
Vol.:(0123456789)

SN Computer Science (2022) 3:314
https://doi.org/10.1007/s42979-022-01210-0

SN Computer Science

ORIGINAL RESEARCH

An Efficient Compression Scheme for Natural Language Text
by Hashing

Md. Ashiq Mahmood1 · K. M. Azharul Hasan1

Received: 22 June 2020 / Accepted: 15 May 2022 / Published online: 4 June 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Data compression means the route towards adjusting, encoding or changing the bit structure of information so that it requires
less space. The fundamental standard behind compression is to build up a strategy or convention for utilizing less bits to
express the actual data. Character encoding is fairly identified with compression of data that illustrate a character by a kind of
encoding system. We proposes an efficient and simple compression algorithm for large natural text named n-Sequence based
m Bit Compression (nSmBC) which can beat WinZip and WinRAR in terms of compression ratio. WinZip and WinRAR are
two well-known compression techniques used for text compression in the industry. The scheme provides an efficient encoding
algorithm that converts an 8 bit character by 5 bits utilizing a look up table. The look up table is produced by utilizing Zipf
distribution that represents a discrete dispersion of ordinarily utilized characters in various languages. 8 bit characters are
converted to 5 bits by partitioning the characters into 7 sets. After converting the characters into 5 bit, an n-sequence scheme
is developed to logically calculate the location number of a particular combination of characters. The reverse algorithm to
recover the actual input is further demonstrated. The nSmBC is finally compared with the well-known WinZip, WinRAR,
Huffman and LZW techniques. Promising performance is demonstrated both by theoretical and experimental analysis.

Keywords Data compression · Encoding · Decompression · n-sequence dictionary · Look up table · Zipf distribution

 * Md. Ashiq Mahmood
 ashiqmahmoodbipu@gmail.com

 K. M. Azharul Hasan
 azhasan@gmail.com

1 Khulna University of Engineering and Technology,
Khulna 9203, Bangladesh

Introduction

Data compression is a procedure of changing a data stream
of one form into another that has fewer size than the origi-
nal [1]. The stream can be a document, a bit stream, or
individual bits sent to a channel. The primary targets of
data compression are to lessen the size of data and increase
the exchange rate. Data compression covers a huge area of
applications including data communication, data storage
and database technology. Text compression is a field of
data compression, which utilizes the lossless compression
method to change over information to another type of doc-
ument that is able to decrease the room required to store
the data. In this way, the most clear favorable position of

data compression is that of lessening the capacity pre-
requisite to store the information. Lessening the capacity
prerequisite is equal to expanding the limit of the capacity
medium. Since compacted text are encoded utilizing fewer
bits, moving of packed data starting with one spot then
onto the next requires less time and subsequently brings
about a higher successful exchange rate. Since the pres-
sure decreases the stacking of I/O channels, it gets practi-
cal to process more I/O demands every second and thus
accomplish higher and viable channel use. One of the most
important application of data compression is the reducing
the cost of data communication in distributed networks
[2]. There are some systems that have been proposed for
text compression in the literature. The majority of which
depends on a similar standard of expelling or lessening
redundancies from the intended text record. The repetition
can show up at character, syllable, or word levels. This
standard proposed a component for text compression by
relegating short codes to regular parts, that is, characters,
syllables, words, or sentences, and long codes to uncom-
mon parts. Lately, a few strategies have been created for
text compression. These strategies can be further classified

http://orcid.org/0000-0002-3679-0230
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01210-0&domain=pdf

 SN Computer Science (2022) 3:314314 Page 2 of 10

SN Computer Science

into four types of techniques namely, substitution, measur-
able, lexicon, and context-based technique. The substitu-
tion text compression strategies replace a specific longer
reiteration of characters with a shorter one. A strategy that
is a representative of this method is run-length encoding
[3].

The factual strategies more often than not figure the
likelihood of characters to create the briefest normal code
length, for example, Huffman coding [4], and arithmetic
coding [5]. The lexicon techniques include substitution
of a substring of text by a file or a pointer code. They
identify with a situation in the dictionary of the sub-
string. Agents of these strategies are LZW [6], LZ77 [7],
and LZ78 [8]. The last sort is context-based methods,
which include the utilization of insignificant earlier sus-
picions about the measurements of the text. Ordinarily,
they utilize the context of the text being encoded and
the historical back drop of the text to give progressively
proficient compression. Representatives of this sort are
Prediction by Partial Matching (PPM) [9] and Burrow
Wheeler change (BWT) [10]. Compression methods can
likewise be partitioned into two essential classifications
to be specific lossless and lossy. In lossless compression,
the decompressed information is a precise imitation of
the first information. Despite what might be expected, in
lossy compression, the decompressed information might
be not quite the same as the first information. Commonly,
there is some contortion between the first and recreated
information in lossy compression [11].

