve high values in terms of our metric. 
Further, on DC ST, the BSH testers experimented with the 
time budget by making it smaller and even set it to only one 
minute for several CI cycles (which lead to the break-down 
in CI cycles 8 and 9). After increasing it again, the system 
recovered. Overall, the plot shows that the system is capable 
of detecting failing test cases and that it already shows some 
robustness. We keep our analysis at this level concluding 

(18)
�TSf

i
�

∑
T∈TS

i

dactual(T)

Fig. 8  Failure velocity for the three BSH pilot projects
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that there is definitely a need for a long-term evaluation after 
the system ran several months.

Future Work

We implemented the methodology presented as an easy to 
use command line tool for one of our industrial partners. 
The system is already up and running but we identified an 
open point when it comes to the practical evaluation of the 
performance. We cannot use NAPFD as we do not have the 
knowledge about the outcome of all test cases. While we 
already came up with an alternative metric, failure veloc-
ity, it has a high total variation in terms of its magnitude. 
Also, in the long run, we desire a more human-interpretable 
metric.

Our experiments showed that the workflow used by a 
software project has an impact on every ML approach con-
sidered. Especially the frequency of the CI runs seems to be 
a key point; a high sampling rate in terms of software builds 
and test cases seems to be beneficial at first glance. This 
hypothesis would be in line with the well-known Shannon 
theorem (we could reconstruct the “software signal”). We 
intend to examine this hypothesis using data from the indus-
trial solution that we discussed in Sect. 8. However, in order 
to be able to do so, more data needs to be collected first.

One of the key implications of this study is that LCSs 
are a good choice for this task. There is a variety of other 
mechanisms available that might further push their perfor-
mance (see, e. g., [20]and [19]). We plan to evaluate several 
of them in order to see whether this can be observed here as 
well. In particular, interpolation-based methods caught our 
interest: Stein et al. [34] empirically showed in a series of 
articles on toy problems that this mathematical technique 
may be a desirable addition to LCSs. Nonetheless it is still 
to be shown if this effect is also the case on real-world prob-
lems such as this testing use case.

Furthermore, while our experiments underlined that trans-
fer learning is useful for this task, a more fine-grained trans-
formation may be required to really increase performance.

Our field tests at BSH showed that the testers sometimes 
may change the time budget available and the system is 
nonetheless able to cope with that. A further idea to boost 
the system’s performance would be to adapt our ER mecha-
nism to react to a changed time budget by replaying (or stor-
ing) more experiences.

Additionally we are going to evaluate another selection 
mechanism as the current one of Spieker et al. does not con-
sider the test execution time for test cases of equal rank.

Aside from our ML goals we also pursue more traditional 
engineering tasks: We work closely with BSH’s test engi-
neers to continuously improve our solution from a technical 
standpoint.

Conclusion

Our work focused on a task in software verification which 
arises in the modern development practice of continuous 
integration (CI): Since only a limited time is available for 
executing test cases, a set of crucial test cases has to be 
compiled.

A recent trend is to rely on machine learning (ML) tech-
niques and CI-related data to compute such a set of test 
cases. One state-of-the-art method is based on an artificial 
neural network (NN). We presented an alternative approach 
that uses a learning classifier system (LCS), more specifi-
cally, XCSF, and compared it with the NN-based solution. 
In our experiments we could see that, in most cases, the LCS 
is superior. We could further see that the LCS never falls 
behind on any data set considered.

The problem at hand shows a lot of variation when 
employing the typical, purely temporal view on the gath-
ered experimental data. We thus extended our analysis by 
a distributional perspective. This removed the variation 
of the signal and provided further insights, revealing that 
our method is superior for the majority of the data points 
gathered and indicating a higher robustness. It exceeded 
the state-of-the-art performance by up to 2.7 times and per-
formed optimally for large fractions of the considered soft-
ware projects’ lifetimes.

Finally, we reported on our experiences with deploying 
our solution as a full stack software for an industrial partner. 
The product is an easy-to-use program which requires no 
knowledge about ML. It is already being used to automat-
edly select test cases and increase failure detection in three 
pilot software projects with varying time budgets.
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A Transfer Learning for Failure Count

Figure 9 displays the transfer learning experiments if the 
failure count value instead of the time ranked value is 
employed.

Fig. 9  Overview of the effects of transfer learning on XCSF-ER (both temporal and in terms of the distribution). Note that XCSF-TL 
denotes XCSF-ER with transfer learning and the temporal plots are based on [25]. Here we employ the failure count value

(a) (b)

(c) (d)

B Random Testing Comparison using Failure 
Count

See Fig. 10 and Table 6.
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