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Abstract
Numerous studies have found the cognitive factors regarding crowd evacuation behaviors to be significant. However, because 
objective data are lacking, the exact effects of these factors have yet to be clarified. A video clip captured during the Great East 
Japan Earthquake involving 48 people in a meeting room gave researchers a unique opportunity to access data that allowed a 
numerical analysis of evacuation behaviors. Using the video clip, researchers discovered a unique evacuation behavior; the 
decision to either flee or drop was determined by a person’s distance from the exit. Simulations using the evacuation deci-
sion model were conducted. The evacuation decision model is a model of herd behaviors that occur during evacuations, and 
the aforementioned unique evacuation behavior was successfully reproduced in the model. However, the simulation settings 
seemed to be oversimplified (e.g., number of agents, initial arrangement of the agents, disregarded physical constraints, etc.). 
This study aimed to reproduce the diagonal spatial pattern of evacuation decisions that emerged using new simulation set-
tings that are more representative of the situation depicted in the video. The diagonal spatial pattern can only be reproduced 
within the limited ranges of two parameters that define the shape of the visual field of an agent—an autonomous entity in the 
simulation. The analysis of simulation results revealed that during evacuations, the visual field of an agent was narrowed to 
20◦ with a relatively long range and led to a hypothesis that people undergoing evacuations were subject to tunnel vision, a 
cognitive effect in which excessive cognitive demands, fear, or mental stress narrows visual fields of people.

Keywords Herd behavior · Crowd dynamics · Multi-agent simulation · Evacuation decision-making

Introduction

Extensive research has been conducted within the fields 
of crowd dynamics, pedestrian movement, and evacuation 
behaviors. The amount of literature on empirical studies in 
these fields has been growing rapidly [18, 19]. The men-
tal mechanisms and cognitive processes of people during 
evacuations have yet to be clarified due to the absence of 
objective numerical data, even though numerous researchers 
consider the mechanisms and processes to be significant [20, 
46]. Thus, the studies in these fields are mainly conducted 

through interviews of survivors [13, 35], laboratory experi-
ments with humans [16, 20, 45], or using animal subjects 
[25, 44]. However, each of these approaches has limitations 
regarding objectivity. This is because reproducing the men-
tal stress and complexities present during a real evacuation 
situation in a laboratory experiment is difficult. Moreover, 
when studying survivors of real evacuations, researchers can 
only conduct interviews. It is well known that post-occur-
rence interviews are subject to survivorship bias. However, 
recently, some new evidence has come to light that is both 
capable of being quantified and analyzed. This evidence is 
a video of evacuation behavior exhibited by humans during 
a live evacuation. It is becoming more common that people 
have access to these moments, mostly owing to the increase 
of surveillance cameras and smartphones. Novel approaches 
to evacuation studies utilize these images and videos to 
enhance our understanding [12, 17, 59].

When analyzing the video clip captured during the Great 
East Japan Earthquake, a unique evacuation behavior in peo-
ple regarding the decision to either flee the room or drop 
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cover and hold on was discovered. The analysis revealed 
that a person’s actions depended upon their distance from 
the exit [50]. Numerous studies have been conducted per-
taining to herd behavior during evacuations [1, 22, 32, 41] 
and the evacuation decision model, which represents herd-
ing in crowd evacuations, was proposed [47]. The unique 
evacuation behavior mentioned above was successfully 
reproduced using simulations employing the evacuation 
decision model, and it was concluded that herd behaviors 
are sufficient to reproduce the unique evacuation behavior 
[51]. However, these results might be limited in their rel-
evancy, owing to oversimplified settings and assumptions. 
Some of these assumptions include the number of agents, the 
initial arrangement of these agents, and disregarded physical 
constraints.

The aim of this study is twofold. The first aim was to 
validate the previous result [51]. To do so, the simulations 
with settings that were more representative of the situations 
in the video were conducted to reproduce the diagonal spa-
tial pattern of evacuees’ decisions of fleeing and dropping. 
Second, to identify some of the unknown but critical cogni-
tive factors affecting evacuees during crowd evacuations, the 
simulation results were analyzed and attempted to clarify the 
essential factors, so that the diagonal spatial pattern could be 
reproduced. A hypothesis that evacuees are subject to a cog-
nitive factor called the tunnel vision effect, which has hardly 
been mentioned in the evacuation studies, was obtained in 
this analysis.

The model and our new findings could be employed 
to predict evacuation behaviors of people in indoor situa-
tions and also used to develop efficient evacuation protocol 
designs. Furthermore, these results might not be limited to 
earthquake evacuation, but are expendable to general evacu-
ation situations that involve evacuation decisions.

This paper is the extended version of our previous paper 
[52]. The main differences between the two are as follows. 
First, the analysis of conditions between two simulation set-
tings was added, as the previous settings were not as realistic 
as our new and improved settings. The simulation’s settings 
are essential to reproducing the diagonal spatial pattern. The 
second is the analysis of the influence among agents critical 
in evacuation decisions during herd behaviors. The former 
is given in the Comparative Analysis Between Simulation A 
and B section, and the latter is given in the Influence Analy-
sis section.

Related Work

Mackworth introduced the concept of the useful field of 
view, later called the functional field of view by many 
researchers. The functional field of view refers to the area 
around the fixation point from which the information is 

briefly stored and read out during a visual task [34]. To 
prevent mental overload, humans’ functional field of view 
is narrowed by stressful, emotional, and unsafe events. 
The attention of people is focused on foveal, and objects 
in peripherals are often disregarded. Mackworth called this 
phenomenon tunnel vision. Two models were proposed to 
explain the tunnel vision effect: the general interference 
model and the tunnel vision model. The general interference 
model accounts for the tunnel vision effect as, independent 
of eccentricity, the sensitivity in peripherals being uniformly 
impaired, which increases as cognitive tasks become more 
complex [23]. In contrast, in the tunnel vision model, the 
loss of sensitivity in peripherals increases disproportionally 
with eccentricity [7].

Several studies have reported that emotional arousal 
strengthens the memory for central information but under-
mines the memory for peripheral information; Loftus et al. 
showed that memory related to weapons and details of the 
hand holding is improved at the expense of the face memory 
and objects in peripheral vision [31]. Furthermore, Chris-
tiansen and Loftus pointed out that the concept of central 
information was unclear in these studies [8, 9]. Discriminat-
ing central information into episode centrality and spatial 
centrality, Burke et al. revealed that emotional arousal pre-
vents only the memory of spatially peripheral information 
[6]. Moreover, unusualness and a lack of safety play a role in 
the impairment of the functional field of view [21].

