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Abstract
Control charts themselves are unable to predict and recognize unnatural patterns in datasets. Over the years, different meth-
ods have been developed to recognize unnatural control chart patterns (CCPs) by quantifying the relationship between a test 
dataset and a reference dataset. Statistical correlation measure (SCM) and support vector machine (SVM) are two existing 
methods for recognizing CCPs. While SCM is faulty and cannot accurately recognize patterns in most cases, computational 
effort in the SVM model is high, and the training process of the model is complex. In this paper, a new methodology has 
been proposed that can measure the functional relationship between two variables. The model measures the maximal infor-
mation coefficient (MIC) between a reference dataset and a test dataset to recognize CCPs. To measure the performance, the 
proposed model has been illustrated with datasets obtained from a major consumer product manufacturing company. The 
results obtained from the MIC model have been compared with those obtained from SCM and SVM models. The comparison 
shows that the MIC model is better than the SCM in terms of accuracy in recognizing CCPs. Moreover, the computational 
time required for the MIC model is less than the SVM model. Furthermore, the MIC model is less expensive and is associ-
ated with a simpler algorithm than the SVM model.

Keywords Maximal information coefficient (MIC) · Support vector machine (SVM) · Control chart pattern (CCP)

Introduction

Quality has become one of the most vital market differentia-
tors when it comes to a product or service. With the increas-
ing number of producers for the same consumer product, 
the market has become highly competitive and manufactur-
ers coming with better quality in their products or service 
get a competitive advantage. Therefore, manufacturers are 
focusing on enhancing their product quality to capture the 
major portion of the demand in the market and give constant 
satisfaction to their customers. To increase or maintain the 
quality of their offerings, manufacturers use different statis-
tical process control tools [11]. Control chart, also known 
as process behavior chart, was first developed by Walter A. 
Shewhart in the 1920s [26]. The main reason for using con-
trol charts is to identify a manufacturing process being in a 
state of control [33]. However, control charts do not provide 

any pattern related information if a process deviates from its 
inherent pattern and follows a particular abnormal pattern 
[9]. CCPs are important because when any unnatural pat-
terns exist in a process for a long time, it is evident that the 
unnatural pattern comes from a common source of error or 
defect. This error can result from machine damage, a prob-
lem with raw material, error from workers, etc.

Many authors have already developed different techniques 
for CCPR over the years. Some of them involve complex 
algorithms, whereas some have a simple mechanism to rec-
ognize CCPs. Cheng [3] developed a method for control 
chart pattern recognition using a neural network approach. 
Guh and Hsieh [8] proposed a neural network-based model 
and in their paper which was used to recognize abnormal 
patterns. Yang and Yang [31] proposed a fuzzy-soft learn-
ing vector quantization to recognize control chart patterns. 
In contrast with the above-mentioned models that require a 
complex learning algorithm and large computational effort, 
Yang and Yang [30] developed a simple mechanism to rec-
ognize CCPs using statistical correlation coefficient. In their 
paper, CCPs were recognized by measuring the statistical 
correlation between the test data and reference data with a 
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set threshold value. The learning algorithm in this model is 
simple and requires very low computational effort. However, 
selecting the threshold value for classifying patterns into 
a certain class and pattern length of data is a big issue in 
this model, for which the accuracy to detect correct CCPs is 
lower than the other complex learning models.

Over the years, SVM has become the most popular model 
for CCPR because of its ability to control data more effec-
tively and perform a large number of operations such as clas-
sification, regression, and distribution. SVM is a powerful 
machine learning tool that has the capability to represent the 
non-linear relationship and produce a model that generalizes 
well to unseen data [4]. Lin et al. [13] proposed an SVM-
based approach for CCPR in autocorrelated data. Xantho-
poulos and Razzaghi [28] in their research have defined a 
CCPR as an imbalanced supervised learning problem and 
used a weighted SVM model to show its benefits over tradi-
tional SVMs. Later, SVM has been incorporated with other 
approaches to develop more efficient models for CCPR. To 
outperform the traditional SVM model, Zhou et al. [37] used 
fuzzy SVM incorporated with a hybrid kernel function. To 
optimize the feature selection, they also used a genetic algo-
rithm (GA). A supervised locally linear embedding algo-
rithm was incorporated with SVM to reduce features of high 
dimension [35]. Zhang et al. [34] proposed a CCPR method 
by using fusion feature reduction and fireworks algorithm-
based multiclass support vector machine (MSVM). Cuentas 
et al. [5] proposed an SVM-GA based monitoring system for 
CCPR of correlated processes.

