
Vol.:(0123456789)

SN Computer Science (2022) 3:308
https://doi.org/10.1007/s42979-022-01198-7

SN Computer Science

ORIGINAL RESEARCH

Orienting Ordered Scaffolds: Complexity and Algorithms

Sergey Aganezov1 · Pavel Avdeyev2 · Nikita Alexeev3 · Yongwu Rong4 · Max A. Alekseyev2

Received: 20 September 2021 / Accepted: 7 May 2022 / Published online: 26 May 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Despite the recent progress in genome sequencing and assembly, many of the currently available assembled genomes come
in a draft form. Such draft genomes consist of a large number of genomic fragments (scaffolds), whose order and/or orienta-
tion (i.e., strand) in the genome are unknown. There exist various scaffold assembly methods, which attempt to determine
the order and orientation of scaffolds along the genome chromosomes. Some of these methods (e.g., based on FISH physical
mapping, chromatin conformation capture, etc.) can infer the order of scaffolds, but not necessarily their orientation. This
leads to a special case of the scaffold orientation problem (i.e., deducing the orientation of each scaffold) with a known
order of the scaffolds. We address the problem of orientating ordered scaffolds as an optimization problem based on given
weighted orientations of scaffolds and their pairs (e.g., coming from pair-end sequencing reads, long reads, or homolo-
gous relations). We formalize this problem using notion of a scaffold graph (i.e., a graph, where vertices correspond to the
assembled contigs or scaffolds and edges represent connections between them). We prove that this problem is ��-hard, and
present a polynomial-time algorithm for solving its special case, where orientation of each scaffold is imposed relatively to
at most two other scaffolds. We further develop a fixed-parameter tractable algorithm for the general case of the orientation
of ordered scaffolds problem.

Keywords Genome assembly · Genome scaffolding · Scaffold orientation · Computational complexity · Algorithms

Introduction

While genome sequencing technologies are constantly evolv-
ing, they are still unable to read at once complete genomic
sequences from organisms of interest. Instead, they produce
a large number of rather short genomic fragments, called
reads, originating from unknown locations and strands of the
genome. The problem then becomes to assemble the reads
into the complete genome. Existing genome assemblers

usually assemble reads based on their overlap patterns and
produce longer genomic fragments, called contigs, which
are typically interweaved with highly polymorphic and/or
repetitive regions in the genome. Contigs are further assem-
bled into scaffolds, i.e., sequences of contigs interspaced
with gaps.1 Assembling scaffolds into larger scaffolds (ide-
ally representing complete chromosomes) is called the scaf-
fold assembly problem.

The scaffold assembly problem is known to be ��-hard
[14, 17, 23, 29, 35], but there still exists a number of meth-
ods that use heuristic and/or exact algorithmic approaches
to address it. The scaffold assembly problem consists of two
subproblems:

1. determine the order of scaffolds (scaffold order prob-
lem); and

2. determine the orientation (i.e., strand of origin) of scaf-
folds (scaffold orientation problem).

This article is part of the topical collection “String Processing and
Combinatorial Algorithms” guest edited by Simone Faro.

 * Max A. Alekseyev
 maxal@gwu.edu

1 Department of Computer Science, Johns Hopkins University,
Baltimore, MD, USA

2 Department of Mathematics, The George Washington
University, Washington, DC, USA

3 International Laboratory “Computer technologies”, ITMO
University, Saint Petersburg, Russia

4 Department of Mathematics, CUNY Queens College,
Queens, NY, USA

1 We remark that contigs can be viewed as a special type of scaffolds
with no gaps.

http://orcid.org/0000-0002-5140-8095
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01198-7&domain=pdf

 SN Computer Science (2022) 3:308308 Page 2 of 14

SN Computer Science

Some methods attempt to solve these subproblems jointly
by using various types of additional data including jumping
libraries [11, 15, 20, 21, 25, 27, 32], long error-prone reads
[6, 7, 12, 26, 34], homology relationships between genomes
[1, 3–5, 24], etc. Other methods (typically based on wet-
lab experiments [13, 22, 28, 30, 31, 33]) can often reliably
reconstruct the order of scaffolds, but may fail to impose
their orientation.

The scaffold orientation problem is also known to be ��
-hard [10, 23]. Since the scaffold order problem can often
be reliably solved with wet-lab based methods, this inspires
us to consider the special case of the scaffold orientation
problem with the given order of scaffolds, which we refer
to as the orientation of ordered scaffolds (OOS) problem.
We formulate the OOS as an optimization problem based
on given weighted orientations of scaffolds and their pairs
(e.g., coming from pair-end sequencing reads, long reads,
or homologous relations). We prove that the OOS is ��-
hard both in the case of linear genomes and in the case of
circular genomes. We present a polynomial-time algorithm
for solving the special case of the OOS, where the orienta-
tion of each scaffold is imposed relatively to at most two
other scaffolds, and further generalize it to an ��� algorithm
for the general OOS problem. The proposed algorithms are
implemented in the CAMSA [2] software that have been
developed for comparative analysis and merging of scaffold
assemblies.

Background

We start with a brief description of the notation which have
been used in CAMSA framework. The notation provides a
unifying way to represent scaffold assemblies obtained by
different methods.

Let � = {si}
n
i=1

 be the set of scaffolds. We represent an
assembly of scaffolds as a set of assembly points. Each
assembly point is formed by an adjacency between two
scaffolds. Namely, an assembly point p = (si, sj) tells that
the scaffolds si and sj are adjacent in the assembly, where
si, sj ∈ � . Additionally, we may know the orientation of
either or both of the scaffolds and thus distinguish between
three types of assembly points:

1. p is oriented if the orientation of both scaffolds si and sj
is known;

2. p is semi-oriented if the orientation of only one scaffold
among si and sj is known;

3. p is unoriented if the orientation of neither of si and sj is
known.

We denote the known orientation of scaffolds in assembly
points by overhead arrows. While the right arrow

corresponds to the original genomic sequence, the left arrow
corresponds to the reverse complement of this sequence. For
example, (�⃗si, �⃖sj) , (�⃗si, sj) , and (si, sj) are oriented, semi-ori-
ented, and unoriented assembly points, respectively. We
remark that assembly points (�⃗si, �⃗sj) and (�⃖sj, �⃖si) represent the
same adjacency between oriented scaffolds; to make this
representation unique we will require that in all assembly
points (si, sj) we have i < j . Another way to represent the
orientation of the scaffolds in an assembly point is by using
superscripts h and t denoting the head and tail extremities of
the scaffold’s genomic sequence, e.g., (�⃗si, �⃗sj) can also be
written as (sh

i
, st

j
).

We will need an auxiliary function sn (p, i) defined on
an assembly point p and an index i ∈ {1, 2} that returns
the scaffold corresponding to the component i of p (e.g.,
sn ((�⃗si, �⃗sj), 2) = sj). We define a realization of an assembly
point p as any oriented assembly point that can be obtained
from p by orienting the unoriented scaffolds. We denote the
set of realizations of p by R (p) . When p is oriented, it has
a single realization equal p itself (i.e., R (p) = {p}); when p
is semi-oriented, it has two realizations (i.e., |R (p)| = 2);
and when p is unoriented, it has four realizations (i.e.,
|R (p)| = 4). For example,

An assembly point p is called a refinement of an assem-
bly point q if R (p) ⊂ R (q) . From now on, we assume that
no assembly point in a given assembly is a refinement of
another assembly point (otherwise we simply discard the
latter assembly point as less informative). We further assume
that in a given assembly there are no two assembly points
(�⃗si, sj) and (si, �⃗sj) such that si or sj belongs to yet another
assembly point (otherwise2 we simply replace (�⃗si, sj) and
(si, �⃗sj) with (�⃗si, �⃗sj)). Similarly, we assume that no assembly
points (�⃗si, �⃖sj), (�⃖si, �⃗sj), (�⃖si, �⃖sj) can be present in a given assem-
bly at the same time. We refer to an assembly satisfying
these assumptions as a proper assembly.

