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Abstract
In recent years we have seen a number of satisfiability solvers emerge in the world of fuzzy propositional logics. However, 
only a few of them can solve product logic problems with the continuous product t-norm. The existing solvers may be 
categorized into those based on (1) translations into instances of other systems such as satisfiability modulo theories, (2) 
evolutionary algorithms, and (3) fuzzy generalizations of classical-logic procedures, such as hyperresolution or the Davis–
Putnam–Logemann–Loveland (DPLL) procedure. In our previous work we have designed and developed a fuzzy DPLL solver 
for Δ-extended product propositional logic. This paper presents the enhancements we have made to the previous iteration 
and establishes a set of experiments motivated by existing solutions for comparing the solver among its versions as well as 
with other methods. We have conducted the experiments using our solver and two existing solutions. The results show that 
our solution excels at small inputs and formulae with certain properties. Eventually, we demonstrate the extensibility of our 
solver by devising an ad hoc simplification rule that compacts the search space in a specific scenario.
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Introduction

The area of automated theorem proving (ATP) in fuzzy log-
ics has been well-developed over the last few decades in 
propositional logic (see e.g. Ansótegui et al. [4], Brys at 
al. [8], Guller [12, 15, 16], Hähnle [18], Vidal [30, 31]), 
description logics [6, 9, 22], or fuzzy answer set program-
ming [2, 21, 29]. However, among the three prominent 
(Gödel, Łukasiewicz, and product) logics, only a few of 
them pay attention to product logic.

In propositional fuzzy logic, ATP relates to the tasks of 
verifying satisfiability (SAT) and validity (tautologicity, 
VAL) of formulae. Several papers have proposed approaches 
that are unified across the three prominent t-norms [4, 8, 30, 
31] and as such may benefit from using the Mostert-Shields 
theorem [23] to support all continuous t-norms.

We highlight the work of Vidal who has developed two 
such solvers, namely the Nice BL-Logics Solver NiBLoS 
[31] and its modal extension mNiBLoS [30]. These solvers 
are capable of checking satisfiability, validity, and deduc-
ibility (verifying whether a formula follows from a theory) 
of formulae. They are based on translations of inputs into 
satisfiability modulo theory (SMT) instances. SMT solvers 
are generalizations of SAT solvers with the ability to solve 
multitude of problems in various domains using so-called 
background theories (e.g., using the background theories 
of linear real arithmetic). The NiBLoS solver is based on 
one of the first such attempts [3] which introduced the 
straightforward encoding of Łukasiewicz and product logic 
connectives in SMT by defining the respective fuzzy logic 
operations as functions that SMT understands. NiBLoS 
also implements such encodings and adds the support for 
Gödel logic and any other continuous t-norm-based logic. 
Once the input formula is translated, it is fed into an SMT 
solver (such as Intel’s Z3 solver [11]) together with the SMT 
encoding of the respective logic and the result is interpreted 
to find whether a model exists. The mNiBLoS solver is more 
advanced than NiBLoS in several ways, the most notable 
of which are two: the support for modal fuzzy logic and 
the ability to avoid algebraic multiplication of the product 
t-norm [30, Sect. 3.1.2]. Both of these solvers have been 
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validated, empirically tested, and have implementations 
available to the public.

Another group of approaches to solving the SAT prob-
lem in propositional logic includes the work of Guller on 
the hyperresolution principle [13, 14, 16] and the fuzzy 
generalization of the Davis–Putnam–Logemann–Loveland 
(DPLL) procedure [12, 15]. The papers prove the soundness 
and completeness of the approaches and provide a founda-
tion for developing a solver. Using these methods, such a 
solver would not have to rely on the translation into other 
systems and the existence of other solvers.

In our work we focus on SAT solving in product fuzzy 
logic based on the fuzzy generalization of the DPLL pro-
cedure [12], which allows us to develop a self-contained 
and transparent solver. The specialization on product logic 
allows us to easily extend the algorithm with simplifica-
tion rules. Moreover, we choose to work with product logic 
extended with the Monteiro-Baaz Δ connective ( Π

Δ
 ), moti-

vated by the embeddability of Łukasiewicz and Δ-extended 
Gödel logics within Π

Δ
 , which allow us to develop a uniform 

solver for all three prominent fuzzy logics in the future.
This paper is an extension of our previous work [28] 

where we have proposed a deterministic algorithm to solve 
SAT and VAL for propositional formulae in Π

Δ
 and provided 

details about our working implementation. In this paper we 
(1) introduce enhancements of the algorithm and describe 
the improvements made in our implementation, (2) experi-
mentally evaluate its performance and compare the current 
version with the previous state of our work, and most notably 
(3) perform experiments for comparative testing of our solu-
tion, analyze the results, and compare our solution with the 
NiBLoS and mNiBLoS solvers. Moreover, we have added a 
hypothetical motivational example and provided examples 
to many concepts and notions to make them more intuitive.

In the following sections we first recall the preliminary 
notions and the fuzzy DPLL procedure (“Preliminaries” 
section) and demonstrate a possible application of product 
propositional logic SAT solving on a hypothetical real-
world example (“Motivational Example” section). Then, 
we describe the algorithms used by our solver (“Algorithm” 
section), describe our implementation (“Implementation” 
section), and define the experiments and report the results 
of comparison (“Experimental Results” section). Finally, we 
conclude the paper (“Conclusion and Future Work” section).

Preliminaries

This section introduces the preliminary notions used 
throughout the rest of the paper. First, we define the Δ
-extended product propositional logic. Then, we discuss 
the order clausal form of product propositional formulae. 
Finally, we outline the product fuzzy DPLL procedure.

Product Propositional Logic

The target fuzzy logic of this work is the product proposi-
tional logic Π

Δ
 extended with the Monteiro-Baaz Δ connec-

tive and the connectives ≖ , ≺ . The logic is interpreted by 
the product algebra and the related operators ≖≖≖ , ≺≺≺ , and ΔΔΔ:

The syntactical connectives and associated semantic opera-
tors of Π

Δ
 are listed in Table 1 with the decreasing prec-

edence: ( ¬ , Δ , & , ≖ , ≺ , ∧ , ∨ , → , ↔).
The operations are defined for the operands x, y ∈ [0, 1] 

with the result in [0, 1] as follows:

Next, the operators ∨∨∨ , ∧∧∧ are defined as the supremum and 
infimum operator on [0, 1], respectively; ⋅ as the algebraic 
product; the equivalence1 connective in the expression x ↔ y 
as x⇒⇒⇒y∧∧∧y⇒⇒⇒x . The algebra’s absorbing and neutral elements 
0 and 1 are the interpretations of the truth constant of abso-
lute falsehood and absolute truth.

The residuum operator ⇒⇒⇒ satisfies the residuation prin-
ciple w.r.t. operator ⋅ . For any x ∈ �

�
 , the negation ¬¬¬ satis-

fies the condition ¬¬¬x = x⇒⇒⇒0 , and ΔΔΔ satisfies the condition 
ΔΔΔx = x≖≖≖1.

�
�
= ([0, 1],≤,∨∨∨,∧∧∧, ⋅,⇒⇒⇒,¬¬¬,≖≖≖,≺≺≺,ΔΔΔ, 0, 1)

x⇒⇒⇒y =

{
1 if x ≤ y,
y

x
else;

¬¬¬x =

{
1 if x = 0,

0 else;

x≖≖≖y =

{
1 if x = y,

0 else;
x≺≺≺y =

{
1 if x < y,

0 else;

ΔΔΔx =

{
1 if x = 1,

0 else.

Table 1  Connectives and operators of Π
Δ

Connective Operator Name

¬ ¬¬¬ Negation
∧ ∧∧∧ (Weak) conjunction
& ⋅ Strong conjunction
∨ ∨∨∨ Disjunction
→ ⇒⇒⇒ Implication
↔ (none) Equivalence
≖ ≖≖≖ Equality
≺ ≺≺≺ Strict order
Δ ΔΔΔ Delta

1 The equality operator is crisp, i.e., the result is 0 or 1, while equiv-
alence is not. By Guller’s convention [17] we mostly use equality 
between atoms and constants as assertions, and equivalence between 
more complex formulae, but this is not a universal rule; see Ex. 19.
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Definition 1 [12] Let PropAtom be the set of all proposi-
tional atoms. Let OrdPropForm be the set of all order prop-
ositional formulae constructed from PropAtom , the truth 
constants 0 , 1 , and the logical connectives of Π

Δ
 . An order 

theory is any subset of OrdPropForm.

Definition 2 [12] Let a mapping V ∶ PropAtom ⟶ [0, 1] 
be the valuation of propositional atoms such that V(0) = 0 
and V(1) = 1 . For any formula � ∈ OrdPropForm , the value 
‖�‖V ∈ [0, 1] of � in V is defined recursively on the structure 
of �:

Definition 3 [12] The formula � ∈ OrdPropForm has the 
model V ( � is true in the valuation V , V ⊧ 𝜑 ) iff ‖�‖V = 1 . � 
is satisfiable iff it has a model and is valid (a tautology) iff 
every valuation is its model. The theory T has the model V , 
or V ⊧ T  iff V ⊧ 𝜑 for all formulae � ∈ T  . T is satisfiable iff 
it has a model and is valid iff every valuation is its model. 
For two formulae �,��

∈ OrdPropForm , � is equivalent to 
�′ , or � ≡ �′ iff ‖�‖V = ‖��‖V for every valuation V.

Order Clausal Form

The product fuzzy DPLL procedure introduced in sec-
tion “Product DPLL Procedure” expects the input to be in 
order clausal form, which is the counterpart of normal forms 
in Boolean propositional logic. Below we revisit the defini-
tions of the order clausal form and the associated notions to 
be able to refer to them later in the text.

Definition 4 [17] Let power of atom an be the n-th power of 
atom a interpreted by the ⋅ operator. Let conjunction Cn be 
a non-empty finite set of powers of atoms {ap1

1
,… , a

pn
n } for 

n ≥ 1 written as the expression ap1
1
& … & a

pn
n  . The atoms 

ai , 1 ≤ i ≤ n cannot occur more than once in the expression. 
An example of a conjunction is a3 & b4 . Let PropConj des-
ignate the set of all conjunctions.