In this paper, we propose a dictionary based lossless
compression technique that converts the 8 bit character to
5 bits using a look up table. The look up table is produced
with the general printable characters which are used in
English and Bangla text. The lookup table is constructed
using the Zipf distribution [12, 13]. After converting the
character into 5 bits we propose an idea of n-sequence to
create a dictionary. The dictionary is implemented by a
hash function to logically calculate the value of dictionary
entry. Therefore, the dictionary is a logical implementa-
tion and does not take any physical storage. Compression
and decompression algorithms have been proposed using
the converted the 5 bit stream and the n-sequence charac-
ters. We call our proposed scheme as n-sequence based m
Bit Compression (nSmBC). We compared our scheme with
Huffman [4] and LZW [6] and found better performance to
them. We also compared the proposed scheme with Win-
RAR and WinZip that also shows promising efficiency.
The nSmBC technique can be able to compress any text
by more than 92% of the actual text. The proposed scheme
can not only be applied to text compression but also to text
mining [14], text encoding [15] and database compression

[16]. The rest of the paper is organized as follows. The
next section presents some related works, the following
section explains the proposed text compression scheme,
the next section describes the analytical evaluation of the
scheme, the next section depicts the experimental result
and finally last section outlines some conclusion.

Related Works

Most of the text compression systems [17–21] are
based on a dictionary of word, or character levels. An
n-gram based dictionary approach is presented in [17]
for compressing Vietnamese text. They used window size
of bigram to five grams dictionary to encode a string.
The compression ratio is good but the scheme will fail
to work if the input string is not a traditional word of
the language. In [18], the authors proposed a technique
to convert the characters in the original file to a binary
code. In this method, the most common characters have
the shortest binary codes whereas the least common char-
acters have the longest binary codes. The binary codes are
originated based on the estimated probability of the char-
acter within the file and using 8-bit character word length.
In [19], the authors proposed a technique that combined
word with LZW algorithm. The method divides the input
text to word and non-word and after that uses them as
initial alphabet of LZW. But dividing word and non-word
is a costly operation. [20] proposed a method to compress
shorter text on the basis on two stages. At the first stage, it
alters the source input including letters, numbers, spaces,
and punctuation marks used in English language. And in
the 2nd stage, it introduces a transformation that reduces
the length of the text by a fixed fraction of the length of
its input. In [21], the authors introduced a word-based
compression on the basis on the LZ77 algorithm and pro-
posed and implemented different ways of sliding windows
and various possibilities of output encoding. Some other
techniques of text compression are also appeared based on
syllables such as The Burrows–Wheeler transform. These
techniques include few languages which have morphology
in the organization of words or morphemes (e.g., German,
Arabic, Turkish, and Czech) such as in [22–25]. In [22]
the authors introduced a lossless text compression algo-
rithm that uses syllable-based morphology of multisyl-
labic languages. The proposed technique is implemented
by partitioning words into its syllables and then producing
their little bit organizations for compression. A genetic
algorithm based technique is introduced in [23]. This
technique was utilized by determining the characteristics

SN Computer Science (2022) 3:314 Page 3 of 10 314

SN Computer Science

of syllables. Then it stores the characteristics into a dic-
tionary, that happens in the compression process and it
is not needed placing the characteristics into compressed
data. This phenomena has led to the compression of the
space has been used. Lansky and his colleagues [24, 25]
proposed a technique for syllable-based text compression
techniques. They emphasizes on specification of sylla-
bles, methods for decomposition of words into syllables,
and using syllable-based compression in combination of
the principles of LZW and Huffman coding.

A 6 bit representation of printable characters is presented in
[26]. It converts the 8 bit characters to 6 bits by partitioning the
characters into 5 sets and utilizing them in a look up table. This
method has a compression ratio that converges to around 50%
and it is suitable for small text files. Another system by utilizing
the algorithm of [26] for database operation is proposed in [27].

Most of the techniques mentioned above uses a diction-
ary and applies Run length encoding or Huffman encoding
or LZW technique. In this paper, we introduced a new idea
namely n-sequence based m bit compression Scheme. The
basic difference is that we have implemented the diction-
ary in logical fashion and it does take any physical space.
The scheme shows superior performance than existing
systems

Compression Scheme for Natural Language
Text

Definition 1 (n-sequence) n-sequence is a sequence of char-
acters taken from a character set with n characters which are
arranged together in a sequence. It is possible that all com-
binations take n characters from a given character set. For
example, if a character set contains the characters {A, B}
then 1-sequence is <A, B>, 2-sequence is <AA, BB, AB,
BA>, and 3-sequence is <AAA, BBB, AAB, ABA,…>.
Each of the members in the n-sequence is identified by
an index which is a number. If there are k members in an
n-sequence set, the index numbers are from 0 to (k − 1). For
example, the index of “BB” in the 2-sequence is 1.