For a given assembly � we will use subscripts u/s/o to
denote the sets of unoriented/semi-oriented/oriented assem-
bly points in � (e.g., �u ⊂ � is the set of all unoriented
assembly points from �). We also denote by �(�) the set of
scaffolds appearing in the assembly points from �.

We call two assembly points overlapping if they involve
the same scaffold, and further call them conflicting if they
involve the same extremity of this scaffold. We general-
ize this notion for semi-oriented and unoriented assembly
points: two assembly points p and q are conflicting if all
pairs of their realizations (p�, q�) ∈ R (p) × R (p) are con-
flicting. If some, but not all, pairs of the realizations are

(1)R ((si, sj)) =
{
(�⃗si, �⃗sj), (�⃗si, �⃖sj), (�⃖si, �⃗sj), (�⃖si, �⃖sj)

}
.

2 It can will be seen later that any assembly realization in this case is
conflicting.

SN Computer Science (2022) 3:308 Page 3 of 14 308

SN Computer Science

conflicting, p and q are called semi-conflicting. Otherwise,
p and q are called non-conflicting.

We extend the notion of non-/semi- conflictedness to
entire assemblies as follows. A scaffold assembly � is non-
conflicting if all pairs of assembly points in it are non-con-
flicting, and � is semi-conflicting if all pairs of assembly
points are non-conflicting or semi-conflicting with at least
one pair being semi-conflicting.

Methods

Assembly Realizations

For an assembly � = {pi}
k
i=1

 , an assembly �� = {qi}
k
i=1

 is
called a realization3 of � if there exists a permutation �
of order k such that q�i ∈ R (pi) for all i = 1, 2,… , k . We
denote by R (�) the set of realizations of assembly � , and by
NR (�) the set of non-conflicting realizations among them.

We define the scaffold assembly graph ���(�) on the
set of vertices {sh, st ∶ s ∈ �(�)} and edges of two types:
directed edges (st, sh) that encode scaffolds from �(�) , and
undirected edges that encode all possible realizations of all
assembly points in � (Fig. 1a). We further define the order
(multi)graph �� (�) formed by the set of vertices �(�) and
the set of undirected edges {{ sn (p, 1), sn (p, 2)} ∶ p ∈ �}
(Fig. 1b). The order graph can also be obtained from ���(�)
by first contracting the directed edges, and then by substitut-
ing all edges that encode realizations of the same assembly
point with a single edge (Fig. 1b). We define the contracted
order graph ��� (�) obtained from �� (�) by replacing all
multi-edges edges with single edges (Fig. 1c).

Let deg(v) be the degree of a vertex v in �� (�) , i.e., the
number of edges (counted with multiplicity) incident to v.
We call the order graph �� (�) non-branching if deg(v) ≤ 2
for all vertices v of �� (�).

Lemma 1 For a non-conflicting realization �′ of an assem-
bly � , �� (��) is non-branching.

Proof Each vertex v in �� (��) represents a scaffold, which
has two extremities and thus can participate in at most two non-
conflicting assembly points in �′ . Hence, deg(v) ≤ 2 . ◻

We notice that any non-conflicting realization �′ of an
assembly � provides orientation for all scaffolds involved
in each connected component of ���(��) (as well as of
�� (��) and ��� (��)) relatively to each other.

Theorem 1 An assembly � has at least one non-conflicting
realization (i.e., |NR (�)| ≥ 1) if and only if � is non-con-
flicting or semi-conflicting and �� (�) is non-branching.

Proof Suppose that |NR (�)| ≥ 1 and pick any �� ∈ NR (�) .
Then for every pair of assembly points p, q ∈ � , their reali-
zations in �′ are non-conflicting, implying that p and q are
either non-conflicting or semi-conflicting. Hence, � is non-
conflicting or semi-conflicting. Since � is a proper assem-
bly, we have �� (�) = �� (��) . Taking into the account
that �′ is non-conflicting, Lemma 1 implies that �� (�) is
non-branching.

Vice versa, suppose that � is non-conflicting or semi-
conflicting and �� (�) is non-branching. To prove that
|NR (�)| ≥ 1 , we will orient unoriented scaffolds in all
assembly points in � without creating conflicts. Every scaf-
fold s corresponds to a vertex v in �� (�) of degree at most
2. If deg(v) = 1 , then s participates in one assembly point p,
and s is either already oriented in p or we pick an arbitrary

Fig. 1 For an assembly A = {(s1, ��⃗s2), (��⃗s1, ��⃗s2), (��⃗s2, ��⃗s3), (��⃗s3, s4), (�⃖�s1, �⃖�s4), (��⃗s5, s6) ,
(�⃖�s6, ��⃗s7), (��⃗s6, s7)} , (a) the scaffold assembly graph ���(A) , where semi-
oriented assembly points, oriented assembly points, and scaffolds are

represented by dashed red edges, solid red edges, and directed black
edges, respectively. (b) The order graph �� (A) . (c) The contracted
order graph ��� (A)

3 It can be easily seen that a realization of � may exist only if � is
proper.

 SN Computer Science (2022) 3:308308 Page 4 of 14

SN Computer Science

orientation for it. If deg(v) = 2 , then s participates in two
overlapping assembly points p and q. If s is not oriented in
either of p, q, we pick an arbitrary orientation for it consist-
ently across p and q (i.e., keeping them non-conflicting). If
s is oriented in exactly one assembly point, we orient the
unoriented instance of s consistently with its orientation in
the other assembly point. Since conflicts may appear only
between assembly points that share a vertex in �� (�) , the
constructed orientations produce no new conflicts. On other
hand, the scaffolds that are already oriented in � impose
no conflicts since � is non-conflicting or semi-conflicting.
Hence, the resulting oriented assembly points form a non-
conflicting assembly from NR (�) , i.e., |NR (�)| ≥ 1 .
 ◻

We remark that if �� (�) is branching, the assembly �
may be semi-conflicting but have |NR (�)| = 0 . An example
is given by � = {(s1, si+1)}

k
i=1

 with k > 2 , which contains no
conflicting assembly points (in fact, all assembly points in �
are semi-conflicting), but |NR (�)| = 0.

From now on, we will always assume that assembly � has
at least one non-conflicting realization (i.e., |NR (�)| ≥ 1).
For an assembly � , the orientation of some scaffolds from
�(�) does not depend on the choice of a realization from
NR (�) (we denote the set of such scaffolds by �o(�)), while
the orientation of other scaffolds within some assembly
points varies across realizations from NR (�) (we denote
the set of such scaffolds by �u(�)). Trivially, we have
�u(�) ∪ �o(�) = �(�) . It can be easily seen that the set
�u(�) is formed by the scaffolds for which the orientation
in the proof of Theorem 1 was chosen arbitrarily, implying
the following statement.

Corollary 1 For a given assembly � with |NR (�)| ≥ 1 , we
have |NR (�)| = 2|�u(�)|.

We label scaffolds from �(�) with integers
{1,… , |�(�)|} . From computational perspective, we assume
that we can get a scaffold from its name and vice verca in
O(1) time.

