
Vol.:(0123456789)

SN Computer Science (2022) 3: 279
https://doi.org/10.1007/s42979-022-01148-3

SN Computer Science

ORIGINAL RESEARCH

A Blockchain‑Based System for Agri‑Food Supply Chain Traceability
Management

Angelo Marchese1  · Orazio Tomarchio1

Received: 13 September 2021 / Accepted: 11 April 2022 / Published online: 7 May 2022
© The Author(s) 2022, corrected publication 2022

Abstract
Ensuring high quality and safety of food products has become a key factor on one hand to protect and improve consumers
health and, on the other one, to gain market share. For this reason, much effort in the last year has been devoted to the devel-
opment of integrated and innovative Agriculture and Food (Agri-Food) supply chains management systems, which should
be responsible, in addition to track and store orders and deliveries, to guarantee transparency and traceability of the food
production and transformation process. In this paper, differently from traditional supply chains which are based on central-
ized systems, we propose a fully distributed approach, based on blockchain technology, to define a supply chain management
system able to provide quality, integrity and traceability of the entire supply chain process. The proposed framework is based
on the Hyperledger Fabric technology, which is a permissioned blockchain system: a prototype has been developed and, by
using some use cases, we show the effectiveness of the approach.

Keywords  Blockchain · Hyperledger fabric · Agri-food supply chain

Introduction

The recent attention on food safety and product quality
requires more reliable and efficient processes for the man-
agement of agri-food supply chains ([15, 21]). Government
authorities need to respond more promptly to food scan-
dals and accidents to maintain customer confidence in the
food industry. To this end, ensuring the traceability of food
products allows to provide consumers with a complete view
of the different phases of product harvesting, processing
and distribution ([5, 10, 20]). Many of the management
processes of current supply chains have been automated to
reduce operational costs and errors and to improve the moni-
toring and collection of information related to the various

activities within the supply chain. Therefore, by collecting
and making accessible the set of traceability information of
a product, it is possible for consumers to know about the
entire life cycle of that product, its related transactions and
chain of owners and its provenance.

However, one of the issues of today’s supply chain man-
agement systems is that they are often based on centralized
systems: supply chain processes and product traceability
data are managed by a single authority on which supply
chain members rely on to transfer and share their informa-
tion. These centralized systems are often non-transparent,
monopolistic and asymmetric information systems. This can
pose a serious threat to the security and reliability of the
traceability information and make fraud, corruption and data
falsification easier ([23]). Furthermore, another issue with
such centralized systems is related with the risk of a single
authority to become the weak link and single point of failure.
Also operation throughput and scalability are limited.

To deal with such issues, the usage of blockchain technol-
ogy in this domain has recently been proposed to support
the management of supply chain traceability ([2, 12, 27]).
Blockchain technology in particular offers cryptographic
primitives to store data within a distributed ledger, guaran-
teeing their immutability and authenticity. The decentraliza-
tion that blockchain provides reduces the risk of data loss

This article is part of the topical collection “Enterprise
Information Systems” guest edited by Michal Smialek, Slimane
Hammoudi, Alexander Brodsky and Joaquim Filipe.

 *	 Angelo Marchese
	 angelo.marchese@phd.unict.it

	 Orazio Tomarchio
	 orazio.tomarchio@unict.it

1	 Department of Electrical Electronic and Computer
Engineering, University of Catania, Catania, Italy

http://orcid.org/0000-0003-2114-3839
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01148-3&domain=pdf

	 SN Computer Science (2022) 3: 279279  Page 2 of 21

SN Computer Science

and corruption. In particular, whenever an actor attempts
to change data on the blockchain, network participants
would be immediately aware of the tampering upon inspec-
tion of the chain. This eliminates the need for supply chain
members to trust a single entity to manage their traceability
information. Furthermore, being a distributed system, the
blockchain can mitigate the problems of limited scalability
and single point of failure. If, on the one hand, the use of a
blockchain implies an additional overhead with respect to a
centralized system, on the other one the higher management
costs are compensated by a higher traceability and visibility
on supply chain operations.

In this paper, by extending our previous work presented
in [17], we propose a complete model of a blockchain based
agri-food supply chain traceability system providing a proto-
type implementation to show the applicability of blockchain
technology in this domain. The main focus of the system is
to take advantage of the blockchain features to allow supply
chain members to store and manage product-related trace-
ability information in a transparent, reliable and tamper-
proof way. Using this information final consumers can then
reconstruct a complete history of the transactions related
to a product during its life cycle. Transactions of the real
world, involving transformations and exchanges of physi-
cal goods, proceed as usual. Our framework registers and
stores information about these transactions, but how this
information are generated and retrieved is out of the scope
of our work. The main goal of the proposed approach is to
make supply chain transactions traceable and verifiable by
external users. The business logic of the system is executed
by a smart contract that allows to automate some of the
management processes related to supply chain activities.
The smart contract offers operations that can be invoked by
the supply chain members to store and update traceability
information. The proposed system also makes it possible
to associate rules with supply chain products, allowing the
expression of product-specific quality control mechanisms.
This functionality has been included considering that in the
context of agri-food supply chains the regulatory aspects are
of fundamental importance to ensure food safety and qual-
ity, also taking into account that these aspects vary from a
case to another one and dynamically evolve over time ([8]).

The system was implemented using the Hyperledger
Fabric1 blockchain, an emerging open-source technology
widely used also in other proposed examples of supply chain
management systems ([25]). In addition, the components of
our system are deployed in a cloud environment within a
Kubernetes2 cluster, showing that, although our system is a
prototype, it can be easily migrated to a scalable production

environment. Finally, to show the behaviour of our sys-
tem and the effectiveness of the approach, we present two
slightly different use cases where the main features of the
prototype are demonstrated.