Research regarding tunnel vision is conducted extensively 
in the automotive and aviation industries. Thus, Miura meas-
ured the functional field of view of drivers, while they were 
driving and revealed that the visual field narrowed as traffic 
congestion increased [36]. Recarte and Nunes investigated 
the effects of mental workload tasks on visual detection and 
discrimination during driving [42]. Loss of attention causes 
critical consequences in the aviation industry. The effect of 
tunnel vision on air traffic control has been investigated to 
design a cognitive countermeasure to mitigate failure to pay 
attention [43]. The pilot’s attention on a head-up display of 
an aircraft was studied to mitigate the failure of detecting 
object-based visual attention [24]. Some researchers in these 
fields also measured the angle of a visual field during tunnel 
vision of 2.2◦ [57], 7◦ [10], or 10◦ , [40].

Studies on tunnel vision revealed that stressful, unsafe, 
and unusual situations narrow human visual fields. These 
results imply that tunnel vision may occur during evacua-
tion, because evacuation situations lead to all these experi-
ences. However, research on tunnel vision or the functional 
field of view during evacuations has yet to be conducted 
extensively. Human vision-related studies regarding evacu-
ations have mainly been conducted under the following two 
contexts: the identification of visual evacuation signs [2, 11, 
15, 29, 38] and evacuation behaviors under limited visibili-
ties [27, 28, 39]. Several researchers conducted experiments 
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using eye-tracking devices to investigate the direction in 
which evacuees were looking during evacuations [2, 11, 29]. 
The visual fields of pedestrians in normal situations were 
investigated using virtual reality devices, and the result that 
the visual fields are narrowed and focused more on people 
in front of them as the density increased was obtained [3]. 
Although these works do not focus on the functional field 
of vision of evacuees, the devices may be useful to reveal 
the functional field of view and tunnel vision effects during 
evacuations.

Numerous simulation models in evacuation studies have 
considered the visual field of an agent. However, in most 
cases, the size and shape of the functional field of view of 
an agent was arbitrarily determined. Clearly, this implies 
that the effects of tunnel vision have yet to be considered. 
Some of these simulations employ the cellular automation-
based model [28, 58, 61] and the social force model [33, 
60, 62]; these models determine the visual field of an agent 
by distance, implying that the angle of the agent’s vision is 
360◦ . Other assumptions regarding the visual field angles 
adopted by researchers include 60◦ [35] and 90◦ [37]. Filip-
pidis et al. [14] introduced the concept of visibility catch-
ment area (VCA), which is the physical visibility range of 
an evacuation sign. They also assumed that an agent could 
recognize the evacuation sign in the VCA based on the prob-
ability obtained by the relative angle between the location 
of the sign and the traveling vector of the agent. These prob-
abilities were arbitrarily selected and remained unchanged 
during simulations.

Evacuation Behavior During the Great East 
Japan Earthquake

A video clip1 of the 48 people in the hotel meeting room 
(Fig. 1), captured during the Great East Japan Earthquake 
was analyzed [50]. This video is a unique occurrence of 
objective data of evacuation behaviors that allowed numeri-
cal analysis, which was possible for the following reasons: 

1. The positions of all 48 people during the start of the 
earthquake were clearly captured;

2. The evacuation behaviors of all 48 people were captured 
in a continuous scene, from the beginning to the end of 
the earthquake; and

3. It was relatively easy to follow the behavior of each indi-
vidual during evacuation (except a few evacuees).

The behavior of each evacuee in the video clip was manu-
ally analyzed every second. The behavior of some evacuees 

(e.g., 6 … 8 or 12 … 15 in Fig. 1) were not possible to follow 
because of occlusions and the small camera frame.

Diagonal Spatial Pattern

Figure 1 depicts the initial positions of 48 people facing 
the center of a square meeting room at the beginning of 
the earthquake. The sole exit was at the bottom-right cor-
ner. Each person in the video chose one of two evacuation 
behaviors, either fleeing from the room or dropping and hid-
ing under the tables. Figure 1 illustrates the evacuees’ final 
evacuation decisions as taken by the people at their initial 
positions. A white circle depicts an evacuee who selected the 
fleeing behavior. The black circle depicts an evacuee who 
opted for the dropping behavior. The 48 people are repre-
sented by numbers; a gray number shows an evacuee whose 
choice to flee or drop is unknown. However, note that the 
behavior of evacuee 2 is unique. Evacuee 2 took neither 
fleeing nor dropping, but stood up and stayed near the wall 
behind during the shaking. Evacuee 2 is discluded in the 
analysis for simplicity and labeled unknown (Fig. 1).

In Fig. 1, the fact that those closest to the only exit over-
whelmingly chose to flee, while those who were farther from 
the exit predominantly chose to drop was observed. Through 
this, the diagonal spatial pattern of the choices between flee-
ing and dropping emerged. Prior to this study and the pre-
sented simulation, the understanding that evacuees’ evacua-
tion behavior during an earthquake was determined by their 
distance from the exit did not exist. To our best knowledge, 
it was yet to be reported in the literature.

Fig. 1  The initial positions and evacuation decision of the 48 people 
in the hotel meeting room

1 https:// www. fnn. jp/ common/ 311/ artic les/ 20110 31100 12. html.

https://www.fnn.jp/common/311/articles/201103110012.html
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There are two theories that are possibly accounting for this 
phenomenon: 

1. The decisions between fleeing and dropping were deter-
mined by the distance from the exit; and

2. whereas each evacuee randomly selected fleeing and 
dropping, and herd behaviors among evacuees automati-
cally allowed the diagonal spatial pattern to emerge.

The first theory is simple and easy to understand. However, 
it requires that high-level cognitive functions during a cri-
sis, such as estimating the distance to the exit, thresholds to 
discriminate two decisions, and evacuation behavior selec-
tion rules based on the distance. In contrast, the second 
theory only requires herd behavior, which is a fundamental 
mechanism common to numerous social organisms, includ-
ing birds, insects, fish, and animals. This study focused on 
herd behaviors during evacuation situations, and the second 
theory was adopted as our hypothesis when investigating 
human evacuation behaviors.

Evacuation Decision Model

The evacuation decision model [47] was developed to rep-
resent the herd behaviors of evacuees during evacuations. 
The evacuation decision model is a bio-inspired distributed 
algorithm based on the response threshold model [4, 5]. 
The response threshold model is a model of the division of 
labor in eusocial animals, often employed in biology. The 
evacuation decision model was employed to analyze evacu-
ation behaviors of people in multiple exit environment and 
successfully reproduced the phenomenon called symmetry 
breaking in exit choice [48, 49]. The model is also used to 
explore an optimal arrangement of visual evacuation signs 
for an evacuation guidance signage system for efficient 
evacuations [53, 55], and to investigate the visual field of 
an agent in evacuations [54]. The analysis was conducted 
to investigate and reproduce the diagonal spatial pattern of 
selecting to either flee or drop using the evacuation decision 
model.