Lemma 2 Testing whether a given assembly � has a non-
conflicting realization can be done in O(k) time, where
k = |�(�)|.

Proof To test whether � has a non-conflicting realization,
we first create a hash table indexed by �(�) that for every
scaffold s ∈ �(�) will contain a list of assembly points that
involve s. We iterate over all assembly points p ∈ � and
add p to two lists in the hash table indexed by the scaffolds
participating in p. If the length of some list becomes greater
than 2, then � is conflicting and we stop. If we success-
fully complete the iterations, then every scaffold from �(�)

participates in at most two assembly points in � , and thus
we made O(k) steps of O(1) time each.

Next, for every scaffold whose list in the hash table has
length 2, we check whether the corresponding assembly
points are either non-conflicting or semi-conflicting. If not,
then � is conflicting and we stop. If the check completes
successfully, then � has a non-conflicting realization by
Theorem 1. The check takes O(k) steps of O(1) time each,
and thus the total running time comes to O(k) . ◻

A pseudocode for the test described in the proof of
Lemma 2 is given in Algorithm 3 in the Appendix.

Lemma 3 For a given assembly � with |NR (�)| ≥ 1 , the
set �u(�) can be computed in O(k) time, where k = |�(�)|.

Proof We will construct the set S = �u(�) iteratively. Ini-
tially we let S = � . Following the algorithm described in the
proof for Lemma 2, we construct a hash table that for every
scaffold i ∈ �(�) contains a list of assembly points that
involve i (which takes O(k) time). Then for every i ∈ �(�) ,
we check if either of the corresponding assembly points pro-
vides an orientation for i; if not, we add i to S. This check
for each scaffolds takes O(1) time, bringing the total running
time to O(k). ◻

A pseudocode for the computation of �u(�) described
in the proof of Lemma 3 is given in Algorithm 4 in the
Appendix.

Problem Formulations

For a non-conflicting assembly � composed only of ori-
ented assembly points, an assembly point p on scaffolds
si, sj ∈ �(�) has a consistent orientation with � if for some
p� ∈ R (p) there exists a path connecting edges si and sj in
���(�) such that direction of edges si and sj at the path ends
is consistent with p′ (e.g., in Fig. 1a, the assembly point
(��⃗s1, ��⃗s3) has a consistent orientation with the assembly �).
Furthermore, for a non-conflicting assembly � that has at
least one non-conflicting realization, an assembly point p
has a consistent orientation with � if p′ has a consistent
orientation with �′ for some p� ∈ R (p) and �� ∈ NR (�).

We formulate the orientation of ordered scaffolds prob-
lem as follows.

Orientation of Ordered Scaffolds (OOS) Let � be an assem-
bly and � be a set4 of assembly points such that |NR (�)| ≥ 1
and �(�) ⊂ �(�) . Find a non-conflicting realization

4 More generally, � may be a multiset whose elements have real pos-
itive multiplicities (weights).

SN Computer Science (2022) 3:308 Page 5 of 14 308

SN Computer Science

�
� ∈ NR (�) that maximizes the number (total weight) of

assembly points from � having consistent orientations with
�

′.

From the biological perspective, the OOS can be viewed
as a formalization of the case where (sub)orders of scaf-
folds have been determined (which defines �), while there
exists some information (possibly coming from different
sources and conflicting) about their relative orientation
(which defines �). The OOS asks to orient unoriented
scaffolds in the given scaffold orders in a way that is most
consistent with the given orientation information.

We also remark that the OOS can be viewed as a fine-
grained variant of the scaffold orientation problem studied
in [10]. In our terminology, the latter problem concerns an
artificial circular genome � formed by the given scaffolds
in an arbitrary order (so that there is a path connecting any
scaffold or its reverse complement to any other scaffold
in �� (�)), and � formed by unordered pairs of scaffolds
supplemented with the binary information on whether each
such pair come from the same or different strands of the
genome. In contrast, in the OOS, the assembly � is given
and �� (�) does not have to be connected or non-branch-
ing, while � may provide a pair of scaffolds with up to four
options (as in (1)) of their relative orientation.

At the latest stages of genome assembly, the constructed
scaffolds are usually of significant length. If (sub)orders
for these scaffolds are known, it is rather rare to have ori-
entation-imposing information that would involve non-
neighboring scaffolds. Or, more generally, it is rather rare
to have orientation imposing information for one scaffold
with respect to more than two other scaffolds. This inspires
us to consider a special case of the OOS problem:

Non‑branching Orientation of Ordered Scaffolds (NOOS)
Given an OOS instance (�,�) such that the graph ��� (�)
is non-branching. Find �� ∈ NR (�) that maximizes the
number of assembly points from � having consistent ori-
entations with �′.

��‑Hardness of the OOS

We consider two important partial cases of the OOS,
where the assembly � represents a linear or circular
genome up to unknown orientations of the scaffolds. In
these cases, the graph �� (�) forms a collection of paths
or cycles, respectively. Below we prove that the OOS in
both these cases is ��-hard.

Lemma 4 The OOS for linear genomes is ��-hard.

Proof We will construct a polynomial-time reduction from
the MAX 2-DNF problem, which is known to be ��-hard
[8, 16]. An instance of MAX 2-DNF consists of clauses
C = {ci}

k
i=1

 each formed by either a single variable or a con-
junction of two variables from X = {xi}

n
i=1

 , each of which
may or may not be negated. The goal is to determine the
maximum number of clauses that can be simultaneously
satisfied by a 0/1 assignment to the variables from X. For
a given instance I = (C,X) of MAX 2-DNF , we construct
an assembly

Then we construct a set of assembly points � from the
clauses in C as follows. For each conjunction c ∈ C of vari-
ables xi and xj (i < j), we add an oriented assembly point on
scaffolds xi, xj to � with the orientation depending on the
presence of negation of these variables in c (e.g., a conjunc-
tion xi ∧ xj is translated into an assembly point (��⃗xi, �⃖�xj)). For
each clause c ∈ C with a single variable x, we add an assem-
bly point (�⃗0, �⃗x) or (�⃗0, �⃖x) depending whether x is negated in c.

It is easy to see that the constructed assembly � is semi-
conflicting and �� (�) is a path, and thus by Theorem 1 �
has a non-conflicting realization. Hence, � and � form an
instance of the OOS for linear genomes. A solution �′ to this
OOS provides an orientation for each x ∈ � that maximizes
the number of assembly points from � having consistent
orientations with �′ . A solution to I is obtained from �′
as the assignment of 0 or 1 to each variable x depending
on whether the orientation of scaffold x in �′ is forward or
reverse. Indeed, since each assembly point in � having con-
sistent orientation with �′ corresponds to a truthful clause
in I, the number of such clauses is maximized.

Since the OOS instance and the solution to I can be com-
puted in polynomial time, the above construction represents
a polynomial-time reduction from the MAX 2-DNF to the
OOS for linear genomes. ◻

Lemma 5 The OOS for circular genomes is ��-hard.

Proof We construct a polynomial-time reduction from the
MAX-CUT problem, which is known to be ��-hard [18, 19].
An instance I of MAX-CUT for a given a graph (V, E) asks
to partition the set of vertices V = {vi}

n
i=1

 into two disjoint
subsets V1 and V2 such that the number of edges {u, v} ∈ E
with u ∈ V1 and v ∈ V2 is maximized. For a given instance I
of MAX-CUT problem, we define the assembly

and the set of assembly points

� = {(0, x1)} ∪ {(xi, xi+1) ∶ i = 1, 2,… , n − 1}.