Definition 2 (Set tag) Set tag is defined as a group of char-
acters tagged to a particular set number. For example, the
capital letters, small letters, digits and symbols are tagged
to particular set number as shown in Table 1. We call it set
tag representation.

Look Up Table Construction

We construct the look up table by dividing the characters into
7 set tags namely Set-1, Set-2… Set-7. Each of the set tag con-
tains 25 characters. The characters are placed in a lookup table
as shown in Table 1. The entry in Table 1 is organized as follows:

1. Characters of the Bangla alphabet are placed in Set-1, Set2
and Set-3. Set 3 also contains the Bangla digits as well. The
positions 21–24 in Set-3 are blank and can be used in future.

2. Characters of the English alphabet are placed in Set-4,
Set-5, Set-6 and Set-7. The English digits and special
characters are placed in Set-6 and Set-7 respectively.
Position 19–24 of Set-7 is empty and can be filled with
any missing characters.

3. The rest of the 7 combinations are filled with the 7 set
tags as shown in Table 1.

Therefore, the Table 1 contains 32 characters (0 to 31).
These 32 (25 =32) combinations can be represented by 5
bits. Within the 32 combinations 25 combinations are uti-
lized for converting the original 8 bit character to 5 bit and
the rest of the 7 combinations are utilized for representa-
tion of the set tags. Therefore, we can use (25 − 7) × 7 =175
characters in Table 1. If we can take 6 bits then there can
be (26 − 7) × 7 =399 characters can be handled. We call it
m bit representation scheme. In the following we represent
m = 5 bits to explain our proposed method. We represent any
character using the encoding scheme (see Table 1). We call
it set tag representation. For example, if we have a character
stream “ABCDabcd956” then the set tag representation is
“Set4ABCDSet5abcdSet6956”. Since “A” is located in Set4
we start with Set4 followed by “A”, “a” is represented in
Set5 we put Set5 before “a” and so on. When a set change
occurs, we insert a Set number to distinguish it with others.
In these stage we can say this representation as a variants of
Run Length Encoding.

The placement of characters in the look up table is optimized
using Zipf distribution which is a discrete dispersion of ordinar-
ily utilized characters in various dialects [12]. Zipf's law is an
empirical law formulated using mathematical statistics. It states
that given a large sample of words used, the frequency of any
word is inversely proportional to its rank in the frequency table.
So word number n has a frequency proportional to 1/n. Thus
the most frequent word will occur about twice as often as the
second most frequent word, three times as often as the third
most frequent word [13]. The objective of using Zipf’s distribu-
tion is to place the characters in Table 1 such that the minimum
number of set change occurs to handle the input string.

n‑Sequence Dictionary Construction

After converting the 8 bit characters into 5 bits, we have a
bit stream of 5 bits of each character. For any input text T,
we create a bit stream (5 bits for each character) and from
this bit stream we divide it by 4 to take 4 bits each. We put
trailing the last set number to make it mod 4 equal to zero if
the length of the bit stream is not mod 4 equal to zero. From
this 4 bits, we have 24 = 16 different combinations of bits.
Since each of the characters is represented by 8 bits, we add

 SN Computer Science (2022) 3:314314 Page 4 of 10

SN Computer Science

a fixed bit pattern in front of each of the 4 bits. Figure 1
shows an example. The fixed bit pattern is 0100.

After adding fixed 4 bit pattern (0100) we get ASCII
value range 64–79. Table 2 shows the characters along with
its decimal and ASCII values. Hence any of the characters
shown in Table 1 becomes a character shown in Table 2.

Example 1
Original Text: “Test Text”
Set Representation:
Set4 T Set5 est space Set4 T Set5 ext
Decimal Representation:
28 1 29 0 7 1 24 28 1 29 0 22 1
5 bit representation:
11100 00001 11101 00000 00111 00001 11000 11100

00001 11101 00000 10110 00001
After Dividing by 4:
1110 0000 0111 1010 0000 0011 1000 0111 0001 1100

0000 1111 0100 0001 0110 0000 1111
Adding 0100 to every combination:
01001110 01000000 01000111 01001010 01000000

01000011 01001000 01000111 01000001 01001100
01000000 01001111 01000100 01000001 01000110
01000000 01001111

Corresponding
ASCII Character: N@GJ@CHGAL@ODAF@O

Dictionary Construction

Using the characters of Table 2, we generate a dictionary
of n-sequence (See Definition 1) of different values of n.
Figure 2 shows the n-sequence for n = 1, 2 and 3.