In the evacuation decision model, an agent ai has a varia-
ble Xi = {1, 0} , and the agent’s evacuation behavior depends 
on the value of Xi ; ai intentionally determines his/her evac-
uation behavior by himself/herself if Xi = 1 ; however, ai 
unintentionally determines the behaviors by herd behavior 
if Xi = 0 . The values of Xi toggle between 0 and 1 with the 
following transition probabilities:

(1)P(X
i
= 0 → X

i
= 1) =

s
2

i

s
2

i
+ �

2

i

(2)P(X
i
= 1 → X

i
= 0) = �,

where si is a local estimate of the stimulus from the envi-
ronment for ai , �i is the response threshold of ai , and � is a 
constant probability common to all the agents in a simula-
tion. The local estimate of the stimulus of agent si at time 
t + 1 is calculated by

where � is the increase of the stimulus per unit time, � is 
the scale factor of the stimulus, and R is the risk-perception 
function of objective risk r

where g is the activation gain of the sigmoid function and 
�i is the risk-perception factor of ai , which represents the 
individual sensitivity to risk. The objective risk in the envi-
ronment is

where Δr represents a risk increment at a unit time. F is the 
evacuation progress function of ai , which estimates the total 
progress of the entire evacuation

where n is the number of agents within the visual field of 
ai and N̂ denotes the maximum possible number of agents 
in the visual field. The visual field of an agent is assumed 
to be a fan with radius d (units) and angle � (degrees) from 
the direction of the agent’s head. An agent performs one of 
two evacuation behaviors, depending on the value of Xi , as 
follows: 

1. Randomly selects a fleeing or dropping behavior if X = 1 
(random selection) or

2. Follows the most popular behaviors taken by the agents 
within the visual field if X = 0 (herd behavior).

No other rules (e.g., determining the behavior based on 
the distance from the exit) are incorporated into an agent’s 
decision.

Simulation A

Simulations with simple settings using the evacuation 
decision model were conducted to reproduce the diagonal 
spatial pattern of fleeing and dropping behaviors; these 
simulation settings are referred to as Simulation A. In Sim-
ulation A, 500 agents were evenly distributed in a square 

(3)si(t + 1) = max{si(t) + � − �(1 − R)F, 0},

(4)R(r) =
1

1 + e−g(r−�i)
,

(5)r(0) = 0,

(6)r(t + 1) = r(t) + Δr,

(7)F(n) =

{
1 − n∕N̂ n < N̂

0 otherwise,
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space SA = {(x, y) ∈ ℝ
2} , where x, y ∈ [−20, 20] , with only 

one exit at the lower right corner. The parameters employed 
in simulation A were � = 1.2 , � = 0.5 , � = 0.2 , g = 1.0 , 
N̂ = 10 , d = 5 , and � = 120 . These values are obtained 
through several experiments and are consistent with the 
values used in Ref. [50]. Figure 2 depicts an example result 
of Simulation A. All fleeing agents disappeared through 
the exit, while all dropping agents remained in an area 
far from the only exit, which resulted in the diagonal spa-
tial pattern. From this, it was concluded that simple herd 
behaviors were sufficient to reproduce the diagonal spatial 
pattern [50, 51].

Critical Analysis

Simulation A demonstrated that the evacuation decision 
model could generally reproduce the diagonal spatial pat-
tern. However, whether the evacuation decision model could 
be validated against a real evacuation situation, as depicted 
in the video, remains uncertain. This is because the initial 
conditions of Simulation A might not be considered the 
same as the conditions present in the video.

The environment of Simulation A, which was a square 
room with an exit at one corner, may be a good representa-
tion of the real situation in the video. However, the initial 
conditions of the agents in the environment are very different 
from those in the video. The number of agents in Simulation 

A totaled 500, whereas merely 48 evacuees were observed 
in the video. In Simulation A, the agents were randomly 
distributed across the room with high density. Meanwhile, 
in the real situation, the evacuees were arranged in a square 
shape with relatively sparse distribution across the room. 
Furthermore, agents faced random directions at the begin-
ning of Simulation A. In the video of the real evacuation, 
people were facing the center of the room. Similarly, in the 
video, tables and chairs were laid out in a square shape, and 
all people were seated on these chairs when the earthquake 
began. Therefore, people’s movements in the real situation 
were restricted by these objects. In contrast, the simulated 
agents were unrestricted physically and could directly access 
the exit in Simulation A.

In the evacuation decision model, the decision of an agent 
is affected by the decisions of the other agents within the 
agent’s visual field. Therefore, the position of an agent in 
the room affects the decisions of the other agents and vice 
versa. Thus, which agents are within someone’s visual field 
is crucial. The following factors are considered to affect the 
overall dynamics of the simulations with the evacuation 
decision model: 

1. Constraints against the movement of an agent.
2. Direction in which the agent is facing.
3. Distribution of agents in the room.

For these reasons, the differences between Simulation A and 
those in the real situation in the video were too significant 
to ignore. Thus, extensive studies of these differences are 
desirable.

Method

In this study, simulations with new settings that could be 
considered as more representative of the real situation 
depicted in the video were conducted. As it was desired 
to reproduce the diagonal spatial pattern, these new set-
tings were important to the research and subsequent anal-
ysis. Hereinafter, the simulation with the new settings 
is referred to as Simulation B. The evacuation decision 
model, which is used in Simulation A, is also incorporated 
in an agent in Simulation B. However, the initial settings 
of agents and the effects of physical constraints upon the 
agents are different.

Simulation B

To match the video, the number of agents in Simulation B 
is 48. In addition, these agents were arranged in a square in 
the space SB = {(x, y) ∈ ℝ

2} , where x, y ∈ [−7, 7] , with one 
exit in the lower right corner (Fig. 3). As in the video, all 

Fig. 2  Example of the diagonal spatial pattern. All fleeing agents 
went out through the exit and all dropping agents were in the room. 
A diagonal border between fleeing and dropping agents has emerged
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agents faced the center of the room at the beginning of the 
simulation.

Figure 4 depicts constraints on the agent movement. A 
white circle signifies an agent at their initial position. An arrow 

on the grids shows the direction that an agent on the grid must 
follow. For example, the red agent in the upper left corner 
should move to the right, because the arrow on this grid points 
in the right direction. Gray grids signify the area in which the 
movement of an agent is unrestricted. Thus, when an agent 
reaches the gray grids, that agent can move directly toward 
the exit.