In this paper, a new model is proposed that uses the MIC 
value to recognize control chart patterns. MIC is based on 
mutual information analysis (MIA) [7, 27]. Mutual informa-
tion (MI) is a quantity to estimate a relationship between two 
random variables, where the relationship between them is 
either linear or nonlinear [17]. However, using MIA directly 
to measure non-linear relationships between two datasets 
is difficult because mutual information computation needs 
to choose an estimator from a set of existing methods [23]. 
Moreover, it is difficult to interpret the computed value for 
MI and compare different obtained values [24]. For these 
reasons, a statistical tool named MIC was developed by 
Reshef et al. [20]. It has the same advantages as the MI, 
since it considers any kind of relationship including non-
linear relationships, but has an exact definition, a soft inter-
pretation, and better stability [21]. The main idea of the MIC 
is that if a relationship exists between a test dataset and a 
reference dataset, there exists a partition of the data that will 
allow to include this relationship [36]. Using MIC, a large 
number of non-linear relationships between the test set and 
the reference set can be measured [16].

There has been a wide range of applications of MIC in 
measuring the relationship between datasets. Caban et al. 
[2] characterized non-linear dependencies among pairs of 

clinical variables and imaging data using MIC. Tang et al. 
[25] proposed a cross-platform tool that was used for the 
rapid computation of MIC to effectively analyze large-scale 
biological datasets with a substantially reduced computing 
time through parallel processing. Xu et al. [29] predicted 
defects from historical data based on MIC with hierarchical 
agglomerative clustering. Shao et al. [22] used an improved 
MIC model to analyze railway accidents. MIC has also 
been used in railway accident analysis. MIC was also used 
to identify differentially expressed genes by Liu et al. [14].

However, there has not been any application of MIC in 
CCPR in the existing literature. Being a novel statistical 
method, MIC has already been used as a robust model to 
identify different classes with better overall performance, 
adaptability, and noise immunity from the traditional sta-
tistical methods such as SCM [14]. Hence, this paper aims 
to develop a model to identify the CCPs using MIC, as 
MIC can capture linear and non-linear relationships, such 
as cubic, exponential, sinusoidal, etc., and also robust to 
outliers due to its MI foundation. This makes MIC a feasible 
approach to identify the relationship between test data and 
reference data and thus pinpoint the exact pattern of control 
charts.

The objective of this paper is to illustrate the proposed 
MIC model along with two existing CCPR methods, namely 
SCM and SVM with production data of 1.5 gram (g) coffee 
minipack obtained from a major consumer product manufac-
turing company. The results obtained from the MIC model 
are then compared with results obtained from the SCM as 
well as the SVM model in terms of both computational accu-
racy and efficiency.

The remainder of this paper is organized as follows. In 
the following section, we discuss the existing approaches 
for CCPR. The subsequent section describes the proposed 
CCPR approach based on MIC and in the section follow-
ing that we illustrate the proposed methods with numerical 
examples. The next section provides conclusions and sug-
gestions for future work.

Existing Methodologies

This section discussed two existing methods for CCPR, the 
SCM, and SVM models. A brief background on the CCPR 
problem is provided first.

CCPR

CCPR can help to figure out the sources of deviation, if 
there is information available, and eliminate the error 
occurring in the future. This facilitates a system to remain 
in check so that any variations can be easily detected oth-
erwise such alterations will remain hidden in the system 
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thus affecting the whole lot. There might arise six types 
of abnormal patterns in a process other than the natural 
normal pattern. Each of them presents a different form of 
failure or source of error in a process. In this paper, CCPs 
have been classified into normal (NOR) and abnormal 
patterns. Abnormal patterns include upward shift (US), 
downward shift (DS), upward trend (UT), a downward 
trend (DT), systematic (SYS), and cyclic (CYC) as shown 
in Fig. 1.

CCPR Using SCM

The statistical correlation coefficient method, also known 
as SCM, is the most traditional and simplest method to rec-
ognize control chart patterns. In this method, the linear cor-
relation coefficient (r) between a reference dataset and a test 
dataset is measured to justify if the value of r with a refer-
ence set of a certain control chart pattern exceeds a threshold 
value to match that pattern.

Fig. 1  Different types of control chart patterns
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Framework for SCM

SCM determines the linear correlation between two random 
datasets. If x and y are two random vectors, then the linear 
correlation between them can be defined as in Eq. (1):

where, x and y are the mean value of x and y, respectively.
The first step of this method is to develop a training algo-

rithm where each pattern sample has a length of n. Pattern 
samples can be generated as follows:

Normal pattern:
If n(t) follows a normal distribution then the normal pat-

tern can be described as in Eq. (2).