Definition 5 [17] Let order literal be an expression of the 
form �1 ⋄ �2 where ⋄ ∈ {≖,≺} and �i ∈ PropConj ∪ {0, 1} . 
An order literal is called equality literal when ⋄ =≖ , and 
strict order literal when ⋄ =≺ . Two examples of order liter-
als are a2 & b3 ≺ a and a ≖ 0 . An order literal is pure iff it 
does not contain any of the constants 0, 1.

𝜑 ∈ PropAtom, ‖𝜑‖V = V(𝜑);

𝜑 = ¬𝜑1, ‖𝜑‖V = ¬¬¬‖𝜑1‖V;
𝜑 = Δ𝜑1, ‖𝜑‖V = ΔΔΔ‖𝜑1‖V;
𝜑 = 𝜑1 ⋄ 𝜑2, ‖𝜑‖V = ‖𝜑1‖V⋄⋄⋄‖𝜑2‖V, ⋄ ∈ {∧, &,∨,→,≖,≺};

𝜑 = 𝜑1 ↔ 𝜑2, ‖𝜑‖V = (‖𝜑1‖V⇒⇒⇒‖𝜑2‖V) ⋅ (‖𝜑2‖V⇒⇒⇒‖𝜑1‖V).

Definition 6 [17] Let order clause be a set of order literals 
{l1,… , ln} for n ≥ 1 written as the expression l1 ∨⋯ ∨ ln . 
Let ◻ represent an empty clause ∅ . A unit clause {l} is a 
clause containing a single literal l. In contexts where this 
does not cause ambiguity, we write the unit clause {l} as l, 
omitting the set braces. An example of an order clause is 
a2 & b3 ≺ a ∨ a ≖ 1 . An example of a unit clause is a ≺ 1 
(more formally {a ≺ 1}).

Definition 7 [17] Let order clausal theory be a set of order 
clauses. An order clausal theory is {pure, unit} iff it contains 
only {pure, unit} clauses.

The interpolation rules used to perform the translation, 
along with a more comprehensive list of definitions, are to 
be found in Guller’s work [17, Sect. 3].

Product DPLL Procedure

One of the well-established algorithms to solve the satisfi-
ability problem in classical propositional logic is the DPLL 
procedure [10]. The algorithm performs backtracking to find 
a model of a given theory or prove its unsatisfiability.

The basic step consists of picking a literal and assigning 
to it the value of either true or false if possible. This step 
may be thought of as splitting the backtracking tree at the 
vertex representing a literal into two branches according to 
the assigned value. This branching step may be visualized 
in the form:

for literal l occurring in theory S. The product fuzzy exten-
sion of the DPLL procedure introduced by Guller [12] is 
also a backtracking-based algorithm that operates over finite 
order clausal theories and uses a similar kind of branching at 
its core. The branching step considers an atom and attempts 
to determine its value with the following trichotomy:

for atom a occurring in theory S.
Moreover, the classical DPLL algorithm employs two 

rules that constrain the search space—unit propagation and 
pure literal elimination. In product DPLL, there are seven-
teen rules (as defined in Guller’s unpublished work), thirteen 
of which are necessary for the procedure to be refutation-
complete, and four admissible rules that help constrain the 
search space or produce smaller trees.

The proof of satisfiability or validity of an order clausal 
theory is based on adequate application of the rules on 
the input theory. The rules split the tree into branches and 

S

S ∪ {l}|| S ∪ {¬l}
(Branching rule)

S

S ∪ {a ≖ 0} || S ∪ {0 ≺ a, a ≺ 1} || S ∪ {a ≖ 1}
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simplify the clausal theory in the process. If a branch remains 
open after the non-deterministic application of all possible 
rules, there is a valuation of atoms under which the theory is 
true that may be obtained from the path of traversal.

The original proposal of the product fuzzy DPLL pro-
cedure may be found in the work of Guller [12] together 
with the related proof of refutational soundness and 
completeness.

Below we revisit some of the concepts and notation 
defined in [12] and Guller’s unpublished work that we will 
refer to later in the paper.

Definition 8 [17] Let a be an atom and let the order 
clause C be a guard iff either C = a ≖ 0 , C = 0 ≺ a , 
C = a ≺ 1 , or C = a ≖ 1 . Let S be an order propositional 
clause. Let guards(a) = {a ≖ 0, 0 ≺ a, a ≺ 1, a ≖ 1} and 
guards(S) = {C |C ∈ S is a guard} . Atom a is fully guarded 
in theory T iff the theory contains either the literal a ≖ 0 , the 
literal a ≖ 1 , or both of the literals 0 ≺ a, a ≺ 1.

Definition 9 Given a ∈ PropAtom , the propositional for-
mula a ≖ 0 ∨ 0 ≺ a ∧ a ≺ 1 ∨ a ≖ 1 is a trichotomy. Given 
conjunctions Cn1,Cn2 ∈ PropConj , the pure order clause 
Cn1 ≺ Cn2 ∨ Cn1 ≖ Cn2 ∨ Cn2 ≺ Cn1 is a pure trichotomy.

The DPLL rules make use of an auxiliary function and 
operation. First, the function simplify ∶ ({0, 1} ∪ PropConj

∪OrdPropLit ∪ OrdPropCl) × PropAtom × {0, 1} → {0, 1}

∪PropConj ∪ OrdPropLit ∪ OrdPropCl  replaces every 
occurrence of a given atom in an input expression with the 
given truth constant according to laws holding in product 
algebra [17].

Definition 10 Auxiliary function simplify [17]

Example 1 Simplifying a clause
simplify(a ≺ 1 ∨ a2 & b ≖ 0, a, 1) = 1 ≺ 1 ∨ b ≖ 0

Nex t ,  ⊙ ∶ ({0, 1} ∪ PropConj) × ({0, 1} ∪ PropConj)

→ {0, 1} ∪ PropConj  is a binary commutative and 

simplify(0, a, 𝜐) = 0;

simplify(1, a, 𝜐) = 1;

simplify(Cn, a, 0) =

�
0 if a ∈ atoms(Cn),

Cn else;

simplify(Cn, a, 1) =

⎧⎪⎨⎪⎩

1 if ∃n∗ Cn = an
∗

,

Cn − an
∗

if ∃n∗ an
∗

∈ Cn ≠ an
∗

,

Cn else;

simplify(l, a, 𝜐) = simplify(𝜀1, a, 𝜐) ⋄ simplify(𝜀2, a, 𝜐)

if l = 𝜀1 ⋄ 𝜀2, ⋄ ∈ {≖,≺};

simplify(C, a, 𝜐) = {simplify(l, a, 𝜐) � l ∈ C}.

associative operator that returns the algebraic product of two 
conjunctions or literals according to Definition 11.

Definition 11 Auxiliary operation ⊙ [17] Let Cn1 , Cn2 be 
conjunctions and let the expression � be a truth constant or 
a conjunction. Then the function ⊙ is defined as

It can be extended to order literals ⊙ ∶ ({0, 1} ∪ OrdPropLit)

×({0, 1} ∪ OrdPropLit) → {0, 1} ∪ OrdPropLit in the fol-
lowing way: Let l1 , l2 be order literals and the expression � 
be a truth constant or an order literal.

⊙ is a binary commutative and associative operator.

Example 2 Applying ⊙ to conjunctions of powers and literals

Next, we list and describe the intuition of the thirteen 
required fuzzy product DPLL rules as defined in Guller’s 
unpublished work.

0⊙ 𝜀 = 𝜀 ⊙ 0 = 0;

1⊙ 𝜀 = 𝜀 ⊙ 1 = 𝜀;

Cn1 ⊙ Cn2 = {am+n | am ∈ Cn1, a
n
∈ Cn2} ∪

{an | an ∈ Cn1, a ∉ atoms(Cn2)} ∪

{an | an ∈ Cn2, a ∉ atoms(Cn1)}

0⊙ 𝜀 = 𝜀 ⊙ 0 = 0;

1⊙ 𝜀 = 𝜀 ⊙ 1 = 𝜀;

l1 ⊙ l2 = (𝜀1 ⊙ 𝜀2) ⋄ (𝜐1 ⊙ 𝜐2) if li = 𝜀i ⋄i 𝜐i,

⋄ =

{
≖ if ⋄1 = ⋄2 =≖,

≺ else.

a2 & b⊙ b & c = a2 & b2 & c

a2 ≖ b3 ⊙ b ≺ 1 = a2 & b ≺ b3

a ≖ b⊙ a ≖ b & c = a2 ≖ b2 & c

(1)

(Unit contradiction rule)

S

S ∪ {◻}
;

S is a unit order clausal theory;

there exist

0 ≺ a0,… , 0 ≺ am,

a0 ≺ 1,… , am ≺ 1 ∈ guards(S),

l0,… , ln ∈ S

such that li is pure order literal and

atoms(l0,… , ln) = {a0,… , am};

there exist

𝛼∗

i
≥ 1, i = 0,… , n,

J∗ ⊆ {j | j ≤ m}, 𝛽∗
j
≥ 1, j ∈ J∗,

such that(
⊙n

i=0
l
𝛼∗
i

i

)
⊙
(
⊙j∈J∗ (aj ≺ 1)

𝛽∗
j

)
is a contradiction.
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If any ⊙-product of powers of pure order literals or guards of 
the form a ≺ 1 can be found that would lead to the contradic-
tion of the form 𝜀 ≺ 𝜀 , rule (1) derives ◻ (closes the branch).

Example 3 Applying the unit contradiction rule
S = {0 ≺ a, 0 ≺ b, a ≺ 1, b ≺ 1, a2 ≖ b3, b ≺ a}

S ∪ {◻}
 See the 

elaboration of this example in section “Unit Contradiction” 
Ex. 20.

The branching rule (2) splits the tree by assuming one of 
a ≖ 0 , 0 ≺ a ≺ 1 , a ≖ 1.

Example 4 Applying the trichotomy branching rule
S = {a ≺ b}

S ∪ {a ≖ 0} || S ∪ {0 ≺ a, a ≺ 1} || S ∪ {a ≖ 1}

The branching rule (3) splits the tree into the three sub-
cases of the trichotomy of pure literals l1 , l2 , and l3.