� =
{
(vi, vi+1) ∶ i = 1, 2,… , n − 1

}
∪
{
(v1, vn)

}

� =
{
(��⃗vi, �⃖�vj) ∶ {vi, vj} ∈ E

}
.

 SN Computer Science (2022) 3:308308 Page 6 of 14

SN Computer Science

It is easy to see that � has a non-conflicting realization and
�� (�) is a cycle, i.e., � and � form an instance of the OOS
for circular genomes. A solution �′ to this OOS instance pro-
vides orientations for all elements �(�) = V that maximizes
the number of assembly points from � having consistent ori-
entations with �′ . A solution to I is obtained as the partition
of V into two disjoint subsets, depending on the orientation
of scaffolds in �′ (forward vs reverse). Indeed, since each
assembly point in � having a consistent orientation with �′
corresponds to an edge from E whose endpoints belong to
distinct subsets in the partition, the number of such edges
is maximized.

It is easy to see that the OOS instance and the solution to
I can be computed in polynomial time, thus we constructed a
polynomial-time reduction from the MAX-CUT to the OOS
for circular genomes. ◻

As a trivial consequence of Lemmas 4 and 5, we obtain
that the general OOS problem is ��-hard.

Theorem 2 The OOS is ��-hard.

Properties of the OOS

In this subsection, we formulate and prove some important
properties of the OOS.

Connected Components of �� (�)

Below we show that an OOS instance can also be solved
independently for each connected component of �� (�) . We
start with the following lemma that trivially follows from the
definition of consistent orientation.

Lemma 6 Let � be an assembly such that |NR (�)| ≥ 1 . An
assembly point on scaffolds si, sj ∈ �(�) may have a con-
sistent orientation with � only if both si and sj belong to the
same connected component in �� (�).

Theorem 3 Let (�,�) be an OOS instance, and � = �1 ∪⋯ ∪ �k

be the partition such that �� (�1),… , �� (�k) represent the
connected components of �� (�) . For each i = 1, 2,… , k ,
def ine �i = {p ∈ � ∶ sn (p, 1), sn (p, 2) ∈ �(�i)} and
let �′

i
 be a solution to the OOS instance (�i,�i) . Then

�
�
1
∪⋯ ∪�

�
k
 is a solution to the OOS instance (�,�).

Proof Lemma 6 implies that we can discard from � all
assembly points that are formed by scaffolds from different
connected components in �� (�) . Hence, we may assume
that � = �1 ∪⋯ ∪�k}.

Lemma 6 further implies that an assembly point from
�i may have a consistent orientation with �j only if i = j .
Therefore, any solution to the OOS instance (�,�) is formed
by the union of solutions to the OOS instances (�i,�i) .
 ◻

Theorem 3 allows us focus on instances of the OOS,
where �� (�) is connected and thus forms a path or a cycle
(by Theorem 1).

Connected Components of �� (�)

Below we show that an OOS instance can also be solved
independently for each connected component of �� (�) . We
need the following lemma that trivially holds.

Lemma 7 Let � be an assembly such that |NR (�)| ≥ 1 , and
si, sj be scaffolds from the same connected component C in
�� (�) . Then an unoriented assembly point (si, sj) has a con-
sistent orientation with � . Furthermore, if C is a cycle, then
any semi-oriented assembly point on si, sj has a consistent
orientation with �.

By Lemma 7, we can assume that � does not contain any
unoriented assembly points (i.e., � = �o ∪�s). Further-
more, if �� (�) is a cycle, we can assume that � = �o (i.e.,
� consists of oriented assembly points only). We consider
two cases depending on whether �� (�) forms a path or a
cycle.

�� (�) is a path. Suppose that �� (�) = (s1, s2,… , sn)
is a path and � = �o ∪�s . Let C be the set of connected
components of �� (�).

Consider any C ∈ C . Let (sj1 ,… , sjm) be a vertex sequence
of C such that j1 < j2 < ⋯ < jm , where m is the number of
vertices in C. We define an assembly �C such that �� (�C)
is the path (x, sj1 ,… , sjm , y) , where x and y are artificial ver-
tices, and the assembly points in �C (corresponding to the
edges in �� (�C)) are oriented or semi-oriented as follows.

– The edges {x, sj1} and {sjm , y} correspond to semi-oriented
assembly points (�⃗x, sj1) and (sjm , �⃗y) , respectively;

– For each l ∈ {1,… ,m − 1} , orientation of the assembly
point corresponding to the edge {sjl , sjl+1} is imposed from
the orientations of sjl and sjl+1 in the assembly points in �
corresponding to the edges {sjl , sjl+1} and {sjl+1−1, sjl+1} at
the ends of a path connecting sjl and sjl+1 in ���(�) . For
example, assembly points (s⃗jl , s⃗jl+1) and (s⃗jl+1−1, s⃖jl+1) in �
impose the assembly point (s⃗jl , s⃖jl+1) in �C.

We further define �C as a set formed by the assembly
points from C and the following assembly points. For each
semi-oriented assembly point p ∈ � formed by scaffolds si
and sj (i < j), �C contains:

SN Computer Science (2022) 3:308 Page 7 of 14 308

SN Computer Science

– an oriented point p′ formed by si and �⃗y whenever si is
oriented in p and belongs to C (and its orientation in p′
is inherited from p);

– an oriented point p′′ formed by �⃗x and sj whenever sj is
oriented in p and belongs to C (and its orientation in p′′
is inherited from p) (Fig. 2).

Now, for each C ∈ C , we assume that �C and �C are
defined as above and let �′

C
 be a solution to the OOS

instance (�C,�C) . We construct a non-conflicting realiza-
tion �� ∈ NR (�) as follows:

– for a scaffold s present in some �′
C
 , �′ inherits the orien-

tation of s from �′
C
;

– for a scaffold s not present in any �′
C
 , if s is oriented in

any assembly point of � , then �′ inherits that orientation
of s; otherwise s is arbitrarily oriented in �′.

The following theorem shows that constructed �′ is a
solution to the OOS instance (�,�).

Theorem 4 Let (�,�) be an OOS instance, and �� ∈ NR (�)
be defined as above. Then �′ is a solution to the OOS
instance (�,�).

Proof The graph ���(��) can be viewed as an ordered
sequence of directed scaffold edges (interweaved with

undirected edges encoding assembly points). Then each
���(��

i
) , with the exception of scaffold edges xi and yi , cor-

responds to a subsequence of this sequence.
Each oriented assembly point p ∈ � is formed by scaf-

folds u, v from Ci for some i ∈ {1,… , k} . Then p ∈ � ∩�i
and there exist a unique path in ���(��

i
) and a unique path

in ���(��) having the same directed edges u, v at the ends.
Hence, if p has a consistent orientation with one of assem-
blies �′ or �′

i
 , then it has a consistent orientation with the

other.
Each semi-oriented assembly point p ∈ � formed by scaf-

fold u, v corresponds to an oriented assembly point q ∈ �i
(for some i) formed by u and yi (in which case u ∈ Ci and u
is oriented in p), or by xi and v (in which case v ∈ Ci and v
is oriented in p). Without loss of generality, we assume the
former case. Then there exists a unique path Q in ���(��

i
)

connecting directed edges u and yi , and there exists a unique
path P in ���(��) connecting directed edges u and v, where
the orientation of u is the same in the two paths. By con-
struction, the orientation of yi in q matches that in Q. Hence,
q has a consistent orientation with �′

i
 if and only if the ori-

entation of u in q matches that in Q, which happens if and
only if the orientation of u in p matches its orientation in
P, i.e., p has a consistent orientation with �′ . We proved
that the number of assembly points from � having consist-
ent orientation with �′ equals the total number of assem-
bly points from �i having consistent orientation with �′

i
 for

Fig. 2 Decomposition of an OOS problem instance (�,�) based
on the connected components of �� (�o) . (a) The superposition of
�� (�) (red edges) and �� (�) (green edges), where arrows (if pre-
sent) at the ends of green edges encode the orientation of the scaf-
folds in the corresponding assembly points. (b) The superposition

of five graphs �� (�i) (red edges) and three graphs �� (�j) (green
edges) constructed based on the connected components of �� (�o) .
Unless �� (�i) is formed by an isolated vertex, it contains artificial
vertices xi and yi , which coincide if �� (�i) is a cycle