Upward and downward shift patterns:
Upward and downward patterns can be described as in 

Eq. (3).

where d is the shift quantity and the values of u are 0 and 1 
before and after shifting, respectively.

Upward and downward trend patterns:
Upward and downward trend patterns are described in 

Eq. (4).

where, e is the value of the slope of the trend.
Cyclic pattern:
The cyclic pattern is shown in Eq. (5).

where, f is the value of amplitude.
Systematic pattern:
The systematic pattern can be defined as in Eq. (6).

where f is the value of amplitude.
The first step of using the linear correlation method is to 

develop a training algorithm. The training algorithm can be 
implemented as follows:

• A pattern length of n has to be determined.
• Using a disturbance level of d, a pattern sample generator 

is selected. A pattern vector x1 is generated for a pattern 
length of n, accordingly x2, x3…,xN pattern vectors are 
generated.

(1)r =

∑
(xi−x)(yi − y)

�∑
(xi−x)

2

�∑
(yi−y)

2

(2)x(t) = n(t)

(3)x(t) = n(t) ± ud

(4)x(t) = n(t) ± te

(5)x(t) = n(t) + f sin
(
2�t

8

)

(6)x(t) = n(t) + (−1)tf

• From N samples, an estimated pattern vector is deter-
mined by Eq. (7) [30].

Now, to classify the dataset, a classification algorithm is 
needed. The algorithm is as follows:

• A processing data sequence containing recent n points is 
regarded as the pattern size to be recognized. The data 
sequence is input to the recognizer and calculated its sta-
tistical correlation coefficient using six reference vectors 
to obtain outputs for the upward shift, downward shift, 
upward trend, downward trend, cyclic pattern, and sys-
tematic patterns, respectively.

• The pattern for which the value of r is maximum is con-
sidered as the winner pattern for the model.

CCPR Using MSVM

Support vector machines (SVMs) were previously designed 
only to solve binary classification problems [10]. With 
the increasing need for multiclass classification, differ-
ent methods have been studied. Currently, there are two 
types of approaches for MSVM, namely the One-against-
one (OAO), and the One-against-all (OAA) method. OAO 
method involves constructing and combining several binary 
classifiers, whereas the OAA method involves directly con-
sidering all data in one optimization formulation [32]. The 
formulation to solve multiclass SVM problems in one step 
has variables proportional to the number of classes. Thus, 
in order to solve problems with multiclass SVM methods, 
either a larger optimization problem has to be constructed or 
several binary classifiers have to be formulated. As a result, 
MSVM is computationally more expensive to solve a multi-
class problem than a binary problem with the same amount 
of data.

The core concept of the SVM model is to classify two 
different classes of data by constructing an optimal separat-
ing hyperplane (OHS) that maximizes the margin between 
the two nearest data points belonging to two separate classes 
[18].

If a dataset is represented by (xi, yi), i = 1, 2,… , l, (xi, yi) ∈ Rn+1, 
where l is the number of samples and n is the number of 
features. Each xi is a sample with n features and a class 
labely ∈ {−1,+1} . The SVM classifies the data point by iden-
tifying a separating hyperplane wTx + b = 0 , where w is the 
weight vector and b is the bias. If this hyperplane maximizes 
the margin, then the Eq. (8) below is valid for all input data.

(7)E(x) =

∑N

i=1
xi

N

(8)yi
(
wT∅

(
xi
)
+ b

)
≥ 1 ∀i = 1, 2,… l
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where, ∅ is the kernel function.
Using the Kernel function, it is possible to classify non-

linear problems. The concept of kernel trick is to map the 
original data points into a higher dimensional feature space 
in which they can be separated by a linear classifier. The 
projection of a linear classifier on the feature space is a non-
linear one in the original space.

The separating hyperplane defined by the parameters w 
and b is used to maximize the margin between two classes 
by solving the convex optimization problem as shown in 
Eq. (9).

where, C is the parameter denoting the tradeoff between the 
margin width and the training error and �i is the slack vari-
able to allow the margin constraint to be violated.

In this paper, MSVM is used to classify different pat-
tern classes. Between OAA and OAO MSVM methods, 
OAO is more suitable to use for practical uses than OAA 
[10]. In OAO, for a P class problem, there are P(P−1)

2
 SVM 

models. Each of the SVMs is trained for separating a class 
from another [19]. Additionally, the voting result of these 
SVMs also directs the decision of a testing sample. Whereas 
in OAA, P class pattern recognition problem is solved. In 
the first step of OAA, P independent SVMs are to be con-
structed and each of them is trained to separate one class 
of samples from all others. The kth SVM is trained with all 
of the datasets in the kth class with positive labels, and all 
other examples with negative labels. To test the model after 
all the SVMs are trained, a sample dataset is an input to all 
the SVMs. If that sample belongs to a certain class like P1, 
then only the SVM which has been trained to separate that 
particular class from the others will give a positive response 
[6]. Because of the better suitability in the classification of 
practical problems, this paper uses OAO.