Key Generation

From the n-sequence dictionary we generate a key of the
form < n, (v1,v2,v3,v4, …)> where n is the number of the
n-sequence and v is the index value of the correspond-
ing n-sequence dictionary (see Fig. 2). We store the
(

v1,v2,v3,v4, …
)

 the secondary storage and store the n in
main memory.

Logical Dictionary

The dictionary we generate using n-sequence generation
is not stored in the physical memory. We implement the
dictionary using a hash function h(s). The function h()
takes a string s which is member of the n-sequence dic-
tionary as input and returns the corresponding index of
the dictionary. Hence the dictionary becomes a logical
one and does not take any physical memory.

Table 1 Lookup table for set tag

Fig. 1 Adding fixed bit pattern

SN Computer Science (2022) 3:314 Page 5 of 10 314

SN Computer Science

Hash Function Development

Forward Hash Function Firstly, we assign all the
16 characters (see Table 2) a value as follows
V0 = @, V1 = A, V2 = B, V3 = C , V4 = D, V5 = E, V6 = F,V7 = G, V8 = H, V9 = I, V10 = J, V11 = K , V12 = L, V13 = M,

V14 = N, V15 = O.
where V1 = 1,V2 = 2,… ,Vi = i (1 ≤ i ≤ 15).

The index value for n-sequence dictionary for different val-
ues of n is calculated as follows.

For n = 1,
h(s) = Vi + 1

If s = “A” then h(εAε) = V1+1 = 1 + 1 = 2 [where i = 1].
For n = 2,
h(s) = (Vi ∗ 16) + Vj +1
If s = “AM” then h(AM) = (V1 ∗ 16) + Vj + 1 =

(1*16) + 13 + 1 = 30 [where i = 1 and j = 13].
For n = 3,
h(s) = (((Vi ∗ 16) + Vj)*16) + Vk+ 1.
If s = “BAG” then h(εBAGε) = (((Vi ∗ 16) + Vj) *16) +

Vk+ 1 = (((2*16) + 1) * 16) + 7 + 1 = 536 [where i = 2, j = 1
and k = 7].

Finally we generalize h(s) as
h(s) = (((Vi * 16) + Vj) * 16 + Vk) * 16 + Vl) + … + 1
where h(s) a string which is a member of n-sequence dic-

tionary, Vi assigned number of the 1st character, Vj assigned
number of the 2nd character, Vk assigned number of the 3rd
character, Vl assigned number of the 4th character, and so on.

After getting the indexes using the above hash function we
represent each index with 1 byte using the Java OutputStream-
Writer() function in Java platform which is used to convert the
written characters to the bytes written to the underlying Out-
putStream. Here we convert the written index to ASCII which
defines 1 byte.

Reverse hash function For n = 1,
h = Vi + 1

Y = V1 [h-1 = Y].
V1 = Y mod 16.
For n = 2,
h = (Vi ∗ 16) + Vj + 1
Y = (V1 ∗ 16) + V2 + 1 [h-1 = Y].
V2 = Y mod 16.
V1 = Y/16.
For n = 3,
h = (((Vi ∗ 16) + Vj)*16) + Vk+ 1.
Y = ((V1 ∗ 16) + V2)*16) + V3+ 1 [h-1 = Y]
V3 = Y mod 16
V1 = [Y/16]/16
V2 = [Y/16] mod16
Hence the general equations becomes
Vn = Y mod 16
V1 = [[[Y/16]/16]/16 …]/16
Vi[2<i<n−1> = [[[Y/16]/16]/16 …] mod 16
We use the idea of n-Sequence for m bit representation

hence call the scheme nSmBC (n-Sequence based m bit
Compression).

Compression and Decompression Algorithm

In this section, the compression and decompression algo-
rithms for nSmBC is briefly described in different steps. After
the compression and decompression technique, an example is
provided to show the working procedure of the algorithms.

Forward Mapping

Input: A string S to be compressed,
Output: An encoded compressed string Sc.

Step 1: Represent S to S′ as set tag representation adding
Set tag.

Step 2: Using the look up table, convert the string S′ by 5
bit stream. Let, in this stage the bit stream contains k
bits.

Table 2 Converted list of characters

Serial no. Characters Decimal value Binary value

1 @ 64 01000000
2 A 65 01000001
3 B 66 01000010
4 C 67 01000011
5 D 68 01000100
6 E 69 01000101
7 F 70 00100110
8 G 71 01000111
9 H 72 01001000
10 I 73 01001001
11 J 74 01001010
12 K 75 01001011
13 L 76 01001100
14 M 77 01001101
15 N 78 01001110
16 O 79 01001111

Fig. 2 n-Sequence for n = 1, 2
and 3.

