
Vol.:(0123456789)

SN Computer Science (2022) 3: 388
https://doi.org/10.1007/s42979-022-01192-z

SN Computer Science

ORIGINAL RESEARCH

Enhancing and Evaluating the Product Fuzzy DPLL Solver

Ivor Uhliarik1

Received: 10 August 2021 / Accepted: 4 May 2022 / Published online: 21 July 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
In recent years we have seen a number of satisfiability solvers emerge in the world of fuzzy propositional logics. However,
only a few of them can solve product logic problems with the continuous product t-norm. The existing solvers may be
categorized into those based on (1) translations into instances of other systems such as satisfiability modulo theories, (2)
evolutionary algorithms, and (3) fuzzy generalizations of classical-logic procedures, such as hyperresolution or the Davis–
Putnam–Logemann–Loveland (DPLL) procedure. In our previous work we have designed and developed a fuzzy DPLL solver
for Δ-extended product propositional logic. This paper presents the enhancements we have made to the previous iteration
and establishes a set of experiments motivated by existing solutions for comparing the solver among its versions as well as
with other methods. We have conducted the experiments using our solver and two existing solutions. The results show that
our solution excels at small inputs and formulae with certain properties. Eventually, we demonstrate the extensibility of our
solver by devising an ad hoc simplification rule that compacts the search space in a specific scenario.

Keywords Fuzzy logic · Product logic · Automated theorem proving · DPLL · Satisfiability solving

Introduction

The area of automated theorem proving (ATP) in fuzzy log-
ics has been well-developed over the last few decades in
propositional logic (see e.g. Ansótegui et al. [4], Brys at
al. [8], Guller [12, 15, 16], Hähnle [18], Vidal [30, 31]),
description logics [6, 9, 22], or fuzzy answer set program-
ming [2, 21, 29]. However, among the three prominent
(Gödel, Łukasiewicz, and product) logics, only a few of
them pay attention to product logic.

In propositional fuzzy logic, ATP relates to the tasks of
verifying satisfiability (SAT) and validity (tautologicity,
VAL) of formulae. Several papers have proposed approaches
that are unified across the three prominent t-norms [4, 8, 30,
31] and as such may benefit from using the Mostert-Shields
theorem [23] to support all continuous t-norms.

We highlight the work of Vidal who has developed two
such solvers, namely the Nice BL-Logics Solver NiBLoS
[31] and its modal extension mNiBLoS [30]. These solvers
are capable of checking satisfiability, validity, and deduc-
ibility (verifying whether a formula follows from a theory)
of formulae. They are based on translations of inputs into
satisfiability modulo theory (SMT) instances. SMT solvers
are generalizations of SAT solvers with the ability to solve
multitude of problems in various domains using so-called
background theories (e.g., using the background theories
of linear real arithmetic). The NiBLoS solver is based on
one of the first such attempts [3] which introduced the
straightforward encoding of Łukasiewicz and product logic
connectives in SMT by defining the respective fuzzy logic
operations as functions that SMT understands. NiBLoS
also implements such encodings and adds the support for
Gödel logic and any other continuous t-norm-based logic.
Once the input formula is translated, it is fed into an SMT
solver (such as Intel’s Z3 solver [11]) together with the SMT
encoding of the respective logic and the result is interpreted
to find whether a model exists. The mNiBLoS solver is more
advanced than NiBLoS in several ways, the most notable
of which are two: the support for modal fuzzy logic and
the ability to avoid algebraic multiplication of the product
t-norm [30, Sect. 3.1.2]. Both of these solvers have been

This article is part of the topical collection “Computational
Intelligence” guest edited by Kurosh Madani, Kevin Warwick, Juan
Julian Merelo, Thomas Bäck and Anna Kononova.

 * Ivor Uhliarik
 ivor.uhliarik@uniba.sk

1 Department of Applied Informatics, Comenius University,
Mlynská dolina, 842 48 Bratislava, Slovakia

http://orcid.org/0000-0002-0495-5467
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01192-z&domain=pdf

 SN Computer Science (2022) 3: 388388 Page 2 of 23

SN Computer Science

validated, empirically tested, and have implementations
available to the public.

Another group of approaches to solving the SAT prob-
lem in propositional logic includes the work of Guller on
the hyperresolution principle [13, 14, 16] and the fuzzy
generalization of the Davis–Putnam–Logemann–Loveland
(DPLL) procedure [12, 15]. The papers prove the soundness
and completeness of the approaches and provide a founda-
tion for developing a solver. Using these methods, such a
solver would not have to rely on the translation into other
systems and the existence of other solvers.

In our work we focus on SAT solving in product fuzzy
logic based on the fuzzy generalization of the DPLL pro-
cedure [12], which allows us to develop a self-contained
and transparent solver. The specialization on product logic
allows us to easily extend the algorithm with simplifica-
tion rules. Moreover, we choose to work with product logic
extended with the Monteiro-Baaz Δ connective (Π

Δ
), moti-

vated by the embeddability of Łukasiewicz and Δ-extended
Gödel logics within Π

Δ
 , which allow us to develop a uniform

solver for all three prominent fuzzy logics in the future.
This paper is an extension of our previous work [28]

where we have proposed a deterministic algorithm to solve
SAT and VAL for propositional formulae in Π

Δ
 and provided

details about our working implementation. In this paper we
(1) introduce enhancements of the algorithm and describe
the improvements made in our implementation, (2) experi-
mentally evaluate its performance and compare the current
version with the previous state of our work, and most notably
(3) perform experiments for comparative testing of our solu-
tion, analyze the results, and compare our solution with the
NiBLoS and mNiBLoS solvers. Moreover, we have added a
hypothetical motivational example and provided examples
to many concepts and notions to make them more intuitive.

In the following sections we first recall the preliminary
notions and the fuzzy DPLL procedure (“Preliminaries”
section) and demonstrate a possible application of product
propositional logic SAT solving on a hypothetical real-
world example (“Motivational Example” section). Then,
we describe the algorithms used by our solver (“Algorithm”
section), describe our implementation (“Implementation”
section), and define the experiments and report the results
of comparison (“Experimental Results” section). Finally, we
conclude the paper (“Conclusion and Future Work” section).

Preliminaries

This section introduces the preliminary notions used
throughout the rest of the paper. First, we define the Δ
-extended product propositional logic. Then, we discuss
the order clausal form of product propositional formulae.
Finally, we outline the product fuzzy DPLL procedure.

Product Propositional Logic

The target fuzzy logic of this work is the product proposi-
tional logic Π

Δ
 extended with the Monteiro-Baaz Δ connec-

tive and the connectives ≖ , ≺ . The logic is interpreted by
the product algebra and the related operators ≖≖≖ , ≺≺≺ , and ΔΔΔ:

The syntactical connectives and associated semantic opera-
tors of Π

Δ
 are listed in Table 1 with the decreasing prec-

edence: (¬ , Δ , & , ≖ , ≺ , ∧ , ∨ , → , ↔).
The operations are defined for the operands x, y ∈ [0, 1]

with the result in [0, 1] as follows:

Next, the operators ∨∨∨ , ∧∧∧ are defined as the supremum and
infimum operator on [0, 1], respectively; ⋅ as the algebraic
product; the equivalence1 connective in the expression x ↔ y
as x⇒⇒⇒y∧∧∧y⇒⇒⇒x . The algebra’s absorbing and neutral elements
0 and 1 are the interpretations of the truth constant of abso-
lute falsehood and absolute truth.

The residuum operator ⇒⇒⇒ satisfies the residuation prin-
ciple w.r.t. operator ⋅ . For any x ∈ �

�
 , the negation ¬¬¬ satis-

fies the condition ¬¬¬x = x⇒⇒⇒0 , and ΔΔΔ satisfies the condition
ΔΔΔx = x≖≖≖1.

�
�
= ([0, 1],≤,∨∨∨,∧∧∧, ⋅,⇒⇒⇒,¬¬¬,≖≖≖,≺≺≺,ΔΔΔ, 0, 1)

x⇒⇒⇒y =

{
1 if x ≤ y,
y

x
else;

¬¬¬x =

{
1 if x = 0,

0 else;

x≖≖≖y =

{
1 if x = y,

0 else;
x≺≺≺y =

{
1 if x < y,

0 else;

ΔΔΔx =

{
1 if x = 1,

0 else.

Table 1 Connectives and operators of Π
Δ

Connective Operator Name

¬ ¬¬¬ Negation
∧ ∧∧∧ (Weak) conjunction
& ⋅ Strong conjunction
∨ ∨∨∨ Disjunction
→ ⇒⇒⇒ Implication
↔ (none) Equivalence
≖ ≖≖≖ Equality
≺ ≺≺≺ Strict order
Δ ΔΔΔ Delta

1 The equality operator is crisp, i.e., the result is 0 or 1, while equiv-
alence is not. By Guller’s convention [17] we mostly use equality
between atoms and constants as assertions, and equivalence between
more complex formulae, but this is not a universal rule; see Ex. 19.

SN Computer Science (2022) 3: 388 Page 3 of 23 388

SN Computer Science

Definition 1 [12] Let PropAtom be the set of all proposi-
tional atoms. Let OrdPropForm be the set of all order prop-
ositional formulae constructed from PropAtom , the truth
constants 0 , 1 , and the logical connectives of Π

Δ
 . An order

theory is any subset of OrdPropForm.

Definition 2 [12] Let a mapping V ∶ PropAtom ⟶ [0, 1]
be the valuation of propositional atoms such that V(0) = 0
and V(1) = 1 . For any formula � ∈ OrdPropForm , the value
‖�‖V ∈ [0, 1] of � in V is defined recursively on the structure
of �:

Definition 3 [12] The formula � ∈ OrdPropForm has the
model V (� is true in the valuation V , V ⊧ 𝜑) iff ‖�‖V = 1 . �
is satisfiable iff it has a model and is valid (a tautology) iff
every valuation is its model. The theory T has the model V ,
or V ⊧ T iff V ⊧ 𝜑 for all formulae � ∈ T . T is satisfiable iff
it has a model and is valid iff every valuation is its model.
For two formulae �,��

∈ OrdPropForm , � is equivalent to
�′ , or � ≡ �′ iff ‖�‖V = ‖��‖V for every valuation V.

Order Clausal Form

The product fuzzy DPLL procedure introduced in sec-
tion “Product DPLL Procedure” expects the input to be in
order clausal form, which is the counterpart of normal forms
in Boolean propositional logic. Below we revisit the defini-
tions of the order clausal form and the associated notions to
be able to refer to them later in the text.

Definition 4 [17] Let power of atom an be the n-th power of
atom a interpreted by the ⋅ operator. Let conjunction Cn be
a non-empty finite set of powers of atoms {ap1

1
,… , a

pn
n } for

n ≥ 1 written as the expression ap1
1
& … & a

pn
n . The atoms

ai , 1 ≤ i ≤ n cannot occur more than once in the expression.
An example of a conjunction is a3 & b4 . Let PropConj des-
ignate the set of all conjunctions.

Definition 5 [17] Let order literal be an expression of the
form �1 ⋄ �2 where ⋄ ∈ {≖,≺} and �i ∈ PropConj ∪ {0, 1} .
An order literal is called equality literal when ⋄ =≖ , and
strict order literal when ⋄ =≺ . Two examples of order liter-
als are a2 & b3 ≺ a and a ≖ 0 . An order literal is pure iff it
does not contain any of the constants 0, 1.