 SN Computer Science (2022) 3:308308 Page 8 of 14

SN Computer Science

all i = 1, 2,… , k . It remains to notice that this number is
maximum possible, i.e., �′ is indeed a solution to the OOS
instance (�,�) (if it is not, then the sets �i constructed from
� being an actual solution to the OOS will give a better solu-
tion to at least one of the subproblems). ◻

�� (�) is a cycle. In this case, we can construct sub-
problems based on the connected components of �� (�)
similarly to Case 1, with the following differences. First,
by Lemma 7, we assume that � = �o (discarding all unori-
ented and semi-oriented assembly points from �). Second,
we assume that xi = yi and thus �� (�i) forms a cycle. Theo-
rem 4 still holds in this case.

Articulation Vertices in �� (�)

While Theorem 4 allows us to divide the OOS problems into
subproblems based on the connected components of �� (�) ,
we show below that similar division is possible when �� (�)
is connected but contains an articulation vertex.5

A vertex v in �� (�) (or in ��� (�)) is called oriented
if v ∈ �o(�) . Otherwise, v is called unoriented. Let (�,�)
be an instance of the OOS problem such that both �� (�)
and �� (�) are connected. Let v be an oriented articulation
vertex in �� (�) , defining a partition of �(�) into disjoint
subsets:

where k > 1 and the Vi represent the vertex sets of the con-
nected components resulted from removal of v from �� (�) .
To divide the OOS instance (�,�) into subinstances, we
construct a new OOS instance (�̂, �̂) as follows.

We introduce copies v1,… , vk of v, and construct �̂
from � by replacing a path (u, v, w) in �� (�) with a path
(u, v1, v2,… , vk,w) where all vi inherit the orientation from v.
Then we construct �̂ from � by replacing in each assembly
point p formed by v and u ∈ Vi (for some i ∈ {1, 2,… , k})
with an assembly point formed by vi and u (keeping their
orientations intact).

The OOS instance (�̂, �̂) enables application of Theo-
rem 4. Indeed, by construction, the vertex sets of the
connected components of �� (�̂) are {vi} ∪ Vi , where
i ∈ {1, 2,… , k} . Hence, by Theorem 4 the OOS instance
(�̂, �̂) can solved by dividing into OOS subinstances cor-
responding to the connected components of �� (�̂).

Now, we assume that we have a solution to the OOS
instance (�̂, �̂) . We construct a non-conflicting realization
�

� ∈ NR (�) from a solution to the OOS instance (�̂, �̂) by
replacing every scaffold vi with v.

(2)�(�) = {v} ∪ V1 ∪ V2 ∪⋯ ∪ Vk,

The following theorem shows that the constructed �′ is a
solution to the OOS instance (�,�).

Theorem 5 Let (�,�) be an OOS instance such that both
�� (�) and �� (�) are connected, and �′ be defined as
above. Then �′ is a solution to the OOS instance (�,�).

Proof Let �̂′ be a solution to the OOS instance (�̂, �̂) , and �′
be obtained from �̂′ by replacing every vi with v. We remark
that � can be obtained from �̂ by similar replacement.

This establishes an one-to-one correspondence between
the assembly points in �̂′ and �′ , as well as between the
assembly points in �̂′ and �′ . It remains to show that con-
sistent orientations are invariant under this correspondence.

We remark that ���(��) can be obtained from ���(�̂�) by
replacing a sequence of edges (r1, v1, r2, v2,… , rk, vk, rk+1) ,
where ri are assembly edges, with a sequence of edges
(r1, v, r2) . Therefore, if there exists a path in one graph prov-
ing existence of consistent orientation for some assembly
point, then there exists a corresponding path in the other
graph (having the same orientations of the end edges).
 ◻

Algorithms for the NOOS and the OOS

In this section, by Theorems 3 and 4, we can assume that
both �� (�) and �� (�) are connected.

A Polynomial‑Time Algorithm for NOOS

Theorem 6 The NOOS is in �.

Proof Since ��� (�) is non-branching, we consider two
cases depending on whether it is a path or a cycle.

If ��� (�) is a path, then every vertex in it is an articula-
tion vertex in both ��� (�) and �� (�) . Our algorithm will
process this path in a divide-and-conquer manner. Namely,
for a path of length greater than 2, we pick a vertex v closest
to the path middle. If v is oriented, we proceed as in Theo-
rem 5. If v is unoriented, we fix each of the two possible ori-
entations, proceed as in Theorem 5 to obtain two candidate
solutions, from which we pick one with the larger number
of assembly points with consistent orientations.

A path of length at most 2 can be solved in O(|�|) time
by brute-forcing all possible orientations of the scaffolds in
the path and counting how many assembly points in � get
consistent orientations.

The running time T(l) for recursive part of the algorithm
satisfies the formula:

5 We remind that a vertex is articulation if its removal from the
graph increases the number of connected components.

SN Computer Science (2022) 3:308 Page 9 of 14 308

SN Computer Science

From the Master theorem [9], we conclude that the total run-
ning time for the proposed recursive algorithm is O

(
|�|2

)

(or O
(
|�(�)|2

)
 since ��� (�) is a path).

If ��� (�) is a cycle, we can reduce the correspond-
ing NOOS instance to the case of a path as follows. First,
we pick a random vertex w in ��� (�) and replace it with
new vertices w1 and w2 such that the edges {u,w} , {w, v} in
��� (�) are replaced with {u,w1} , {w2, v} . Then we solve
the NOOS for the resulting path one or two times (depending
on whether w ∈ �o(�)): once for each of possible orienta-
tions of scaffold w (inherited by w1 and w2), and then select
the orientation for w that produces the largest number of
assembly points having consistent orientations with the input
assembly. ◻

A pseudocode for the algorithm described in the proof of
Theorem 6 is given in Algorithm 1 in the Appendix.

An Exact Algorithm for the OOS

Below we show how to solve OOS instance (�,�) in general
case, i.e., when ��� (�) is neither a path or a cycle.

First we assume that there are no articulation vertices
in the �� (�) , while the case when articulation vertices
are present is addressed in the next section. Let BV (�) be
the set of unoriented branching vertices (i.e., unoriented
vertices of degree greater than 2) in ��� (�) . We define
a non-branching path as a path for which the endpoints
are in BV (�) , and all internal vertices have degree 2 (e.g.,
{s18, s23, s24, s25} is a non-branching path in Fig. 3a). Simi-
larly, we define a non-branching cycle as a cycle in which
all vertices have degree 2, except for one vertex (called end-
point) that belongs to BV (�) and thus has degree greater
than 2 (e.g., {s7, s4, s3, s1, s2, s6, s5, s7} is a non-branching
cycle in Fig. 3a).