The rest of the paper is organized as follows. In Sect.
“Background and Related Work”, we provide a background
of technologies exploited for this work and present related
works. Section “System Architecture” presents the overall
architecture of our framework. Section “Business Logic”
describes the system business logic and the operations
offered by the smart contract. Section “System Implementa-
tion” provides implementation details about system compo-
nents and the smart contract. Section “Use Cases” discusses
about two examples of usage of our system in a prototype
environment. Finally, Sect. “Conclusions” concludes the
work.

Background and Related Work

This section provides some background information about
the technologies exploited in our work, such as the block-
chain technology and in particular the Hyperledger Fabric
system. Then, after briefly outlining the advantages that
would derive from their use to support agri-food supply
chain traceability systems, some related works in the litera-
ture are discussed.

Blockchain Technology and Hyperledger Fabric

Blockchain technology represents a particular class of dis-
tributed systems and as such was born with the aim of over-
coming some of the problems related to centralized systems
([13, 14]). The application area in which the blockchain
was initially introduced is that of transactional systems, in
particular electronic payment systems. That is the case, for
example, of the Bitcoin blockchain ([19]). However, today
blockchain technology is increasingly being adopted in a lot
of different application domains.

In general, operations within a blockchain are carried out
by nodes connected to each other through a peer-to-peer
network. In public blockchains, like Bitcoin, every node can
participate in network operations and can decide to exit at
any time. Each node participating in the blockchain main-
tains a local copy of a distributed ledger which contains a set
of append-only logs that encode the status information of the
blockchain. More specifically, an ordered sequence of blocks
is stored inside the ledger. Each block consists of a header
and a body that contains an ordered list of transactions which
are validated and executed by the peers of the network. To
guarantee the immutability and reliability of the data in the
ledger, each block of the sequence contains a cryptographic
hash of the previous block within a header field. In this way,

1  https://​www.​hyper​ledger.​org/​use/​fabric.
2  https://​kuber​netes.​io/.

https://www.hyperledger.org/use/fabric
https://kubernetes.io/

SN Computer Science (2022) 3: 279	 Page 3 of 21  279

SN Computer Science

a malicious attempt to change the content of a block would
require to correspondingly modify the header of all the fol-
lowing blocks in the sequence, which is a computationally
expensive task thanks to the non-invertibility property of
hash functions. Peer nodes of a blockchain coordinates with
each other throughout a consensus protocol. Public block-
chains typically use secure but computational expensive
consensus protocols, like for example the proof of work
protocol. This is motivated by the fact that any node can
join a public blockchain and this makes this type of block-
chains an untrusted environment. The use of a computational
expensive consensus protocol poses some scalability issues
and transaction throughput limitations.

Permissioned blockchains are another category of block-
chains. In a permissioned blockchain, only authorized peers
can participate in blockchain operations. Permissioned
blockchains often set aside proof of work consensus pro-
tocol because of its nondeterminism and the computational
burden it imposes on peer nodes. Instead, they adopt weaker
but more performant consensus mechanisms based on tradi-
tional protocols from distributed computing, such as Paxos,
Raft and Byzantine fault-tolerant algorithms. This is pos-
sible because in a permissioned blockchain membership is
limited only to a well-known set of entities and this involves
less security risks. Agri-food supply chains fit well in the
context of permissioned blockchains ([26]). In an agri-food
supply chain scenario a limited set of organizations, whose
identities are known, are supposed to actively participate in
supply chain operations. Organizations typically don’t trust
each other, but they need read and write access to a trusted
shared data repository. While the presence of an always-
online trusted third party authority that manages all supply
chain operations allows to avoid the use of a blockchain, this
is not always a realistic scenario. In some situations it is not
possible to have a single authority trusted by all parties and
delegating all the write operations to a centralized entity
can cause it to become a single point of failure. Although
the use of a blockchain can limit transaction throughput, the
decentralized nature of the blockchain technology allows
to obtain better scalability and to solve the single point of
failure issue.

Hyperledger Fabric is an open-source blockchain plat-
form, which falls within the category of permissioned block-
chains ([1]). Hyperledger Fabric is a distributed operating
system that runs applications written in general-purpose
programming languages, such as Go, Java, JavaScript, and
Python. It introduces the execute-order-validate blockchain
model for transaction processing unlike other traditional
blockchain systems that use the order-execute model. In the
order-execute model a protocol for consensus first orders the
transactions and propagates them to all peers that execute the
transactions sequentially. This model requires that all trans-
actions must be performed sequentially by each peer, and

this implies several performance limitations. Furthermore,
transactions must be deterministic, which is not always easy
to ensure. On the other hand, the execute-order-validate
model separates the transaction flow into three steps: the
execution of the transaction and check of its correctness,
the transaction ordering through a consensus protocol and
the transaction validation. In this model, each transaction is
executed and checked only by a subset of the peers, which
allows for parallel execution and addresses potential non-
determinism. This allows to overcome the limitations of the
execute-order model mentioned above.

Like some other blockchains, Hyperledger Fabric offers
the smart contract primitive. A smart contract is a combina-
tion of data and code that encodes a set of transformations on
that data. It exposes a set of operations that can be invoked
by the users of the blockchain with the aim of changing the
state of the distributed ledger. The concept of smart contract,
therefore, makes this kind of blockchain a distributed execu-
tion environment of general-purpose programmable logic.