𝜑 ∈ PropAtom, ‖𝜑‖V = V(𝜑);

𝜑 = ¬𝜑1, ‖𝜑‖V = ¬¬¬‖𝜑1‖V;
𝜑 = Δ𝜑1, ‖𝜑‖V = ΔΔΔ‖𝜑1‖V;
𝜑 = 𝜑1 ⋄ 𝜑2, ‖𝜑‖V = ‖𝜑1‖V⋄⋄⋄‖𝜑2‖V, ⋄ ∈ {∧, &,∨,→,≖,≺};

𝜑 = 𝜑1 ↔ 𝜑2, ‖𝜑‖V = (‖𝜑1‖V⇒⇒⇒‖𝜑2‖V) ⋅ (‖𝜑2‖V⇒⇒⇒‖𝜑1‖V).

Definition 6 [17] Let order clause be a set of order literals
{l1,… , ln} for n ≥ 1 written as the expression l1 ∨⋯ ∨ ln .
Let ◻ represent an empty clause ∅ . A unit clause {l} is a
clause containing a single literal l. In contexts where this
does not cause ambiguity, we write the unit clause {l} as l,
omitting the set braces. An example of an order clause is
a2 & b3 ≺ a ∨ a ≖ 1 . An example of a unit clause is a ≺ 1
(more formally {a ≺ 1}).

Definition 7 [17] Let order clausal theory be a set of order
clauses. An order clausal theory is {pure, unit} iff it contains
only {pure, unit} clauses.

The interpolation rules used to perform the translation,
along with a more comprehensive list of definitions, are to
be found in Guller’s work [17, Sect. 3].

Product DPLL Procedure

One of the well-established algorithms to solve the satisfi-
ability problem in classical propositional logic is the DPLL
procedure [10]. The algorithm performs backtracking to find
a model of a given theory or prove its unsatisfiability.

The basic step consists of picking a literal and assigning
to it the value of either true or false if possible. This step
may be thought of as splitting the backtracking tree at the
vertex representing a literal into two branches according to
the assigned value. This branching step may be visualized
in the form:

for literal l occurring in theory S. The product fuzzy exten-
sion of the DPLL procedure introduced by Guller [12] is
also a backtracking-based algorithm that operates over finite
order clausal theories and uses a similar kind of branching at
its core. The branching step considers an atom and attempts
to determine its value with the following trichotomy:

for atom a occurring in theory S.
Moreover, the classical DPLL algorithm employs two

rules that constrain the search space—unit propagation and
pure literal elimination. In product DPLL, there are seven-
teen rules (as defined in Guller’s unpublished work), thirteen
of which are necessary for the procedure to be refutation-
complete, and four admissible rules that help constrain the
search space or produce smaller trees.

The proof of satisfiability or validity of an order clausal
theory is based on adequate application of the rules on
the input theory. The rules split the tree into branches and

S

S ∪ {l}|| S ∪ {¬l}
(Branching rule)

S

S ∪ {a ≖ 0} || S ∪ {0 ≺ a, a ≺ 1} || S ∪ {a ≖ 1}

 SN Computer Science (2022) 3: 388388 Page 4 of 23

SN Computer Science

simplify the clausal theory in the process. If a branch remains
open after the non-deterministic application of all possible
rules, there is a valuation of atoms under which the theory is
true that may be obtained from the path of traversal.

The original proposal of the product fuzzy DPLL pro-
cedure may be found in the work of Guller [12] together
with the related proof of refutational soundness and
completeness.

Below we revisit some of the concepts and notation
defined in [12] and Guller’s unpublished work that we will
refer to later in the paper.

Definition 8 [17] Let a be an atom and let the order
clause C be a guard iff either C = a ≖ 0 , C = 0 ≺ a ,
C = a ≺ 1 , or C = a ≖ 1 . Let S be an order propositional
clause. Let guards(a) = {a ≖ 0, 0 ≺ a, a ≺ 1, a ≖ 1} and
guards(S) = {C |C ∈ S is a guard} . Atom a is fully guarded
in theory T iff the theory contains either the literal a ≖ 0 , the
literal a ≖ 1 , or both of the literals 0 ≺ a, a ≺ 1.

Definition 9 Given a ∈ PropAtom , the propositional for-
mula a ≖ 0 ∨ 0 ≺ a ∧ a ≺ 1 ∨ a ≖ 1 is a trichotomy. Given
conjunctions Cn1,Cn2 ∈ PropConj , the pure order clause
Cn1 ≺ Cn2 ∨ Cn1 ≖ Cn2 ∨ Cn2 ≺ Cn1 is a pure trichotomy.

The DPLL rules make use of an auxiliary function and
operation. First, the function simplify ∶ ({0, 1} ∪ PropConj

∪OrdPropLit ∪ OrdPropCl) × PropAtom × {0, 1} → {0, 1}

∪PropConj ∪ OrdPropLit ∪ OrdPropCl replaces every
occurrence of a given atom in an input expression with the
given truth constant according to laws holding in product
algebra [17].

Definition 10 Auxiliary function simplify [17]

Example 1 Simplifying a clause
simplify(a ≺ 1 ∨ a2 & b ≖ 0, a, 1) = 1 ≺ 1 ∨ b ≖ 0

Nex t , ⊙ ∶ ({0, 1} ∪ PropConj) × ({0, 1} ∪ PropConj)

→ {0, 1} ∪ PropConj is a binary commutative and

simplify(0, a, 𝜐) = 0;

simplify(1, a, 𝜐) = 1;

simplify(Cn, a, 0) =

�
0 if a ∈ atoms(Cn),

Cn else;

simplify(Cn, a, 1) =

⎧⎪⎨⎪⎩

1 if ∃n∗ Cn = an
∗

,

Cn − an
∗

if ∃n∗ an
∗

∈ Cn ≠ an
∗

,

Cn else;

simplify(l, a, 𝜐) = simplify(𝜀1, a, 𝜐) ⋄ simplify(𝜀2, a, 𝜐)

if l = 𝜀1 ⋄ 𝜀2, ⋄ ∈ {≖,≺};

simplify(C, a, 𝜐) = {simplify(l, a, 𝜐) � l ∈ C}.

associative operator that returns the algebraic product of two
conjunctions or literals according to Definition 11.

Definition 11 Auxiliary operation ⊙ [17] Let Cn1 , Cn2 be
conjunctions and let the expression � be a truth constant or
a conjunction. Then the function ⊙ is defined as

It can be extended to order literals ⊙ ∶ ({0, 1} ∪ OrdPropLit)

×({0, 1} ∪ OrdPropLit) → {0, 1} ∪ OrdPropLit in the fol-
lowing way: Let l1 , l2 be order literals and the expression �
be a truth constant or an order literal.

⊙ is a binary commutative and associative operator.

Example 2 Applying ⊙ to conjunctions of powers and literals

Next, we list and describe the intuition of the thirteen
required fuzzy product DPLL rules as defined in Guller’s
unpublished work.

0⊙ 𝜀 = 𝜀 ⊙ 0 = 0;

1⊙ 𝜀 = 𝜀 ⊙ 1 = 𝜀;

Cn1 ⊙ Cn2 = {am+n | am ∈ Cn1, a
n
∈ Cn2} ∪

{an | an ∈ Cn1, a ∉ atoms(Cn2)} ∪

{an | an ∈ Cn2, a ∉ atoms(Cn1)}

0⊙ 𝜀 = 𝜀 ⊙ 0 = 0;

1⊙ 𝜀 = 𝜀 ⊙ 1 = 𝜀;

l1 ⊙ l2 = (𝜀1 ⊙ 𝜀2) ⋄ (𝜐1 ⊙ 𝜐2) if li = 𝜀i ⋄i 𝜐i,

⋄ =

{
≖ if ⋄1 = ⋄2 =≖,

≺ else.

a2 & b⊙ b & c = a2 & b2 & c

a2 ≖ b3 ⊙ b ≺ 1 = a2 & b ≺ b3

a ≖ b⊙ a ≖ b & c = a2 ≖ b2 & c

(1)

(Unit contradiction rule)

S

S ∪ {◻}
;

S is a unit order clausal theory;

there exist

0 ≺ a0,… , 0 ≺ am,

a0 ≺ 1,… , am ≺ 1 ∈ guards(S),

l0,… , ln ∈ S

such that li is pure order literal and

atoms(l0,… , ln) = {a0,… , am};

there exist

𝛼∗

i
≥ 1, i = 0,… , n,

J∗ ⊆ {j | j ≤ m}, 𝛽∗
j
≥ 1, j ∈ J∗,

such that(
⊙n

i=0
l
𝛼∗
i

i

)
⊙
(
⊙j∈J∗ (aj ≺ 1)

𝛽∗
j

)
is a contradiction.

SN Computer Science (2022) 3: 388 Page 5 of 23 388

SN Computer Science

If any ⊙-product of powers of pure order literals or guards of
the form a ≺ 1 can be found that would lead to the contradic-
tion of the form 𝜀 ≺ 𝜀 , rule (1) derives ◻ (closes the branch).

Example 3 Applying the unit contradiction rule
S = {0 ≺ a, 0 ≺ b, a ≺ 1, b ≺ 1, a2 ≖ b3, b ≺ a}

S ∪ {◻}
 See the

elaboration of this example in section “Unit Contradiction”
Ex. 20.

The branching rule (2) splits the tree by assuming one of
a ≖ 0 , 0 ≺ a ≺ 1 , a ≖ 1.

Example 4 Applying the trichotomy branching rule
S = {a ≺ b}

S ∪ {a ≖ 0} || S ∪ {0 ≺ a, a ≺ 1} || S ∪ {a ≖ 1}

The branching rule (3) splits the tree into the three sub-
cases of the trichotomy of pure literals l1 , l2 , and l3.

Example 5 Applying the pure trichotomy branching rule
{a ≺ b ∨ b ≺ 1}

{a ≺ b} || {b ≺ a, b ≺ 1} || {a ≖ b, b ≺ 1}
 ;

a ≺ b ∨ b ≺ a ∨ a ≖ b is a pure trichotomy.

A contradictory literal is removed from a clause. Exam-
ples of contradictory literals are 1 ≺ 0 , 0 ≖ 1.

Example 6 Applying the contradiction rule
{1 ≺ 0 ∨ a ≖ b}

{a ≖ b}

(2)

(Trichotomy branching rule)

S

S ∪ {a ≖ 0} || S ∪ {0 ≺ a, a ≺ 1} || S ∪ {a ≖ 1}
;

a ∈ atoms(S).

(3)

(Pure trichotomy branching rule)

S

(S − {�}) ∪ {l1}
|| (S − {�}) ∪ {C} ∪ {l2}

||(S − {�}) ∪ {C} ∪ {l3}
;

� = (l1 ∨ C) ∈ S,C ≠ ◻,

l1 ∨ l2 ∨ l3 is a pure trichotomy.

(4)

(Contradiction rule)

S

(S − {l ∨ C}) ∪ {C}
;

l ∨ C ∈ S, l is a contradiction.

(5)

(Tautology rule)

S

S − {l ∨ C}
;

l ∨ C ∈ S, l is a tautology.

A tautologous literal is removed from S. Examples of tau-
tologous literals are 0 ≺ 1 , 0 ≖ 0.

Example 7 Applying the tautology rule
{0 ≖ 0 ∨ a ≖ b, a ≺ b}

{a ≺ b}

If a ≖ 0 ∈ guards(S) and the order clause C contains a,
then C is simplified according to a and 0.

Example 8 Applying the 0-simplification rule
{a ≖ 0, a & b2 ≺ 1}

{0 ≺ 1}

Analogous to rule (6).

Example 9 Applying the 1-simplification rule
{a ≖ 1, a & b2 ≺ 1}

{b2 ≺ 1}

If 0 ≺ a0,… , 0 ≺ an ∈ guards(S) , then obviously

is contradictory and it is removed from the order clause.