 SN Computer Science (2022) 3:314314 Page 6 of 10

SN Computer Science

Step 3: d = k%4; if (d ≠ 0) add trailing 0 bits to the last set
number to make d = 0.

Step 4: Store every 4 bit combinations of k.
Step 5: Add 0100 in front of to every 4 bit combination of

k to make the binary combination only limited to the
characters Table 2.

Step 6: Divide k by 8 to find the corresponding ASCII char-
acters.

Step 7: Create the logical n-sequence dictionary using for-
ward hash function h() and store < n, index >

Example 2
Original Text (Input): “Test Text “

Step 1: Set Representation: Set4 T Set5 est space Set4 T
Set5 ext

Step 2: Decimal Representation: 28 1 29 0 7 1 24 28 1 29
0 22 1

Step 3: 5 bit representation: 11100 00001 11101 00000
Step 4: 00111 00001 11000 11100 00001 11101 00000

10110 00001
Step 5: After Dividing by 4: 1110 0000 0111 1010 0000

0011 1000 0111 0001 1100 0000 1111 0100 0001 0110
0000 1111

Step 6: Using Adding 0010 to every combination:
01001110 01000000 01000111 01001010 01000000
01000011 01001000 01000111 01000001 01001100
01000000 01001111 01000100 01000001 01000110
01000000 01001111

Step 7: ASCII Representation:N@GJ@CHGAL@
ODAF@O

Step 8: Generate n-Sequence to get the < n, index > (n = 4
used here): < 4, (57467, 904, 7184, 16737, 63422) >

Backward Mapping

Input: Compressed String, Sc.
Output: Uncompressed original string, S

Step 1: Representing the string Sc by its corresponding < n,
index > pair using reverse hash function.

Step 2: From the location of the pair < n, index > find the
exact n-sequence character combination and store it in Sc′.

Step 3: From Sc′, find its corresponding binary combination
from the ACII Table (Table 2) and store the resultant
binary bits in k.

Step 4: Remove 0100 from every 8 bit binary combina-
tions.

Step 5: From the remaining bits stream, take 5 bits and
representing it by the character set of the look up table
(Table 1).

Step 6: Remove the set number to get the original string S.

Example 3:
Compressed String: < 4, (57467, 904, 7184, 16737,

63422) >

Step 1: Corresponding string in n-sequence dictionary: N@
GJ@CHGAL@ODAF@O

Step 2: From 8 bit Representation: 01001110 01000000
01000111 01001010 01000000 01000011 01001000
01000111 01000001 01001100 01000000 01001111
01000100 01000001 01000110 01000000 01001111

Step 3: Removing 0100 from every 8 bit combination: 1110
0000 0111 1010 0000 0011 1000 0111 0001 1100 0000
1111 0100 0001 0110 0000 1111

Step 4: Fro5 bit representation: 11100 00001 11101 00000
00111 00001 11000 11100 00001 11101 00000 10110
00001

Step 5: Decimal Number corresponding to 5 bits: 28 1 29
0 7 1 24 28 1 29 0 22 1

Step 6: Corresponding Set Representation: Set4 T Set5 est
space Set4 T Set5 ext

Step 7: Original Text: Test Text

The proposed nSmBC compression algorithm is designed
for all the natural characters that are found in a standard key-
board. These characters include English characters, special
characters and Bangla natural characters. Hence we believe
we have handled the special characters as well as natural Eng-
lish and Bangla characters. Moreover the algorithm can easily
be extended for other characters as the last column of lookup
table (Table 1) contains blank cell that can be used for other
characters. The look up table can also be extended to accom-
modate other characters (if necessary) for compressing other
characters using the nSmBC compression algorithm.

Analytical Evaluation

In this section, the analytical evaluation of the proposed scheme
is done. Table 3 shows the parameters for analytical evaluation.
Some parameters are provided as input while others are derived
from the input parameters. All lengths and sizes are in bits.

Therefore,
η = q∗α

N∗8
 = v∗q∗α

n∗N∗8
 = S2∗α

�∗n∗N∗8
 = N∗m+�∗α

�∗n∗N∗8
,

SN Computer Science (2022) 3:314 Page 7 of 10 314

SN Computer Science

[We assume the size of the Set tags are negligible � ≈ 0].
= N∗m∗α

�∗n∗N∗8
 = m∗α

�∗n∗8
 = m∗8

�∗n∗8
 , [α = 1 byte = 8 bit].

η = m
�∗n

Using the above equation, we evaluated the trend of η
with varying values of n (6 to 15). Figure 3 shows the ana-
lytical result.