Thanks to the aforementioned properties, blockchain
technology is a good candidate to address some of the actual
problems related to traditional centralized agri-food supply
chain traceability systems. In particular, it can guarantee the
transparency, verifiability and immutability of traceability
data, simplifying the information sharing between the sup-
ply chain entities often belonging to distinct administrative
organization. In this way the traceability of the supply chain
products can be guaranteed, allowing the consumer to recon-
struct the entire product’s life cycle within the supply chain
and to verify its origin and authenticity. Finally, smart con-
tracts can be used to automate the supply chain management
and product quality control operations. Although the use
of the blockchain technology implies additional overhead
than in the case of a centralized system managed by a single
authority, this overhead is covered by the interest of supply
chain members to produce certified and traceable products
to increase consumer trust. In the same way, final consumers
would pay more for validated products.

Related Work

In the literature, there is a variety of works that propose the
use of blockchain technology to build agri-food supply chain
management systems and in some cases implementations
of such systems are also proposed. Some of these works are
briefly described below.

In Malik et al. [16] a permissioned blockchain system,
called ProductChain, is proposed. The system is adminis-
tered by a consortium of entities participating in a generic
food supply chain, including governmental and regulatory
entities. It stores product traceability information made
accessible to consumers. The authors propose the use of
a three-tier sharded architecture that ensures reliability

	 SN Computer Science (2022) 3: 279279  Page 4 of 21

SN Computer Science

and availability of data for consumers and scalability
with respect to transaction execution throughput. They
also propose the use of a transaction vocabulary and the
implementation of access control mechanisms to manage
read and write privileges on the blockchain.

Wang et al. [24] propose a product traceability system
based on the Ethereum blockchain and the smart contract
primitive. The system stores information related to the
products life cycle and also provides for the implementa-
tion of event-response mechanisms to verify the identities
of both parties of all transactions at the time of their sub-
mission, so that their validity is guaranteed. All the events
are kept in the system permanently so that any disputes
can be managed and the responsible for certain actions
can be traced.

In Caro et al. [6] the AgriBlockIoT is proposed, a totally
distributed and blockchain-based supply chain management
system, able to integrate multiple IoT devices that collect
and produce digital data along the supply chain. To effi-
ciently evaluate AgriBlockIoT, the authors defined a use case
based on the from-farm-to-fork model. This use case was
then implemented using two different blockchain systems,
namely Ethereum and Hyperledger Sawtooth.

Casino et al. [7] propose a distributed functional model
based on blockchain to create distributed and automated
traceability mechanisms for a generic agri-food supply
chain. To evaluate the feasibility of the proposed model,
a use case is presented. The applicability of the model is
also illustrated through the development of a fully functional
smart contract and a private blockchain.

Tian [11] propose a food supply chain traceability system
for real-time food tracing based on HACCP (Hazard Analy-
sis and Critical Control Points), blockchain and the Internet
of Things, which provides a platform that ensures openness,
transparency, neutrality, reliability and security for trace-
ability information. The proposed system uses BigchainDB,
which combines the key benefits of distributed databases
and blockchain.

Biswas et al. [4] propose a blockchain-based system to
achieve the traceability of the activities that occur within
the supply chain related to wine production. The proposed
traceability system uses MultiChain to implement a private
blockchain.

Shahid et al. [22] present a complete solution for block-
chain-based agri-food supply chains. The proposed solution
leverages the key features of blockchain and smart contracts,
deployed over Ethereum blockchain network. All transac-
tions are written to the blockchain which ultimately uploads
the data to Interplanetary File Storage System (IPFS). The
storage system returns a hash of the data which is stored on
blockchain and ensures an efficient, secure and reliable solu-
tion. Authors provide simulations and evaluation of smart
contracts along with the security and vulnerability analyses.

Cocco et al. [9] propose a blockchain-based system for
the supply chain management of a particular Italian bread.
To realize the system authors relied on the blockchain and
the Internet of Things technologies to provide a trustless
environment. The system is designed so that along the sup-
ply chain, the nodes equipped with several sensors directly
communicate their data to Raspberry Pi units that elaborate
and transmit them to IPFS and to the Ethereum blockchain.
Furthermore, authors designed ad hoc Radio Frequency
Identification and Near Field communication tags to shortly
supply the proposed system with information about the prod-
ucts and batches.

Baralla et al. [3] present a blockchain oriented platform to
guarantee the origin and provenance of food items in a Smart
Tourism Region context. The proposed solution uses smart
contracts in order to guarantee transparency, efficiency and
trustworthiness. The system is particularly suitable to man-
age cold chain since it interfaces with IoT network devices
providing detailed information about data monitoring food
such as storage temperature, environment humidity, and GPS
data.

Marchesi et al. [18] propose a general-purpose approach
for the blockchain-based agri-food supply chain manage-
ment, proposing a system that can be configured for most
agri-food productions. The primary purpose is to provide a
methodology to facilitate and make more efficient the devel-
opment of supply chain management applications that make
use of blockchain technology. It is based on general smart
contracts and apps interacting with the same smart contracts,
which are configured, starting from the description of the
specific system to be managed, using JSON files.

Like the aforementioned research works, in our work we
propose a complete solution of a blockchain-based agri-food
traceability system, providing, in particular, a description of
the architectural components, the information model and the
business logic of this system. A distinctive contribution of
our work, is the capability to allow the specification of cus-
tom regulations for supply chain products at runtime and to
automate the validation of these regulations. Our framework
has addressed this aspect considering the heterogeneity of
product regulations among supply chains and the fact that
these regulations change over time.

System Architecture

This section provides a high-level description of our block-
chain-based system for agri-food supply chain traceability,
the goals that guided its design and its general architec-
ture. The proposed system is designed to manage the trace-
ability information of products and activities related to
one or more agri-food supply chains. The main objective
is to allow to reconstruct the entire flow of activities and

SN Computer Science (2022) 3: 279	 Page 5 of 21  279

SN Computer Science

transactions related to a product from its origin to the end
consumer. The system has to automate all those operations
related to product quality control and regulatory compli-
ance. It has to be able to dynamically adapt to changes in
laws and regulations. It should also be scalable, able to
handle an ever-increasing amount of information. Finally,
the system has to guarantee reliability and availability,
especially when dealing with environments characterized
by continuous flows of transactions.