Feature Selection

Major decision-making in the SVM classifier is selecting the 
number of appropriate features. Selecting the right features 
in MSVMs facilitates the recognition of CCPs quickly and 
accurately. Different classes can be characterized by several 
shape features. There are nine shape features for discrimina-
tion of the CCPs [19]. Features should be chosen such that 
the proposed statistical features can significantly recognize 
the patterns quickly and accurately. Some features can be 
described as follows:

(9)min
1

2

|||
|||w

2|||
||| + C

l∑

i=1

�i

Slope (S) Slope is a feature that represents the least-square 
line representing the pattern. The magnitude of the slope is 
approximately zero for normal and cyclic patterns. On the 
other hand, for trend and shift patterns, the magnitude of the 
slope is greater or less than zero. As a result, the slope can 
be a potential feature to differentiate normal and cyclic pat-
terns from shift patterns.

The Number of  Mean Crossings (NC1) It is the number of 
times a pattern crosses the mean line. The value of NC1 is 
relatively small for shift and trend patterns. It is the highest 
for normal patterns. For cyclic patterns, its value is an inter-
mediary between those of normal patterns and shift or trend 
patterns. Therefore, it can differentiate normal patterns from 
cyclic patterns as well as normal and cyclic patterns from 
trend and shift patterns.

The Number of  Least‑Square Line Crossings (NC2) NC2 is 
the highest for normal and trend patterns and the lowest for 
shift and cyclic patterns. Thus, it is a good differentiator for 
normal and trend patterns from shift and cyclic patterns.

The Average Slope of the Line Segments (AS) There are two 
line segments for each pattern to fit the data starting from 
either end of the pattern in addition to its least-square line. 
The average slope of the line segments is higher for the pat-
terns than for normal, cyclic, and shift patterns. Therefore, it 
is a good feature to differentiate the patterns from the other 
patterns.

Other than the above-mentioned shape features, statistical 
features also have distinguishable properties to solve a clas-
sification problem. Mean, standard deviation, skewness, etc. 
are some of the important statistical features used in SVM 
models. They are shown respectively in Eqs. (10)–(12).

Using more features in the classification algorithm gives 
more accurate results. Also, selecting the right features for 
a particular classification problem is important.

(10)mean =

∑n

i=1
xi

n

(11)standard deviation (std) =

�∑n

i=1
(x

i
− mean)2

n

(12)skewness =

∑n

i=1
(xi − mean)3

n(std)3
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Framework for SVM Model

The SVM model involves two algorithms. Firstly, the model 
is trained with training datasets. Training algorithm also 
involves providing the datasets with appropriate features. 
Training algorithm can be implemented as follows:

• A pattern length of n has to be determined for each refer-
ence dataset.

• A pattern sample generator is selected from the refer-
ence pattern equations in Eqs. (2)–(6). A pattern vector 
x1 is generated for a pattern length of n, accordingly x2 , 
x3 …, xN pattern vectors are generated. N is the number 
of samples used for a certain pattern.

• From N samples, an estimated pattern vector is deter-
mined by Eq. (7).

• Each reference pattern vector is trained with its shape and 
statistical features. Features are mean, standard deviation, 
skewness, and the number of crossings.

• Each reference pattern is labeled with a different number.

After the reference datasets are properly trained, a clas-
sification algorithm is implemented as follows:

• Input test dataset with corresponding features.
• MSVM model compares the test datasets to all the SVMs 

trained.
• The output is the label of the pattern best matched with 

the test data.

In the following section, we have proposed a new tech-
nique to recognize CCPs using the MIC model.

Proposed CCPR Model Using MIC

MIC method uses MI between two random variables to 
determine non-linear dependence or functional relationship 
between them. Using MIC, we can identify the functional 
relationship between a test dataset and a reference dataset. 
If the MIC value is low, that will signal a weak functional 
relationship between the two datasets. If the MIC value is 
close to 1, that will signal a strong relationship between the 
datasets and identify a dataset following the corresponding 
pattern.

Framework for MIC Model

MIC is based on MIA. Before describing MIC, some tools 
of mutual information are discussed first.

Let A be a random variable in space A, B a random vari-
able in space B and Pr[E] is the probability of the event E. 
The entropy (H) associated with A is defined in Eq. (13).

The entropy associated with B is defined in Eq. (14).