Example 5 Applying the pure trichotomy branching rule
{a ≺ b ∨ b ≺ 1}

{a ≺ b} || {b ≺ a, b ≺ 1} || {a ≖ b, b ≺ 1}
 ; 

a ≺ b ∨ b ≺ a ∨ a ≖ b is a pure trichotomy.

A contradictory literal is removed from a clause. Exam-
ples of contradictory literals are 1 ≺ 0 , 0 ≖ 1.

Example 6 Applying the contradiction rule
{1 ≺ 0 ∨ a ≖ b}

{a ≖ b}

(2)

(Trichotomy branching rule)

S

S ∪ {a ≖ 0} || S ∪ {0 ≺ a, a ≺ 1} || S ∪ {a ≖ 1}
;

a ∈ atoms(S).

(3)

(Pure trichotomy branching rule)

S

(S − {�}) ∪ {l1}
|| (S − {�}) ∪ {C} ∪ {l2}

||(S − {�}) ∪ {C} ∪ {l3}
;

� = (l1 ∨ C) ∈ S,C ≠ ◻,

l1 ∨ l2 ∨ l3 is a pure trichotomy.

(4)

(Contradiction rule)

S

(S − {l ∨ C}) ∪ {C}
;

l ∨ C ∈ S, l is a contradiction.

(5)

(Tautology rule)

S

S − {l ∨ C}
;

l ∨ C ∈ S, l is a tautology.

A tautologous literal is removed from S. Examples of tau-
tologous literals are 0 ≺ 1 , 0 ≖ 0.

Example 7 Applying the tautology rule
{0 ≖ 0 ∨ a ≖ b, a ≺ b}

{a ≺ b}

If a ≖ 0 ∈ guards(S) and the order clause C contains a, 
then C is simplified according to a and 0.

Example 8 Applying the 0-simplification rule
{a ≖ 0, a & b2 ≺ 1}

{0 ≺ 1}

Analogous to rule (6).

Example 9 Applying the 1-simplification rule
{a ≖ 1, a & b2 ≺ 1}

{b2 ≺ 1}

If 0 ≺ a0,… , 0 ≺ an ∈ guards(S) , then obviously

is contradictory and it is removed from the order clause.

Example 10 Applying the 0-contradiction rule
{0 ≺ a, 0 ≺ b, a2 & b3 ≖ 0 ∨ c ≺ 1}

{0 ≺ a, 0 ≺ b, c ≺ 1}

Analogous to rule (8).

(6)

(0-simplification rule)

S

(S − {C}) ∪ {simplify(C, a, 0)}
;

a ≖ 0 ∈ guards(S), C ∈ S, a ∈ atoms(C), a ≖ 0 ≠ C.

(7)

(1-simplification rule)

S

(S − {C}) ∪ {simplify(C, a, 1)}
;

a ≖ 1 ∈ guards(S), C ∈ S, a ∈ atoms(C), a ≖ 1 ≠ C.

(8)

(0-contradiction rule)

S

(S − {a
𝛼0
0
& ⋯ & a

𝛼n
n ≖ 0 ∨ C}) ∪ {C}

;

0 ≺ a0,… , 0 ≺ an ∈ guards(S),

a
𝛼0
0
& ⋯ & a𝛼n

n
≖ 0 ∨ C ∈ S − guards(S).

a
�0
0
& ⋯ & a�n

n
≖ 0

(9)

(1-contradiction rule)

S

(S − {a
𝛼0
0
& ⋯ & a

𝛼n
n ≖ 1 ∨ C}) ∪ {C}

;

ai ≺ 1 ∈ guards(S), i ≤ n,

a
𝛼0
0
& ⋯ & a𝛼n

n
≖ 1 ∨ C ∈ S − guards(S).
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Example 11 Applying the 1-contradiction rule
{a ≺ 1, b ≺ 1, a2 & b3 ≖ 1 ∨ c ≺ 1}

{a ≺ 1, b ≺ 1, c ≺ 1}

If 0 ≺ a0,… , 0 ≺ an ∈ guards(S) , then obviously

Therefore, the input order clause

is removed, as it is a consequence of the guard(s).

Example 12 Applying the 0-consequence rule
{0 ≺ a, 0 ≺ b, 0 ≺ a2 & b3 ∨ c ≺ 1}

{0 ≺ a, 0 ≺ b}

Analogous to rule (10).

Example 13 Applying the 1-consequence rule
{a ≺ 1, b ≺ 1, a2 & b3 ≺ 1 ∨ c ≺ 1}

{a ≺ 1, b ≺ 1}

If the atom a different from 0 , 1 occurs in S only in the 
guard a ≖ 0 or a ≖ 1 , then this guard may be removed from 
S.

Example 14 Applying the 0-annihilation rule
{a ≖ 0, b ≺ 1}

{b ≺ 1}

(10)

(0-consequence rule)

S

S − {0 ≺ a
𝛼0
0
&⋯&a

𝛼n
n ∨ C}

;

0 ≺ a0,… , 0 ≺ an ∈ guards(S),

0 ≺ a
𝛼0
0
& ⋯ & a𝛼n

n
∨ C ∈ S − guards(S).

0 ≺ a
𝛼0
0
& ⋯ & a𝛼n

n
.

0 ≺ a
𝛼0
0
& ⋯ & a𝛼n

n
∨ C

(11)

(1-consequence rule)

S

S − {a
𝛼0
0
& ⋯ & a

𝛼n
n ≺ 1 ∨ C}

;

ai ≺ 1 ∈ guards(S),

i ≤ n, a
𝛼0
0
& ⋯ & a𝛼n

n
≺ 1 ∨ C ∈ S − guards(S).

(12)

(0-annihilation rule)

S

S − {a ≖ 0}
;

a ≖ 0 ∈ guards(S), a ∉ atoms(S − {a ≖ 0}).

(13)

(1-annihilation rule)

S

S − {a ≖ 1}
;

a ≖ 1 ∈ guards(S), a ∉ atoms(S − {a ≖ 1}).

Example 15 Applying the 1-annihilation rule
{a ≖ 1, b ≺ 1}

{b ≺ 1}

Finally, we revisit three of Guller’s admissible rules that 
help produce smaller branches.

The guardedness of an atom is propagated to other atoms 
bound by equality.

Example 16 Applying guard propagation rule I
S = {0 ≺ a, a ≺ 1, b ≖ a}

S ∪ {0 ≺ b, b ≺ 1}

If all of the atoms comprising a strong conjunction are 
fully guarded and are in equality with a single atom, the 
atom also becomes guarded.

Example 17 Applying guard propagation rule II
S = {0 ≺ a, a ≺ 1, 0 ≺ b, b ≺ 1, c ≖ a & b}

S ∪ {0 ≺ c, c ≺ 1}

If a strong conjunction equals 0 and all atoms but one (b) 
are fully guarded, the equality b ≖ 0 is inferred.

Example 18 Applying guard propagation rule III
S = {0 ≺ a, a ≺ 1, a & b ≖ 0}

S ∪ {b ≖ 0}

In the next section, we provide a hypothetical real-world 
example that demonstrates a possible application of SAT 
solving in product propositional logic.

Motivational Example

Electricity suppliers face the risk of being unable to satisfy 
peak daily energy demand which often occurs in the morn-
ing and evening. This is especially true for the supply of 

(14)

(Guard propagation rule I)

S

S ∪ {0 ≺ b, b ≺ 1}
;

0 ≺ a, a ≺ 1 ∈ guards(S), b ≖ a ∈ S.

(15)

(Guard propagation rule II)

S

S ∪ {0 ≺ c, c ≺ 1}
;

0 ≺ a, a ≺ 1, 0 ≺ b, b ≺ 1 ∈ guards(S), c ≖ a & b ∈ S.

(16)

(Guard propagation rule III)

S

S ∪ {b ≖ 0}
;

0 ≺ a, a ≺ 1 ∈ guards(S), a & b ≖ 0 ∈ S.
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energy from dispatchable sources, as solar power cannot be 
fully utilized during these times of day (the phenomenon 
is often described by the “duck curve”). To help balance 
demand, suppliers split the day into multiple zones where 
each zone is assigned a price per kilowatt hour. The simplest 
are splits into two zones (day and night rates), but some 
suppliers now provide programs wherein each hour of the 
following day has a predefined energy price based on predic-
tions of demand.

Let us assume we wish to make use of such an hourly 
rate program when heating a well-insulated detached house 
with a heat pump. Let us also assume we have control over 
which hours the pump is active. To minimize costs, we wish 
to run the heat pump when the demand is low. However, the 
heat pump’s efficiency varies depending on the difference 
between the outside and inside temperature: the lower the 
difference, the more efficient the heat pump is. If we aim for 
a constant output temperature, then the efficiency is propor-
tional to the temperature outdoors. Our goal is to have the 
heat pump active during the hours with low energy demand 
and high heating efficiency. Also, due to the insulation of 
the house, it is sufficient if the heat pump runs only two 
consecutive hours every six hours.

The problem of determining which hours to run the heat 
pump can be formalized as a fuzzy SAT instance. Our input 
data consist of bi-hourly prediction of energy demand (we 
have omitted odd hours for brevity) and the coefficient of 
performance (COP, unit-less) of the heat pump. Energy 
demand (in megawatts) is re-scaled into the interval [0, 1]. 
The COP cannot drop below 1 and is usually between 2 
and 5 in European landlocked country spring days [20], so 
we will use the inverse of COP without further normaliza-
tion. Since we seek to minimize both the normalized energy 
demand and the inverse COP, for simplicity, we will mini-
mize their algebraic product. The data we use in this exam-
ple are shown in Table 2.

To represent given data, our propositional product logic 
needs to be extended with the notion of intermediate con-
stants (constants in the open interval (0, 1)) which this work 
does not yet cover. As these are useful for demonstrating the 
logic on a practical example, let us assume the support of 
such constants and their meaningful ordering; their inclusion 
is the subject of our ongoing work. Model finding is another 
current limitation of our work to be tackled in near future.

Now, we attempt to encode the problem. First, we need 
two sets of atoms to represent normalized energy demand 
(load) and inverse COP. The atoms loadi and icopi will be 
set to the relevant values from Table 2 where i represents the 
hour of the day divided by two.