Each OOS instance induced by a non-branching path
and a non-branching cycle in ��� (�) represents an NOOS
instance, and thus can be solved in polynomial time. We
iterate over all possible orientations for the endpoints of
the underlying paths/cycles in the corresponding NOOS
instances and solve them. A solution to the OOS instance
is obtained by iterating over all possible orientations of the
scaffolds represented by branching vertices in ��� (�)
(i.e., BV (�)) and merging the solutions to the correspond-
ing NOOS instances, and picking the best result. Then, the
following lemma trivially holds:

Lemma 8 The running time for the proposed algorithm is
bounded by O

(
2|BV (�)|

⋅ |�(�)|2
)
.

T(l) =

{
4 ⋅ T

(
l

2

)
+O(1), if |�| > 2;

O(|�|), if |�| ≤ 2.

An ��� Algorithm for the OOS

Thanks to Theorem 5, we can partition a given OOS instance
(�,�) into subinstances using the oriented articulation ver-
tices. By Theorem 6, we also know how to efficiently orient
scaffolds that correspond to unoriented articulation vertices
of degree 2. In this section, we address the remaining type of
articulation vertices, namely unoriented articulation vertices
of degree at least 3.

Let AV (�) ⊆ BV (�) be the set of unoriented articulation
vertices of degree at least 3. A straightforward solution to
this problem is to iterate over all possible 2|AV(�)| orienta-
tions of the scaffolds in AV (�) , and then use Theorem 5 to
partition the OOS instance (�,�) into subinstances. Each
such subinstance, in turn, can be solved using Theorem 6
or Lemma 8. Below we show how one can orient the scaf-
folds in AV (�) more efficiently based on the dependencies
between the connected subgraphs flanked by the correspond-
ing vertices.

The set AV (�) defines a set C (�) of connected subgraphs
(components) of ��� (�) by breaking it at the vertices from
AV (�) , introducing copies of each articulation vertex in the
resulting components (Fig. 3a). We distinguish between two
types of components in C (�):

– path bridges forming the set PB (�) ⊆ C (�) , i.e., com-
ponents that do not contain cycles (e.g., pb1 in Fig. 1a);

– complex components forming the set CC (�) ⊆ C (�) ,
i.e., components that contain at least one cycle (e.g., cc2
in Fig. 3a).

Trivially we have CC (�) ∪ PB (�) = C (�) . We denote by
V(c) the set of vertices in a component c ∈ C (�) . Now, we
show how to solve the OOS instances induced by elements
of C (�):

Case c ∈ PB (�) The OOS instance induced by c can be
solved as follows. We iterate over all possible orientations of
the unoriented articulation vertices in c (i.e., we need solve
the OOS instance induced by c at most 4 times). For each
fixed orientation, since c is non-branching, the OOS instance
induced by c is an instance of NOOS and can be solved as
in Theorem 6.

Case c ∈ CC (�) The OOS instance induced by c can be
solved as follows. We iterate over all possible orientations
of the vertices in AV (�) ∩ V(c) . For each fixed orientation,
a solution to the OOS instance induced by c can be obtained
as in Theorem 8 by iterating over all possible orientations of
the scaffolds represented by the unoriented branching verti-
ces in c (i.e., (BV (�) ⧵ AV (�)) ∩ V(c)).

Now, we outline how we iterate over the orientations
of scaffolds in AV (�) . Our algorithm constructs a sub-
problem tree ST (�) = (V ,E) (Fig. 3b), where V = C (�) is
the set of vertices corresponding to the set of components

 SN Computer Science (2022) 3:308308 Page 10 of 14

SN Computer Science

induced by AV (�) , and E is the set of edges constructed
iteratively. We start with E = � and populate E as follows:
for each vertex v ∈ V and all vertices u ∈ V , add an edge
{v, u} if the following two conditions hold:

1. v and u share an articulation vertex in ��� (�) (e.g., cc2
and pb1 in Fig. 1a); and

2. u is not an endpoint of any edge in E.

Fig. 3 (a) Contracted ordered graph ��� (�) of a set of assembly
points � . Branching articulation vertices AV (�) = {s7, s10, s12, s14, s21, s40}
are shown as filled with gray. Branching vertices that are not
articulation vertices BV (�) ⧵ AV (�) = {s33, s26, s27} are shown

as filled with line pattern. Yellow areas highlight elements of
CC (�) = {cc1, cc2, cc3, cc4, cc5} . Blue areas highlights elements of
PB (�) = {pb1, pb2, pb3, pb4} . (b) The subproblem tree ST (�)

SN Computer Science (2022) 3:308 Page 11 of 14 308

SN Computer Science

A subproblem tree ST (�) allows us to solve the original
OOS instance in the bottom-up fashion. Indeed, the OOS
instance corresponding to any disjoint subtrees of ST (�)
can be solved independently. We start with solving OOS
instances that correspond to the leaves, producing solutions
corresponding to different orientations of the scaffolds cor-
responding to articulation vertices. When the OOS instances
for all children of an internal vertex c in ST (�) are solved,
we iterate over the orientations for the scaffolds that corre-
spond to articulation vertices in c (i.e., AV (�) ∩ V(c)) and
merge the OOS solutions for c with the corresponding solu-
tions for its children. Eventually, we obtain the OOS solution
for the root of ST (�) and thus for the original OOS problem.

The following theorem states the running time of the pro-
posed algorithm.

Theorem 7 The running time for the proposed algorithm for
solving OOS instance (�,�) is bounded by

where � = maxc∈CC (�) |BV (�) ∩ V(c)|.

Proof The construction time of ���(�) , AV (�) , BV (�) ,
�� (�) , ��� (�) , ST (�) , and C (�) is bounded by
O
(
|�(�)|2

)
.

The OOS instances induced by each non-branching path
or cycle in ��� (�) are solved at most 4 times for different
orientations of the endpoints. By Theorem 6, the total run-
ning time for processing all non-branching paths/cycles in
��� (�) is bounded by O

(
|�(�)|2

)
.

By Lemma 8, each OOS instance induced by a complex
component c ∈ CC (�) can be solved in O

(
2m ⋅ |�(�)|2

)

time, where m = |(BV (�) ⧵ AV (�)) ∩ V(c)| . The running
time of the bottom-up algorithm is bounded by |C (�)| (i.e.,
the number of vertices in ST (�)) times the running time of
the merging procedure bounded by O

(
2|AV (�)∩V(c)|

⋅ deg(c)
)
 ,

where deg(c) is the degree of c in ST (�).
T h u s , t h e p r o p o s e d a l g o r i t h m c a n b e

b o u n d e d b y O
(
2� ⋅ |�(�)|2 ⋅ |CC (�)|

)
 , w h e r e

� = maxc∈CC (�) |BV (�) ∩ V(c)| . ◻

The proposed algorithm is an ��� algorithm. Indeed,
instead of finding the best orientation by iterating over all
possible orientations of the scaffolds in �u(�) , we iterate
over all possible orientations of the scaffolds that corre-
spond to branching vertices in ��� (�) . Furthermore, we
reduced running time of an ��� algorithm by partitioning
the problem into connected components and solving them
independently.

(3)O
(
2� ⋅ |�(�)|2 ⋅ |CC (�)|

)
,

The exponential term in (3) accounts for the number
of articulation vertices in the complex components of
��� (�) . For real data, the exponent can become large
only if many scaffolds have relative orientation with
respect to three or more other scaffolds, which we expect
to be a rare situation, especially when the scaffolds are
long (e.g., produced by scaffolders combining paired-end
and long-read data, a popular approach for the genome
assembly).