Example 10 Applying the 0-contradiction rule
{0 ≺ a, 0 ≺ b, a2 & b3 ≖ 0 ∨ c ≺ 1}

{0 ≺ a, 0 ≺ b, c ≺ 1}

Analogous to rule (8).

(6)

(0-simplification rule)

S

(S − {C}) ∪ {simplify(C, a, 0)}
;

a ≖ 0 ∈ guards(S), C ∈ S, a ∈ atoms(C), a ≖ 0 ≠ C.

(7)

(1-simplification rule)

S

(S − {C}) ∪ {simplify(C, a, 1)}
;

a ≖ 1 ∈ guards(S), C ∈ S, a ∈ atoms(C), a ≖ 1 ≠ C.

(8)

(0-contradiction rule)

S

(S − {a
𝛼0
0
& ⋯ & a

𝛼n
n ≖ 0 ∨ C}) ∪ {C}

;

0 ≺ a0,… , 0 ≺ an ∈ guards(S),

a
𝛼0
0
& ⋯ & a𝛼n

n
≖ 0 ∨ C ∈ S − guards(S).

a
�0
0
& ⋯ & a�n

n
≖ 0

(9)

(1-contradiction rule)

S

(S − {a
𝛼0
0
& ⋯ & a

𝛼n
n ≖ 1 ∨ C}) ∪ {C}

;

ai ≺ 1 ∈ guards(S), i ≤ n,

a
𝛼0
0
& ⋯ & a𝛼n

n
≖ 1 ∨ C ∈ S − guards(S).

 SN Computer Science (2022) 3: 388388 Page 6 of 23

SN Computer Science

Example 11 Applying the 1-contradiction rule
{a ≺ 1, b ≺ 1, a2 & b3 ≖ 1 ∨ c ≺ 1}

{a ≺ 1, b ≺ 1, c ≺ 1}

If 0 ≺ a0,… , 0 ≺ an ∈ guards(S) , then obviously

Therefore, the input order clause

is removed, as it is a consequence of the guard(s).

Example 12 Applying the 0-consequence rule
{0 ≺ a, 0 ≺ b, 0 ≺ a2 & b3 ∨ c ≺ 1}

{0 ≺ a, 0 ≺ b}

Analogous to rule (10).

Example 13 Applying the 1-consequence rule
{a ≺ 1, b ≺ 1, a2 & b3 ≺ 1 ∨ c ≺ 1}

{a ≺ 1, b ≺ 1}

If the atom a different from 0 , 1 occurs in S only in the
guard a ≖ 0 or a ≖ 1 , then this guard may be removed from
S.

Example 14 Applying the 0-annihilation rule
{a ≖ 0, b ≺ 1}

{b ≺ 1}

(10)

(0-consequence rule)

S

S − {0 ≺ a
𝛼0
0
&⋯&a

𝛼n
n ∨ C}

;

0 ≺ a0,… , 0 ≺ an ∈ guards(S),

0 ≺ a
𝛼0
0
& ⋯ & a𝛼n

n
∨ C ∈ S − guards(S).

0 ≺ a
𝛼0
0
& ⋯ & a𝛼n

n
.

0 ≺ a
𝛼0
0
& ⋯ & a𝛼n

n
∨ C

(11)

(1-consequence rule)

S

S − {a
𝛼0
0
& ⋯ & a

𝛼n
n ≺ 1 ∨ C}

;

ai ≺ 1 ∈ guards(S),

i ≤ n, a
𝛼0
0
& ⋯ & a𝛼n

n
≺ 1 ∨ C ∈ S − guards(S).

(12)

(0-annihilation rule)

S

S − {a ≖ 0}
;

a ≖ 0 ∈ guards(S), a ∉ atoms(S − {a ≖ 0}).

(13)

(1-annihilation rule)

S

S − {a ≖ 1}
;

a ≖ 1 ∈ guards(S), a ∉ atoms(S − {a ≖ 1}).

Example 15 Applying the 1-annihilation rule
{a ≖ 1, b ≺ 1}

{b ≺ 1}

Finally, we revisit three of Guller’s admissible rules that
help produce smaller branches.

The guardedness of an atom is propagated to other atoms
bound by equality.

Example 16 Applying guard propagation rule I
S = {0 ≺ a, a ≺ 1, b ≖ a}

S ∪ {0 ≺ b, b ≺ 1}

If all of the atoms comprising a strong conjunction are
fully guarded and are in equality with a single atom, the
atom also becomes guarded.

Example 17 Applying guard propagation rule II
S = {0 ≺ a, a ≺ 1, 0 ≺ b, b ≺ 1, c ≖ a & b}

S ∪ {0 ≺ c, c ≺ 1}

If a strong conjunction equals 0 and all atoms but one (b)
are fully guarded, the equality b ≖ 0 is inferred.

Example 18 Applying guard propagation rule III
S = {0 ≺ a, a ≺ 1, a & b ≖ 0}

S ∪ {b ≖ 0}

In the next section, we provide a hypothetical real-world
example that demonstrates a possible application of SAT
solving in product propositional logic.

Motivational Example

Electricity suppliers face the risk of being unable to satisfy
peak daily energy demand which often occurs in the morn-
ing and evening. This is especially true for the supply of

(14)

(Guard propagation rule I)

S

S ∪ {0 ≺ b, b ≺ 1}
;

0 ≺ a, a ≺ 1 ∈ guards(S), b ≖ a ∈ S.

(15)

(Guard propagation rule II)

S

S ∪ {0 ≺ c, c ≺ 1}
;

0 ≺ a, a ≺ 1, 0 ≺ b, b ≺ 1 ∈ guards(S), c ≖ a & b ∈ S.

(16)

(Guard propagation rule III)

S

S ∪ {b ≖ 0}
;

0 ≺ a, a ≺ 1 ∈ guards(S), a & b ≖ 0 ∈ S.

SN Computer Science (2022) 3: 388 Page 7 of 23 388

SN Computer Science

energy from dispatchable sources, as solar power cannot be
fully utilized during these times of day (the phenomenon
is often described by the “duck curve”). To help balance
demand, suppliers split the day into multiple zones where
each zone is assigned a price per kilowatt hour. The simplest
are splits into two zones (day and night rates), but some
suppliers now provide programs wherein each hour of the
following day has a predefined energy price based on predic-
tions of demand.

Let us assume we wish to make use of such an hourly
rate program when heating a well-insulated detached house
with a heat pump. Let us also assume we have control over
which hours the pump is active. To minimize costs, we wish
to run the heat pump when the demand is low. However, the
heat pump’s efficiency varies depending on the difference
between the outside and inside temperature: the lower the
difference, the more efficient the heat pump is. If we aim for
a constant output temperature, then the efficiency is propor-
tional to the temperature outdoors. Our goal is to have the
heat pump active during the hours with low energy demand
and high heating efficiency. Also, due to the insulation of
the house, it is sufficient if the heat pump runs only two
consecutive hours every six hours.

The problem of determining which hours to run the heat
pump can be formalized as a fuzzy SAT instance. Our input
data consist of bi-hourly prediction of energy demand (we
have omitted odd hours for brevity) and the coefficient of
performance (COP, unit-less) of the heat pump. Energy
demand (in megawatts) is re-scaled into the interval [0, 1].
The COP cannot drop below 1 and is usually between 2
and 5 in European landlocked country spring days [20], so
we will use the inverse of COP without further normaliza-
tion. Since we seek to minimize both the normalized energy
demand and the inverse COP, for simplicity, we will mini-
mize their algebraic product. The data we use in this exam-
ple are shown in Table 2.

To represent given data, our propositional product logic
needs to be extended with the notion of intermediate con-
stants (constants in the open interval (0, 1)) which this work
does not yet cover. As these are useful for demonstrating the
logic on a practical example, let us assume the support of
such constants and their meaningful ordering; their inclusion
is the subject of our ongoing work. Model finding is another
current limitation of our work to be tackled in near future.

Now, we attempt to encode the problem. First, we need
two sets of atoms to represent normalized energy demand
(load) and inverse COP. The atoms loadi and icopi will be
set to the relevant values from Table 2 where i represents the
hour of the day divided by two.

(17)
loadi ≖ ⟨Load from table⟩i 0 ≤ i < 12

icopi ≖ ⟨iCOP from table⟩i 0 ≤ i < 12

Next, we set the values scorei to be equal to the strong con-
junction of load and inverse COP (in other words, the score
is load divided by COP).

To fulfill the request that the heat pump ought to run two
consecutive hours every six hours, we consider all consecu-
tive six-hour partitions of scores to find the best split. As we
work with bi-hourly data, the task is simplified into finding
the single minimum score in every partition of consecutive
scores of size three. One such partition is shown in Table 2;
the column of scores is grouped into four subsets of size
three as shown by the double row separator, and the mini-
mum value is bold. Another such partition could be con-
structed by offsetting the groups by one, and the final parti-
tion by offsetting by two. For simplicity, we let the subsets
wrap around in time, e.g. in the partition offset by two, the
last group covers the hours 22, 0, and 2 (we do not reach
into other days). This is represented by the atoms minscorei,j
below (21), where i is the partition offset and j is the index of
subset within the partition. The four bold scores in Table 2
are the minima minscore0,{0,1,2,3} found in the subsets of
partition with offset 0. In our data, the displayed partition
is also the “best” partition (one with the lowest minimum
score)—in every other such split of the scores column, the
minimum is higher.

Finally, we formulate the aforementioned condition in
formulae (21, 22). The value of atom max_of_best_part
captures the highest (worst) score in the best partition (one
with the lowest minimum, 0.205 in Table 2).

(18)scorei ≖ icopi & loadi 0 ≤ i < 12

(20)minscorei,j ≖

(i+3(j+1)−1) mod 12⋀
k=i+3j

scorek
0 ≤ i < 3,

0 ≤ j < 4

Table 2 Values of normalized
energy demand (load), inverse
coefficient of performance of
the heat pump (iCOP), and their
algebraic product (score)

The values are fabricated, but
were inspired by [25] and [20]

Hour Load iCOP Score

0 0.795 0.294 0.234
2 0.736 0.294 0.216
4 0.675 0.303 0.205
6 0.672 0.294 0.198
8 0.707 0.270 0.191
10 0.773 0.222 0.172
12 0.825 0.215 0.177
14 0.783 0.206 0.161
16 0.731 0.217 0.159
18 0.759 0.222 0.169
20 0.870 0.270 0.235
22 0.776 0.286 0.222

 SN Computer Science (2022) 3: 388388 Page 8 of 23

SN Computer Science

The formulae (17–22) provide a solid foundation for our
problem. The instance is constructed using the conjunction
of all formulae:

By performing satisfiability check of �1 , our approach
should yield a model containing valuations of the atoms. The
fewest hours the heat pump would be running under the con-
ditions in this example are shown in Table 2 where the score
is bold, i.e., at least the hours 4–5, 10–11, 16–17, 18–19.
These could be retrieved from the partition i where the maxi-
mum minscorei,∗ achieves the score of max_of_best_part
(0.205 in the partition displayed by double row separators).

However, unless there is an entry with zero load, the for-
mula � is always satisfiable. To make the problem more
interesting, we may impose constraints on the model, such as
that the worst score of the best partition be less than a certain
value. This constraint is formulated below within �2 and �3 .
Formula �2 is satisfiable in our data, but formula �3 is not.