(17)
loadi ≖ ⟨Load from table⟩i 0 ≤ i < 12

icopi ≖ ⟨iCOP from table⟩i 0 ≤ i < 12

Next, we set the values scorei to be equal to the strong con-
junction of load and inverse COP (in other words, the score 
is load divided by COP).

To fulfill the request that the heat pump ought to run two 
consecutive hours every six hours, we consider all consecu-
tive six-hour partitions of scores to find the best split. As we 
work with bi-hourly data, the task is simplified into finding 
the single minimum score in every partition of consecutive 
scores of size three. One such partition is shown in Table 2; 
the column of scores is grouped into four subsets of size 
three as shown by the double row separator, and the mini-
mum value is bold. Another such partition could be con-
structed by offsetting the groups by one, and the final parti-
tion by offsetting by two. For simplicity, we let the subsets 
wrap around in time, e.g. in the partition offset by two, the 
last group covers the hours 22, 0, and 2 (we do not reach 
into other days). This is represented by the atoms minscorei,j 
below (21), where i is the partition offset and j is the index of 
subset within the partition. The four bold scores in Table 2 
are the minima minscore0,{0,1,2,3} found in the subsets of 
partition with offset 0. In our data, the displayed partition 
is also the “best” partition (one with the lowest minimum 
score)—in every other such split of the scores column, the 
minimum is higher.

Finally, we formulate the aforementioned condition in 
formulae (21, 22). The value of atom max_of_best_part 
captures the highest (worst) score in the best partition (one 
with the lowest minimum, 0.205 in Table 2).

(18)scorei ≖ icopi & loadi 0 ≤ i < 12

(20)minscorei,j ≖

(i+3(j+1)−1) mod 12⋀
k=i+3j

scorek
0 ≤ i < 3,

0 ≤ j < 4

Table 2  Values of normalized 
energy demand (load), inverse 
coefficient of performance of 
the heat pump (iCOP), and their 
algebraic product (score)

The values are fabricated, but 
were inspired by [25] and [20]

Hour Load iCOP Score

0 0.795 0.294 0.234
2 0.736 0.294 0.216
4 0.675 0.303 0.205
6 0.672 0.294 0.198
8 0.707 0.270 0.191
10 0.773 0.222 0.172
12 0.825 0.215 0.177
14 0.783 0.206 0.161
16 0.731 0.217 0.159
18 0.759 0.222 0.169
20 0.870 0.270 0.235
22 0.776 0.286 0.222
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The formulae (17–22) provide a solid foundation for our 
problem. The instance is constructed using the conjunction 
of all formulae:

By performing satisfiability check of �1 , our approach 
should yield a model containing valuations of the atoms. The 
fewest hours the heat pump would be running under the con-
ditions in this example are shown in Table 2 where the score 
is bold, i.e., at least the hours 4–5, 10–11, 16–17, 18–19. 
These could be retrieved from the partition i where the maxi-
mum minscorei,∗ achieves the score of max_of_best_part 
(0.205 in the partition displayed by double row separators).

However, unless there is an entry with zero load, the for-
mula � is always satisfiable. To make the problem more 
interesting, we may impose constraints on the model, such as 
that the worst score of the best partition be less than a certain 
value. This constraint is formulated below within �2 and �3 . 
Formula �2 is satisfiable in our data, but formula �3 is not.

In this example we have shown a way to utilize the product 
t-norm in the computation of score. Product propositional 
logic is useful to express relations where algebraic product 
or division can be suitably used. We could easily express 
the ratio of minimum vs. maximum score in our example by 
including the formulae

Of course, product propositional logic alone has limited 
expressiveness. Suppose that we want to yield the models 
where the difference between max_of_best_part and min is 
more than 0.2, as these models may indicate periods of high 
energetic stress. While this is impossible in pure product 
logic, because difference requires Łukasiewicz negation ( ¬
Ł defined as ¬¬¬Ł x = 1 − x) and equivalence ( ↔Ł defined as 
x↔↔↔Ł y = 1 - |x − y|), it is possible to use these in Δ-extended 
product logic Π

Δ
 due to the embeddability of Łukasiewicz 

logic within Π
Δ
 [5]. The following formula might then be 

used after suitable embedding transformation:

(21)max_of_best_part ≖

2⋀
i=0

3⋁
j=0

minscorei,j

(22)0 ≺ max_of_best_part

(23)�1 = (17) ∧ (18) ∧ (19) ∧ (20) ∧ (21) ∧ (22)

(24)𝜑2 = 𝜑1 ∧ max_of_best_part ≺ 0.21

(25)𝜑3 = 𝜑1 ∧ max_of_best_part ≺ 0.20

(26)min ≖

11⋀
i=0

scorei

(27)ratio ↔ max → min

Obviously, a concrete real-world problem in the domain of 
heating, ventilation, and air conditioning (HVAC) would be 
much more complex—this example is purely demonstra-
tional. Our purpose was to show a way fuzzy SAT solv-
ing may be used and how product propositional logic can 
be utilized. Other technologies could be used to solve the 
problem: SQL or its extensions, fuzzy answer set program-
ming (FASP) [21], fuzzy description logics [1], a variant 
of mixed integer programming [7], or creating an ad hoc 
solution in a suitable programming language. The level of 
abstraction of the shown approach lies somewhere in the 
middle: on the one hand, it hides away the details of how the 
solver works and how auxiliary variables are introduced, so 
that the programmer may focus on specifying the problem. 
In this aspect it is a higher-level approach than writing a 
custom program or using mixed integer programming. On 
the other hand, this example may easily be deemed too com-
plicated when compared to, e.g., FASP. Fuzzy answer set 
programming, however, may use a fuzzy SAT solver as its 
back-end, as FASP programs may be reduced to fuzzy SAT 
instances [29], which is one of the possible applications of 
our approach.

In the next section, we present the design of a determin-
istic algorithm that translates an input theory into order 
clausal theory and verifies its satisfiability or validity by the 
adequate application of the DPLL rules presented previously 
and performing the tree traversal.

Algorithm

In section “Product DPLL Procedure” we have outlined the 
intuition of the product fuzzy DPLL procedure and its tree-
splitting and simplifying rules. In this section we define the 
algorithm that performs the translation of a theory into order 
clausal form, as well as the backtracking-based deterministic 
algorithm that performs the DPLL procedure to determine 
the satisfiability or validity of theories using the aforemen-
tioned rules.

The algorithm presented here is a revision of our previous 
work [28]. We have made several improvements which are 
clearly pointed out and discussed. We also revisit the parts 
of our work that have not been changed, for the convenience 
of the reader.

Translation into Order Clausal Form

As mentioned in section “Product DPLL Procedure”, the 
DPLL procedure expects the input to be in order clausal 
form. The algorithm to translate an arbitrary theory in Π

Δ
 is 

based on the application of interpolation rules introduced by 

(28)range ↔ ¬
̌
(min ↔

̌
max)
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Guller [17, Sect. 3], which may be thought of as a product 
fuzzy generalization of the translation of a Boolean formula 
into conjunctive normal form [24, 26].

Without loss of generality we consider the input to be a 
single propositional formula. If the intended input is a theory 
(a set of formulae), the procedure considers the input to be 
the ∧-conjunction of its elements in Π

Δ
.

The algorithm is shown in Alg. 1. Given a formula � , 
the algorithm first generates the clause ã0 ≖ 1 in the case 
of verifying satisfiability, or �a0 ≺ 1 in the case of verifying 
validity, where ã0 is the auxiliary atom representing the full 
input formula. Then, the algorithm performs pre-order tree 
traversal over the structure of the formula. In every step, 

the intermediate formula � (either the initial formula or 
a subformula) is extracted from the queue along with the 
auxiliary atom ã

i
 associated with � . Then, � is processed 

by a compatible interpolation rule [17, Sect. 3]. For this 
purpose, assume the existence of function Inter(ã

i
 , � ) 

that chooses the interpolation rule according to the connec-
tive of least precedence in � . The rule designates new order 
clauses nClauses that are the result of the translation. Also, 
depending on the arity of the connective in � and the oper-
ands, the rule designates the subformula or subformulae �i 
of � , i ∈ {0, 1} that need to be translated further, and their 
corresponding auxiliary atoms ã

ii
 . These new subformu-

lae and auxiliary atoms construct the list of pairs nPairs: 
(ã

ii
,�i) , i ∈ {0, 1} . The function Inter(ã

i
 , � ) then returns 

(nPairs, nClauses).
The improvement in the current revision as opposed to 

our previous work [28] is marked with (*). The problem of 
the previous algorithm can be illustrated on translating the 
formula a & b → a & b . If the input formula contains mul-
tiple occurrences of identical subformulae, these have been 
treated as being separate, with one auxiliary atom associated 
with each. In the current version we employ the simple solu-
tion of remembering assigned subformulae and reusing the 
associated auxiliary atoms, effectively treating the formula 
as a directed acyclic graph rather than a tree. As a result, the 
search space of the DPLL procedure is now reduced by each 
repeated subformula.

Example 19 Translating a formula into order clausal form 
Let us consider the formula (27) from the motivational 
example in section “Motivational Example” modified by 
replacing ↔ with ≖ for demonstrational purposes:

The translation into a SAT instance is depicted in the follow-
ing steps, yielding the order clausal theory S�.

� = ratio ≖ (max → min)

{ �a0 ≖ 1, �a0 ↔ ratio
���

�a1

≖ (max → min
���������

�a2

)} [16, Tab. 1, Eq. 11]

{ �a0 ≖ 1, �a1 ≖ �a2 ∨ �a0 ≖ 0, �a1 ≺ �a2 ∨ �a2 ≺ �a1 ∨ �a0 ≖ 1,

�a1 ≖ ratio, �a2 ↔ max
���

�a3

→ min
���

�a4

} [16, Tab. 1, Eq. 9]

{ �a0 ≖ 1, �a1 ≖ �a2 ∨ �a0 ≖ 0, �a1 ≺ �a2 ∨ �a2 ≺ �a1 ∨ �a0 ≖ 1,

�a1 ≖ ratio, �a3 ≺ �a4 ∨ �a3 ≖ �a4 ∨ �a3 & �a2 ≖ �a4,

�a4 ≺ �a3 ∨ �a2 ≖ 1, �a3 ≖ max, �a4 ≖ min}

S𝜑 = { �a0 ≖ 1,

�a1 ≖ �a2 ∨ �a0 ≖ 0,

�a1 ≺ �a2 ∨ �a2 ≺ �a1 ∨ �a0 ≖ 1,

�a1 ≖ ratio,

�a3 ≺ �a4 ∨ �a3 ≖ �a4 ∨ �a3 & �a2 ≖ �a4,

�a4 ≺ �a3 ∨ �a2 ≖ 1,

�a3 ≖ max,

�a4 ≖ min}

Algorithm 1. The translation of order propositional formula into order 
clausal theory
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DPLL Inference

The algorithm performing the DPLL procedure accepts an 
order clausal theory as input and uses the rules (1)–(16) to 
split and simplify the theory tree. By the following definition 
12 we obtain the answer to whether the theory is satisfiable.