The fundamental part of the framework consists of
a permissioned blockchain, implemented through the
Hyperledger Fabric framework ([1]). In this blockchain,
the core of the system’s business logic is executed in
the form of a smart contract. The smart contract offers
several operations that allow users of the system to add
and modify information in the blockchain in a secure and
traceable way. Users of the system are the supply chain
members and the regulatory departments. The former add
and modify information related to their products, while the
latter deal with the management and regulation aspects of
supply chains. More specifically, the entities participat-
ing in the system operations are user organizations, where
each user is identified by a certificate issued by a certifica-
tion authority associated with the organization to which
the user belongs. Since the blockchain is permissioned,
only a well-defined set of organizations can participate
in the system operations. In Hyperledger Fabric the set
of organizations participating in blockchain operations is
predetermined. Hyperledger Fabric allows to add a new
organization or remove an existing one at run-time by sub-
mitting a series of transactions to the blockchain that must
be approved by a majority of the participating organiza-
tions. In this work, we have not considered the ability to
add or remove dynamically organizations to the blockchain
and this is something that can be evaluated and included
in our system in a future work.

The interaction between users and the blockchain takes
place through a client application that runs within an appli-
cation server and the interaction with the latter takes place
through a frontend application that is typically hosted by a
web server. Each organization has its own application server
and web server.

Each organization has its own role that defines its inter-
actions with the system and the operations it can perform.
According to common models of agri-food supply chain
described in [11, 24] we consider the following roles:

•	 Producer: organization that requires the registration
of one or more primary products (i.e. products whose
batches do not derive from any other batch). If a regis-
tration request is accepted, this organization can register
batches associated with the registered product or prod-
ucts in the system.

•	 Manufacturer: organization that requires the registration
of one or more derived products (i.e. products whose
batches derive from batches of other primary or derived
products). If a registration request is accepted this organi-
zation can register batches associated with the registered
product or products in the system, specifying a list of
batches from which the registered batch derives.

•	 Deliverer: organization that buys batches from organiza-
tions and resells them to other organizations.

•	 Retailer: organization that sells products to consumers.
•	 Regulatory Department: organization that manages and

monitors the activities within the various supply chains.
More specifically, an organization with the role of Reg-
ulatory Department adds product types to the system,
associating them with rules and assigning roles to the
various organizations.

In the following, while describing the behaviour of our
framework, we refer to a scenario involving five organi-
zations, one for each of the roles listed above, which is
depicted in Fig. 1.

Business Logic

In this section, the basic design of the system and its behav-
iour is described. First, a domain model with the different
resource types and their relationships is illustrated. Then a
description of the smart contract operations and their param-
eters is provided. Finally, the state diagrams that illustrate
the state transitions of the system’s resource types caused by
the execution of the smart contract operations are described.

Domain Model

Figure 2 shows a domain model of the system’s business
logic with the different resource types and their relationships.

Each Organization of the system is identified by a unique
identifier and can be associated with a RoleSet, which repre-
sents a list of roles. A RoleSet associated with an organiza-
tion defines the set of smart contract operations the organi-
zation can invoke.

An organization playing the role of Regulatory Depart-
ment can register one or more product types in the system.
A ProductType is uniquely identified by a name and can
be either primary or derived. In case the product type is
derived, it has a list of product types ingredients which it is
derived from. This means that any Batch associated with this
product type must have a list of batches ingredients whose
respective product types are in the list of product types
ingredients. It is possible to associate one or more rules to a
product type, where each Rule represents a set of conditions
that have to be respected when registering batches associated

	 SN Computer Science (2022) 3: 279279  Page 6 of 21

SN Computer Science

with that product type. At the moment of a batch registration
these rules are validated using a RuleEngine.

A ProductType may be associated with one or more Prod-
ucts, for each of which an owner organization requires the
registration in the system. A request for the registration of
a product can be accepted by an organization playing the
role of Regulatory Department and from that moment the
organization that owns the product can register batches of
that product in the system. A product is uniquely identified
by a name.

A Product may be associated with one or more Batches
that are registered by the organization that owns that prod-
uct. A batch is uniquely identified by an ID and a set of
parameters as specified at registration time. When register-
ing a batch associated with a product of a derived product
type, it is necessary to specify a list of batches ingredients
from which this batch derives. This list must be consistent
with the list of product types ingredients associated with the
product type of the registered batch. A batch can be trans-
ferred from one organization to another one and an organi-
zation that owns a batch can use that batch as an ingredient
when registering a new batch. The domain model depicted
in Fig. 2 also shows that each resource in the system has
a state. It provides information on the current conditions
of that resource, determines the operations that can be per-
formed on it and the subsequent states in which it can transit.

Smart Contract Operations

As already explained in Sect. “Background and Related
Work”, the Hyperledger Fabric framework is based on the
smart contract concept. Several smart contract operations

(listed in Fig. 3)have been designed in our systems that can
be executed by the different user organizations of the supply
chain. In the following we describe the behaviour of each of
these smart contract operations, also specifying their inputs
and their expected results.

The operation addRoleSet() takes the parameters orgId
and roles as inputs. This operation can only be performed
by an organization with role of RegulatoryDepartment and
allows to create a new role set with the specified list of roles
associated with the organization identified by orgId.

The operation addProductType() takes the parameters
productTypeName, type and productTypeIngredientNames as
inputs. This operation can only be performed by an organiza-
tion with role of RegulatoryDepartment and allows to create
a new product type with the specified name, type and list of
product types ingredients. The value of the parameter type
can only be primary or derived. If the value of this parameter
is derived then the parameter productTypeIngredientNames
must contain at least one value, otherwise if the value is
primary it must be an empty list.