The conditional entropy of A given B can be defined by 
Eq. (15).

The MI which defines the mutual dependency between 
random variables can be defined with the help of Eq. (16).

The maximal value of the MI is H(A) + H(B) . This meas-
ure can detect if there is any relationship linking the vari-
ables regardless it is a linear or a non-linear relationship. If 
the value of MI is 0, the two variables are independent. On the 
contrary, if the value of the MI is maximal, it indicates that 
A and B have the strongest relationship. However, comput-
ing the mutual information is tricky, when a continuous vari-
able is involved. The issue with MI is that they overestimate 
the conditional entropy. This has long been perceived as an 
issue and huge consideration has been committed to creating 
alternative methods to nullify this limitation [21]. For these 
reasons, a new method called maximal information coefficient 
(MIC) was proposed to estimate the probability density func-
tion (PDF) of variables using bins [20].

The objective of MIC is to measure if there exists a rela-
tionship between two random variables A and B. A and B are 
coupled in a set D(A, B). A p-by-q grid is formed that can 
be called the partition of the couple (A, B). Here, variable 
A is distributed in p, and variable B is distributed in q bins. 
There are a lot of different grids of size p-by-q. AG and BG 
are used to denote the distributions of A and B over the grid 
G and G(p, q) is the set of all grids of size p-by-q.

For a particular value of p and q, Eq. (17) defines the 
maximal mutual information over grids p-by-q:

MIC value between the variables A and B can be defined 
with the help of Eq. (18).

MIC value is defined by calculating the ratio in Eq. (18) using 
the data-dependent binning scheme. MIC value is also bounded 
by the denominator of the ratio, that’s why the range of MIC 
values is always 0 to 1. MIC can be stated as the estimate of MI, 
I∗(D, p, q) utilizing constrained binning scheme and divided by 

(13)H(A) = −
∑n

a∈A
Pr[A = a].log2(Pr[A = a])

(14)H(B) = −
∑n

b∈B
Pr[B = b].log2(Pr[B = b])

(15)
H(A,B) = −

∑n

a∈A,b∈B
Pr[A = a,B = b].log2(Pr[A = a|B = b])

(16)MI(A,B) = H(A) − H(A|B) = H(A) + H(B) − H(A,B)

(17)I∗(D, p, q) = maxG∈(p,q)(I(A
G
,BG))

(18)MIC(p, q) = max

(
I∗(D, p, q)

log2min(p, q)

)
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a normalization factor, log2���(p, q) . It appears that except for 
highly structured data, MIC values reduce to the estimates of MI 
as the denominator of the ratio in Eq. (18) becomes 1.

The value of MIC is highly dependent on choosing the 
number of p and q bins. As the bin sizes affect the value of 
mutual information, determining the appropriate values of 
p and q is important. The generality of MIC shares a direct 
relationship with maximal grid size B(n). If B(n) is set too 
low, this will result in searching only for simple patterns and 
weakening the generality. On the other hand, while setting 
B(n) too high will result in a nontrivial MIC score for inde-
pendent paired variables under finite samples. Reshef et al. 
[20] set the p × q ˂ B(n), where B(n) = n0.6 is the maximal grid 
size restriction and n is the sample size. This grid size has 
been used to develop the MIC model for CCPR in this paper.

Using this concept, the MIC model takes a reference data-
set of one of the seven CCPs as variable A that is distributed 
in p and the test dataset as variable B distributed in q. The 
reference dataset for which the MIC gives the highest value 
is considered as the actual pattern of the test dataset.

An algorithm to generate a reference dataset can be 
implemented as follows:

• A pattern length of n is determined for each reference 
dataset.

• A pattern sample generator is selected from the reference 
pattern equations in Eqs. (2)– (6).

• A pattern vector x1 is generated for a pattern length of n, 
accordingly x2,x3, …, xN pattern vectors are generated. N 
is the number of samples used for a certain pattern.

• From N samples, an estimated pattern vector is deter-
mined by Eq. (8)

Pattern recognition algorithm by determining MIC value 
between reference dataset and test dataset is as follows:

• Test dataset of pattern length n is imported.
• MIC value between the test dataset and each reference 

dataset is determined using Eq. (18).
• Amongst the MIC values, the highest MIC obtained from 

the reference dataset is considered as the winner pattern 
for the test dataset.

In the following section, we illustrate the CCPR method-
ologies with numerical examples.