The performance of the proposed nSmBC scheme depends
on the Value of n i.e. if the length of n-sequence is large the per-
formance will be better. The performance also depends on the
value of m and β. If m is large then performance will degrade
but if m is very small then the number of characters that can
be accommodated in the lookup table will be small. Therefore,
moderate value of m is necessary. If the value of β increases,
then performance will also be improved but when β increase
then the number of characters also increase in Table 2. Hence
number characters to generate the n-sequence will be large.

Experimental Results

We have implemented a prototype system with our pro-
posed algorithm in Java NetBeans IDE 8.2 with the param-
eter values shown in Table 4. In this Section we present the
experimental results. In our experiment, we used the data set
collected from Microsoft Research (MSR) Abstractive Text
Compression Dataset. The dataset is available at [28]. The
MSR dataset contains substantial amount of text data col-
lected from diverse source and genre including business let-
ters, newswire, journals, and Non-fiction academic publica-
tions, such as PLoS Medicine, open access journal from the
Open American National Corpus. The MSR text maintains
a strong correlation with the human judgments of meaning.

Therefore, we believe, the data set becomes a good natural
text. Since our main concern was to compress natural text,
we used MSR natural dataset in our experimental evaluation.
The details of the dataset can be found in [29]. Table 5 shows
the description of the dataset.

Figure 4a shows the experimental results for compression
ratio with varying values of n for nSmBC. It demonstrates
that when the value on n increases the value of η decreases.
For n = 15, η reduces to 0.08 which means, σ is 92% as
shown in Fig. 4b. When n increases, η reduces because, η

Table 3 Parameters for
analytical evaluation

Parameter Description

N Total number of characters in the input string
S1 Size of the input string, S1 = N × 8 bit
m Number of bits used to compress the input character using lookup

table (Table 1)
� Number of bits required to store Sets for set tag representation
β Number of bits used to create the converted characters of Table 2
S2 Size of input string using m bit representation, S2 = N × m + � bit
v Number of characters generated from S2 by taking β bits, v = S2

�

q Number of indices to store,q =
v

n

α Size of one index
S3 Size of q, S3 = q × α(Compressed file size)
η Compressed ratio, η = S3

S1

σ Savings of space σ = (1- η) × 100%

Fig. 3 Analytical evaluation for compression ratio for different
n-Sequence value

Table 4 Parameters for experimental evaluation

n S1 (MB) m β α

6–15 0.5,1.05,2.0,3.07,5.03 5 4 1

 SN Computer Science (2022) 3:314314 Page 8 of 10

SN Computer Science

depends mainly on n, m and β. For increasing the value of n,
more characters can be increased to include to a single index.
Hence the η will reduce and the σ will increase as shown in
Fig. 4. This is what we shown in our analytical evaluation in
Sect. 5 (see Fig. 3). Hence we validate our analytical model.

We compare our proposed technique with well-known
Huffman technique [4] and LZW [6]. The comparison for
compressed file size with LZW and Huffman is shown in
Fig. 5a. The result for nSmBC is shown for n = 6, 8, 14 and
15. The nSmBC outperforms Huffman technique for n = 6, 8,
14 and 15. LZW shows good results but the nSmBC scheme
outperforms LZW for n = 14 and 15. For all the cases Huff-
man shows worst result.

We also compare our technique with two industrial sys-
tems WinZip and WinRAR. The WinZip and WinRAR com-
press all character set along with images. The scope of this
paper is to compress natural text. The image compression
is another research issue and, therefore, image compression
was out of the scope of this paper. The MSR dataset used in
the experimental evaluation is a pure natural text. And the
same data set was used to evaluate the compression schemes
namely proposed nSmBC, WinZip and WinRAR.

Figure 5b shows the comparison with WinZip and Win-
RAR for compressed file size. The nSmBC performs well
than WinZip and WinRAR for n = 14 and 15. The WinZip
performs well for small S1, when S1 increases the nSmBC
performs well even for n = 8.

The comparison for η with LZW and Huffman is shown in
Fig. 6a. The result for nSmBC is shown for n = 6, 8, 14 and
15. The Huffman shows poor result among the schemes. The
reason behind Huffman technique to be poor is that the data
is derived by Huffman from the frequency of occurrence of
the possible values in the source symbol [4]. So if the size
of data is quite large then a large number of individual sym-
bols will be created. As a result, it shows poor η comparing
to others. η ranges from 0.35 to 0.4 leading to σ = 60–65%.
The result demonstrates that nSmBC provides the best

compression ratio. It reaches to η = 0.08 (σ = 92%) for n = 15.
The other values n also provides good performance.