The operation addRule() takes the parameters product-
TypeName and ruleString as inputs. This operation can only
be performed by an organization with role of RegulatoryDe-
partment and allows to create a new rule with the specified
string expression associated with the product type identified
by productTypeName. The operations enableRule() and disa-
bleRule() take the parameter ruleId as input. These opera-
tions can only be performed by an organization with role
of RegulatoryDepartment and allow to enable and disable
respectively the rule identified by ruleId.

The operations blockProductType() and unblockPro-
ductType() take the parameter productTypeName as input.

Fig. 1   Typical agri-food supply
chain scenario

Smart Contract

Hyperledger Fabric Blockchain

RegulatoryDepartmentMSP RetailerMSP

ProducerMSP DelivererMSP

ManufacturerMSP

submits transactions submits transactions

submits transactionssubmits transactions

submits transactions

SN Computer Science (2022) 3: 279	 Page 7 of 21  279

SN Computer Science

These operations can only be performed by an organiza-
tion with role of RegulatoryDepartment and allow to block
and unblock respectively the product type identified by
productTypeName.

The operation requestProductRegistration() takes the
parameters productTypeName and productName as inputs.
This operation allows to request the registration of a new
product identified by productName associated with a prod-
uct type identified by productTypeName. If the product
type specified is a primary product type then the opera-
tion can be performed only by an organization with role
of Producer, otherwise if it is a derived product type then

the operation can be performed only by an organization
with role of Manufacturer. The operations acceptProduc-
tRegistration() and refuseProductRegistration() take the
parameter productName as input. These operations can
only be performed by an organization with role of Regu-
latoryDepartment and allow to accept and refuse respec-
tively the registration request for the product identified by
productName.

The operations blockProduct() and unblockProduct()
take the parameter productName as input. These opera-
tions can only be performed by an organization with role
of RegulatoryDepartment or the owner organization of

Fig. 2   Domain model of the business logic

	 SN Computer Science (2022) 3: 279279  Page 8 of 21

SN Computer Science

the product identified by productName and allow to block
and unblock that product respectively.

The operation registerBatch() takes the parameters
productName, batchIngredientIds and params as inputs.
This operation can only be performed by the owner
organization of the product identified by productName
and allows to register a new batch associated with that
product. The parameter batchIngredientIds represents a
list of ingredient batch ids. This list must be consistent
with the list of product types ingredients of the prod-
uct type associated with the batch being registered. The
parameter params represents a set of information related
to the batch and some of these information are used dur-
ing rules validation.

The operations blockBatch() and unblockBatch() take
the parameter batchId as input. These operations can only
be performed by an organization with role of Regula-
toryDepartment or the owner organization of the batch
identified by batchId and allow to block and unblock that
batch respectively.

The operation requestBatchTransfer() takes the
parameter batchId as input and allows an organization
to request the transfer of the batch identified by batchId
and owned by another organization. The operations
acceptBatchTransfer() and refuseBatchTransfer() take the
parameter batchId as input and allows the owner organi-
zation of the batch identified by batchId to accept and
refuse a transfer request for that batch respectively.

Finally, the operation getBatchHistory() allows to
obtain a complete history of the state transitions related to
a batch. In this way, any organization can view the entire
batch life cycle and the chain of its owners.

Resource Types State Transitions

The execution of each smart contract operation may cause a
state transition of a specific resource type in the system. In
these section, we describe these transitions and the different
states in which a resource can be found.

Figures 4, 5, 6 and 7 shows the state transitions of the dif-
ferent resource types available in our system, respectively,
for ProductType, Rule, Product, and Batch resources. A new
product type can be registered with the addProductType()
operation and initially it starts from the Blocked state (Fig.
4). In this state no organization can request the registration
of a new product for this product type. From the Blocked
state a product type can be unblocked with the unblockPro-
ductType() operation, causing it to pass to the Unblocked
state. From the Unblocked state, a product type can be
blocked with the blockProductType() operation, causing it
to pass to the Blocked state. When this last transition occurs
all the products associated with this product type are also
blocked.

A new rule, associated with a product type, can be reg-
istered with the addRule() operation and initially it starts
from the Disabled state (Fig. 5). In this state, at the moment
of registration of a new batch of the product type which this
rule is associated with, the rule is not validated. From the
Disabled state, a rule can be enabled with the enableRule()
operation, causing it to pass to the Enabled state. In this
state, at the moment of registration of a new batch the rule
is always validated. From the Enabled state a rule can be
disabled with the disableRule() operation, causing it to pass
to the Disabled state. The ability to add, enable and disable

Fig. 3   Smart contract operations

Fig. 4   State diagram of resource type ProductType

Fig. 5   State diagram of resource type Rule

SN Computer Science (2022) 3: 279	 Page 9 of 21  279

SN Computer Science

custom rules for a product type and to do it at runtime allows
to implement product-specific quality control mechanisms
that can change over time. This aspect is of fundamental
importance due to the requirement of today’s agri-food sup-
ply chains to establish products specific regulations that can
frequently evolve over time.