A significant difference between Simulations A and B is 
the implementation of physical constraints on the movements 
of the agents. In Simulation A, the movement of an agent is 
unrestricted. Therefore, an agent can move freely, even mov-
ing over other agents standing in the way of the exit. In con-
trast, the movement of an agent in Simulation B is constrained 
physically. Hence, the agent cannot walk through other agents 
and must stop if other agents stand in front of them. Although 
configurations are different, the evacuation decision model 
incorporated in Simulation B is identical to one employed in 
Simulation A.

Because the second theory accounting for the diagonal 
spatial pattern was adopted as our hypothesis, an agent 
with our model does not always behave as a human would 
behave. For example, agent 33 always follows agent 34 
(Fig. 1) in our simulation, whereas a person at this posi-
tion directly moves to the exit in the video. The reason why 
the movement of an agent is constrained rather than intro-
ducing physical objects in the environment and making 
an agent find its path to the exit is to avoid incorporating 
high-level cognitive functions in the model and to keep the 
model simple. For this reason, the same agent model can 
be used for both simulations.

Differences between Simulations A and B are summarized 
in Table 1. Here, conditions in Simulation A can be considered 
to be a more relaxed version of the constraints implemented in 
Simulation B. Thus, Simulation B was regarded as a specific 
sub-case of the more generalized Simulation A.

Simulation Model

In this section, the simulation algorithms employed in Simu-
lation B are described. The algorithms are identical to those 
used in Ref. [50].

Fig. 3  Initial arrangement of 48 agents. [52]

Fig. 4  Constraints on the movement of agents. Arrows depict the 
movement direction. The gray area indicates the spots where the 
movements of agents are unrestricted. The red fan shape shows the 
visual field of the red agent on the upper left corner [52]

Table 1  Differences between Simulation A and Simulation B

Simulation A Simulation B

Number of agents 500 48
Initial position Random Square shaped
Density Dense Sparse
Facing direction Random Center of the room
Physical constraint Disregarded Considered
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A = {a1, a2,… , a48} is a set of 48 agents arranged 
on SB , as shown in Fig.  3). Agent ai has variable 
�i = {drop, flee, undecided} , and holds the current decision. 
The visual field of ai is defined as Vi = {aj ∈ A | �(aj, ai)} , 
where � ∶ A2

→ {true, false} and � refer to a fan-like range 
of d units � degrees toward the direction of motion of ai . 

Agent ai has two more variables, Ed
i
 and Ef

i
 , holding agents 

who are affected in their decision to drop or flee because of 
herd behavior.

An agent executes the action described in Algorithm 1 
(Herd Behavior) if X = 0 , and performs the action in 
Algorithm 2 (Random Selection) if X = 1 . The values of 
X = 1 and 0 interchange with the probability given by the 
evacuation decision model. Assuming a simulation time 
t = 1,… , T  , the overall procedure is given in Algorithm 3

NetLogo 6.1.1 [56] was used to implement the algorithms 
described in this section.

Model Parameter

The model in Simulation B has eight parameters, � , � , � , 
d, � , Δr , N̂ , and g. These parameters affect the simulation 
results; thus, the emergence of diagonal spatial pattern is 
dependent on these values. These parameter values must be 
adjusted to obtain the diagonal spatial pattern.

For this purpose, an objective function O ∶ SB → ℝ , 
which evaluates the simulation results in terms of the occur-
rence of the diagonal spatial pattern, was developed. By con-
sidering the center of the room as the origin, function O 
must consider the following two conditions: 

1. Maximize the total distance between the agents and 
the line y = x if they are above the line; minimize the 
total distance between the agents and the line if they are 
below the line.

2. Equalize the total distance from the line y = −x to the 
agents above and below the line.

The coordinates of agent remained as ai be (xi, yi) . Condition 
1 can be expressed by maximizing

where l+
i
 is the distance between ai and y = x

Condition 2 can be expressed by minimizing

where l−
i
 is the distance between ai and y = −x

(8)L+ =
∑

{ai|yi≥xi}
l+
i
−

∑

{aj|yj<xj}
l+
j
,

(9)l+
i
=

√
2
(xi − yi

2

)2

.

(10)L− =

||||||

∑

{ai|yi≥−xi}
l−
i
−

∑

{aj|yj<−xj}
l−
j

||||||
,

(11)l−
i
=

√(
x +

y − x

2

)2

+
(
y −

y − x

2

)2

.
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Thus, the diagonal spatial pattern can be obtained by

with respect to the domains of the parameters in the model.2 
Examples of a spatial pattern and its O value are given in 
Fig. 5.

Result

Random Value Simulation

Simulations with random parameter values were conducted, 
and the distribution of O in the results was investigated. 
First, 1000 parameter sets, for all of which the values of 
the parameters were randomly given, were generated. One 
hundred simulations for each parameter set were conducted 
to obtain the mean value of O. Figure 5 shows a histogram 
of the values of Ō for 1000 random value simulations. The 
range of Ō was − 54.06 ≤ Ō ≤ 17.37 . Figure 5 illustrates 
that Ō is negative in most cases; only 6% of the results has 
positive Ō . The results with the diagonal spatial pattern, 
which necessarily has positive O, are not easily obtained in 
Simulation B. To successfully reproduce the diagonal spatial 
pattern, a careful choice of parameter values is required.

Black‑Box Optimization

Black-box optimizations were conducted to search for good 
parameter values to reproduce the diagonal spatial pattern 
with Simulation B. Simulated annealing was employed for 
the search algorithm. A mean of 100 simulation results was 

(12)maximize O = L+ − L−

employed as an objective function value. Thus, the objec-
tive function was evaluated after every 100 simulation tri-
als. Twenty black-box optimizations with different initial 
points were conducted, and 1000 iterations were performed 
for every search procedure.

Table 2 shows the top five results of 20 black-box optimi-
zation trials. The complete results are given in the Appen-
dix. The results were organized in the descending order of 
objective values Ō , and values of Ō in 20 searches varied 
over a relatively large range from − 6.88 to 28.95. The best 
result ( ̄O = 28.95 ) was given by � = 0.1 and � = 1.2 . � = 0.1 , 
d = 10 , � = 20 , Δr = 5.0 , N̂ = 15 , and g = 0.4.

Fig. 5  Histogram of the values of Ō for 1000 simulations with random parameters and some spatial pattern examples with O 

Fig. 6  Example result of Simulation B with the best parameter values 
( O = 66.47 ). [52]2 In the case of the result shown in Fig. 6, the value of O was 66.47.
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Result with the Best Parameter Values

An example result of Simulation B with the best parameter 
values above is shown in Fig. 6. As in Fig. 2, agents close 
to the exit selected the fleeing behavior and left the room, 
while the agents farther from the exit selected the dropping 
behavior and stayed in the room. This allowed the diagonal 
spatial pattern to be formed. Owing to the stochastic nature 
of the model, results similar to Fig. 6 were not necessarily 
obtained. Thus, 1000 simulations were conducted to verify 
the generality of the results.