Definition 12 [12] A branch is closed iff the empty clause  
 ◻ is derived, otherwise it is open. A tree 
is closed iff all its branches are closed, otherwise it is open. 
A theory is satisfiable iff an open branch exists (the theory 
has a model) once no more DPLL rules can be applied.

The flowchart in Fig. 1 provides an overview of the algo-
rithm which is described in detail in Algs.2–6.

The parts of the algorithm described in this section have 
not been fundamentally changed since the previous version 
in [28]. However, we have revised the formulation of Alg.3 
to be recursive, allowing for a simpler explanation of the 
trichotomy function. Also, the listing of Alg.4 has been 
updated to include Guller’s admissible rules.

The algorithm begins with Alg. 2. If all atoms are fully 
guarded, skip trichotomy branching and reduce the theory 
using the Reduce(s) function. Otherwise, the non-empty 
input theory S is split by the function Trichotomy(S) at 
the first atom in the input theory that is not fully guarded, 
introducing the guards in branches according to the trichot-
omy branching rule (2). Every created branch s is then pro-
cessed by the Reduce(s) function. If the branch cannot be 
recursively closed, it is open and the Trichotomy(S) func-
tion returns true. Otherwise all branches have been closed, S 
is unsatisfiable and the function returns false.

The responsibility of the Reduce(S) function lies in the 
adequate application of the rules that reduce and simplify 
the theory. The rules are designed to eventually resolve all 
equality guards in the theory. Whenever a closed branch is 
derived, the function immediately returns false. Once all 
equality guards have been eliminated, we pass the compu-
tation to the PureTrichotomy(S) or Trichotomy(S) 
function according to whether all atoms in the theory are 
fully guarded or not, respectively. If any of the rules (5) 
or (10)–(13) manage to eliminate all clauses, the branch is 
considered open and the function immediately returns true.

The line marked with (*) indicates the change we have 
made in contrast to the previous version: in addition to the 
DPLL rules (4)–(13), we now also employ the admissible 
rules (14)–(16).

The function PureTrichotomy(S) described in Alg.5 
is responsible for splitting the tree into branches according to 
the pure trichotomy rule (3). First, any equality guards intro-
duced by the application of the trichotomy rule are handled 

Fig. 1  Flowchart of the inference algorithm performing the DPLL 
procedure [28]

Algorithm 2. The initial step of the DPLL procedure [28]

Algorithm 3. The ���������� function of the DPLL procedure [28]

Algorithm 4. The ������ function of the DPLL procedure [28]
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by the Reduce(S) function. Then, the special case of S being 
a unit theory is handled by the UnitContradiction(S) 
function. Otherwise the algorithm attempts to process every 
non-unit clause with the intention to split it into at most 
three branches. The literal a of clause Cl is first checked for 
occurrences in other clauses. In the case the literal occurs 
in an existing unit clause (it is already assumed to be true), 
remove all clauses containing the literal and continue with 
this assumption. Otherwise its counterpart literals b and c 
that form the pure trichotomy a ∨ b ∨ c are generated2. If any 
of these literals is already assumed to be true in the other 
clauses, a cannot be true, so we remove every occurrence 
of a from the theory. Otherwise (if neither of these literals 
occurs in any unit clause of the theory), we split the theory 
at line 18 according to rule (3) and remove the occurrences 
of the complementary literals (assumed to be false) in the 
respective branches. If a closed branch is derived in any of 
the branches, return false, otherwise continue the traversal 
recursively over each created branch.

Finally, the function UnitContradiction(S) shown 
in Alg.6 attempts to apply the unit contradiction rule (1). 
The function returns true iff there exists a ⊙-product of pow-
ers of literals appearing in the theory that is contradictory 
(therefore the branch is closed).

Limitations

If the branch remains open after the application of the unit 
contradiction rule, the theory is satisfiable has a model. 
However, the current state of the solver does not perform 
model-finding.

It is also important to note that in this stage, the algorithm 
does not have support for intermediate constants (constants 
other than 0 , 1 ) in the input theory.

Unit Contradiction

As described in section “Product DPLL Procedure”, the unit 
contradiction rule (1) involves the problem of finding the 
contradiction of the form 𝜀 ≺ 𝜀 if there is any possibility to 
yield it using the operation ⊙ over pure order literals and the 
strict order guards ai ≺ 1 present in the theory. More simply, 
it is the problem of selecting the powers of literals in order 
to yield such a contradiction using their ⊙-product.

Example 20 from our previous work [28] illustrates this 
problem on the theory containing the literals {a2 ≖ b

3, b ≺ a} 
and the guards of atoms a and b {0 ≺ a, 0 ≺ b, a ≺ 1, b ≺ 1} . 
In this example we can form a contradiction by using the 
boxed literals: literal (30) with the power of 2 and liter-
als (29, 31) as they are. By performing the operation ⊙ 
over these powers of literals, we yield the contradiction 
a2&b3 ≺ a2&b3 (32).

Example 20 Application of the unit contradiction rule [27]

0 ≺ a, 0 ≺ b, a ≺ 1, b ≺ 1

a2 ≖ b3 , b ≺ a

(29)a2 ≖ b3

(30)(b ≺ a)�

Algorithm 5. The �������������� function of the DPLL procedure 
[28]

Algorithm 6. The ����������������� function of theDPLL proce-
dure [28]

2 E.g., the concrete literal x ≺ y generates the counterpart literals 
y ≺ x , x ≖ y.
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Remark 1 Note that according to Definition 11, at least one 
of the literals used in the product has to be a strict order lit-
eral in order to yield the contradiction 𝜀 ≺ 𝜀 . Otherwise the 
resulting literal would be an equality literal.

Our previous paper [28] introduces a method to solve this 
problem by using linear programming (LP). The canonical 
form of a linear program is:

where A is the matrix of coefficients of variables x to be 
determined, b the vector of constraints, c the vector of objec-
tive function coefficients, and ⋄ the vector of order relations.

We define encoding of the input theory into an LP 
instance in Definition 13 as follows:

Definition 13 Given a unit order clausal theory, let m be the 
number of atoms, q the number of equality literals, and p the 
number of strict order literals of the theory. The LP encoding 
of the unit contradiction problem is then

The variables x of the LP problem to be determined repre-
sent the powers of pure order literals and the guards a ≺ 1 
of the theory, and the constraints (the rows in matrix A) 
represent the atoms. The equality literals in the matrix A 
are represented twice (once with the operands reversed) to 
handle the commutativity of the equality operator ≖≖≖ . The 
coefficients of the variables are set to the difference of pow-
ers of atoms appearing on the left- and right-side of literals3. 

(31)b ≺ 1

(32)a2 & b3 ≺ a2 & b3—a contradiction

find a vector x

that minimizes cTx

subject to Ax ⋄ b

and x ≥ 0

A =

⎡⎢⎢⎢⎣

a1,1 … a1,2q a1,2q+1 … a1,2q+p
⋮ ⋱ ⋮ a1,2q+1 ⋱ ⋮

am,1 … am,2q a1,2q+1 … am,2q+p
0 … 0 1 … 1

⎤⎥⎥⎥⎦

[1ex]b = [

m

⏞⏞⏞
0,… , 0, 1]T

[1ex]c = [

2q+p

⏞⏞⏞
1,… , 1]T

[1ex]⋄ = [

m

⏞⏞⏞⏞⏞
=,… ,=,≥]T

To constrain the variables so that at least one order literal is 
used as per remark 1, the constraint coefficients in the last 
row of A, the last element of b, and the last relation in ⋄ are 
set accordingly. The objective of such LP is minimize.

Remark 2 In our previous work [28] we have defined a simi-
lar encoding. However, when adding the constraint to reject 
invalid cases (the last row of matrix A), we did not take 
into account the rejection of cases where no order literals 
were used to form the contradiction—we only considered 
the cases in which no literals were used whatsoever.

The coefficient matrix for the theory in Ex. 20 according 
to Definition 13 is shown in Eq. (33).

Remark 3 In this paper we highlight the advantage of our 
solver in not relying on translations into other solvers, but 
we do make use of LP to solve the unit contradiction prob-
lem. However, the use of an external LP solver is isolated to 
solving this problem only, which is not necessarily invoked 
while solving the satisfiability or validity of formulae. Nev-
ertheless, we are considering replacing even this step with 
a custom solution.

Implementation

In our previous work [28] we have introduced and described 
the first working implementation of the solver and named 
it prodfsat. In this section we describe its current version, 
although the interface and technical details contain only 
minor changes. The implementation is available for down-
load4 and is free to use under the GNU General Public 
License v3.0 or later.

The software consists of several executable binary 
artifacts:

• prodfsat is the main console application that parses an 
input product propositional theory and outputs the results 
of SAT or VAL solving,

• prodfsat_tests executes the defined test suites, which 
include unit tests as well as the set of example theories 
used to conduct experiments,

• prodfsat_niblos_converter converts the input formulae 
into representation for the NiBLoS [31] and mNiBLoS 
[30] solvers for the use in experiments,

(33)Aex =

⎡
⎢⎢⎣

2 − 2 − 1 1 0

−3 3 1 0 1

0 0 1 1 1

⎤
⎥⎥⎦

3 E.g. given the literal a2 & b3 ≺ b2 & c , the coefficient for atom a is 
2 − 0 = 2 , for atom b it is 3 − 2 = 1 , and for atom c it is 0 − 1 = −1 
[28]. 4 https:// git. uhlia rik. com/ ivor/ prodf sat

https://git.uhliarik.com/ivor/prodfsat


SN Computer Science (2022) 3: 388 Page 13 of 23 388

SN Computer Science

• prodfsat_niblos_random generates random formulae 
used in experiments,

• prodfsat_niblos_hard generates instances of hard-to-
solve formulae used in experiments.