The registration of a new product can be requested with
the requestProductRegistration() operation (Fig. 6). When
this happens, a new product is created that starts from the
state Pending. From the Pending state, the product passes
to the Unblocked one when the registration request for the
product is accepted with the acceptProductRegistration()
operation. From the Pending state the product passes to the
Refused one when the registration request for the product
is refused with the refuseProductRegistration() operation,
or when the blockProduct() operation is executed or when
the product type associated with the product is blocked.
From the Unblocked state the product passes to the Pro-
ductBlocked one with the blockProduct() operation and
to the ProductTypeBlocked one when the relative product
type is blocked. From the ProductBlocked state the product
passes to the ProductAndProductTypeBlocked one when the
related product type is blocked and to the Unblocked state

with the unblockProduct() operation. From the Product-
TypeBlocked state the product passes to the ProductAnd-
ProductTypeBlocked one with the blockProduct() operation
and to the Unblocked one when the relative product type is
unblocked. From the ProductAndProductTypeBlocked state
the product passes to the ProductTypeBlocked one with the
unblockProduct() operation and to the ProductBlocked one
when the relative product type is unblocked. While a product
is in the ProductBlocked, ProductTypeBlocked and Product-
AndProductTypeBlocked states, all the batches related to this
product are also blocked and no new batch for this product
can be registered.

The registration of a new batch can be requested with the
operation registerBatch() (Fig. 7). When this happens, a new
batch is created that starts from the Unblocked state. From
the Unblocked state the batch passes to the BatchBlocked
one with the blockBatch() operation, to the Pending one with
the requestBatchTransfer() operation, to the ProductBlocked
one when the product associated with this batch is blocked
and to the Processed one when this batch is used as an ingre-
dient for another batch. From the Pending state the batch
passes to the Unblocked one with the acceptBatchTransfer()
or refuseBatchTransfer() operations, to the BatchBlocked

Fig. 6   State diagram of resource
type Product

Fig. 7   State diagram of resource
type Batch

	 SN Computer Science (2022) 3: 279279  Page 10 of 21

SN Computer Science

state with the blockBatch() operation and to the Product-
Blocked state when the relative product is blocked. From
the BatchBlocked state the batch passes to the BatchAndPro-
ductBlocked one when the relative product is blocked and to
the Unblocked one with the unblockBatch() operation. From
the ProductBlocked state the batch passes to the BatchAnd-
ProductBlocked one with the blockBatch() operation and to
the Unblocked state when the relative product is unblocked.
From the BatchAndProductBlocked state the batch passes
to the ProductBlocked one with the unblockBatch() opera-
tion and to the BatchBlocked when the relative product is
unblocked. While a batch is in the BatchBlocked, Product-
Blocked and BatchAndProductBlocked states, it cannot be
transferred to other organizations and cannot be used as an
ingredient for another batch.

The ability to block and unblock the different product
types, products and batches in the system allows, together
with the rule validation mechanism, to enhance the quality
of the respective supply chains and to reduce the probability
of food safety accidents. For example, if a batch does not
pass quality control tests, it can be timely blocked so as to
prevent it from reaching the final consumer or being used
as an ingredient for another batch. Subsequent attempts to
buy and sell this batch or to use it in a processing stage are
prevented by the smart contract because the batch is in a
blocked state. In the same way, if many batches related to
the same product present some anomalies or their production
process is found to be irregular, the product can be blocked,
causing all its batches to be blocked. This allows to do some
verification tests while avoiding the batches to go forward in
the supply chain. If all verification tests pass, the product can
be unblocked together with its batches. Finally, if harmful
substances are found on a specific product type, this product
type can be blocked, causing all its related products and
batches to be blocked too.

System Implementation

In this section, some implementation details about the sys-
tem prototype are provided. First the deployment architec-
ture and its main components are described. Then a descrip-
tion of the implementation of the smart contract and its class
diagram are provided. The designed framework has been
implemented and a prototype has been deployed within a
Kubernetes cluster to emulate the distributed nature of the
whole system, and to increase its portability and interop-
erability with existing organization IT systems. Figure 8
shows the software architecture in terms of the main com-
ponents composing our framework: in particular, it shows
the components for each organization of the scenario pre-
sented in Sect. 3, plus a set of components making up the
Hyperledger Fabric blockchain.

Each of the organizations in the system runs a peer node
that participates in blockchain operations and maintains
information about its local copy of the distributed ledger
in a dedicated database node (CouchDB in our prototype).
Using a database node as local storage for a peer node is
not necessary, but it allows for greater availability and
for more complex queries on ledger data. While in our
prototype, for simplicity purposes, we have chosen to run
only one peer node for each organization, in a production
environment each organization should run multiple peer
nodes, in order to ensure high availability and to handle a
higher transaction load.

When an organization wants to perform a smart con-
tract operation, it submits a transaction, through a client
application, to a majority of the peers in the blockchain.
These peers validate and approve the transaction and, if
successful, they send their approvals to the client applica-
tion. In the case of a write operation on the ledger state
the client application then sends the transaction along with
the approvals to an Orderer node. The task of this node is
to establish a total order of all transactions and to build
blocks containing ordered transactions. These blocks are
then distributed to the peer nodes and appended in the
blockchain. Each peer commits and executes all the valid
transactions in a block on its local copy of the ledger. As
before, While in our prototype, for simplicity purposes, we
have chosen to run the ordering service as a single node,
in a production environment it should be executed by a set
of nodes coordinating with each other via a consensus pro-
tocol (e.g. Raft), to ensure high availability of the service.

Each organization runs its own certificate authority that
issues certificates for that organization’s users and peer
nodes. In addition, each organization runs an application
server which executes the client application logic to submit
transactions to the blockchain, a database where the appli-
cation server keeps user data (MongoDB in our prototype)
and a web server that hosts a frontend application that allows
users to interact with the application server. The system
also runs a certificate authority that issues TLS certificates.
These certificates are used by users and system nodes to
secure communications.

To make our prototype scalable and easily portable on a
production environment, each component of the system runs
on a Docker container inside a Kubernetes Pod that is man-
aged by a Kubernetes Deployment. Each Pod is exposed to
the remaining components of the cluster through a specific
Kubernetes Service. Each stateful component stores its data
within Kubernetes Volumes in order to ensure data avail-
ability and fault tolerance.