Figure 7 shows a heat map of the results of 1000 simu-
lations. Dark-colored regions indicate areas where higher 
concentrations of agents chose dropping behaviors. Light-
colored regions signify areas where higher concentrations 
of agents chose to flee. Note that the logarithm of the fre-
quency of the number of agents who remained in the room 
was employed to create the heat map as the frequency 
varies significantly.

Figure 8 depicts the histogram of the values of O for 
1000 simulation results with the best parameter values. 

The range of O is −103.19 ≤ O ≤ 66.47 , and the mean 
value of O was 20.18. In most cases, the values of O were 
positive, implying the occurrence of the diagonal spatial 
pattern.

Now, it can be concluded that the evacuation behaviors 
captured in the video clip (Fig. 1) can be reproduced using 
not only Simulation A, but also in Simulation B with the 
best parameter values.

Parameter Analysis

By examining Table 5 carefully, it can be seen that some 
common parameter values lead to results similar to real situ-
ation. Table 2 summarizes parameter values and values of 
Ō for such good results. In this table, some parameters have 
identical or similar values, such as � ≤ 0.2 and d ≥ 8 , and 
� = 20.

The statistical significance of each parameter against 
the objective values ( ̄O ) was investigated using multiple 
regression analysis. For this, 100 samples from the results 
of 1000 simulations with random parameters were randomly 
selected, as shown in Fig. 5, to avoid the decrease in p values 
because of the large data size. The results of the analyses are 
listed in Table 3. The top row shows the coefficient values 
of the parameters, and the bottom row the corresponding p 
values.

Table 3 reveals that d and � are statistically significance 
level ( p < 0.001 ). Because d is the radius and � is the angle 

Fig. 7  Heat map of the results of 1000 simulations with the best 
parameter values

Table 2  Top 5 results of black-
box optimization

� � � d � Δr N̂ g Ō

0.1 1.2 0.1 10 20 5.0 15 0.4 28.95
0.1 0.7 0.4 10 20 2.0 1 1.5 27.76
0.1 1.1 0.8 8 20 5.0 2 1.4 26.64
0.2 0.6 0.6 9 20 2.5 7 1.4 26.23
0.1 1.0 0.2 10 20 1.5 20 0.2 26.22

Fig. 8  Histogram of the values of O for 1000 simulations with the 
best parameter values. The red dashed line shows the mean of O 
( ̄O = 20.18)
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of the fan of the visual field of an agent, the result implies 
that the visual field of an agent significantly affects the simu-
lation results. Furthermore, � is also statistically significant 
( p < 0.01).

Then, a sensitivity analysis to examine the effects of 
parameters d and � on the occurrence of the diagonal spatial 
pattern was conducted by varying d from 0 to 10, and � from 
0 to 360. A total of 100 simulations were conducted for each 
combination of d and � . The coordinates of all remaining 
agents at the end of simulations were recorded; these coordi-
nates were represented as a heat map of the analysis results.

Figure 9 illustrates the heat maps of the results of simula-
tions with all combinations of d and � . The rows in the fig-
ure represent the values of d, and the columns represent the 
values of � . Each cell in the figure represents the positions 
of the remaining agents at the end of a simulation. The dark 

color shows a higher frequency and the light color shows a 
lower frequency of the remaining agents.

Figure 9 reveals that most combinations of d and � values 
produce a spatial pattern dissimilar to the one captured in the 
video clip. Only a few combinations, found at the upper left 
in the figure, produced the diagonal spatial pattern. The red 
square frames in the figure refer to combinations of d and � 
with Ō > 10 . This reveals that only parameters with d ≥ 8 , 
and � = 20 will lead to the diagonal spatial pattern. These 
results are in agreement with the results in Table 2.

A focused analysis for � and d was conducted to exam-
ine the optimal parameter space in detail. A total of 100 
simulations were carried out for all the combinations with 
� = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,  
34, 36, 38, 40} and d = {4, 5, 6, 7, 8, 9, and 10} , and the results 
are shown in Fig. 10. In this figure, the results with Ō > 15 

Fig. 9  Results of sensitivity analysis for d and � . The rows show d and the columns show � . Each cell shows the heat map of 100 simulations. 
Cells with red square frames refer to the results for Ō > 10 . [52]

Fig. 10  Results of the focused analysis of Fig. 9. The ranges of � and d are enlarged to 0 ≤ � ≤ 40 , and 4 ≤ d ≤ 10 , respectively. The cells with 
green frames are referred to as the results for Ō > 15 (red frames) and Ō > 20
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are indicated by green frames, and Ō > 20 , red frames. The 
best result was obtained when � = 14 and d = 10.

A sensitivity analysis for � , which is a transition prob-
ability of X = 1 to X = 0 , and another significant parameter 
mentioned above, was also conducted with values ranging 
from 0.1 to 1.0. With fixing d and � to 10 and 20, respec-
tively, 100 simulations were conducted by varying values of 
� . The results are presented in Box-and-Whisker diagrams in 
Fig. 11. The x-axis represents the value of � , and the y-axis, 
O. Furthermore, the x-axis represents the values of � and 
the y-axis O. The figure illustrates that the values of � do 
not affect simulation results much as long as the values of 
d and � are fixed within a certain range, implying that the 
transition probability of random selection ( X = 1 ) to herd 
behavior ( X = 0 ) is unrelated to the occurrence of a diagonal 
spatial pattern.

Tunnel Vision Hypothesis

This study demonstrated that the simulation with realistic 
settings (Simulation B) could reproduce the diagonal spatial 
pattern of evacuees’ decisions to either flee or drop the video 
clip captured during the Great East Japan Earthquake. The 
study also demonstrated this in Simulation A. However, this 

is only true within a limited range of parameter values in 
Simulation B.

Parameter values that can reproduce the diagonal spatial 
pattern were explored using a black-box optimization tech-
nique. Several sets of parameter values yielding the diagonal 
spatial pattern (e.g., d ≥ 8 and 14 ≤ � ≤ 22 ) were found and, 
in these sets, some parameters with similar or identical val-
ues were observed. The multiple regression analysis revealed 
that parameters d and � were statistically significant; the 
occurrence of the diagonal spatial pattern is therefore 
affected by these two parameters. The sensitivity analysis 
for d and � illustrate that the limited ranges of parameter 
values lead to the diagonal spatial pattern. This highlighted 
that the diagonal spatial pattern is scarcely obtained outside 
the specified ranges of these two parameters. The diagonal 
spatial pattern was not obtained using the parameter settings 
employed in simulation A (i.e., d = 5 and � = 120).