Figure 6b shows the comparison for ηwith WinZip and
WinRAR. The WinRAR shows η = 0.10 (σ = 90%) at initial
level. But at the increasing S1 , η degrades to 0.15 (σ = 85%).
In case of WinZip, it also shows same type of values for η as
WinRAR at the initial stage but not as good as WinRAR. At
the increasing S1 , the compression ratio fluctuates in between
0.16 to 2.0 (σ = 80–85%). The nSmBC shows better perfor-
mance and it outperforms WinZip and WinRAR for n = 14
and 15. Finally, we conclude that the nSmBC outperforms
other techniques.

Figure 7 provides the compression time of different
algorithms. We use Java currentTimeMillis() function
to calculate the time of the nSmBC, LZW and Huff-
man method. From Fig. 7, it shows that nSmBC provides
better result than Huffman. Initially LZW provides bad

Table 5 Dataset description

Sl. No. Description

Dataset 1 Size: 0.5 MB, no. of characters: 514,055
Dataset 2 Size: 1.05 MB, no. of characters: 1,102,371
Dataset 3 Size: 2.0 MB, no. of characters: 2,103,453
Dataset 4 Size: 3.07 MB, no. of characters: 3,228,053
Dataset 5 Size: 5.03 MB, no. of characters: 5,283,107

Fig. 4 a Compression ratio for different n-Sequence value. b Savings
of space for different n-Sequence values

SN Computer Science (2022) 3:314 Page 9 of 10 314

SN Computer Science

result but when file size is increasing, it will show the
similar range of time as nSmBC. But WinZip and Win-
RAR provides best result that means these two algo-
rithms need a very short run time. We think this is the
only shortcoming of our algorithm in respect to WinZip
and WinRAR. But this time issue can be resolved by uti-
lizing this algorithm in a high configuration computers.

Conclusion

In this paper, we present a novel method for text com-
pression. The paper proposes the idea on n-sequence and
construction of logical dictionary. The large dictionary
is implemented of a hash function. The proposed nSmBC
takes 5 bits for each character using a lookup table. Ana-
lytical and experimental results are presented to show the
superiority of the scheme. The scheme IS able to compress
up to 92% for web-based diverse data set. The scheme
shows superior performance to existing schemes namely
LZW, Huffman and also for WinZip and WinRAR. The
technique can easily be utilized to compress large amount

of natural language text. Both the forward and backward
mapping algorithms are presented. This technique can also
be utilized to parallel processing environment as well as
load balancing technique to achieve promising encoding

Fig. 5 a Comparison of compressed file size for LZW and Huffman.
b Comparison of compressed file size for WinZip and WinRAR

Fig. 6 a Comparison of compression ratio for LZW and Huffman
technique. b Comparison of compression ratio for WinZip and Win-
RAR

Fig. 7 Comparison of compression time for LZW, Huffman, WinZip
and WinRAR

 SN Computer Science (2022) 3:314314 Page 10 of 10

SN Computer Science

time. We believe, the nSmBC is an efficient algorithm for
compression that has the potential to compete with the
existing text compression techniques.

Funding None.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval All procedures performed in studies involving human
participants were in accordance with the ethical standards of the insti-
tutional and/or national research committee and with the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all individual
participants included in the study.

References

 1. NguyenVH, Nguyen HT, Duong HN, Snasel V. Trigram-based
Vietnamese text compression. In: Recent developments in intel-
ligent information and database systems, studies in computational
intelligence, vol 642. Springer; 2016. p. 297–307.

 2. Bassiouni MA. Data compression in scientific and statistical data-
bases. IEEE Trans Softw Eng. 1985;11(10):1047–57.

 3. Žalik B, Lukač N. An chain code lossless compression using
move-to-front transform and adaptive run-length encoding. Signal
Process Image Commun. 2014;29(1):96–106.

 4. Wu J, Wang Y, Ding L, Liao X. Improving performance of net-
work covert timing channel through Huffman coding. Math Com-
put Model. 2012;25(1–2):69–79.

 5. Witten IH, Neal RM, Cleary JG. Arithmetic coding for data com-
pression. Commun ACM. 1987;30(6):520–40.

 6. Welch TA. Technique for high-performance data compression.
IEEE Comput. 1984;17(6):8–19.

 7. Travis GagieJ, Gawrychowski P, Kärkkäinen J, Nekrich Y, Puglisi
SJ (2014) LZ77-based self-indexing with faster pattern matching.
In: Pardo A, Viola A, editors. LATIN 2014, LNCS 8392. Berlin:
Springer; 2014. p. 731–742.