In this example we have shown a way to utilize the product
t-norm in the computation of score. Product propositional
logic is useful to express relations where algebraic product
or division can be suitably used. We could easily express
the ratio of minimum vs. maximum score in our example by
including the formulae

Of course, product propositional logic alone has limited
expressiveness. Suppose that we want to yield the models
where the difference between max_of_best_part and min is
more than 0.2, as these models may indicate periods of high
energetic stress. While this is impossible in pure product
logic, because difference requires Łukasiewicz negation (¬
Ł defined as ¬¬¬Ł x = 1 − x) and equivalence (↔Ł defined as
x↔↔↔Ł y = 1 - |x − y|), it is possible to use these in Δ-extended
product logic Π

Δ
 due to the embeddability of Łukasiewicz

logic within Π
Δ
 [5]. The following formula might then be

used after suitable embedding transformation:

(21)max_of_best_part ≖

2⋀
i=0

3⋁
j=0

minscorei,j

(22)0 ≺ max_of_best_part

(23)�1 = (17) ∧ (18) ∧ (19) ∧ (20) ∧ (21) ∧ (22)

(24)𝜑2 = 𝜑1 ∧ max_of_best_part ≺ 0.21

(25)𝜑3 = 𝜑1 ∧ max_of_best_part ≺ 0.20

(26)min ≖

11⋀
i=0

scorei

(27)ratio ↔ max → min

Obviously, a concrete real-world problem in the domain of
heating, ventilation, and air conditioning (HVAC) would be
much more complex—this example is purely demonstra-
tional. Our purpose was to show a way fuzzy SAT solv-
ing may be used and how product propositional logic can
be utilized. Other technologies could be used to solve the
problem: SQL or its extensions, fuzzy answer set program-
ming (FASP) [21], fuzzy description logics [1], a variant
of mixed integer programming [7], or creating an ad hoc
solution in a suitable programming language. The level of
abstraction of the shown approach lies somewhere in the
middle: on the one hand, it hides away the details of how the
solver works and how auxiliary variables are introduced, so
that the programmer may focus on specifying the problem.
In this aspect it is a higher-level approach than writing a
custom program or using mixed integer programming. On
the other hand, this example may easily be deemed too com-
plicated when compared to, e.g., FASP. Fuzzy answer set
programming, however, may use a fuzzy SAT solver as its
back-end, as FASP programs may be reduced to fuzzy SAT
instances [29], which is one of the possible applications of
our approach.

In the next section, we present the design of a determin-
istic algorithm that translates an input theory into order
clausal theory and verifies its satisfiability or validity by the
adequate application of the DPLL rules presented previously
and performing the tree traversal.

Algorithm

In section “Product DPLL Procedure” we have outlined the
intuition of the product fuzzy DPLL procedure and its tree-
splitting and simplifying rules. In this section we define the
algorithm that performs the translation of a theory into order
clausal form, as well as the backtracking-based deterministic
algorithm that performs the DPLL procedure to determine
the satisfiability or validity of theories using the aforemen-
tioned rules.

The algorithm presented here is a revision of our previous
work [28]. We have made several improvements which are
clearly pointed out and discussed. We also revisit the parts
of our work that have not been changed, for the convenience
of the reader.

Translation into Order Clausal Form

As mentioned in section “Product DPLL Procedure”, the
DPLL procedure expects the input to be in order clausal
form. The algorithm to translate an arbitrary theory in Π

Δ
 is

based on the application of interpolation rules introduced by

(28)range ↔ ¬
̌
(min ↔

̌
max)

SN Computer Science (2022) 3: 388 Page 9 of 23 388

SN Computer Science

Guller [17, Sect. 3], which may be thought of as a product
fuzzy generalization of the translation of a Boolean formula
into conjunctive normal form [24, 26].

Without loss of generality we consider the input to be a
single propositional formula. If the intended input is a theory
(a set of formulae), the procedure considers the input to be
the ∧-conjunction of its elements in Π

Δ
.

The algorithm is shown in Alg. 1. Given a formula � ,
the algorithm first generates the clause ã0 ≖ 1 in the case
of verifying satisfiability, or �a0 ≺ 1 in the case of verifying
validity, where ã0 is the auxiliary atom representing the full
input formula. Then, the algorithm performs pre-order tree
traversal over the structure of the formula. In every step,

the intermediate formula � (either the initial formula or
a subformula) is extracted from the queue along with the
auxiliary atom ã

i
 associated with � . Then, � is processed

by a compatible interpolation rule [17, Sect. 3]. For this
purpose, assume the existence of function Inter(ã

i
 , �)

that chooses the interpolation rule according to the connec-
tive of least precedence in � . The rule designates new order
clauses nClauses that are the result of the translation. Also,
depending on the arity of the connective in � and the oper-
ands, the rule designates the subformula or subformulae �i
of � , i ∈ {0, 1} that need to be translated further, and their
corresponding auxiliary atoms ã

ii
 . These new subformu-

lae and auxiliary atoms construct the list of pairs nPairs:
(ã

ii
,�i) , i ∈ {0, 1} . The function Inter(ã

i
 , �) then returns

(nPairs, nClauses).
The improvement in the current revision as opposed to

our previous work [28] is marked with (*). The problem of
the previous algorithm can be illustrated on translating the
formula a & b → a & b . If the input formula contains mul-
tiple occurrences of identical subformulae, these have been
treated as being separate, with one auxiliary atom associated
with each. In the current version we employ the simple solu-
tion of remembering assigned subformulae and reusing the
associated auxiliary atoms, effectively treating the formula
as a directed acyclic graph rather than a tree. As a result, the
search space of the DPLL procedure is now reduced by each
repeated subformula.

Example 19 Translating a formula into order clausal form
Let us consider the formula (27) from the motivational
example in section “Motivational Example” modified by
replacing ↔ with ≖ for demonstrational purposes:

The translation into a SAT instance is depicted in the follow-
ing steps, yielding the order clausal theory S�.

� = ratio ≖ (max → min)

{ �a0 ≖ 1, �a0 ↔ ratio
���

�a1

≖ (max → min
���������

�a2

)} [16, Tab. 1, Eq. 11]

{ �a0 ≖ 1, �a1 ≖ �a2 ∨ �a0 ≖ 0, �a1 ≺ �a2 ∨ �a2 ≺ �a1 ∨ �a0 ≖ 1,

�a1 ≖ ratio, �a2 ↔ max
���

�a3

→ min
���

�a4

} [16, Tab. 1, Eq. 9]

{ �a0 ≖ 1, �a1 ≖ �a2 ∨ �a0 ≖ 0, �a1 ≺ �a2 ∨ �a2 ≺ �a1 ∨ �a0 ≖ 1,

�a1 ≖ ratio, �a3 ≺ �a4 ∨ �a3 ≖ �a4 ∨ �a3 & �a2 ≖ �a4,

�a4 ≺ �a3 ∨ �a2 ≖ 1, �a3 ≖ max, �a4 ≖ min}

S𝜑 = { �a0 ≖ 1,

�a1 ≖ �a2 ∨ �a0 ≖ 0,

�a1 ≺ �a2 ∨ �a2 ≺ �a1 ∨ �a0 ≖ 1,

�a1 ≖ ratio,

�a3 ≺ �a4 ∨ �a3 ≖ �a4 ∨ �a3 & �a2 ≖ �a4,

�a4 ≺ �a3 ∨ �a2 ≖ 1,

�a3 ≖ max,

�a4 ≖ min}

Algorithm 1. The translation of order propositional formula into order
clausal theory

 SN Computer Science (2022) 3: 388388 Page 10 of 23

SN Computer Science

DPLL Inference

The algorithm performing the DPLL procedure accepts an
order clausal theory as input and uses the rules (1)–(16) to
split and simplify the theory tree. By the following definition
12 we obtain the answer to whether the theory is satisfiable.

Definition 12 [12] A branch is closed iff the empty clause
 ◻ is derived, otherwise it is open. A tree
is closed iff all its branches are closed, otherwise it is open.
A theory is satisfiable iff an open branch exists (the theory
has a model) once no more DPLL rules can be applied.

The flowchart in Fig. 1 provides an overview of the algo-
rithm which is described in detail in Algs.2–6.

The parts of the algorithm described in this section have
not been fundamentally changed since the previous version
in [28]. However, we have revised the formulation of Alg.3
to be recursive, allowing for a simpler explanation of the
trichotomy function. Also, the listing of Alg.4 has been
updated to include Guller’s admissible rules.

The algorithm begins with Alg. 2. If all atoms are fully
guarded, skip trichotomy branching and reduce the theory
using the Reduce(s) function. Otherwise, the non-empty
input theory S is split by the function Trichotomy(S) at
the first atom in the input theory that is not fully guarded,
introducing the guards in branches according to the trichot-
omy branching rule (2). Every created branch s is then pro-
cessed by the Reduce(s) function. If the branch cannot be
recursively closed, it is open and the Trichotomy(S) func-
tion returns true. Otherwise all branches have been closed, S
is unsatisfiable and the function returns false.

The responsibility of the Reduce(S) function lies in the
adequate application of the rules that reduce and simplify
the theory. The rules are designed to eventually resolve all
equality guards in the theory. Whenever a closed branch is
derived, the function immediately returns false. Once all
equality guards have been eliminated, we pass the compu-
tation to the PureTrichotomy(S) or Trichotomy(S)
function according to whether all atoms in the theory are
fully guarded or not, respectively. If any of the rules (5)
or (10)–(13) manage to eliminate all clauses, the branch is
considered open and the function immediately returns true.

The line marked with (*) indicates the change we have
made in contrast to the previous version: in addition to the
DPLL rules (4)–(13), we now also employ the admissible
rules (14)–(16).

The function PureTrichotomy(S) described in Alg.5
is responsible for splitting the tree into branches according to
the pure trichotomy rule (3). First, any equality guards intro-
duced by the application of the trichotomy rule are handled

Fig. 1 Flowchart of the inference algorithm performing the DPLL
procedure [28]

Algorithm 2. The initial step of the DPLL procedure [28]

Algorithm 3. The ���������� function of the DPLL procedure [28]

Algorithm 4. The ������ function of the DPLL procedure [28]

SN Computer Science (2022) 3: 388 Page 11 of 23 388

SN Computer Science

by the Reduce(S) function. Then, the special case of S being
a unit theory is handled by the UnitContradiction(S)
function. Otherwise the algorithm attempts to process every
non-unit clause with the intention to split it into at most
three branches. The literal a of clause Cl is first checked for
occurrences in other clauses. In the case the literal occurs
in an existing unit clause (it is already assumed to be true),
remove all clauses containing the literal and continue with
this assumption. Otherwise its counterpart literals b and c
that form the pure trichotomy a ∨ b ∨ c are generated2. If any
of these literals is already assumed to be true in the other
clauses, a cannot be true, so we remove every occurrence
of a from the theory. Otherwise (if neither of these literals
occurs in any unit clause of the theory), we split the theory
at line 18 according to rule (3) and remove the occurrences
of the complementary literals (assumed to be false) in the
respective branches. If a closed branch is derived in any of
the branches, return false, otherwise continue the traversal
recursively over each created branch.

Finally, the function UnitContradiction(S) shown
in Alg.6 attempts to apply the unit contradiction rule (1).
The function returns true iff there exists a ⊙-product of pow-
ers of literals appearing in the theory that is contradictory
(therefore the branch is closed).

Limitations

If the branch remains open after the application of the unit
contradiction rule, the theory is satisfiable has a model.
However, the current state of the solver does not perform
model-finding.

It is also important to note that in this stage, the algorithm
does not have support for intermediate constants (constants
other than 0 , 1) in the input theory.

Unit Contradiction

As described in section “Product DPLL Procedure”, the unit
contradiction rule (1) involves the problem of finding the
contradiction of the form 𝜀 ≺ 𝜀 if there is any possibility to
yield it using the operation ⊙ over pure order literals and the
strict order guards ai ≺ 1 present in the theory. More simply,
it is the problem of selecting the powers of literals in order
to yield such a contradiction using their ⊙-product.