Numerical Illustrations

Data Collection

To demonstrate control chart pattern recognition, train-
ing datasets, and test datasets are to be incorporated in the 

model to recognize the patterns of the test datasets. Train-
ing datasets are generated randomly using MATLAB using 
Eqs. (2)–(6). For a better understanding of the classification 
problem, production data of a consumer product is used as 
the test dataset. In this paper, production datasets of 1.5 g 
coffee minipack manufactured in a major manufacturing 
company 'XYZ' have been used. Data from two different cof-
fee powder filling machines are taken from two production 
lines. For numerical illustration, a portion of a test dataset 
from Machine-1 and Machine-2 are presented in Tables 10 
and 11 respectively. For SCM, each of the datasets has been 
normalized and used to measure the correlation coefficient 
with all 7 training datasets. For SVM, the test datasets have 
been first normalized and then used to determine the SVM 
features described in “Feature selection”. For MIC, the same 
procedure has been followed as in the SCM method. Addi-
tionally, for Machine-1, filling capacity has been gradually 
increased in each batch and shown in Table 10 to validate the 
credibility of the three models in recognizing an abnormal 
CCP. Similarly, other test datasets obtained from company 
‘XYZ’ have also been used for CCPR.

The selection of pattern length is very important for 
the datasets because the accuracy of the models depends 
on it. 1000 randomly generated samples of different pat-
terns where pattern length, n = 70, 80, 100, 150, 200, 300, 
400, 500 were taken and these three models were used 
for pattern recognition. The simulation was repeated ten 
times for each type of pattern and it was seen that for a 
pattern length of 400, the accuracy was higher. Therefore, 
for both training and testing datasets, a pattern length of 
400 is selected.

SCM

In SCM, firstly, reference data are generated for all six 
unnatural control chart patterns as well as for the natural 
normal pattern using Eqs. (2)–(6). Using Eq. (1), correla-
tion coefficient rnorm, ru.s., rd.s., ru.t, rd.t, rcyc, rsys between test 
dataset and reference dataset is measured. rnorm, ru.s., rd.s., 
ru.t, rd.t, rcyc, rsys are correlation coefficients, respectively, 
for NOR, US, DS, UT, DT, CYC, and SYS patterns. Cor-
relation coefficient values for sample test datasets as given 
in Tables 1 and 11 (“Appendix”) are shown in Tables 1 and 
2, respectively.

From Table 1, it is seen that in every trial, correlation 
coefficients’ values of upward and downward trends give the 
highest scores compared to others, thus creating a paradox in 
recognizing the actual pattern of the datasets. From Table 2, 
it can be said that correlation coefficients’ values are high-
est for normal patterns in each trial. The highest value for a 
pattern in each trial is considered as the winner pattern of 
the dataset for that trial and the pattern that wins the highest 
number of trials is considered as the actual pattern of the test 
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dataset. That is to say, SCM cannot confirm the pattern for 
the dataset from Machine-1, but identity Machine-2 dataset 
as a normal pattern.

Error Analysis for SCM

50 datasets were taken from two coffee machines from the 
production floor of company ‘XYZ’ at different times for 
control chart pattern recognition using all three approaches. 
Using the SCM model, these 50 datasets have been tested 
and most of the results were confusing as different trials give 
different results. By considering the maximum coefficient 
value, 30% of datasets were correctly recognized and around 
70% of results could not accurately recognize the pattern. 
Hence, the accuracy of this model in recognizing patterns is 
low as it cannot recognize the nonlinear relations between 
the datasets. Other factors like randomness in the dataset, 
data collection methods (timings and frequency), etc., can 
also affect the accuracy of the SCM model.

SVM Model

In the SVM model, the reference dataset is firstly generated 
and their appropriate features are determined. In this paper, 

the mean value is considered as the statistical, feature and 
the number of crossings is considered as the shape feature. 
Using these two features, reference datasets are classified 
into different classes and classes are labeled as shown in 
Table 3.

After the reference datasets are labeled and classified in 
different classes, test datasets are used as inputs to the model 
and their features are calculated. Table 4 shows samples’ 
feature values for two test datasets.

Once the features are determined, datasets are tested 
against each trained class and the classifications obtained 
from the model are given in Table 5.

From Table 5, it is clear that the SVM model identi-
fies the Machine-1 dataset as upward trend pattern and the 
Machine-2 dataset as normal pattern, since it gives the same 
output in all the trials.