In the remainder of this section we provide an introduction 
to using the main application, demonstrate running it on an 
example, and briefly describe technical details.

Application Usage

The main application may be run in console according to the 
following specification:

where

• the switches -s, -p enable the debug messages of scan-
ning and parsing,

• the switch -t controls whether SAT-solving or VAL-
solving is to be performed (the default mode is sat),

• the list of positional arguments FILE... are the files 
containing the input product propositional theories,

• alternatively, the input may be passed as string in the list 
of positional arguments following –.

The syntax of formulae accepted by the program is the same 
as in the previous version [28] and follows the mapping 
listed in Tab. 3. The operator precedence matches that of 
�

�
 and can be overridden with parentheses. The names of 

atoms must begin with an alphabetic character and follow 
with any number of alphanumeric characters. The constants 
representing falsehood and truth ( 0, 1 ) are 0 and 1, respec-
tively. The powers of atoms must be non-zero positive inte-
gers. The lines starting with the character # are considered 
comments and are skipped by the program. The input may 
contain multiple theories separated by two or more consecu-
tive newline characters. The Δ connective is currently not 
supported, but the semantically equivalent expression x ≖ 1 
may be used to represent Δx.

As stated previously in section “Translation into Order 
Clausal Form”, a theory is interpreted as the ∧-conjunction 
of the theory’s formulae. To facilitate this, formulae joined 
by a comma or a single newline character are parsed as a 
single theory, but in this case as conjunction with the lowest 
operator precedence, as is listed in the last row of Table 3.

Remark 4 As the current version of prodfsat does not sup-
port model-finding in the traditional sense of the interpreta-
tion of atoms, the mention of a model in the source code 
of the project refers to the set of literals that are true in an 
open branch.

Example

Here we demonstrate executing the main program to prove 
the validity of the formula in Eq. (34) (one of basic logic 
axioms [19]).

We first encode the formula into the following plain-text 
form:

Then, we run the program with the adequate switch and 
the formula as its positional argument:

The program parses the input and performs translation 
into order clausal form for solving VAL (where each aux-
iliary atom is marked with an asterisk and its index). Then, 
the program outputs whether the formula is valid.5

(34)(� & �) → (� & �)

Generation of random formulae with given length and number of 
atoms

Table 3  The mapping of text strings to logical expressions

Connective Text string Example

power “^” “a^3”
¬ “-” “-a”

& “&” “a & 0 & 
b^3”

≖ “=” “a = 0”

≺ “<” “0 < a”

∧ “&&” “0<a && 
a<1”

∨ “v”, “V”, “||” “-a V –a”

→ “->”, “-:” “a=1 -> 
a=0”

↔ “<->”, “==” “a&b == 
aVb”

∧ (minprec) “,”, \n “a<1, b<1”

5 The program output has been modified for better readability.
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Technical Details and Improvements

As in the previous version [28], the application is imple-
mented in the C++ language, leveraging some of the 
features of modern standards up to C++20. The data 
structures in the source code were designed to maintain 
intuitive representation, but keeping performance meas-
ures in mind (efficient memory handling, utilizing move 
semantics, allowing for copy elision to take place when 
possible, etc.).

Apart from the enhancements of the algorithm, we have 
made changes to this version regarding the memory layout 
of objects representing clausal formulae to achieve better 
cache locality, as well as employed other optimizations. 
The most notable of these is the truncation of the tree 
resulting from translation into order clausal form in the 
case of strong conjunctions of powers: if a subformula is 
a strong conjunction of powers with only atoms and con-
stants, e.g., a3 & b & c2 , we do not break this further down. 
Instead, the formula remains in the leaf and can be pro-
cessed by the DPLL procedure directly. Also, the code has 
been refactored with the aim to make it easier to extend 
the DPLL procedure with additional reduction rules. In 
addition, we have implemented the admissible DPLL rules 
(14)–(16).

The implementation has been tested in the Linux environ-
ment, but should be operating-system agnostic. The project’s 
website contains the complete list of dependencies, as well 
as instructions on how to build the project and run the main 
program.

Experimental Results

To verify the implementation of prodfsat we have con-
ducted a number of experiments. In each we measured 
the runtime of the program and where possible compared 
it with the runtime of other existing solutions, namely 
the mNiBLoS solver [30], its predecessor NiBLoS [31], 
and the previous version of prodfsat [28]. Although the 
mNiBLoS solver is more advanced than NiBLoS in the 
case of the product t-norm (especially due to utilizing the 

isomorphism between the standard product algebra and ℝ−

∙
 

[30, Sect. 3.1.2] which avoids algebraic multiplication), 
we include it in a part of our comparative test bench for 
wider reference.

The decision to use mNiBLoS and NiBLoS in our com-
parisons was made due to practical reasons: they intersect 
with prodfsat in terms of being able to solve the SAT and 
VAL problems over product propositional logic, they are 
not based on stochastic methods, and their implementa-
tions were readily available and adaptable. However, it is 
important to note the crucial differences: (1) both of these 
two projects have more general domains than prodfsat, as 
they operate over the ordinal sums of the three fundamen-
tal t-norms; (2) mNiBLoS supports not only propositional 
logic but also the modal expansion; (3) these projects have 
support for intermediate rational constants which prodfsat 
currently lacks; (4) they are based on the translation into 
SMT problem instances and rely on an SMT solver, while 
the core part of prodfsat is self-contained. Due to the dif-
ferent goals of our work and [m]NiBLoS, we do not con-
sider these projects competitive, although we still find the 
comparison important to derive conclusions about the state 
of our work.

The experiments consist of five parts. First, we measure 
the runtime using the set of test inputs from our previous 
work [28] that are processed in batch. Then we compare 
the performance of prodfsat, mNiBLoS, and NiBLoS 
over the conforming subset of these inputs one-by-one. 
Afterward, inspired by the experiments by Vidal [30], we 
compare the implementations over a fixed formula with 
varying powers of atoms, randomly generated formulae, 
and a hard problem consisting of formulae with a high 
number of atoms.

Methodology

To conduct comparative experiments we have adapted the 
source code of mNiBLoS to support non-interactive input. 
Next, we have developed a program that converts the syntac-
tical representation of formulae specific to prodfsat to both 
NiBLoS and mNiBLoS. Due to differences in acceptable 
input between these three systems, we have either limited 
the generation of formulae to the common subset of expres-
sions (in the case of random formulae in section “Randomly 
Generated Formulae”) or excluded the test examples that 
contained connectives unsupported by existing solutions 
(in the case of the test set in sections “Test Set (Batch)” 
and “Test Set (One-by-one)”).

In the internal evaluation of prodfsat and the compari-
son of the current version with our previous work [28] 
in section “Test Set (Batch)”, the measurements cover 
only the time needed to read and parse the input data and 
perform satisfiability and validity proofs, i.e., the time 
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required by the operating system to load the program is 
omitted. More specifically, the tests are performed and 
timed using the Google Test framework. However, as 
the [m]NiBLoS systems employ a completely different 
approach and are implemented in a different program-
ming language, we have chosen to measure the entire time 
of running the process from the command line with the 
related experiments6.

Remark 5 We have observed that—at least in the case of 
non-trivial inputs—the translation portion of runtime of 
either NiBLoS or mNiBLoS is negligible in comparison to 
its execution of the Z3 SMT theorem prover. We have con-
sidered measuring the time of the Z3 prover alone; however, 
as our intention was to include the time of prodfsat’s trans-
lation into order clausal form in the total runtime, we have 
decided to stay symmetric with this decision.

To avoid inconsistencies, each measurement in this work 
has been performed 10 times with the same input unless 
otherwise stated. All experiments have been conducted on 
the same hardware7.

There have been instances of problems where the com-
putation timed out according to the threshold set by the test 
in question. As the results are averaged over multiple runs 
with the same input, we treat timeouts with the following 

dichotomy: if the computation timed out at least half of the 
times (usually at least 5 times), we declare the average value 
as timed out; otherwise the timed-out runs are excluded from 
the average.

Test Set (Batch)

In our previous work [28] we measured the performance 
of the earlier version of prodfsat using the set of 69 test 
formulae. These examples are mostly composed of for-
mulae from literature: axioms of Hájek’s basic logic (8 
formulae), properties of basic logic (49 formulae), product 
logic axioms and properties (5 formulae) [19]; examples 
by Guller (2 formulae); custom examples created during 
the development of prodfsat (5 formulae)8. As the execu-
tion over some of the examples is too fast to adequately 
measure the runtime in milliseconds, we have joined them 
into 12 groups based on their occurrence in literature (e.g., 
“BLAxioms” are the axioms of basic logic, “BLMisc” are 
six properties of basic logic, “Custom” are the five exam-
ples created in our work).

We have performed the tests using the program prodf-
sat_tests9 to measure the performance of the current 
version of prodfsat with the algorithm and implementation 
enhancements described in previous sections. Both satisfi-
ability and validity proofs have been performed for every 

Table 4  Runtime in 
milliseconds over test examples 
processed in batch using our 
previous work and the current 
version of prodfsat

SD is the corrected sample standard deviation, NM is the mean value normalized by the number of tests in 
the group. Values across all test examples are shown in bold

Group Size Old version Current version

Mean SD NM Mean SD NM

BLAxioms 8 709.2 43.51 88.65 142.8 3.65 17.85
BLConj 8 966.4 35.75 120.80 292.5 3.89 36.56
BLConstant 3 4.4 0.55 1.47 2.5 0.53 0.83
BLDisj 8 953.2 12.32 119.15 289.5 4.12 36.19
BLEquiv 9 1017.2 15.56 113.02 298.7 7.57 33.19
BLImpl 3 107.0 2.55 35.67 27.8 2.74 9.27
BLNegation 6 54.6 3.44 9.10 19.7 1.06 3.28
BLStrongConj 6 706.2 12.83 117.70 161.3 6.55 26.88
BLMisc 6 519.2 25.17 86.53 94.6 3.63 15.77
ProductLogic 5 115.4 2.51 23.08 33.0 1.56 6.60
Guller 2 234.6 4.56 117.30 53.4 1.65 26.7
Custom 5 135.2 6.14 27.04 87.4 5.50 17.48
Total 69 5587.4 90.03 80.98 1503.2 26.28 21.79

6 The shell scripts used to perform the experiments are part of the 
project’s files.
7 The experiments have been conducted on a personal computer 
with the CPU frequency of 3.31 GHz; the current implementation of 
prodfsat is single-threaded.