Example 20 from our previous work [28] illustrates this
problem on the theory containing the literals {a2 ≖ b

3, b ≺ a}
and the guards of atoms a and b {0 ≺ a, 0 ≺ b, a ≺ 1, b ≺ 1} .
In this example we can form a contradiction by using the
boxed literals: literal (30) with the power of 2 and liter-
als (29, 31) as they are. By performing the operation ⊙
over these powers of literals, we yield the contradiction
a2&b3 ≺ a2&b3 (32).

Example 20 Application of the unit contradiction rule [27]

0 ≺ a, 0 ≺ b, a ≺ 1, b ≺ 1

a2 ≖ b3 , b ≺ a

(29)a2 ≖ b3

(30)(b ≺ a)�

Algorithm 5. The �������������� function of the DPLL procedure
[28]

Algorithm 6. The ����������������� function of theDPLL proce-
dure [28]

2 E.g., the concrete literal x ≺ y generates the counterpart literals
y ≺ x , x ≖ y.

 SN Computer Science (2022) 3: 388388 Page 12 of 23

SN Computer Science

Remark 1 Note that according to Definition 11, at least one
of the literals used in the product has to be a strict order lit-
eral in order to yield the contradiction 𝜀 ≺ 𝜀 . Otherwise the
resulting literal would be an equality literal.

Our previous paper [28] introduces a method to solve this
problem by using linear programming (LP). The canonical
form of a linear program is:

where A is the matrix of coefficients of variables x to be
determined, b the vector of constraints, c the vector of objec-
tive function coefficients, and ⋄ the vector of order relations.

We define encoding of the input theory into an LP
instance in Definition 13 as follows:

Definition 13 Given a unit order clausal theory, let m be the
number of atoms, q the number of equality literals, and p the
number of strict order literals of the theory. The LP encoding
of the unit contradiction problem is then

The variables x of the LP problem to be determined repre-
sent the powers of pure order literals and the guards a ≺ 1
of the theory, and the constraints (the rows in matrix A)
represent the atoms. The equality literals in the matrix A
are represented twice (once with the operands reversed) to
handle the commutativity of the equality operator ≖≖≖ . The
coefficients of the variables are set to the difference of pow-
ers of atoms appearing on the left- and right-side of literals3.

(31)b ≺ 1

(32)a2 & b3 ≺ a2 & b3—a contradiction

find a vector x

that minimizes cTx

subject to Ax ⋄ b

and x ≥ 0

A =

⎡⎢⎢⎢⎣

a1,1 … a1,2q a1,2q+1 … a1,2q+p
⋮ ⋱ ⋮ a1,2q+1 ⋱ ⋮

am,1 … am,2q a1,2q+1 … am,2q+p
0 … 0 1 … 1

⎤⎥⎥⎥⎦

[1ex]b = [

m

⏞⏞⏞
0,… , 0, 1]T

[1ex]c = [

2q+p

⏞⏞⏞
1,… , 1]T

[1ex]⋄ = [

m

⏞⏞⏞⏞⏞
=,… ,=,≥]T

To constrain the variables so that at least one order literal is
used as per remark 1, the constraint coefficients in the last
row of A, the last element of b, and the last relation in ⋄ are
set accordingly. The objective of such LP is minimize.

Remark 2 In our previous work [28] we have defined a simi-
lar encoding. However, when adding the constraint to reject
invalid cases (the last row of matrix A), we did not take
into account the rejection of cases where no order literals
were used to form the contradiction—we only considered
the cases in which no literals were used whatsoever.

The coefficient matrix for the theory in Ex. 20 according
to Definition 13 is shown in Eq. (33).

Remark 3 In this paper we highlight the advantage of our
solver in not relying on translations into other solvers, but
we do make use of LP to solve the unit contradiction prob-
lem. However, the use of an external LP solver is isolated to
solving this problem only, which is not necessarily invoked
while solving the satisfiability or validity of formulae. Nev-
ertheless, we are considering replacing even this step with
a custom solution.

Implementation

In our previous work [28] we have introduced and described
the first working implementation of the solver and named
it prodfsat. In this section we describe its current version,
although the interface and technical details contain only
minor changes. The implementation is available for down-
load4 and is free to use under the GNU General Public
License v3.0 or later.

The software consists of several executable binary
artifacts:

• prodfsat is the main console application that parses an
input product propositional theory and outputs the results
of SAT or VAL solving,

• prodfsat_tests executes the defined test suites, which
include unit tests as well as the set of example theories
used to conduct experiments,

• prodfsat_niblos_converter converts the input formulae
into representation for the NiBLoS [31] and mNiBLoS
[30] solvers for the use in experiments,

(33)Aex =

⎡
⎢⎢⎣

2 − 2 − 1 1 0

−3 3 1 0 1

0 0 1 1 1

⎤
⎥⎥⎦

3 E.g. given the literal a2 & b3 ≺ b2 & c , the coefficient for atom a is
2 − 0 = 2 , for atom b it is 3 − 2 = 1 , and for atom c it is 0 − 1 = −1
[28]. 4 https:// git. uhlia rik. com/ ivor/ prodf sat

https://git.uhliarik.com/ivor/prodfsat

SN Computer Science (2022) 3: 388 Page 13 of 23 388

SN Computer Science

• prodfsat_niblos_random generates random formulae
used in experiments,

• prodfsat_niblos_hard generates instances of hard-to-
solve formulae used in experiments.

In the remainder of this section we provide an introduction
to using the main application, demonstrate running it on an
example, and briefly describe technical details.

Application Usage

The main application may be run in console according to the
following specification:

where

• the switches -s, -p enable the debug messages of scan-
ning and parsing,

• the switch -t controls whether SAT-solving or VAL-
solving is to be performed (the default mode is sat),

• the list of positional arguments FILE... are the files
containing the input product propositional theories,

• alternatively, the input may be passed as string in the list
of positional arguments following –.

The syntax of formulae accepted by the program is the same
as in the previous version [28] and follows the mapping
listed in Tab. 3. The operator precedence matches that of
�

�
 and can be overridden with parentheses. The names of

atoms must begin with an alphabetic character and follow
with any number of alphanumeric characters. The constants
representing falsehood and truth (0, 1) are 0 and 1, respec-
tively. The powers of atoms must be non-zero positive inte-
gers. The lines starting with the character # are considered
comments and are skipped by the program. The input may
contain multiple theories separated by two or more consecu-
tive newline characters. The Δ connective is currently not
supported, but the semantically equivalent expression x ≖ 1
may be used to represent Δx.

As stated previously in section “Translation into Order
Clausal Form”, a theory is interpreted as the ∧-conjunction
of the theory’s formulae. To facilitate this, formulae joined
by a comma or a single newline character are parsed as a
single theory, but in this case as conjunction with the lowest
operator precedence, as is listed in the last row of Table 3.

Remark 4 As the current version of prodfsat does not sup-
port model-finding in the traditional sense of the interpreta-
tion of atoms, the mention of a model in the source code
of the project refers to the set of literals that are true in an
open branch.

Example

Here we demonstrate executing the main program to prove
the validity of the formula in Eq. (34) (one of basic logic
axioms [19]).

We first encode the formula into the following plain-text
form:

Then, we run the program with the adequate switch and
the formula as its positional argument:

The program parses the input and performs translation
into order clausal form for solving VAL (where each aux-
iliary atom is marked with an asterisk and its index). Then,
the program outputs whether the formula is valid.5

(34)(� & �) → (� & �)

Generation of random formulae with given length and number of
atoms

Table 3 The mapping of text strings to logical expressions

Connective Text string Example

power “^” “a^3”
¬ “-” “-a”

& “&” “a & 0 &
b^3”

≖ “=” “a = 0”

≺ “<” “0 < a”

∧ “&&” “0<a &&
a<1”

∨ “v”, “V”, “||” “-a V –a”

→ “->”, “-:” “a=1 ->
a=0”

↔ “<->”, “==” “a&b ==
aVb”

∧ (minprec) “,”, \n “a<1, b<1”

5 The program output has been modified for better readability.

 SN Computer Science (2022) 3: 388388 Page 14 of 23

SN Computer Science

Technical Details and Improvements

As in the previous version [28], the application is imple-
mented in the C++ language, leveraging some of the
features of modern standards up to C++20. The data
structures in the source code were designed to maintain
intuitive representation, but keeping performance meas-
ures in mind (efficient memory handling, utilizing move
semantics, allowing for copy elision to take place when
possible, etc.).

Apart from the enhancements of the algorithm, we have
made changes to this version regarding the memory layout
of objects representing clausal formulae to achieve better
cache locality, as well as employed other optimizations.
The most notable of these is the truncation of the tree
resulting from translation into order clausal form in the
case of strong conjunctions of powers: if a subformula is
a strong conjunction of powers with only atoms and con-
stants, e.g., a3 & b & c2 , we do not break this further down.
Instead, the formula remains in the leaf and can be pro-
cessed by the DPLL procedure directly. Also, the code has
been refactored with the aim to make it easier to extend
the DPLL procedure with additional reduction rules. In
addition, we have implemented the admissible DPLL rules
(14)–(16).

The implementation has been tested in the Linux environ-
ment, but should be operating-system agnostic. The project’s
website contains the complete list of dependencies, as well
as instructions on how to build the project and run the main
program.

Experimental Results

To verify the implementation of prodfsat we have con-
ducted a number of experiments. In each we measured
the runtime of the program and where possible compared
it with the runtime of other existing solutions, namely
the mNiBLoS solver [30], its predecessor NiBLoS [31],
and the previous version of prodfsat [28]. Although the
mNiBLoS solver is more advanced than NiBLoS in the
case of the product t-norm (especially due to utilizing the

isomorphism between the standard product algebra and ℝ−

∙

[30, Sect. 3.1.2] which avoids algebraic multiplication),
we include it in a part of our comparative test bench for
wider reference.

The decision to use mNiBLoS and NiBLoS in our com-
parisons was made due to practical reasons: they intersect
with prodfsat in terms of being able to solve the SAT and
VAL problems over product propositional logic, they are
not based on stochastic methods, and their implementa-
tions were readily available and adaptable. However, it is
important to note the crucial differences: (1) both of these
two projects have more general domains than prodfsat, as
they operate over the ordinal sums of the three fundamen-
tal t-norms; (2) mNiBLoS supports not only propositional
logic but also the modal expansion; (3) these projects have
support for intermediate rational constants which prodfsat
currently lacks; (4) they are based on the translation into
SMT problem instances and rely on an SMT solver, while
the core part of prodfsat is self-contained. Due to the dif-
ferent goals of our work and [m]NiBLoS, we do not con-
sider these projects competitive, although we still find the
comparison important to derive conclusions about the state
of our work.

The experiments consist of five parts. First, we measure
the runtime using the set of test inputs from our previous
work [28] that are processed in batch. Then we compare
the performance of prodfsat, mNiBLoS, and NiBLoS
over the conforming subset of these inputs one-by-one.
Afterward, inspired by the experiments by Vidal [30], we
compare the implementations over a fixed formula with
varying powers of atoms, randomly generated formulae,
and a hard problem consisting of formulae with a high
number of atoms.

Methodology

To conduct comparative experiments we have adapted the
source code of mNiBLoS to support non-interactive input.
Next, we have developed a program that converts the syntac-
tical representation of formulae specific to prodfsat to both
NiBLoS and mNiBLoS. Due to differences in acceptable
input between these three systems, we have either limited
the generation of formulae to the common subset of expres-
sions (in the case of random formulae in section “Randomly
Generated Formulae”) or excluded the test examples that
contained connectives unsupported by existing solutions
(in the case of the test set in sections “Test Set (Batch)”
and “Test Set (One-by-one)”).