Error Analysis for SVM

From the analysis of the test dataset of pattern length n of 
400, it is evident that SVM, for its highly developed train-
ing algorithm, gives the same classification result in all 
the trials, thus considered as 100% accurate in recognizing 
CCPs using appropriate features. The result shows that SVM 

Table 2  Correlation coefficient values for Machine-2 dataset

Correlation 
coefficient

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

rnorm 0.0044 0.0399 0.0652 0.0445 0.0052
ru.s 0.0021 0.0048 0.0002 0.0011 0.0002
rd.s 0.0154 0.0135 0.0187 0.0154 0.0151
ru.t 0.0077 0.0084 0.0074 0.0074 0.0073
rd.t 0.0074 0.0075 0.0070 0.0076 0.0070
rcyc 0.0400 0.0048 0.0083 0.0441 0.0137
rsys 0.0584 0.0252 0.1217 0.0231 0.0520

Table 3  Class labels

Class label Control chart pattern

1 Normal
2 Upward shift
3 Downward shift
4 Upward trend
5 Downward trend
6 Cyclic
7 Systematic

Table 4  Feature values of test datasets

Test datasets Mean Number of 
crossings 
(NC)

Machine-1 1.886213 6
Machine-2 1.55041 50

Table 5  Classifications of test datasets

Test datasets Output

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Machine 1 4 4 4 4 4
Machine 2 1 1 1 1 1

Table 1  Correlation coefficient values for Machine-1 dataset

Correlation 
coefficient

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

rnorm 0.0419 0.0431 0.0434 0.0253 0.1013
ru.s 0.0024 0.0334 0.0058 0.0027 0.0042
rd.s 0.0095 0.0152 0.0152 0.0133 0.0163
ru.t 0.9974 0.9975 0.9975 0.9976 0.9975
rd.t 0.9974 0.9970 0.9976 0.9975 0.9975
rcyc 0.0184 0.0095 0.0255 0.0165 0.0431
rsys 0.0147 0.0334 0.0407 0.0925 0.0107
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performs well when there is a distinct margin of class sepa-
ration. It also uses a subset of the training set in the decision 
functions called support vectors, so it is also memory effi-
cient. All the 50 test datasets mentioned in “Error analysis 
for SCM” are checked with the SVM model and the accura-
cies of the results obtained from other models have been 
identified using the results obtained from SVM model. How-
ever, one of the significant problems of SVM is the trouble 
to interpret except if the features are interpretable. Values 
of features in different classes must not intersect with each 
other. For that reason, the selection of an optimum number 
of features and their corresponding ranges are necessary and 
difficult tasks for the proper separation and identification of 
classes based on those features. In other words, the selec-
tion of features for the classification of data is a vital task 
in SVM. It also tends to be computationally costly and it 
highly depends on kernel function [1, 15]. All these negative 
traits of the SVM model in pattern recognition create the 
need to develop or identify another model to overcome the 
disadvantages of SVM while maintaining accuracy. Hence, 
results from the other two methods are compared with the 
SVM model to search for a method that can replace the SVM 
model by providing substantial accuracy and overcoming the 
computational complexity of the SVM model.
MIC Model

Using the test datasets as given in Tables 10 and 11, the MIC 
model compares the MIC values between the test datasets 
and training datasets. Using Eq. (18), MIC values are meas-
ured for the sample datasets of Machine-1 and Machine-2 
as shown in Tables 6 and 7, respectively.

As discussed earlier in “Framework for MIC model”, the 
highest MIC obtained from the reference dataset is consid-
ered as the winner pattern for the test dataset. It is seen in 
Table 6 that, in every trial, the MIC value is the maximum 
for the upward trend. Therefore, we identify the Machine-1 
dataset as upward trend pattern. Similarly, it can be observed 
in Table 7 that, in every trial, the MIC value is the maximum 
for the normal pattern. Therefore, the proposed framework 
identifies the Machine-2 dataset as normal pattern.

Error Analysis for MIC

MIC is an equitable measure of dependence as it has the 
ability to provide similar scores to relationships with similar 
noise levels [20]. Because of this property, MIC is more use-
ful in identifying the strongest association among many sig-
nificant associations in a dataset, compared to other alterna-
tives such as MI estimation, distance correlation, Spearman 
correlation coefficient, etc. However, all statistical problems 
do not call for a self-equitable measure of dependence. For 
example, if data which are to be measured are of a limited 
type and noise in that data are approximated as Gaussian, 

squared Pearson correlation R2 gives more accurate results 
than estimates of mutual information [12]. In the case of 
larger data with unknown noise, MIC gives more accurate 
results. After testing 50 test datasets as mentioned in “Error 
analysis for SCM” with the MIC model, it is seen that it 
can accurately recognize patterns 85% of the time. MIC 
model can estimate both linear and nonlinear correlations 
between datasets considering the noise levels in datasets. 
Therefore, the accuracy of the MIC model is better than the 
SCM model. Though its accuracy is slightly less than the 
SVM model, it still can replace SVM in places where a few 
errors in the system are acceptable.