8 The full list of formulae may be found in tests that are part of the 
project’s files and are used by the prodfsat_tests program in 
the test suite Solving.
9 Built with GCC 11.1.0, optimization level 3, and link-time optimi-
zation.
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example. The resulting timings in milliseconds are the aver-
ages of 10 measurements (the values for the old version were 
taken from our previous paper [28] where 5 measurements 
were used), with the system’s cache cleared between each 
run, and are shown in Table 4.

Upon inspection, it is clear the enhancements are sub-
stantial when proving SAT and VAL of these formulae, with 
the total average runtime reduced down to 1503.2 ms, 26.9% 
of the previous version of prodfsat. The average runtime 
divided by the number of tests is therefore 21.79 ms. Several 
individual tests ( 0 → � , � ≖ � , etc.) reported the runtime 
rounded down to 0 ms, assuming the SAT and VAL solving 
together took only a few hundred microseconds. In these 
cases, the algorithm applies the reduction rules and elimi-
nates all clauses (SAT) or finds a contradictory clause (VAL) 
in only a few steps.

As the formulae used in this experiment are relatively 
short in the number of connectives and atoms, the low val-
ues in the execution times are expected. Nevertheless, the 
results confirm the enhancements made in this work. The 
comparison with other solvers as well as solving more com-
plex examples follow in the next experiments.

Test Set (One‑by‑one)

In this experiment we compare the performance of prodf-
sat with mNiBLoS and NiBLoS over the examples from 
section “Test Set (Batch)”. We have excluded the tests 
with connectives unsupported10 by either NiBLoS or mNi-
BLoS (equivalence and the strict order between an atom 
and one of 0 , 1 ). The main difference from the previous 

experiment is the nature of obtaining the timings: as per 
section “Methodology”, this and all the following experi-
ments in this work have been conducted by measuring 
the time of the execution of the whole program on each 
test example one-by-one. Therefore, even the results for 
prodfsat are higher in duration than in section “Test Set 
(Batch)”. Moreover, while in the previous experiment we 
have measured the total duration of proving both satisfi-
ability and validity, we list the two separately throughout 
the rest of the paper for the sake of consistency with Vidal 
[30].

The results can be seen in Table 5 for proving validity 
and Table 6 for satisfiability. In most cases of the former, 
prodfsat finishes faster, although sometimes only margin-
ally. On the other hand, prodfsat finishes faster when prov-
ing the satisfiability of formulae. The faster execution time 
of SAT-solving as opposed to VAL may be explained by 
the nature of the test examples. The majority are valid (axi-
oms, properties), therefore the algorithm of prodfsat has to 
traverse every branch of the fuzzy DPLL tree, whereas to 
prove satisfiability, the algorithm stops at the first closed 
branch. Nevertheless, similarly to the previous experiment, 
the results show that prodfsat performs reasonably well over 
short formulae.

Parameterized Power

In the evaluation of mNiBLoS, Vidal has performed a com-
parative analysis using the test bench of generalizations 
of axioms of basic logic [30, Sect. 4.2] with the varying 
parameter n. One of these generalizations is shown in the 
parameterized formula in Eq. (35).

Table 5  Runtime in milliseconds over test examples processed one-
by-one for the VAL problem

The values are normalized by the number of tests in the group. Min-
ima across solvers are highlighted in bold

Group Size prodfsat mNiBLoS NiBLoS

BLAxioms 8 39.02 61.89 85.32
BLConj 8 58.31 58.46 54.65
BLConstant 3 20.29 49.42 43.39
BLDisj 8 58.34 60.04 50.64
BLImpl 3 30.01 54.53 51.84
BLNegation 6 23.69 60.42 113.59
BLStrongConj 5 34.23 71.29 82.93
BLMisc 6 39.86 57.75 54.63
ProductLogic 5 26.48 58.20 130.56
Total 52 330.22 532.00 667.55

Table 6  Runtime in milliseconds over test examples processed one-
by-one for the SAT problem

The values are normalized by the number of tests in the group. Min-
ima across solvers are highlighted in bold

Group Size prodfsat mNiBLoS NiBLoS

BLAxioms 8 20.43 60.35 58.35
BLConj 8 19.68 54.78 54.18
BLConstant 3 18.94 50.73 44.32
BLDisj 8 19.48 56.98 51.04
BLImpl 3 19.33 54.02 54.69
BLNegation 6 20.07 61.85 60.52
BLStrongConj 5 20.49 61.12 59.79
BLMisc 6 20.07 56.71 54.63
ProductLogic 5 19.90 62.89 62.59
Total 52 178.39 519.43 496.86

10 According to the associated documentation and our belief.
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Vidal’s work shows that in the case of product logic, the 
runtime of mNiBLoS needed to prove validity increases 
polynomially with increasing n. To display one of the advan-
tages of prodfsat, we have reconstructed the experiment (for 
each n with the increment of 10 the measurement was taken 
only once) and report the results in Fig. 2. The runtime val-
ues and the polynomial complexity of proving validity w.r.t. 
the parameter n by mNiBLoS coincide with the measure-
ments of Vidal. The constant complexity of prodfsat (with 
the average duration of 23.52 ms) is given by the direct rep-
resentation and processing of powers of atoms, which are 
safely eluded in this case.

Randomly Generated Formulae

The paper introducing mNiBLoS proposes an interesting 
experiment to test the solver on more irregular examples [30, 
Sect. 4.2]. This is done by the random generation of formulae 
of varying length, in terms of the connectives and the number of 
atoms, and the varying number of atoms used in these formulae. 
In addition, the generation was performed in two modes: with 
and without constants. Inspired by the design, we have decided 
to recreate the experiment for both prodfsat and mNiBLoS. The 
precise way of generating random formulae in the paper [30] 
is not known to us, therefore we present our algorithm in the 
pseudocode 7.

The pseudocode in Alg.7 shows our bottom-up construc-
tion of random formulae, where the leaves are atoms or con-
stants, and inner vertices are connectives. There are always 
at least atomCount unique atoms generated. Because the tree 

(35)(�n&�n
) → (�n&�n

)

is binary, and length is the total size of the tree, there must 
be length∕2 + 1 leaves. Therefore, once atomCount atoms 
have been generated, the rest is filled with reoccurring atoms 
or with constants at random when enabled.

To ensure compatibility between prodfsat and mNiB-
LoS, the connectives are limited to conjunction, disjunction, 
implication, and strong conjunction. All atoms are generated 
with the power of 1, and constants are limited by prodfsat 
to 0 and 1.

We have executed several sets of tests over randomly gen-
erated formulae with varying length and number of atoms 
with all three solvers. For brevity, we omit the results of 
NiBLoS in these tests. The runtime measured in millisec-
onds is shown as heat-maps in Figs. 3, 4, 5, 6 in decimal-
logarithmic scale. Timeouts with the threshold of 1 min are 
represented with white gaps (below the diagonal). At least 
one atom was generated in all tests. Moreover, each test was 
split between two intervals of varying length: 3–47 with 
increments of 4 and atom count increments of 2, and 51–291 
with increments of 20 and atom count increments of 10.

First, we have tested the performance of proving the valid-
ity of random formulae without constants. The results for 
prodfsat and mNiBLoS are shown in Figs. 3 (length up to 
47) and 4 (length up to 291). The difference between the two 
solvers is immediate: while prodfsat performs consistently 
better over short formulae (length up to 15), it struggles with 

Fig. 2  Runtime in milliseconds required to prove the validity of the 
formula (�n&�n) → (�n&�n) with increasing n in steps of 10. Val-
ues exceeding the timeout threshold of 10 seconds are not shown

Algorithm 7.  Generation of random formulae with given length and 
number of atoms
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higher values, with 1-min timeouts occurring at length 35. In 
contrast, mNiBLoS is efficient at proving the validity of all 
tested formulae. Interestingly, Fig. 4 shows that prodfsat can 
sporadically perform well (in some cases an order of magni-
tude better than mNiBLoS). One such case occurs with length 
231 and 111 unique atoms. The average measured time of 
prodfsat was 426.18 ms, while it took mNiBLoS 2748.47 ms. 
We hypothesize this is due to the unpredictable applicability 
of fuzzy DPLL reduction rules to random formulae.

The situation is slightly better with introduced constants 
as can be seen in Fig. 5. With an increasing number of 
constants, the repetitions of atoms are decreased (but all 
still occur at least once), and they may be thought of as 

constraints in the solution space for both prodfsat and mNi-
BLoS. As a result, prodfsat outperforms mNiBLoS up to 
the length of 30. With greater lengths, however, the results 
become similar to those over formulae without constants.

The results of proving satisfiability without constants, 
which are shown in Fig. 6, are again similar to that of prov-
ing validity, with even more occurrences of timeouts in the 
case of prodfsat. The results of proving satisfiability of ran-
dom formulae with constants (not shown) share the pattern 
of proving validity with constants.

Overall, we conclude the performance of prodfsat over 
large input is inferior to that of mNiBLoS. The majority of 
generated formulae were satisfiable non-tautologies, so in 

Fig. 3  Runtime of prodfsat  (left) and mNiBLoS (right) in decimal-logarithmic scale required to prove the validity of random formulae with 
increasing length (3–47) and number of atoms. Values exceeding the timeout threshold of 1 min are not shown

Fig. 4  Runtime of prodfsat  (left) and mNiBLoS  (right) in decimal-logarithmic scale required to prove the validity of random formulae with 
increasing length (51–291) and number of atoms. Values exceeding the timeout threshold of 1 min are not shown
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the case of proving satisfiability, prodfsat has to traverse all 
branches of the trichotomous DPLL tree. While we have not 
yet reached a thorough complexity analysis of the algorithm, 
the worst case of the branching factor of 3 makes the tree 3n
-exponential. Some cases could be potentially improved by 
introducing more reduction rules, but the irregularity of ran-
domly generated formulae would probably cause improve-
ments in these tests to be only sporadic.   