In the internal evaluation of prodfsat and the compari-
son of the current version with our previous work [28]
in section “Test Set (Batch)”, the measurements cover
only the time needed to read and parse the input data and
perform satisfiability and validity proofs, i.e., the time

SN Computer Science (2022) 3: 388 Page 15 of 23 388

SN Computer Science

required by the operating system to load the program is
omitted. More specifically, the tests are performed and
timed using the Google Test framework. However, as
the [m]NiBLoS systems employ a completely different
approach and are implemented in a different program-
ming language, we have chosen to measure the entire time
of running the process from the command line with the
related experiments6.

Remark 5 We have observed that—at least in the case of
non-trivial inputs—the translation portion of runtime of
either NiBLoS or mNiBLoS is negligible in comparison to
its execution of the Z3 SMT theorem prover. We have con-
sidered measuring the time of the Z3 prover alone; however,
as our intention was to include the time of prodfsat’s trans-
lation into order clausal form in the total runtime, we have
decided to stay symmetric with this decision.

To avoid inconsistencies, each measurement in this work
has been performed 10 times with the same input unless
otherwise stated. All experiments have been conducted on
the same hardware7.

There have been instances of problems where the com-
putation timed out according to the threshold set by the test
in question. As the results are averaged over multiple runs
with the same input, we treat timeouts with the following

dichotomy: if the computation timed out at least half of the
times (usually at least 5 times), we declare the average value
as timed out; otherwise the timed-out runs are excluded from
the average.

Test Set (Batch)

In our previous work [28] we measured the performance
of the earlier version of prodfsat using the set of 69 test
formulae. These examples are mostly composed of for-
mulae from literature: axioms of Hájek’s basic logic (8
formulae), properties of basic logic (49 formulae), product
logic axioms and properties (5 formulae) [19]; examples
by Guller (2 formulae); custom examples created during
the development of prodfsat (5 formulae)8. As the execu-
tion over some of the examples is too fast to adequately
measure the runtime in milliseconds, we have joined them
into 12 groups based on their occurrence in literature (e.g.,
“BLAxioms” are the axioms of basic logic, “BLMisc” are
six properties of basic logic, “Custom” are the five exam-
ples created in our work).

We have performed the tests using the program prodf-
sat_tests9 to measure the performance of the current
version of prodfsat with the algorithm and implementation
enhancements described in previous sections. Both satisfi-
ability and validity proofs have been performed for every

Table 4 Runtime in
milliseconds over test examples
processed in batch using our
previous work and the current
version of prodfsat

SD is the corrected sample standard deviation, NM is the mean value normalized by the number of tests in
the group. Values across all test examples are shown in bold

Group Size Old version Current version

Mean SD NM Mean SD NM

BLAxioms 8 709.2 43.51 88.65 142.8 3.65 17.85
BLConj 8 966.4 35.75 120.80 292.5 3.89 36.56
BLConstant 3 4.4 0.55 1.47 2.5 0.53 0.83
BLDisj 8 953.2 12.32 119.15 289.5 4.12 36.19
BLEquiv 9 1017.2 15.56 113.02 298.7 7.57 33.19
BLImpl 3 107.0 2.55 35.67 27.8 2.74 9.27
BLNegation 6 54.6 3.44 9.10 19.7 1.06 3.28
BLStrongConj 6 706.2 12.83 117.70 161.3 6.55 26.88
BLMisc 6 519.2 25.17 86.53 94.6 3.63 15.77
ProductLogic 5 115.4 2.51 23.08 33.0 1.56 6.60
Guller 2 234.6 4.56 117.30 53.4 1.65 26.7
Custom 5 135.2 6.14 27.04 87.4 5.50 17.48
Total 69 5587.4 90.03 80.98 1503.2 26.28 21.79

6 The shell scripts used to perform the experiments are part of the
project’s files.
7 The experiments have been conducted on a personal computer
with the CPU frequency of 3.31 GHz; the current implementation of
prodfsat is single-threaded.

8 The full list of formulae may be found in tests that are part of the
project’s files and are used by the prodfsat_tests program in
the test suite Solving.
9 Built with GCC 11.1.0, optimization level 3, and link-time optimi-
zation.

 SN Computer Science (2022) 3: 388388 Page 16 of 23

SN Computer Science

example. The resulting timings in milliseconds are the aver-
ages of 10 measurements (the values for the old version were
taken from our previous paper [28] where 5 measurements
were used), with the system’s cache cleared between each
run, and are shown in Table 4.

Upon inspection, it is clear the enhancements are sub-
stantial when proving SAT and VAL of these formulae, with
the total average runtime reduced down to 1503.2 ms, 26.9%
of the previous version of prodfsat. The average runtime
divided by the number of tests is therefore 21.79 ms. Several
individual tests (0 → � , � ≖ � , etc.) reported the runtime
rounded down to 0 ms, assuming the SAT and VAL solving
together took only a few hundred microseconds. In these
cases, the algorithm applies the reduction rules and elimi-
nates all clauses (SAT) or finds a contradictory clause (VAL)
in only a few steps.

As the formulae used in this experiment are relatively
short in the number of connectives and atoms, the low val-
ues in the execution times are expected. Nevertheless, the
results confirm the enhancements made in this work. The
comparison with other solvers as well as solving more com-
plex examples follow in the next experiments.

Test Set (One‑by‑one)

In this experiment we compare the performance of prodf-
sat with mNiBLoS and NiBLoS over the examples from
section “Test Set (Batch)”. We have excluded the tests
with connectives unsupported10 by either NiBLoS or mNi-
BLoS (equivalence and the strict order between an atom
and one of 0 , 1). The main difference from the previous

experiment is the nature of obtaining the timings: as per
section “Methodology”, this and all the following experi-
ments in this work have been conducted by measuring
the time of the execution of the whole program on each
test example one-by-one. Therefore, even the results for
prodfsat are higher in duration than in section “Test Set
(Batch)”. Moreover, while in the previous experiment we
have measured the total duration of proving both satisfi-
ability and validity, we list the two separately throughout
the rest of the paper for the sake of consistency with Vidal
[30].

The results can be seen in Table 5 for proving validity
and Table 6 for satisfiability. In most cases of the former,
prodfsat finishes faster, although sometimes only margin-
ally. On the other hand, prodfsat finishes faster when prov-
ing the satisfiability of formulae. The faster execution time
of SAT-solving as opposed to VAL may be explained by
the nature of the test examples. The majority are valid (axi-
oms, properties), therefore the algorithm of prodfsat has to
traverse every branch of the fuzzy DPLL tree, whereas to
prove satisfiability, the algorithm stops at the first closed
branch. Nevertheless, similarly to the previous experiment,
the results show that prodfsat performs reasonably well over
short formulae.

Parameterized Power

In the evaluation of mNiBLoS, Vidal has performed a com-
parative analysis using the test bench of generalizations
of axioms of basic logic [30, Sect. 4.2] with the varying
parameter n. One of these generalizations is shown in the
parameterized formula in Eq. (35).

Table 5 Runtime in milliseconds over test examples processed one-
by-one for the VAL problem

The values are normalized by the number of tests in the group. Min-
ima across solvers are highlighted in bold

Group Size prodfsat mNiBLoS NiBLoS

BLAxioms 8 39.02 61.89 85.32
BLConj 8 58.31 58.46 54.65
BLConstant 3 20.29 49.42 43.39
BLDisj 8 58.34 60.04 50.64
BLImpl 3 30.01 54.53 51.84
BLNegation 6 23.69 60.42 113.59
BLStrongConj 5 34.23 71.29 82.93
BLMisc 6 39.86 57.75 54.63
ProductLogic 5 26.48 58.20 130.56
Total 52 330.22 532.00 667.55

Table 6 Runtime in milliseconds over test examples processed one-
by-one for the SAT problem

The values are normalized by the number of tests in the group. Min-
ima across solvers are highlighted in bold

Group Size prodfsat mNiBLoS NiBLoS

BLAxioms 8 20.43 60.35 58.35
BLConj 8 19.68 54.78 54.18
BLConstant 3 18.94 50.73 44.32
BLDisj 8 19.48 56.98 51.04
BLImpl 3 19.33 54.02 54.69
BLNegation 6 20.07 61.85 60.52
BLStrongConj 5 20.49 61.12 59.79
BLMisc 6 20.07 56.71 54.63
ProductLogic 5 19.90 62.89 62.59
Total 52 178.39 519.43 496.86

10 According to the associated documentation and our belief.

SN Computer Science (2022) 3: 388 Page 17 of 23 388

SN Computer Science

Vidal’s work shows that in the case of product logic, the
runtime of mNiBLoS needed to prove validity increases
polynomially with increasing n. To display one of the advan-
tages of prodfsat, we have reconstructed the experiment (for
each n with the increment of 10 the measurement was taken
only once) and report the results in Fig. 2. The runtime val-
ues and the polynomial complexity of proving validity w.r.t.
the parameter n by mNiBLoS coincide with the measure-
ments of Vidal. The constant complexity of prodfsat (with
the average duration of 23.52 ms) is given by the direct rep-
resentation and processing of powers of atoms, which are
safely eluded in this case.

Randomly Generated Formulae

The paper introducing mNiBLoS proposes an interesting
experiment to test the solver on more irregular examples [30,
Sect. 4.2]. This is done by the random generation of formulae
of varying length, in terms of the connectives and the number of
atoms, and the varying number of atoms used in these formulae.
In addition, the generation was performed in two modes: with
and without constants. Inspired by the design, we have decided
to recreate the experiment for both prodfsat and mNiBLoS. The
precise way of generating random formulae in the paper [30]
is not known to us, therefore we present our algorithm in the
pseudocode 7.

The pseudocode in Alg.7 shows our bottom-up construc-
tion of random formulae, where the leaves are atoms or con-
stants, and inner vertices are connectives. There are always
at least atomCount unique atoms generated. Because the tree

(35)(�n&�n
) → (�n&�n

)

is binary, and length is the total size of the tree, there must
be length∕2 + 1 leaves. Therefore, once atomCount atoms
have been generated, the rest is filled with reoccurring atoms
or with constants at random when enabled.

To ensure compatibility between prodfsat and mNiB-
LoS, the connectives are limited to conjunction, disjunction,
implication, and strong conjunction. All atoms are generated
with the power of 1, and constants are limited by prodfsat
to 0 and 1.

We have executed several sets of tests over randomly gen-
erated formulae with varying length and number of atoms
with all three solvers. For brevity, we omit the results of
NiBLoS in these tests. The runtime measured in millisec-
onds is shown as heat-maps in Figs. 3, 4, 5, 6 in decimal-
logarithmic scale. Timeouts with the threshold of 1 min are
represented with white gaps (below the diagonal). At least
one atom was generated in all tests. Moreover, each test was
split between two intervals of varying length: 3–47 with
increments of 4 and atom count increments of 2, and 51–291
with increments of 20 and atom count increments of 10.

First, we have tested the performance of proving the valid-
ity of random formulae without constants. The results for
prodfsat and mNiBLoS are shown in Figs. 3 (length up to
47) and 4 (length up to 291). The difference between the two
solvers is immediate: while prodfsat performs consistently
better over short formulae (length up to 15), it struggles with

Fig. 2 Runtime in milliseconds required to prove the validity of the
formula (�n&�n) → (�n&�n) with increasing n in steps of 10. Val-
ues exceeding the timeout threshold of 10 seconds are not shown

Algorithm 7. Generation of random formulae with given length and
number of atoms

 SN Computer Science (2022) 3: 388388 Page 18 of 23

SN Computer Science

higher values, with 1-min timeouts occurring at length 35. In
contrast, mNiBLoS is efficient at proving the validity of all
tested formulae. Interestingly, Fig. 4 shows that prodfsat can
sporadically perform well (in some cases an order of magni-
tude better than mNiBLoS). One such case occurs with length
231 and 111 unique atoms. The average measured time of
prodfsat was 426.18 ms, while it took mNiBLoS 2748.47 ms.
We hypothesize this is due to the unpredictable applicability
of fuzzy DPLL reduction rules to random formulae.