Conclusions

In the present study, we posed the orientation of ordered
scaffolds (OOS) problem as an optimization problem
based on given weighted orientations of scaffolds and their
pairs. We further addressed it within the earlier introduced
CAMSA framework [2], taking advantage of the simple yet
powerful concept of assembly points describing (semi-/
un-) oriented adjacencies between scaffolds. This approach
allows one to uniformly represent both orders of oriented
and/or unoriented scaffolds and orientation-imposing data.

We proved that the OOS problem is ��-hard when the
given scaffold order represents a linear or circular genome.
We also described a polynomial-time algorithm for the
special case of non-branching OOS (NOOS), where the
orientation of each scaffold is imposed relatively to at most
two other scaffolds. Our algorithm for the NOOS problem
and Theorems 3, 4, and 5 further enabled us to develop an
��� algorithm for the general OOS problem. The proposed
algorithms are implemented in the CAMSA software ver-
sion 2 (https:// github. com/ compb iol/ CAMSA).

Appendix: Pseudocodes

In the algorithms below we do not explicitly describe the
function OrConsCount, which takes 4 arguments:

1. a subgraph c from ��� (�) with 1 or 2 vertices;
2. a hash table so with scaffolds as keys and their orienta-

tions as values;
3. a set of orientation imposing assembly points �;
4. an assembly �

and counts the assembly points from � that have consist-
ent orientation with � in the case where scaffold(s) cor-
responding to vertices from c were to have orientation
from so in � . With simple hash-table based preprocess-
ing of � and � this function runs in O(n) time, where n
is a number of assembly points in � involving scaffolds

https://github.com/compbiol/CAMSA

 SN Computer Science (2022) 3:308308 Page 12 of 14

SN Computer Science

that correspond to vertices in c. So, total running time
for all invocations of this function will be O(|�|) (i.e.,
O
(
|�(�)|2

)
).

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

SN Computer Science (2022) 3:308 Page 13 of 14 308

SN Computer Science

References

 1. Aganezov S, Alekseyev MA. In: Bourgeois A, Skums P, Wan
X, Zelikovsky A, editors. Multi-genome scaffold co-assembly
based on the analysis of gene orders and genomic repeats, vol.
9683. Cham: Springer; 2016. pp. 237–49. https:// doi. org/ 10.
1007/ 978-3- 319- 38782-6_ 20.

 2. Aganezov SS, Alekseyev MA. CAMSA: a tool for comparative
analysis and merging of scaffold assemblies. BMC Bioinform.
2017;18(15):496. https:// doi. org/ 10. 1186/ s12859- 017- 1919-y.

 3. Anselmetti Y, Berry V, Chauve C, Chateau A, Tannier E, Bérard
S. Ancestral gene synteny reconstruction improves extant spe-
cies scaffolding. BMC Genom. 2015;16(Suppl 10):S11. https://
doi. org/ 10. 1186/ 1471- 2164- 16- S10- S11.

 4. Assour LA, Emrich SJ. Multi-genome synteny for assembly
improvement multi-genome synteny for assembly improvement.
In: Proceedings of 7th international conference on bioinformat-
ics and computational biology, 2015. pp. 193–199

 5. Avdeyev P, Jiang S, Aganezov S, Hu F, Alekseyev MA. Recon-
struction of ancestral genomes in presence of gene gain and
loss. J Comput Biol. 2016;23(3):150–64. https:// doi. org/ 10.
1089/ cmb. 2015. 0160.

 6. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M,
Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski
AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev
MA, Pevzner PA. SPAdes: a new genome assembly algorithm
and its applications to single-cell sequencing. J Comput Biol.
2012;19(5):455–77. https:// doi. org/ 10. 1089/ cmb. 2012. 0021.

 7. Bashir A, Klammer AA, Robins WP, Chin CS, Webster D, Paxi-
nos E, Hsu D, Ashby M, Wang S, Peluso P, Sebra R, Sorenson
J, Bullard J, Yen J, Valdovino M, Mollova E, Luong K, Lin S,
LaMay B, Joshi A, Rowe L, Frace M, Tarr CL, Turnsek M,
Davis BM, Kasarskis A, Mekalanos JJ, Waldor MK, Schadt
EE. A hybrid approach for the automated finishing of bacterial
genomes. Nat Biotechnol. 2012;30(7):701–7. https:// doi. org/ 10.
1038/ nbt. 2288.

 8. Bazgan C, Paschos VT. Differential approximation for opti-
mal satisfiability and related problems. Eur J Oper Res.
2003;147(2):397–404. https:// doi. org/ 10. 1016/ S0377- 2217(02)
00299-0.

 9. Bentley JL, Haken D, Saxe JB. A general method for solv-
ing divide-and-conquer recurrences. ACM SIGACT News.
1980;12(3):36–44. https:// doi. org/ 10. 1145/ 10088 61. 10088 65.

 10. Bodily PM, Fujimoto MS, Snell Q, Ventura D, Clement MJ.
ScaffoldScaffolder: solving contig orientation via bidirected to
directed graph reduction. Bioinformatics. 2015;32(1):17–24.
https:// doi. org/ 10. 1093/ bioin forma tics/ btv548.

 11. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaf-
folding pre-assembled contigs using SSPACE. Bioinformatics.
2011;27(4):578–9. https:// doi. org/ 10. 1093/ bioin forma tics/ btq683.

 12. Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bac-
terial draft genomes using long read sequence information.
BMC Bioinform. 2014;15(1):211. https:// doi. org/ 10. 1186/
1471- 2105- 15- 211.

 13. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shen-
dure J. Chromosome-scale scaffolding of de novo genome
assemblies based on chromatin interactions. Nat Biotechnol.
2013;31(12):1119–25. https:// doi. org/ 10. 1038/ nbt. 2727.

 14. Chen ZZ, Harada Y, Guo F, Wang L. Approximation algorithms
for the scaffolding problem and its generalizations. Theor Com-
put Sci. 2017. https:// doi. org/ 10. 1016/j. tcs. 2017. 03. 042.

 15. Dayarian A, Michael TP, Sengupta AM. SOPRA: scaffolding
algorithm for paired reads via statistical optimization. BMC Bio-
inform. 2010;11:345. https:// doi. org/ 10. 1186/ 1471- 2105- 11- 345.

 16. Escoffier B, Paschos VT. Differential approximation of min sat,
max sat and related problems. Eur J Oper Res. 2007;181(2):620–
33. https:// doi. org/ 10. 1016/j. ejor. 2005. 04. 057.

 17. Gao S, Sung WK, Nagarajan N. Opera: reconstructing optimal
genomic scaffolds with high-throughput paired-end sequences.
J Comput Biol. 2011;18(11):1681–91. https:// doi. org/ 10. 1089/
cmb. 2011. 0170.

 18. Garey MR, Johnson DS. Computers and intractability: a guide
to the theory of NP-completeness, vol. 58. San Francisco: Free-
man; 1979.

 19. Garey MR, Johnson DS, Stockmeyer L. Some simpli-
fied NP-complete graph problems. Theor Comput Sci.
1976;1(3):237–67.

 20. Gritsenko AA, Nijkamp JF, Reinders MJT, de Ridder D. GRASS:
a generic algorithm for scaffolding next-generation sequencing
assemblies. Bioinformatics. 2012;28(11):1429–37. https:// doi. org/
10. 1093/ bioin forma tics/ bts175.