Both d and � refer to the definition of an agent’s vis-
ual field. The visual field of an agent is assumed to be fan 
shaped with radius d and angle � in the heading direction 
of the agent. A red fan with d = 10 and � = 20 , as shown in 
Fig. 4, depicts the visual field of the red agent in the upper 
left corner of the figure. This definition can be considered 
narrow and lengthy, because the size of the space was only 
15 × 15 units. The visual field of an agent will affect the 
evacuation behavior of the agent when the agent experiences 
herd behaviors. The analysis above leads to the following 
hypothesis.

Tunnel Vision Hypothesis During evacuations, the vis-
ual field of an evacuee is narrowed to a range of about 20◦ 
with a relatively long distance.

Comparative Analysis Between Simulations 
A and B

One may criticize our results, saying that they rely upon 
only one instance of objective data (in this case, a video clip 
captured during the Great East Japan Earthquake), which 
was merely one exceptional case. However, this criticism 
is invalid, because the study of Simulation A reveals that 

Fig. 11  Results of sensitivity analysis for � . Y-axis depicts the values 
of O. [52]

Table 3  Result of multiple regression analysis

� � � d � Δr

Coef 7.68 3.21 1.42 1.50 − 0.06 1.18
p val 0.01 0.06 0.36 0.00 0.00 0.05

N̂ g

Coef 0.12 − 1.81
p val 0.50 0.35
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the diagonal spatial pattern would occur frequently. Neither 
the conditions in Simulation A nor the evacuation decision 
model involve any factor that can make an arbitrary decision; 
only primitive mechanisms are incorporated in Simulation 
A. Therefore, the occurrence of the diagonal spatial pattern 
may even be considered a physical phenomenon. In contrast, 
the diagonal spatial pattern is hardly obtained in Simulation 
B. Examining which condition in Simulation B causes dif-
ficulty in obtaining the diagonal spatial pattern is intriguing 
and crucial. This is because the tunnel vision hypothesis is 
mainly supported by the difficulty in obtaining the diagonal 
spatial pattern in Simulation B.

First, the effect of the physical constraints that were disre-
garded in Simulation A was investigated. An agent in a con-
straint-free setting can move toward the only exit directly, 
and can do so even if other agents are in the way of the exit. 
Meanwhile, the actual movements of the agents in Simula-
tion B were constrained.

A total of 300 simulations with the settings of Simula-
tion B, without the physical constraints, were conducted. 
This meant that the agents in this setting could move to 
the exit even if the other agents stayed between them and 
the exit. The parameter values employed in this simulation 
are equivalent to those used in Fig. 7. The result of the 

simulations is illustrated in the heat map in Fig. 12. The 
dark color in the heat map depicts a region with a higher 
frequency of agents dropping. Correspondingly, a light 
color indicates a lower frequency. The diagonal spatial 
pattern was hardly obtained in this setting.

A sensitivity analysis for parameters d and � in this 
setting was also conducted. The results of the analysis are 
presented in the heat maps in Fig. 13. The diagonal spa-
tial pattern is unseen in any combination of d and � in 
Fig. 13. Unlike the original Simulation B where only a few 
combinations of d and � leads to a diagonal spatial pat-
tern, and the absence of physical constraints in this setting 
negatively affects the occurrence of the diagonal spatial 
pattern. To create a diagonal spatial pattern, it was neces-
sary to consider the physical constraints in Simulation B.

Fig. 12  The results of Simulation B without physical constraints

Fig. 13  The results of sensitivity analysis for d and � for the results of 100 simulations of Simulation B without considering physical constraints

Fig. 14  Initial positions of 49 agents arranged in 7 by 7
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Next, the different initial arrangements of the agents 
were investigated. A total of 300 simulations using 49 
agents, initially uniformly arranged at 7 × 7 , as shown in 
Fig. 14,were conducted. The results are presented in the 
heat map in Fig. 15. The darker color depicts regions with a 
higher frequency of the agents who opted to drop, while the 
lighter color depicts a lower frequency. The figure clearly 
shows that the diagonal spatial pattern did not emerge in 
this setting. The result contradicts the expectation that relax-
ing constraints would induce the diagonal spatial pattern 
more frequently. Then, sensitivity analysis for d and � with 
this setting was conducted. Figure 16 depicts the analysis 
results. Here, the diagonal spatial pattern emerges in some 
combinations of d and � , for example, d = 4,� = 240 , and 
d = 2,� = 360 , showing that the diagonal spatial pattern 
could be obtained depending on parameter values in the uni-
form initial arrangement.

Black-box optimizations starting from different initial 
points were conducted to explore a set of parameter values to 
reproduce the diagonal spatial pattern in this initial arrange-
ment. The black-box optimizations were performed ten times 
with varying initial points, and each optimization contained 
100 iterations. The best result was given by � = 0.4 , � = 0.9 , 
� = 2 , d = 3 , � = 240 , Δr = 0.5 , N̂ = 7 , and g = 0.9 . Fig-
ure 17 depicts the heat map of 300 results with these param-
eters. The dark and light color convey a higher frequency 

of dropping and fleeing agents in this area. Furthermore, 
in this figure, the area close to the exit is light, and the area 
farthest from the exit is dark. This means that agents close to 
the exit opted for fleeing behavior and left. Meanwhile, the 
agents farthest from the exit pursued the dropping behavior 
and remained. This implies the occurrence of the diagonal 
spatial pattern. Furthermore, a sensitivity analysis for d and 
� was conducted, and the result is presented in Fig. 18. In 
this figure, the diagonal spatial pattern can be observed in 
several combinations of d and � . However, these results did 
not improve those in Fig. 16 significantly.

Influence Analysis

In herd behavior, the decision of an agent is determined by 
other agents’ decisions within the visual field of that agent. 
Algorithm 1 describes this process; the other agents that 
affected the agent’s current decision were stored in Ed

i
 or Ef

i

—lines 6 or 9 in algorithm 1, respectively.
An influence graph is a tuple, (G,�) , where G = (A, E) 

is a labeled directed graph, A is a set of vertices or agents, 
E is a set of directed edges and � ∶ E → {flee, drop} is a 
labeling function designating fleeing or dropping behav-
iors. An ordered pair (ai, aj) ∈ E refers to the influence of 

Fig. 15  The results of Simula-
tion B with a uniform initial 
arrangement of agents

Fig. 16  Sensitivity analysis of 100 simulations of Simulation B with a uniform initial arrangement of agents

Fig. 17  The results of Simula-
tion B with a uniform initial 
arrangement of agents for the 
best parameter values
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aj ∈ {Ed
i
∪ E

f

i
} to ai . Figure 19 depicts an example of the 

influence graph in the simulation in Figs. 6, and 20 shows 
the same graph embedded in the initial layout. A blue 
arrow represents the influence of fleeing behavior, while 
a red arrow represents the influence of dropping behavior. 
The head of an arrow designates the affecting agent, and 
the tail designates the affected agent. Figure 19 reveals that 
there are four types of agents that are affecting/affected by: 

1. Both fleeing and dropping behaviors: 16, 17, 18, 19, 20, 
21, and 45.

2. Dropping behavior: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, 47, and 48.

3. Fleeing behavior: 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 
32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, and 44.