The situation is slightly better with introduced constants
as can be seen in Fig. 5. With an increasing number of
constants, the repetitions of atoms are decreased (but all
still occur at least once), and they may be thought of as

constraints in the solution space for both prodfsat and mNi-
BLoS. As a result, prodfsat outperforms mNiBLoS up to
the length of 30. With greater lengths, however, the results
become similar to those over formulae without constants.

The results of proving satisfiability without constants,
which are shown in Fig. 6, are again similar to that of prov-
ing validity, with even more occurrences of timeouts in the
case of prodfsat. The results of proving satisfiability of ran-
dom formulae with constants (not shown) share the pattern
of proving validity with constants.

Overall, we conclude the performance of prodfsat over
large input is inferior to that of mNiBLoS. The majority of
generated formulae were satisfiable non-tautologies, so in

Fig. 3 Runtime of prodfsat (left) and mNiBLoS (right) in decimal-logarithmic scale required to prove the validity of random formulae with
increasing length (3–47) and number of atoms. Values exceeding the timeout threshold of 1 min are not shown

Fig. 4 Runtime of prodfsat (left) and mNiBLoS (right) in decimal-logarithmic scale required to prove the validity of random formulae with
increasing length (51–291) and number of atoms. Values exceeding the timeout threshold of 1 min are not shown

SN Computer Science (2022) 3: 388 Page 19 of 23 388

SN Computer Science

the case of proving satisfiability, prodfsat has to traverse all
branches of the trichotomous DPLL tree. While we have not
yet reached a thorough complexity analysis of the algorithm,
the worst case of the branching factor of 3 makes the tree 3n
-exponential. Some cases could be potentially improved by
introducing more reduction rules, but the irregularity of ran-
domly generated formulae would probably cause improve-
ments in these tests to be only sporadic.

Hard Instance

Our last experiment also follows Vidal [30, Sect. 4.2] in the
evaluation of formulae with fixed structure and quadratically

increasing number of atoms. In this section we show that the
performance of VAL solving of the following formula with
prodfsat is poor in comparison. Then we present an ad hoc
reduction rule that improves its performance. Our purpose
is not to introduce another DPLL reduction rule that will be
used in all future iterations of our work, but rather to show
how easily our solver may be extended to help the perfor-
mance in specific scenarios.

The parameterized version of the problem in question is
shown in Eq. (36).

Fig. 5 Runtime of prodfsat (left)and mNiBLoS (right) in decimal-logarithmic scale required to prove the validity of random formulae with con-
stants with increasing length (3–47) and number of atoms

Fig. 6 Runtime of prodfsat (left) and mNiBLoS (right) in decimal-logarithmic scale required to prove the satisfiability of random formulae with
increasing length (3–47) and number of atoms. Values exceeding the timeout threshold of 1 min are not shown

 SN Computer Science (2022) 3: 388388 Page 20 of 23

SN Computer Science

We have reconstructed the experiment with the value of the
parameter n ranging between 1 and 9 and averaged the per-
formance of all three systems over two measurements for
every n. The results for proving validity are shown in Table 7
and satisfiability in Table 8.

The results in the case of validity indicate the inferior
performance of prodfsat in comparison with both mNiBLoS
and NiBLoS, increasing exponentially to a great degree (the
process took 11.6 h to finish with n = 4), while the increase
of runtime for mNiBLoS is much less steep. There are two
reasons for the low performance of prodfsat: (1) the formu-
lae in this experiment are tautologies, so the algorithm has
to traverse every branch of the product DPLL tree with the
branching factor of 3, which is exacerbated by the quadratic
increase of atoms; (2) the clausal forms of the formulae are
hard to reduce with the current set of reduction rules.

To demonstrate the feasibility of introducing optimiza-
tions to our approach, we have devised a simple additional
reduction rule.

(36)
n⋀
i=1

(&n
j=1

�ij) →

n⋁
i=1

(&n
j=1

�ij)

The reduction rule (37) removes all unit clauses of equal-
ity literals between a single atom and a strong conjunction
of atoms if all of the atoms of the strong conjunction only
occur in this clause. When applied to formulae in Eq. (36),
this removes from the theory all clauses that define auxiliary
atoms representing strong conjunctions of atoms. After per-
forming this reduction, the clausal theory is equisatisfiable
to the original formula, as we do not remove the occurrence
of the auxiliary atoms representing the strong conjunctions
from the rest of the theory, i.e., we only omit the leaf clauses.
In practice, the output of the program with the optimizing
rule for n = 4 is as follows.

The runtime of prodfsat with this additional reduction
rule is shown in the table as prodfsat-opt. As can be seen,
mNiBLoS is still vastly superior, but proving the validity of
the formula becomes reasonably fast for n ≤ 4.

Proving the satisfiability of formulae in Eq. (36) is much
easier for prodfsat than proving validity. The measurements
are shown in 8. In this test, prodfsat consistently outperforms
mNiBLoS and NiBLoS even without the additional reduc-
tion rule. This is because to prove satisfiability, prodfsat does
not have to traverse all of the branches of the product DPLL
tree—the algorithm stops at the first open branch. The higher
complexity of [m]NiBLoS is probably caused by the fact that
the SMT solver attempts to find the model—the interpreta-
tion of every atom. As the solver is not informed about the
nature of the formula, the search space is most likely not
well constrained.

Examination of Individual Improvements

In this part we examine how the improvements of the algo-
rithms or implementation of our solver contribute to its
runtime performance. We have carried out the experiments
from section “Test Set (Batch)” (SAT and VAL over test

(37)

(hard problem optimizing rule)

S

S − {a ≖ b
�0
0
& … & b

�n
n }

;

a ∈ atoms(S), none of bi 0 ≤ i ≤ n, occur elsewhere in S.

Table 8 Runtime in milliseconds over formulae in Eq. (36) for prov-
ing satisfiability

The timeout threshold was set to 30 s

n prodfsat prodfsat-opt mNiBLoS NiBLoS

2 20.11 24.07 57.04 57.37
3 19.73 23.00 213.81 189.96
4 20.45 25.31 613.57 1286.33
5 21.81 24.42 753.45 16025.11
6 27.12 25.05 905.96 16989.17
7 24.40 24.50 2449.88 Timed out
8 30.17 26.93 1674.97 Timed out
9 40.43 26.45 12767.42 Timed out
… … … … …

100 16905.60 17050.62 Timed out Timed out

Table 7 Runtime in milliseconds over formulae in Eq. (36) for prov-
ing validity

n prodfsat prodfsat-opt mNiBLoS NiBLoS

2 60.48 29.78 63.93 110.69
3 23.67 × 103 351.50 193.81 857.47
4 66.96 × 106 9009.53 713.60 4192.50
5 Not tested 317.26 × 103 763.19 37.19 × 103

6 Not tested Not tested 1057.78 Not tested
7 Not tested Not tested 1226.34 Not tested
8 Not tested Not tested 1503.56 Not tested
9 Not tested Not tested 2175.58 Not tested

SN Computer Science (2022) 3: 388 Page 21 of 23 388

SN Computer Science

formulae run in batch) and section “Hard Instance” (indi-
vidual SAT and VAL over hard instance) with selectively
enabled improvements in a cross-product manner. The meas-
urements of runtime are displayed in Table 9.

The breakdown of runtime shown in Table 9 indicates that
two improvements have the highest impact: the avoidance of
translating strong conjunctions into order clausal form that
are composed only of powers of atoms or constants (pow in
the table, mentioned in section “Implementation”), and the
caching of subformulae during translation (dag in the table,
described in section “Translation into Order Clausal Form”).
The combination of these improvements overall yields the
fastest performance. The addition of Guller’s admissible
DPLL rules (14)–(16) as shown in section “Product DPLL
Procedure” improves the runtime only marginally. In some
cases, especially in batch formula tests and when solving

satisfiability of long formulae (hard instance with n = 100),
the employment of guard propagation rule III in combination
with pow and dag makes the runtime slightly worse (apply-
ing the rule has a cost even if no changes are made), but
helps in other experiments. This raises the question whether
the addition of admissible rules is suitable for the solver
at all. The current version of prodfsat employs these rules
because of their ability to produce more compact subtrees,
which may improve visualization of the DPLL procedure.
However, we will consider their automated selective activa-
tion according to the nature of input in future work.

Conclusion and Future Work

In this paper we have presented the improvements to our
fuzzy DPLL-based solver for product propositional logic.
We have empirically evaluated the current state of our
implementation and compared it with our previous work.
The results show a considerable increase in performance of
SAT and VAL solving, climbing to approximately a four-fold
enhancement in our test bench.

More importantly, we have compared the performance of
our solver with the existing solvers NiBLoS and mNiBLoS
on a set of experiments and obtained the timings of solving
SAT and VAL over (1) a fixed set of tests, (2) a formula with
parameterized power, (3) randomly generated formulae, and
(4) a hard formula instance with a quadratically increasing
number of atoms. The results show that our solver excels at
(a) formulae short in length, (b) in cases when the DPLL
tree can be well-reduced and does not have to be fully tra-
versed (proving SAT of satisfiable and VAL of unsatisfiable
formulae), and (c) formulae where the solver leverages its
interpretation of product logic. Moreover, even though our
solver did not perform well at solving VAL of the hard for-
mula instance, we have demonstrated its advantage of being
self-contained by designing and adding a simple reduction
rule that downsized the DPLL tree and improved the test
results by several orders of magnitude.

To the best of our knowledge, this is the only solution in
the group of product propositional fuzzy SAT solvers that
generalize classical logic approaches and have a publicly
available implementation. However, the current version of
our solver does not support intermediate constants and does
not yet perform model-finding. We consider these two as the
most important features for future addition.

Funding This work was partially supported by the following projects:
– ORBIS, funded by the Slovak Research and Development Agency

(SRDA) under contract no. APVV-19-0220.
– KATO, funded by the Slovak VEGA agency under contract

no. 1/0778/18.

Table 9 Runtime in milliseconds with selectively enabled combina-
tions of improvements

other represents miscellaneous (most notably cache locality-related)
implementation optimizations with all other improvements disa-
bled. pow is the avoidance of translating strong conjunctions into
order clausal form that are composed only of powers of atoms or
constants as per section “Implementation”. dag is the re-use of sub-
formulae during translation as described in section “Translation into
Order Clausal Form” (treating the formula as a directed acyclic graph
instead of a tree). a{123} is the application of guard propagation rule
I, II, and/or III, respectively. exp is the experiment the runtime over
which was measured in the respective part of the table. hp–(sat/val)–
n is the experiment performing SAT or VAL on the hard instance
in section “Hard Instance” with specified parameter n. The timeout
for experiment hp–sat–100 was set to 60 s. Minimum values within
experiments are shown in bold

Exp. Opt. other pow dag pow+dag

batch other 4494.1 1600.1 2454.4 1364.7
a12 4290.9 1453.4 2281.3 1405.3
a3 4087.4 1412.8 2163.2 1381.0
a123 4228.4 1440.5 2238.9 1394.6

hp–val–3 other 2.5 × 105 1.2 × 105 46152.6 22780.9
a12 2.3 × 105 1.2 × 105 40307.9 22216.5
a3 2.5 × 105 1.1 × 105 44806.8 22258.5
a123 2.2 × 105 1.1 × 105 39541.4 22114.5

hp–sat–3 other 3.0 2.0 2.1 1.5
a12 3.1 2.0 2.3 1.4
a3 3.5 2.0 2.2 1.3
a123 3.0 2.2 2.0 1.2

hp–sat–10 other 215.2 25.2 84.3 13.4
a12 306.4 22.7 94.0 13.9
a3 229.5 22.0 79.8 13.3
a123 293.0 24.8 91.1 13.0

hp–sat–100 other Timed out 27795.2 Timed out 14293.2
a12 Timed out 27638.5 Timed out 13365.4
a3 Timed out 35102.7 Timed out 15000.9
a123 Timed out 37908.1 Timed out 15495.7

 SN Computer Science (2022) 3: 388388 Page 22 of 23

SN Computer Science

– TAILOR, funded by the EU Horizon 2020 research and innova-
tion program under Grant Agreement no. 952215.