Comparison of Results

After recognizing CCPs using the traditional SCM, SVM 
and MIC, it can be stated that traditional SCM results in 
70% error which is the highest among the three models. As 
it can only measure the linear relationship between two data-
sets, it gives inaccurate results for most of the cases where 
linearity cannot properly define the relation between a test 
and a training dataset. The output obtained from the MIC 
model clarifies that it performs better in terms of accuracy 
than the SCM method as it is able to identify the non-linear 
relationship between any two datasets. MIC model can rec-
ognize CCPs having pattern length n of 400 with 85% accu-
racy. Among the three models, the SVM model is the most 

Table 6  MIC values for Machine-1 dataset

Control Chart Patterns MIC value

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Normal 0.1966 0.1667 0.1850 0.1674 0.1811
Up shift 0.2087 0.2061 0.1791 0.1937 0.1889
Down shift 0.1902 0.1755 0.1838 0.1599 0.1696
Up trend 1.0000 1.0000 1.0000 1.0000 1.0000
Down trend 0.1966 0.1616 0.1679 0.1617 0.1899
Cyclic 0.1634 0.1532 0.1656 0.1498 0.1665
Systematic 0.1898 0.1804 0.1717 0.1905 0.1765

Table 7  MIC values for Machine-2 dataset

Control Chart Patterns MIC value

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Normal 0.4714 0.3176 0.3528 0.4939 0.4121
Up shift 0.1573 0.1663 0.1780 0.1321 0.1715
Down shift 0.1730 0.1664 0.1747 0.1733 0.1547
Up trend 0.1842 0.1862 0.1903 0.1775 0.1839
Down trend 0.1639 0.1880 0.1666 0.1566 0.1667
Cyclic 0.1660 0.1559 0.1830 0.1450 0.1404
Systematic 0.1345 0.1970 0.1447 0.1688 0.1567
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advanced and accurate model which recognizes CCPs for 
this study with a 100% accuracy. The training algorithm and 
feature selection in the SVM model allow it to perform better 
than both SCM and MIC models. In Table 8, accuracies for 
statistical correlation measure and MIC model are shown.

For the pattern length, n of 400, the computational time 
for three models was calculated as given in Table 9. From 
Table 9, it is seen that SCM needs the lowest time for com-
puting the result. However, this model has very low accuracy. 
MIC model needs 0.31 s to calculate output, whereas the SVM 
model needs 0.39 s to recognize a certain pattern. It is evident 
that the MIC model is 20.5% faster than the SVM model in 
CCPR because of its simpler learning algorithm than SVM.

The comparison among the three models suggests that 
the MIC model is the most feasible model when 10–15% 
error can be considered allowable in the output, because of 
its simplicity, accuracy and decreased computational time.

Conclusions

In this highly competitive market, no product can sustain 
profitability without maintaining consistent quality. Man-
ufacturing process plays a vital role in maintaining the 

product quality. As a result, maintaining a highly controlled 
manufacturing process has become mandatory. Control 
charts are one of the most useful statistical tools used to 
monitor a process. With the use of a control chart pattern 
recognizer, any type of CCP can be recognized very fast 
and a structured decision can be made to resolve a certain 
anomaly or defect that may arise in the production process.

In this paper, a new methodology has been proposed for 
CCPR using MIC values between two datasets. The results 
obtained from the MIC model are then compared with the 
results obtained from the traditional SCM and SVM mod-
els. Results reveal that the MIC model can be a potential 
alternative to the SVM model as it can certainly reduce the 
computational effort and cost and yet can provide satisfac-
tory classification accuracy, whereas the SCM model is not 
suitable for CCPR.

The existing MIC model begins to fluctuate its output 
when the sample size is large. The future scope of this 
research involves using a more optimized MIC model that 
is able to handle a large number of samples each having a 
large pattern length without deviating from a constant per-
formance. Another scope is optimizing the p-by-q grid size 
of the model that can distribute random variables in a more 
efficient way to recognize control chart patterns accurately 
in all cases. Moreover, a hybrid MIC model, such as random 
forest regression-based MIC can also be used for better accu-
racy in CCPR. If these improvements could be brought in 
the MIC model, it would be able to successfully replace the 
SVM model in industrial applications by achieving higher 
accuracy. Thus, it would be able to reduce the computational 
effort and cost for CCPR.

Appendix

See Tables 10 and 11.

Table 8  Accuracies of the three 
models in CCPR

Model Accuracy (%)

SCM 30
MIC 85
SVM 100

Table 9  Computational time for 
three models

Model Computa-
tional time 
(s)

SCM 0.23
MIC 0.31
SVM 0.39
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