4. None: 41 and 46.

Agents in types 1 and 3 form one big subgraph; these agents 
eventually selected fleeing behavior and left the room. In 
contrast, agents in type 2 form four small graphs; these 
agents selected dropping behavior and remained in the 
room. Figure 20 reveals that each group of agents in these 
small graphs aligns in the same row or column in the initial 
arrangement. For example, agents 12, 13, 14, and 15 form a 

Fig. 18  Sensitivity analysis of 100 simulations of Simulation B with a uniform initial arrangement of agents for the best parameter values

Fig. 19  The influence graph of the simulation result in Fig. 6
Fig. 20  The influence graph of Fig. 19 embedded in the initial layout
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line along the left edge of the room, implying that a narrow 
and long visual field of agents may cause these groupings.

Figure 21 presents four examples of simulation results 
(EX1 to 4): (A) depicts the agents’ final decisions at the 
location of their initial positions. (B) Corresponding influ-
ence graphs. (C) Influence graphs embedded in initial layout. 
The O value of each result is given at the top of (A).

These figures reveal that the more an influence graph was 
divided into subgraphs, the more dropping agents remained 
in the room. For example, the influence graph of EX4 con-
sists of many subgraphs and isolated nodes, and the final 
layout of EX4 contains many dropping agents (25). In con-
trast, the final layout of EX3 contains no dropping agent, and 
most nodes in the influence diagram of EX3 belong to one 
big subgraph, except two isolated nodes. The influence of 

dropping behavior within big subgraphs, even if observed, 
was overwhelmed by the influence of fleeing behavior. These 
results imply that most agents select fleeing behaviors and 
leave the room if the effects of fleeing behaviors propagate 
over them. However, more agents selecting dropping behav-
ior remained in the room if the influences of the agents’ deci-
sions were interfered with and, therefore, failed to spread 
within limited ranges.

Figure 22 illustrates affecting and affected agents for both 
fleeing and dropping behavior in association with their initial 
positions. The first and second figures depict affecting and 
affected agents in fleeing behavior; the third and fourth fig-
ures depict affecting and affected agents in dropping behav-
ior. The affecting and affected agents are represented in red 
and blue, respectively. The darker the colors are, the stronger 

Fig. 21  Four examples (EX1–4) of final agents’ positions (a), corresponding influence graphs (b), and influence graphs embedded in the initial 
layout (c). In (a), a black circle depicts an agent selecting dropping behavior and remaining in the room. O values are indicated at the top of (a)
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the influences. These figures show that the agents’ specific 
positions in the initial layout have unique effects on fleeing 
and dropping behaviors. For example, the positions close 
to the exit strongly affect other agents, especially regarding 
fleeing behaviors. Conversely, the positions at the corner 
opposite the exit are strongly affected by other agents’ drop-
ping behaviors.

A total of 100 simulations with identical settings in Fig. 6 
were conducted, and the results were converted into two 
groups based on O values. C+ represents the group of results 
with O ≥ 25,C− , and O < 25 . The diagonal spatial pattern 
can be expressed as obtained in C+ but not in C− . Paired t 
tests for C+ and C− , with several criteria for each agent were 
conducted to investigate the statistically significant differ-
ences. The criteria analyzed in the t tests are as follows:

– Agent parameter 

1. Response threshold ( �i)
2. Risk sensitivity ( �i)

– Node centrality in G

1. Degree centrality (DG)
2. Page-rank centrality (PR)
3. Betweenness centrality (BW)

– Dynamics in evacuation 

1. Ratio of random selection period ( X = 1 ) during the 
evacuation (RS)

2. Time duration until the first action (fleeing or drop-
ping) (TIME).

The above t test was conducted ten times, because the results 
were not perfectly stable.

Table  4 summarizes the p values of the ten t tests with 
respect to the above criteria. If the difference between the 
means of C+ and C− are statistically significant ( p < 0.05 ); 
the corresponding cells in the table are highlighted in blue. 
In this table, it can be observed that the results of the t test 
were almost statistically significant in RS. The results of half 
tests were statistically significance, but the other half were 
not deemed to be so in BW or TIME. However, the results 
were not statistically significant in �i , �i , DG, and PR. Using 
this analysis, the following were concluded: 

1. The occurrence of the diagonal spatial pattern is inde-
pendent of the individual differences of the agents ( �i 
and �i).

2. In graph centrality analysis, the betweenness centrality 
(BW) may have some effect on the occurrence of the 
diagonal spatial pattern. However, the degree (DG) and 
page-rank (PR) centralities do not.

3. The ratio of the random selection period by the total 
evacuation time (RS) will affect the occurrence of the 
diagonal spatial pattern, and time duration until the first 
action (TIME) may also have some effects.

Discussion

In the analysis of the diagonal spatial pattern, which was 
found thorough the video clip analysis captured during the 
Great East Japan Earthquake, the tunnel vision hypothesis 
was proposed. This can be paraphrased that the visual field 

Fig. 22  Affecting and affected agents in initial positions

Table 4  p values in t test between C+ and C− ( O = 25)
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of an evacuee narrows to about 20◦ with a relatively long 
distance during an evacuation. This hypothesis is worth 
studying, because most studies regarding disaster evacua-
tions assume a wider visual field for an agent. Prior to the 
present study, simulations and experiments that included 
narrower visual fields were yet to be conducted extensively. 
As the difference between the tunnel vision hypothesis and 
the assumptions in the conventional studies is significant, 
the study of the tunnel vision hypothesis may lead to unex-
pected results in evacuation studies. This could possibly alter 
evacuation protocol designs that are currently considered 
optimized.

The diagonal spatial pattern in earthquake evacuations 
(i.e., the decision between fleeing and dropping is deter-
mined by the distance from the exit) is a unique evacuation 
behavior yet to be reported in the literature, to the best of our 
knowledge. Moreover, this video is unique. Thus, if the diag-
onal spatial pattern could be considered a mere exception, 
the generality of this phenomenon might be doubtful. How-
ever, our previous study examined the generalizability of the 
occurrence of the diagonal spatial pattern and revealed that 
this pattern occurs frequently in general [51]. The result of 
the temporal analysis of evacuation behaviors of 48 people 
discussed in [51] is coherent with [17], which is the cumula-
tive curve of evacuees over evacuation time is convex. This 
fact additionally supports our result. This study is essen-
tially a parameter analysis of the evacuation decision model, 
assuming the model is correct. The out-of-sample test of the 
model was not conducted in this study. More objective data 
about evacuation behaviors in an earthquake are desirable.