Availability of data and material Not applicable.

Code availability The source code of prodfsat along with the parts used
to conduct experiments is available at the following https:// git. uhlia rik.
com/ ivor/ prodf sat.

Declarations

Conflict of interest Author Ivor Uhliarik declares that he has no con-
flict of interest.

 Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

 1. Alsinet T, Barroso D, Béjar R, Bou F, Cerami M, Esteva F. On the
implementation of a fuzzy DL solver over infinite-valued product
logic with SMT solvers. In: Liu W, Subrahmanian VS, Wijsen J
(eds) Scalable uncertainty management—7th international con-
ference, SUM 2013, Washington, DC, USA, September 16–18,
2013. Proceedings, Springer, Lecture Notes in Computer Science,
vol 8078; 2013. pp. 325–30. https:// doi. org/ 10. 1007/ 978-3- 642-
40381-1_ 25.

 2. Alviano M, Peñaloza R. Fuzzy answer set computation via satisfi-
ability modulo theories. TPLP. 2015;15(4–5):588–603. https:// doi.
org/ 10. 1017/ S1471 06841 50002 41.

 3. Ansótegui C, Bofill M, Manyà F, Villaret M. Building automated
theorem provers for infinitely-valued logics with satisfiability
modulo theory solvers. Fuzzy Sets Syst. 2012;2012:25–30. https://
doi. org/ 10. 1109/ ISMVL. 2012. 63.

 4. Ansótegui C, Bofill M, Manyá F, Villaret M. Automated theo-
rem provers for multiple-valued logics with satisfiability modulo
theory solvers. Fuzzy Sets Syst. 2016;292:32–48.

 5. Baaz M, Hájek P, Švejda D, Krajíček J. Embedding logics into
product logic. Stud Log. 1998;61(1):35–47. https:// doi. org/ 10.
1023/A: 10050 26229 560.

 6. Bobillo F, Straccia U. A fuzzy description logic with product
t-norm. In: 2007 IEEE international fuzzy systems conference;
2007a. pp. 1–6. https:// doi. org/ 10. 1109/ FUZZY. 2007. 42954 43.

 7. Bobillo F, Straccia U. A fuzzy description logic with product
t-norm. In: Fuzzy systems conference, 2007. FUZZ-IEEE 2007.
IEEE International, IEEE; 2007b. pp. 1–6.

 8. Brys T, Drugan MM, Bosman PA, De Cock M, Nowé A. Solving
satisfiability in fuzzy logics by mixing CMA-ES. In: Proceed-
ings of the 15th annual conference on genetic and evolutionary
computation, ACM, New York, NY, USA, GECCO ’13; 2013. pp.
1125–1132. https:// doi. org/ 10. 1145/ 24633 72. 24635 10.

 9. Béjar R, Alsinet T, Bou F, Barroso D, Cerami M, Esteva F. On the
implementation of a fuzzy DL solver over infinite-valued product
logic with SMT solvers. Berlin: Springer; 2013. p. 8078. https://
doi. org/ 10. 1007/ 978-3- 642- 40381-1_ 25.

 10. Davis M, Logemann G, Loveland D. A machine program for
theorem-proving. Commun ACM. 1962;5(7):394–7. https:// doi.
org/ 10. 1145/ 368273. 368557.

 11. de Moura L, Bjørner N. Z3: An efficient SMT solver. In: Ram-
akrishnan CR, Rehof J, editors. Tools and algorithms for the con-
struction and analysis of systems. Heidelberg: Springer; 2008. p.
337–40.

 12. Guller D. A DPLL procedure for the propositional product
logic. In: Proceedings of the 5th international joint conference
on computational intelligence—Volume 1: FCTA, (IJCCI 2013),
INSTICC, SciTePress; 2013. pp. 213–224. https:// doi. org/ 10.
5220/ 00045 57402 130224.

 13. Guller D. An order hyperresolution calculus for Gödel logic with
truth constants and equality, strict order, delta. In: 2015 7th inter-
national joint conference on computational intelligence (IJCCI);
2015. pp. 31–46.

 14. Guller D. Hyperresolution for propositional product logic. In:
Guervós JJM, Melício F, Cadenas JM, Dourado A, Madani K,
Ruano AEB, Filipe J (eds) Proceedings of the 8th international
joint conference on computational intelligence, IJCCI 2016, Vol-
ume 2: FCTA, Porto, Portugal, November 9-11, 2016, SciTePress;
2016. pp. 30–41. https:// doi. org/ 10. 5220/ 00060 44300 300041.

 15. Guller D. Technical foundations of a DPLL-based SAT solver for
propositional gödel logic. IEEE Trans Fuzzy Syst. 2018;26(1):84–
100. https:// doi. org/ 10. 1109/ TFUZZ. 2016. 26373 74.

 16. Guller D. Hyperresolution for Gödel logic with truth constants.
Fuzzy Sets Syst. 2019;363:1–65. https:// doi. org/ 10. 1016/j. fss.
2018. 09. 008.

 17. Guller D. Hyperresolution for propositional product logic with
truth constants. Cham: Springer International Publishing; 2019.
p. 197–220. https:// doi. org/ 10. 1007/ 978-3- 319- 99283-9_ 10.

 18. Hähnle R. Many-valued logic and mixed integer programming.
Ann Math Artif Intell. 1994;12(3):231–63. https:// doi. org/ 10.
1007/ BF015 30787.

 19. Hájek P. Metamathematics of fuzzy logic. In: Trends in logic.
Berlin: Springer; 2001.

 20. Haller M, Haberl R, Carbonell D, Philippen D, Frank E. Sol-heap-
solar and heat pump combisystems. Institut für Solartechnik SPF,
Hochschule für Technik HSR, Rapperswil, Switzerland, Report
Contract No SI/500494-02. 2014.

 21. Janssen J, Schockaert S, Vermeir D, De Cock M. Answer set pro-
gramming for continuous domains: a fuzzy logic approach. In:
Atlantis computational intelligence systems. Amsterdam: Atlantis
Press; 2012.

 22. Lukasiewicz T, Straccia U. Managing uncertainty and vague-
ness in description logics for the semantic web. J Web Semant.
2008;6(4):291–308. https:// doi. org/ 10. 1016/j. websem. 2008. 04.
001 (Semantic web challenge 2006/2007).

 23. Mostert PS, Shields AL. On the structure of semigroups on a
compact manifold with boundary. Ann Math. 1957;65(1):117–43
(http:// www. jstor. org/ stable/ 19696 68).

 24. Plaisted DA, Greenbaum S. A structure-preserving clause form
translation. J Symb Comput. 1986;2(3):293–304.

 25. Réseau de Transport d’Électricité. RTE daily energy load data.
2022. https:// www. servi ces- rte. com/ en/ view- data- publi shed- by-
rte/ daily- load- curves. html.

 26. Tseitin GS. On the complexity of derivation in propositional cal-
culus. Berlin, Heidelberg: Springer; 1983. p. 466–83. https:// doi.
org/ 10. 1007/ 978-3- 642- 81955-1_ 28.

 27. Uhliarik I. Foundations of a DPLL-based solver for fuzzy answer
set programs. Cham: Springer International Publishing; 2019. p.
99–117. https:// doi. org/ 10. 1007/ 978-3- 030- 16469-0_6.

 28. Uhliarik I (2020) The implementation of a product fuzzy DPLL
solver. In: Guervós JJM, Garibaldi JM, Wagner C, Bäck T, Madani
K, Warwick K (eds) Proceedings of the 12th international joint
conference on computational intelligence, IJCCI 2020, Budapest,
Hungary, November 2-4, 2020, SCITEPRESS; 2020. pp. 252–63.
https:// doi. org/ 10. 5220/ 00101 48802 520263.

 29. Van Nieuwenborgh D, De Cock M, Vermeir D. An introduc-
tion to fuzzy answer set programming. Ann Math Artif Intell.
2007;50(3):363–88. https:// doi. org/ 10. 1007/ s10472- 007- 9080-3.

https://git.uhliarik.com/ivor/prodfsat
https://git.uhliarik.com/ivor/prodfsat
https://doi.org/10.1007/978-3-642-40381-1_25
https://doi.org/10.1007/978-3-642-40381-1_25
https://doi.org/10.1017/S1471068415000241
https://doi.org/10.1017/S1471068415000241
https://doi.org/10.1109/ISMVL.2012.63
https://doi.org/10.1109/ISMVL.2012.63
https://doi.org/10.1023/A:1005026229560
https://doi.org/10.1023/A:1005026229560
https://doi.org/10.1109/FUZZY.2007.4295443
https://doi.org/10.1145/2463372.2463510
https://doi.org/10.1007/978-3-642-40381-1_25
https://doi.org/10.1007/978-3-642-40381-1_25
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.5220/0004557402130224
https://doi.org/10.5220/0004557402130224
https://doi.org/10.5220/0006044300300041
https://doi.org/10.1109/TFUZZ.2016.2637374
https://doi.org/10.1016/j.fss.2018.09.008
https://doi.org/10.1016/j.fss.2018.09.008
https://doi.org/10.1007/978-3-319-99283-9_10
https://doi.org/10.1007/BF01530787
https://doi.org/10.1007/BF01530787
https://doi.org/10.1016/j.websem.2008.04.001
https://doi.org/10.1016/j.websem.2008.04.001
http://www.jstor.org/stable/1969668
https://www.services-rte.com/en/view-data-published-by-rte/daily-load-curves.html
https://www.services-rte.com/en/view-data-published-by-rte/daily-load-curves.html
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-030-16469-0_6
https://doi.org/10.5220/0010148802520263
https://doi.org/10.1007/s10472-007-9080-3

SN Computer Science (2022) 3: 388 Page 23 of 23 388

SN Computer Science

 30. Vidal A. MNiBLoS: A SMT-based solver for continuous t-norm
based logics and some of their modal expansions. Inf Sci.
2016;372:709–30. https:// doi. org/ 10. 1016/j. ins. 2016. 08. 072.

 31. Vidal A. NiBLoS: a nice BL-logics solver. Master's Thesis, Uni-
versitat de Barcelona. 2012.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.ins.2016.08.072

	Enhancing and Evaluating the Product Fuzzy DPLL Solver
	Abstract
	Introduction
	Preliminaries
	Product Propositional Logic
	Order Clausal Form
	Product DPLL Procedure

	Motivational Example
	Algorithm
	Translation into Order Clausal Form
	DPLL Inference
	Limitations
	Unit Contradiction

	Implementation
	Application Usage
	Example
	Technical Details and Improvements

	Experimental Results
	Methodology
	Test Set (Batch)
	Test Set (One-by-one)
	Parameterized Power
	Randomly Generated Formulae
	Hard Instance
	Examination of Individual Improvements

	Conclusion and Future Work
	References