The core of the system’s business logic is represented by
a smart contract. This smart contract was implemented using
the Node.js Fabric SDK. Figure 9 shows a simplified class
diagram of the smart contract.

SN Computer Science (2022) 3: 279	 Page 11 of 21  279

SN Computer Science

Fi
g.

 8
  

Sy
ste

m
 c

om
po

ne
nt

s a
rc

hi
te

ct
ur

e

	 SN Computer Science (2022) 3: 279279  Page 12 of 21

SN Computer Science

The SupplyChainContract class extends the Contract
class, which is part of the SDK, and represents a controller
class for the smart contract itself. Indeed, this class imple-
ments methods that, except for the init() method, represent
the smart contract operations that have been illustrated pre-
viously in Sect. 4.2. These operations allow users to create
and modify resources in the blockchain ledger. The init()
method is the first method of this class that is invoked as
soon as the smart contract is deployed and allows to inizial-
ize it. Considering the scenario illustrated in Sect. 3, in the
init() method a new role set is created that associates the
RegulatoryDepartment role to the RegulatoryDepartment-
MSP organization. The SupplyChainContract class has a ref-
erence to an object of the SupplyChainContext class, which
extends the SDK Context class. This object allows to read
and modify the ledger state and to retrieve information about
a transaction, such as the identity of the user who submit-
ted that transaction. More specifically, it has a reference to
the RoleSetList, ProductTypeList, RuleList, ProductList and
BatchList classes. These classes extend the StateList class
and represent repositories that allow to create, modify and

retrieve objects of the RoleSet, ProductType, Rule, Product
and Batch classes respectively. These latter classes extend
the State class and represent an abstraction layer to interact
with the corresponding resources in the ledger. An object
of the class RoleSet represents an instance of the role set
resource type and has the following fields:

•	 orgId: the identifier of the organization the role set is
associated with.

•	 roles: the list of roles associated with the organization
identified by orgId.

An object of the class ProductType represents an instance of
the product type resource type and has the following fields:

•	 name: the product type name.
•	 type: the type of the product type (primary or derived).
•	 productTypeIngredientNames: the list of product types

ingredients of the product type.
•	 issuerOrgId: the organization that registered the product

type.

Fig. 9   Smart contract class diagram

SN Computer Science (2022) 3: 279	 Page 13 of 21  279

SN Computer Science

•	 state: the current state of the product type.
•	 currentBlockerOrgId: the identifier of the last organiza-

tion that blocked the product type.

An object of the class Rule represents an instance of the rule
resource type and has the following fields:

•	 id: the rule identifier.
•	 productTypeName: the name of the product type the rule

is associated with.
•	 jsonValue: the rule expression encoded as a json object.
•	 issuerOrgId: the organization that registered the rule.
•	 state: the current state of the rule.
•	 currentDisablerOrgId: the identifier of the last organiza-

tion that disabled the rule.

An object of the class Product represents an instance of the
product resource type and has the following fields:

•	 name: the product name.
•	 productTypeName: the name of the product type the

product is associated with.
•	 issuerOrgId: the organization that registered the product.
•	 state: the current state of the product.
•	 currentBlockerOrgId: the identifier of the last organiza-

tion that blocked the product.
•	 approverOrgId: the identifier of the organization that

approved the registration request for the product.
•	 refuserOrgId: the identifier of the organization that

refused the registration request for the product.

An object of the class Batch represents an instance of the
batch resource type and has the following fields:

•	 id: the identifier of the batch.
•	 productName: the name of the product the batch is asso-

ciated with.
•	 issuerOrgId: the organization that registered the batch.
•	 state: the current state of the batch.
•	 currentOwnerOrgId: the identifier of the current owner

organization of the batch.
•	 currentBlockerOrgId: the identifier of the last organiza-

tion that blocked the batch.
•	 currentReceiverOrgId: the identifier of the last organiza-

tion that requested a transfer for the batch.
•	 outputBatchId: the identifier of the output batch for

which this batch has been used as an ingredient.

Finally the SupplyChainContract class has a reference to
the RuleEngine class which implements the getJsonRule-
FromString() and verifyJsonRule() methods. The first is
called during the execution of the addRule() method of the
SupplyChainContract class and starting from the string

representation of a rule, validates the rule string format and
returns the corresponding JSON object of that rule which
then is stored in the ledger. The latter is called during the
execution of the registerBatch() method of the SupplyChain-
Contract class and validates a rule on the parameters of a
batch at the time of its registration.

Use Cases

This section illustrates an example of the usage of our sys-
tem in the context of the scenario presented in Sect. 3 and
depicted in Fig. 1: in that scenario five different organiza-
tions (one for each of the defined role) are considered.

Two use cases are presented: the first one shows a sim-
ple success scenario where all operations succeed while the
second one shows an alternative scenario where some opera-
tions fail. The main goal of these use cases is to demonstrate
the system’s ability to automate supply chain operations, to
maintain traceability information and to provide a complete
life cycle history of each batch.

The resources created during the execution of both use
cases are quite the same. The difference between the two use
cases is that some of the resources follow different state tran-
sitions. Figure 10 shows a diagram of the different resources
considered in the two use cases and shared between them,
also including their respective attribute values and relation-
ships. From the figure, it can be seen that the orange-juice
product type derives from the orange and sugar primary
product types. For each product type, a product is created
(orangeX, sugarX and orange-juiceX products) and for each
product a batch is registered, where the orange-juiceX:1
batch derives from the orangeX:1 and sugarX:1 batches.