Using comparative analysis, the effects of several con-
ditions upon the diagonal spatial pattern in Simulation B 
were investigated. Although the results were not as compre-
hensive as anticipated, some implications could be derived. 
The diagonal spatial pattern emerged if, as in Simula-
tion A, agents were uniformly arranged around the room 
(Fig. 14). However, this was not the case when the agents 
were arranged in a square, as they were in the video (Fig. 3). 
The fact that the diagonal spatial pattern could reoccur upon 
the implementation of physical constraints was found. In 
summary, both the uniform arrangement of and the applica-
tion of physical constraints upon agents resulted in a higher 
occurrence of the diagonal spatial pattern. Conversely, a 
square arrangement resulted in a lower occurrence. In the 
uniform arrangement, as well as in Simulation A, all fleeing 
agents move directly toward the exit. Therefore, numerous 
agents close to the exit are subject to these agents’ effects. 
By contrast, in the square arrangement, the number of agents 
close to the exit was small. A few agents are positioned in 

the trajectories of the other fleeing agents. Thus, the influ-
ence of fleeing agents on herd behavior was not significant. 
This is particularly true if the visual field of the agent is nar-
row. In this case, a diagonal spatial pattern hardly emerges. 
However, if constraints on the physical movements of the 
agents are considered, as demonstrated in Fig. 4, then the 
agents along the right and bottom edges are affected by flee-
ing agents. In this case, the diagonal spatial pattern is more 
likely to be obtained.

The influences on agents during herd behaviors were 
investigated in the influence analysis. The influence analy-
sis graphs revealed that numerous dropping agents would 
remain in the room and likely form the diagonal spatial 
pattern if the influence graph was deconstructed into sev-
eral subgraphs. The analysis also revealed that the initial 
position of an agent was crucial; both the affecting and 
affected agents of fleeing and dropping behaviors depended 
immensely on their initial location in relation to the exit. 
Furthermore, the analysis of two groups ( C+ and C− ) 
revealed some intriguing results: 

1. Individual properties ( �i and �i ) are independent of the 
occurrence of the diagonal spatial pattern.

2. The agents connecting two subgroups are more critical 
than influential agents.

3. The individual dynamics during evacuations, for exam-
ple, the ratio of self-decided behaviors ( X = 1 ) over herd 
behavior ( X = 0 ), will significantly affect crowd behav-
iors.

One of the most unexpected results in the video analysis 
is the fact that many evacuees exhibited fleeing behavior. 
This was unexpected, because it is widely known that fleeing 
during an earthquake is dangerous and not recommended. 
This is the case in Japan and other countries. Safety educa-
tion and trainings take place frequently, and drop cover hold 
on actions is recommended in all these programs. Fleeing 
behaviors, however, are not recommended nor taught in 
these programs [26]. The result that individual properties 
did not affect the crowd’s evacuation behaviors may sug-
gest that the effectiveness of safety behavior education at 
the individual level is limited. Furthermore, the importance 
of agents’ initial positions, as well as results 2 and 3 above, 
implies that there are new approaches that can unconsciously 
intervene during evacuations and alter agents’ behaviors. 
One of these novel approaches are environment designs that 
use nudge techniques [30].

The results of this study do not deny the first theory in the 
Diagonal Spatial Pattern section; rather, I consider it natural 
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for people close to the exit to select intentionally the option 
to escape. Assuming the distance threshold is 12 units, simu-
lations with the first theory will have Ō = 62.23 , which is 
significantly better than our result ( ̄O = 21.18 in Fig. 8). This 
is not surprising, because the first theory is deterministic 
and always reproduces the diagonal spatial pattern as long 
as the threshold is properly given. In reality, I believe that 
both theories will hold simultaneously, and the evacuation 
process of humans will be a complex mixture of higher and 
lower level cognitions.

Conclusion

Through the analysis of the video clip captured dur-
ing the Great East Japan Earthquake, the evacuation 
behaviors of people in the video were reproduced by 
simulations employing the evacuation decision model 
with realistic settings. As a sequel to the simulations, 
the tunnel vision hypothesis (i.e., the visual field of an 

evacuee narrowed to about 20◦ with length distance) 
was proposed. The conditions that produce the diagonal 
spatial pattern were analyzed, and results that both the 
uniform arrangement of and the application of physi-
cal constraints upon agents led to a high occurrence of 
the diagonal spatial pattern, but a square arrangement 
led to a lower occurrence were found. Furthermore, the 
influence analysis revealed that the initial positions and 
the individual dynamics during evacuations affect the 
crowd evacuation behaviors rather than the individual 
differences.

Appendix

The following table shows the results of the parameter 
searches using black-box simulation in descending order 
of Ō . Searches were conducted 20 times with different 
initial points.

Table 5  Results of black-box 
optimization

� � � d � Δr N̂ g Ō

0.1 1.2 0.1 10 20 5.0 15 0.4 28.95
0.1 0.7 0.4 10 20 2.0 1 1.5 27.76
0.1 1.1 0.8 8 20 5.0 2 1.4 26.64
0.2 0.6 0.6 9 20 2.5 7 1.4 26.23
0.1 1.0 0.2 10 20 1.5 20 0.2 26.22
0.2 1.9 1.9 10 10 1.5 6 1.3 25.96
0.3 1.8 0.9 6 20 4.5 19 0.3 23.43
1.0 0.5 0.7 10 10 4.5 13 1.6 22.27
0.6 0.6 1.4 7 10 5.0 4 1.9 22.16
0.1 1.2 0.9 7 20 4.0 2 1.1 22.04
0.3 1.9 0.7 6 20 3.0 15 1.1 22.01
0.7 0.3 0.7 10 10 2.5 2 1.4 21.96
0.4 0.7 0.0 6 20 1.5 4 1.0 21.92
0.7 0.5 1.2 3 70 3.5 16 1.0 15.76
1.0 1.7 1.6 3 70 3.0 1 1.4 15.59
0.8 0.6 0.2 3 80 1.0 7 0.4 12.91
0.6 1.6 1.2 3 70 3.5 1 0.5 12.87
0.8 1.8 1.4 3 70 3.0 1 0.1 12.03
0.8 0.2 1.8 4 360 4.0 11 0.4 − 5.95
0.4 1.7 0.0 5 330 2.0 10 0.8 − 6.88
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