 21. Hunt M, Newbold C, Berriman M, Otto TD. A comprehensive
evaluation of assembly scaffolding tools. Genome Biol. 2014.
https:// doi. org/ 10. 1186/ gb- 2014- 15-3- r42.

 22. Jiao WB, Garcia Accinelli G, Hartwig B, Kiefer C, Baker D, Sev-
ering E, Willing EM, Piednoel M, Woetzel S, Madrid-Herrero E,
Huettel B, Hümann U, Reinhard R, Koch MA, Swan D, Clavijo
B, Coupland G, Schneeberger K. Improving and correcting the
contiguity of long-read genome assemblies of three plant species
using optical mapping and chromosome conformation capture
data. Genome Res. 2017;27(5):116. https:// doi. org/ 10. 1101/ gr.
213652. 116.

 23. Kececioglu JD, Myers EW. Combinatorial algorithms for DNA
sequence assembly. Algorithmica. 1995;13(1–2):7–51. https:// doi.
org/ 10. 1007/ BF011 88580.

 24. Kolmogorov M, Armstrong J, Raney BJ, Streeter I, Dunn M, Yang
F, Odom D, Flicek P, Keane T, Thybert D, Paten B, Pham S.
Chromosome assembly of large and complex genomes using mul-
tiple references. Preprint bioRxiv. 2016. https:// doi. org/ 10. 1101/
088435.

 25. Koren S, Treangen TJ, Pop M. Bambus 2: scaffolding metagen-
omes. Bioinformatics. 2011;27(21):2964–71. https:// doi. org/ 10.
1093/ bioin forma tics/ btr520.

 26. Lam KK, Labutti K, Khalak A, Tse D. FinisherSC: a repeat-aware
tool for upgrading de novo assembly using long reads. Bioinfor-
matics. 2015;31(19):3207–9. https:// doi. org/ 10. 1093/ bioin forma
tics/ btv280.

 27. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, Wang J. SOAPde-
novo2: an empirically improved memory-efficient short-read de
novo assembler. Gigascience. 2012;1(1):18. https:// doi. org/ 10.
1186/ 2047- 217X-1- 18.

 28. Nagarajan N, Read TD, Pop M. Scaffolding and validation of
bacterial genome assemblies using optical restriction maps. Bio-
informatics. 2008;24(10):1229–35. https:// doi. org/ 10. 1093/ bioin
forma tics/ btn102.

 29. Pop M, Kosack DS, Salzberg SL. Hierarchical scaffolding with
Bambus. Genome Res. 2004;14(1):149–59. https:// doi. org/ 10.
1101/ gr. 15362 04.

 30. Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M,
Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW, Haussler
D, Rokhsar DS, Green RE. Chromosome-scale shotgun assembly
using an in vitro method for long-range linkage. Genome Res.
2016;26(3):342–50. https:// doi. org/ 10. 1101/ gr. 193474. 115.

 31. Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C,
Xia L, Froenicke L, Lavelle DO, Truco MJ, Xia R, Zhu S, Xu
C, Xu H, Xu X, Cox K, Korf I, Meyers BC, Michelmore RW.
Genome assembly with in vitro proximity ligation data and whole-
genome triplication in lettuce. Nat Commun. 2017. https:// doi. org/
10. 1038/ ncomm s14953.

https://doi.org/10.1007/978-3-319-38782-6_20
https://doi.org/10.1007/978-3-319-38782-6_20
https://doi.org/10.1186/s12859-017-1919-y
https://doi.org/10.1186/1471-2164-16-S10-S11
https://doi.org/10.1186/1471-2164-16-S10-S11
https://doi.org/10.1089/cmb.2015.0160
https://doi.org/10.1089/cmb.2015.0160
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1038/nbt.2288
https://doi.org/10.1038/nbt.2288
https://doi.org/10.1016/S0377-2217(02)00299-0
https://doi.org/10.1016/S0377-2217(02)00299-0
https://doi.org/10.1145/1008861.1008865
https://doi.org/10.1093/bioinformatics/btv548
https://doi.org/10.1093/bioinformatics/btq683
https://doi.org/10.1186/1471-2105-15-211
https://doi.org/10.1186/1471-2105-15-211
https://doi.org/10.1038/nbt.2727
https://doi.org/10.1016/j.tcs.2017.03.042
https://doi.org/10.1186/1471-2105-11-345
https://doi.org/10.1016/j.ejor.2005.04.057
https://doi.org/10.1089/cmb.2011.0170
https://doi.org/10.1089/cmb.2011.0170
https://doi.org/10.1093/bioinformatics/bts175
https://doi.org/10.1093/bioinformatics/bts175
https://doi.org/10.1186/gb-2014-15-3-r42
https://doi.org/10.1101/gr.213652.116
https://doi.org/10.1101/gr.213652.116
https://doi.org/10.1007/BF01188580
https://doi.org/10.1007/BF01188580
https://doi.org/10.1101/088435
https://doi.org/10.1101/088435
https://doi.org/10.1093/bioinformatics/btr520
https://doi.org/10.1093/bioinformatics/btr520
https://doi.org/10.1093/bioinformatics/btv280
https://doi.org/10.1093/bioinformatics/btv280
https://doi.org/10.1186/2047-217X-1-18
https://doi.org/10.1186/2047-217X-1-18
https://doi.org/10.1093/bioinformatics/btn102
https://doi.org/10.1093/bioinformatics/btn102
https://doi.org/10.1101/gr.1536204
https://doi.org/10.1101/gr.1536204
https://doi.org/10.1101/gr.193474.115
https://doi.org/10.1038/ncomms14953
https://doi.org/10.1038/ncomms14953

 SN Computer Science (2022) 3:308308 Page 14 of 14

SN Computer Science

 32. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol
I. ABySS: a parallel assembler for short read sequence data.
Genome Res. 2009;19(6):1117–23. https:// doi. org/ 10. 1101/ gr.
089532. 108.

 33. Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, Schna-
ble PS, Lyons E, Lu J. ALLMAPS: robust scaffold ordering based
on multiple maps. Genome Biol. 2015;16(1):3. https:// doi. org/ 10.
1186/ s13059- 014- 0573-1.

 34. Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones
SJM, Birol I. LINKS: scalable, alignment-free scaffolding of draft
genomes with long reads. GigaScience. 2015;4(1):35. https:// doi.
org/ 10. 1186/ s13742- 015- 0076-3.

 35. Zimin AV, Smith DR, Sutton G, Yorke JA. Assembly reconcili-
ation. Bioinformatics. 2008;24(1):42–5. https:// doi. org/ 10. 1093/
bioin forma tics/ btm542.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1186/s13059-014-0573-1
https://doi.org/10.1186/s13059-014-0573-1
https://doi.org/10.1186/s13742-015-0076-3
https://doi.org/10.1186/s13742-015-0076-3
https://doi.org/10.1093/bioinformatics/btm542
https://doi.org/10.1093/bioinformatics/btm542

	Orienting Ordered Scaffolds: Complexity and Algorithms
	Abstract
	Introduction
	Background
	Methods
	Assembly Realizations
	Problem Formulations
	-Hardness of the OOS
	Properties of the OOS
	Connected Components of
	Connected Components of
	Articulation Vertices in

	Algorithms for the NOOS and the OOS
	A Polynomial-Time Algorithm for NOOS
	An Exact Algorithm for the OOS
	An Algorithm for the OOS

	Conclusions
	References