Hard Instance

Our last experiment also follows Vidal [30, Sect. 4.2] in the 
evaluation of formulae with fixed structure and quadratically 

increasing number of atoms. In this section we show that the 
performance of VAL solving of the following formula with 
prodfsat is poor in comparison. Then we present an ad hoc 
reduction rule that improves its performance. Our purpose 
is not to introduce another DPLL reduction rule that will be 
used in all future iterations of our work, but rather to show 
how easily our solver may be extended to help the perfor-
mance in specific scenarios.

The parameterized version of the problem in question is 
shown in Eq. (36).

Fig. 5  Runtime of prodfsat (left)and mNiBLoS (right) in decimal-logarithmic scale required to prove the validity of random formulae with con-
stants with increasing length (3–47) and number of atoms

Fig. 6  Runtime of prodfsat (left) and mNiBLoS (right) in decimal-logarithmic scale required to prove the satisfiability of random formulae with 
increasing length (3–47) and number of atoms. Values exceeding the timeout threshold of 1 min are not shown
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We have reconstructed the experiment with the value of the 
parameter n ranging between 1 and 9 and averaged the per-
formance of all three systems over two measurements for 
every n. The results for proving validity are shown in Table 7 
and satisfiability in Table 8.

The results in the case of validity indicate the inferior 
performance of prodfsat in comparison with both mNiBLoS 
and NiBLoS, increasing exponentially to a great degree (the 
process took 11.6 h to finish with n = 4 ), while the increase 
of runtime for mNiBLoS is much less steep. There are two 
reasons for the low performance of prodfsat: (1) the formu-
lae in this experiment are tautologies, so the algorithm has 
to traverse every branch of the product DPLL tree with the 
branching factor of 3, which is exacerbated by the quadratic 
increase of atoms; (2) the clausal forms of the formulae are 
hard to reduce with the current set of reduction rules.

To demonstrate the feasibility of introducing optimiza-
tions to our approach, we have devised a simple additional 
reduction rule.

(36)
n⋀
i=1

(&n
j=1

�ij) →

n⋁
i=1

(&n
j=1

�ij)

The reduction rule (37) removes all unit clauses of equal-
ity literals between a single atom and a strong conjunction 
of atoms if all of the atoms of the strong conjunction only 
occur in this clause. When applied to formulae in Eq. (36), 
this removes from the theory all clauses that define auxiliary 
atoms representing strong conjunctions of atoms. After per-
forming this reduction, the clausal theory is equisatisfiable 
to the original formula, as we do not remove the occurrence 
of the auxiliary atoms representing the strong conjunctions 
from the rest of the theory, i.e., we only omit the leaf clauses. 
In practice, the output of the program with the optimizing 
rule for n = 4 is as follows.

The runtime of prodfsat with this additional reduction 
rule is shown in the table as prodfsat-opt. As can be seen, 
mNiBLoS is still vastly superior, but proving the validity of 
the formula becomes reasonably fast for n ≤ 4.

Proving the satisfiability of formulae in Eq. (36) is much 
easier for prodfsat than proving validity. The measurements 
are shown in 8. In this test, prodfsat consistently outperforms 
mNiBLoS and NiBLoS even without the additional reduc-
tion rule. This is because to prove satisfiability, prodfsat does 
not have to traverse all of the branches of the product DPLL 
tree—the algorithm stops at the first open branch. The higher 
complexity of [m]NiBLoS is probably caused by the fact that 
the SMT solver attempts to find the model—the interpreta-
tion of every atom. As the solver is not informed about the 
nature of the formula, the search space is most likely not 
well constrained.

Examination of Individual Improvements

In this part we examine how the improvements of the algo-
rithms or implementation of our solver contribute to its 
runtime performance. We have carried out the experiments 
from section “Test Set (Batch)” (SAT and VAL over test 

(37)

(hard problem optimizing rule)

S

S − {a ≖ b
�0
0
& … & b

�n
n }

;

a ∈ atoms(S), none of bi 0 ≤ i ≤ n, occur elsewhere in S.

Table 8  Runtime in milliseconds over formulae in Eq. (36) for prov-
ing satisfiability

The timeout threshold was set to 30 s

n prodfsat prodfsat-opt mNiBLoS NiBLoS

2 20.11 24.07 57.04 57.37
3 19.73 23.00 213.81 189.96
4 20.45 25.31 613.57 1286.33
5 21.81 24.42 753.45 16025.11
6 27.12 25.05 905.96 16989.17
7 24.40 24.50 2449.88 Timed out
8 30.17 26.93 1674.97 Timed out
9 40.43 26.45 12767.42 Timed out
… … … … …

100 16905.60 17050.62 Timed out Timed out

Table 7  Runtime in milliseconds over formulae in Eq. (36) for prov-
ing validity

n prodfsat prodfsat-opt mNiBLoS NiBLoS

2 60.48 29.78 63.93 110.69
3 23.67 × 103 351.50 193.81 857.47
4 66.96 × 106 9009.53 713.60 4192.50
5 Not tested 317.26 × 103 763.19 37.19 × 103

6 Not tested Not tested 1057.78 Not tested
7 Not tested Not tested 1226.34 Not tested
8 Not tested Not tested 1503.56 Not tested
9 Not tested Not tested 2175.58 Not tested



SN Computer Science (2022) 3: 388 Page 21 of 23 388

SN Computer Science

formulae run in batch) and section “Hard Instance” (indi-
vidual SAT and VAL over hard instance) with selectively 
enabled improvements in a cross-product manner. The meas-
urements of runtime are displayed in Table 9.

The breakdown of runtime shown in Table 9 indicates that 
two improvements have the highest impact: the avoidance of 
translating strong conjunctions into order clausal form that 
are composed only of powers of atoms or constants (pow in 
the table, mentioned in section “Implementation”), and the 
caching of subformulae during translation (dag in the table, 
described in section “Translation into Order Clausal Form”). 
The combination of these improvements overall yields the 
fastest performance. The addition of Guller’s admissible 
DPLL rules (14)–(16) as shown in section “Product DPLL 
Procedure” improves the runtime only marginally. In some 
cases, especially in batch formula tests and when solving 

satisfiability of long formulae (hard instance with n = 100 ), 
the employment of guard propagation rule III in combination 
with pow and dag makes the runtime slightly worse (apply-
ing the rule has a cost even if no changes are made), but 
helps in other experiments. This raises the question whether 
the addition of admissible rules is suitable for the solver 
at all. The current version of prodfsat employs these rules 
because of their ability to produce more compact subtrees, 
which may improve visualization of the DPLL procedure. 
However, we will consider their automated selective activa-
tion according to the nature of input in future work.

Conclusion and Future Work

In this paper we have presented the improvements to our 
fuzzy DPLL-based solver for product propositional logic. 
We have empirically evaluated the current state of our 
implementation and compared it with our previous work. 
The results show a considerable increase in performance of 
SAT and VAL solving, climbing to approximately a four-fold 
enhancement in our test bench.

More importantly, we have compared the performance of 
our solver with the existing solvers NiBLoS and mNiBLoS 
on a set of experiments and obtained the timings of solving 
SAT and VAL over (1) a fixed set of tests, (2) a formula with 
parameterized power, (3) randomly generated formulae, and 
(4) a hard formula instance with a quadratically increasing 
number of atoms. The results show that our solver excels at 
(a) formulae short in length, (b) in cases when the DPLL 
tree can be well-reduced and does not have to be fully tra-
versed (proving SAT of satisfiable and VAL of unsatisfiable 
formulae), and (c) formulae where the solver leverages its 
interpretation of product logic. Moreover, even though our 
solver did not perform well at solving VAL of the hard for-
mula instance, we have demonstrated its advantage of being 
self-contained by designing and adding a simple reduction 
rule that downsized the DPLL tree and improved the test 
results by several orders of magnitude.

To the best of our knowledge, this is the only solution in 
the group of product propositional fuzzy SAT solvers that 
generalize classical logic approaches and have a publicly 
available implementation. However, the current version of 
our solver does not support intermediate constants and does 
not yet perform model-finding. We consider these two as the 
most important features for future addition.
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Table 9  Runtime in milliseconds with selectively enabled combina-
tions of improvements

other represents miscellaneous (most notably cache locality-related) 
implementation optimizations with all other improvements disa-
bled. pow is the avoidance of translating strong conjunctions into 
order clausal form that are composed only of powers of atoms or 
constants as per section “Implementation”. dag is the re-use of sub-
formulae during translation as described in section “Translation into 
Order Clausal Form” (treating the formula as a directed acyclic graph 
instead of a tree). a{123} is the application of guard propagation rule 
I, II, and/or III, respectively. exp is the experiment the runtime over 
which was measured in the respective part of the table. hp–(sat/val)–
n is the experiment performing SAT or VAL on the hard instance 
in section  “Hard Instance” with specified parameter n. The timeout 
for experiment hp–sat–100 was set to 60 s. Minimum values within 
experiments are shown in bold

Exp. Opt. other pow dag pow+dag

batch other 4494.1 1600.1 2454.4 1364.7
a12 4290.9 1453.4 2281.3 1405.3
a3 4087.4 1412.8 2163.2 1381.0
a123 4228.4 1440.5 2238.9 1394.6

hp–val–3 other 2.5 × 105 1.2 × 105 46152.6 22780.9
a12 2.3 × 105 1.2 × 105 40307.9 22216.5
a3 2.5 × 105 1.1 × 105 44806.8 22258.5
a123 2.2 × 105 1.1 × 105 39541.4 22114.5

hp–sat–3 other 3.0 2.0 2.1 1.5
a12 3.1 2.0 2.3 1.4
a3 3.5 2.0 2.2 1.3
a123 3.0 2.2 2.0 1.2

hp–sat–10 other 215.2 25.2 84.3 13.4
a12 306.4 22.7 94.0 13.9
a3 229.5 22.0 79.8 13.3
a123 293.0 24.8 91.1 13.0

hp–sat–100 other Timed out 27795.2 Timed out 14293.2
a12 Timed out 27638.5 Timed out 13365.4
a3 Timed out 35102.7 Timed out 15000.9
a123 Timed out 37908.1 Timed out 15495.7
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