 8. Bannai H, Inenaga S, Takeda M. Efficient LZ78 factorization of
grammar compressed text. In: Caldron-Benavides L et al, editors.
SPIRE 2012, LNCS 7608. Berlin: Springer; 2012. p. 86––98.

 9. Cleary J, Witten I. Data compression using adaptive cod-
ing and partial string matching. IEEE Trans Commun.
1984;32(4):396–402.

 10. BurrowsM, Wheeler D. A block-sorting lossless data compression
algorithm. Digital SRC Research Report. 1994.

 11. Azharul HasanKM. Compression schemes of high dimensional
data for MOLAP. In: Furtado P, editor. Evolving application

domains of data warehousing and mining: trends and solutions,
University of Coimbra, Portugal. Chapter IV. 2010. p. 64–81.

 12. Wentian L. Random texts exhibit WinZipfs-law-like word. IEEE
Trans Inf Theory 1992;38(6).

 13. Fagan S, Gençay R. An introduction to textual econometrics. In:
Handbook of empirical economics and finance. 2010. p. 133–153.

 14. Aggarwal CC, Zhai CX. A survey of text clustering algorithms.
In: Recent developments in database management & information
retrieval, chapter 4 of mining text data. Springer; 2012. p. 1–123.

 15. Taeho J. Text encoding. In: Recent studies in big data, vol 45, sec
3.1 of text mining. Springer; 2018. p. 41–58.

 16. Satir E, Isik H. A compression-based text steganography method.
J Syst Softw. 2012;85(10):2385–94.

 17. Nguyen VH, Nguyen HT, Duong HN, Snasel V. n-gram-based text
compression. Comput Intell Neurosci. 2016;2016:1–11.

 18. Al-Bahadili H, Hussain SM. An adaptive character word
length algorithm for data compression. Comput Math Appl.
2008;55(6):1250–6.

 19. Dvorsk J, Pokorn J, Sna´sel J. Word-based compression methods
and indexing for text retrieval systems. In: Proceedings of the 3rd
East European conference on advances in databases and informa-
tion systems (ADBIS ’99), Maribor, Slovenia. 1999. p. 75–84.

 20. Kalajdzic K, Ali SH, Patel A. Rapid lossless compression of short
text messages. Comput Stand Interfaces. 2015;37:53–9.

 21. Platos J, Dvorskþ J. Word-based text compression. 2008. http://
arxiv. org/ abs/ 0804. 3680.

 22. Akman I, Bayindir H, Ozleme S, Akin Z, Misra S. A lossless text
compression technique using syllable based morphology. Int Arab
J Inf Technol. 2011;8(1):66–74.

 23. Kuthan T, Lansky J. Genetic algorithms in syllable-based text
compression. In: Proceedings of the Dateso annual international
workshop on databases, texts, specifications and objects, Desna,
Czech Republic, 2007. p. 21–34.

 24. Lansky, Zemlicka M. Text compression: syllables. In: Proceedings
of the Dateso annual international workshop on databases, texts,
specifications and objects, Desna, Czech Republic, April 2005. p.
32–45.

 25. LanskyJ, Zemlicka M. Compression of small text files using syl-
lables. In: Proceedings of the data compression conference, Snow-
bird. 2006.

 26. Mahmood A, Latif T, Azharul Hasan KM. An efficient 6 bit
encoding scheme for printable characters by table look up. In:
International conference on electrical, computer and communica-
tion engineering (ECCE). 2017. p. 468–472.

 27. MahmoodMA, Latif T, Azharul Hasan KM, Islam R. A feasible
6 bit text database compression scheme with character encoding
(6BC). In: 2018 21st international conference of computer and
information technology (ICCIT). 2018. p. 1–6.

 28. https:// www. micro soft. com/ enus/ downl oad/ detai ls. aspx? id=
54262. 2020.

 29. Toutanova C, Brockett C, Tran KM, Amershi S. A dataset and
evaluation metrics for abstractive compression of sentences and
short paragraph. In: Empirical methods in natural language pro-
cessing, EMNLP. 2016. p. 340–350.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/0804.3680
http://arxiv.org/abs/0804.3680
https://www.microsoft.com/enus/download/details.aspx?id=54262
https://www.microsoft.com/enus/download/details.aspx?id=54262

	An Efficient Compression Scheme for Natural Language Text by Hashing
	Abstract
	Introduction
	Related Works
	Compression Scheme for Natural Language Text
	Look Up Table Construction
	n-Sequence Dictionary Construction
	Dictionary Construction
	Key Generation
	Logical Dictionary
	Hash Function Development
	Forward Hash Function
	Reverse hash function

	Compression and Decompression Algorithm
	Forward Mapping
	Backward Mapping

	Analytical Evaluation
	Experimental Results
	Conclusion
	References