Figures 11, 12, 13, 14 and 15 show the state transitions of
the different resource types on the system triggered by the
execution of the first use case’s steps, which are numbered
from 0 to 29 (both in the text description and in the Figures).
For the sake of simplicity, whenever a step involves a similar
transition on different resource types, only one diagram has
been represented.

In this first use case, when the smart contract is initial-
ized, the Regulatory Department role is associated with the
RegulatoryDepartmentMSP organization (step 0 in Fig. 11).
With this role the RegulatoryDepartmentMSP organization
can perform administrative operations.

The RegulatoryDepartmentMSP organization registers
the orange primary product type (step 1 in Fig. 12). This
product type is initially in the Blocked state: in this state no
organization can request the registration for a product related
to this product type. Then the RegulatoryDepartmentMSP
organization unblocks the orange product type causing it
to pass to the Unblocked state (step 2). In the same way
the RegulatoryDepartmentMSP organization registers the

	 SN Computer Science (2022) 3: 279279  Page 14 of 21

SN Computer Science

sugar primary product type (step 3) and unblocks it (step
4). After registering the orange and sugar product types,
the RegulatoryDepartmentMSP organization can register the
orange-juice product type, which is a derived one, speci-
fying the two primary product types as ingredients (step
5). Once again the orange-juice product type starts from
the Blocked state and after the RegulatoryDepartmentMSP
unblocks it, this product type passes to the Unblocked state
(step 6 in Fig. 12).

The RegulatoryDepartmentMSP organization is enabled
to register rules to impose constraints on the productions
process: in this use case we assume that it registers a new
rule associated with the orange-juice product type (step 7
in Fig. 13). This rule is identified by the orange-juice:1 id
and requires that batches related to this product type con-
tain, among the parameters, a thermal processing tempera-
ture parameter with a value that must fall within the range
between 80.0 and 100.0◦hboxC . The rule is initially in the
Disabled state, meaning that it is not yet activated for batch
validation. The RegulatoryDepartmentMSP organization
enables then the rule causing it to pass to the Enabled state
(step 8).

The RegulatoryDepartmentMSP organization then asso-
ciates the ProducerMSP, ManufacturerMSP, DelivererMSP
and RetailerMSP organizations with the roles of Producer,
Manufacturer, Deliverer and Retailer respectively (steps 9,
10, 11, 12 in Fig. 11). In this way the ProducerMSP and
ManufacturerMSP organizations can request the registration
for a primary and derived product respectively. Moreover the
DelivererMSP organization can buy and resell batches from
and to other organizations and the RetailerMSP organization
can only buy batches.

After having gained the role of Producer, the Produc-
erMSP organization requests the registration of the orangeX
product associated with the orange product type (step 13, in
Fig. 14). This product is initially in the Pending state and
after the RegulatoryDepartmentMSP organization accepts
the registration request it passes to the Unblocked state (step
14). In the same way the ProducerMSP organization requests
the registration of the sugarX product associated with the
sugar product type (step 15) and the RegulatoryDepartment-
MSP organization accepts the relative registration request
(step 16). The ManufacturerMSP organization, after having
gained the role of Manufacturer, requests the registration of

Fig. 10   Use cases resource diagram

SN Computer Science (2022) 3: 279	 Page 15 of 21  279

SN Computer Science

the orange-juiceX product associated with the orange-juice
product type (step 17 in Fig. 14). Once again, this derived
product is initially in the Pending state and after the Regu-
latoryDepartmentMSP organization accepts the registration
request it pass to the Unblocked state (step 18).

The ProducerMSP organization then registers two batches
associated with the orangeX and sugarX products respec-
tively (steps 19, 20 in Fig. 15). These batches are identified
by the orangeX:1 and sugarX:1 respectively and they are ini-
tially in the Unblocked state. The ManufacturerMSP organi-
zation submits a transfer request for the orangeX:1 batch
causing it to pass to the Pending state (step 21 in Fig. 15).
After the ProducerMSP organization accepts the transfer

Fig. 11   UC1 state diagram of
resource type RoleSet

Fig. 12   UC1 state diagram of
resource type ProductType

Fig. 13   UC1 state diagram of resource type Rule

	 SN Computer Science (2022) 3: 279279  Page 16 of 21

SN Computer Science

request, the ManufacturerMSP organization becomes the
new owner of that batch and it returns to the Unblocked
state (step 22). In the same way the ManufacturerMSP
organization submits a transfer request for the sugarX:1
batch (step 23) and becomes the new owner of that batch

after the ProducerMSP organization accepts the request (step
24). The ManufacturerMSP organization can then register a
batch associated with the orange-juiceX product, using the
new acquired batches which pass to the Processed state (step
25 in Fig. 15). The new registered batch is identified by the

Fig. 14   UC1 state diagram of
resource type Product

Fig. 15   UC1 state diagram of resource type Batch

SN Computer Science (2022) 3: 279	 Page 17 of 21  279

SN Computer Science

orange-juiceX:1 id. In the registration operation the Manu-
facturerMSP organization specifies a value of 90.0◦hboxC
for the thermal processing temperature parameter, a value
that is compliant with the range specified in the orange-
juice:1 rule.

The DelivererMSP organization then submits a transfer
request for the orange-juiceX:1 batch and the Manufactur-
erMSP organization accepts the request causing the Deliv-
ererMSP organization to become the new owner (steps 26,
27). Finally, in the same way, the RetailerMSP organization
submits a transfer request for the same batch: the Deliver-
erMSP organization accepts the request causing the Retail-
erMSP organization to become the new owner (steps 28, 29
in Fig. 15).

Let us now describe the second use case, where an alter-
native flow is considered. As in the first use case, we show in
Figs. 16, 17 and 18 the state transitions of the product type,
product and batch resource types triggered by the execution
of the involved steps (numbered from 1 to 35). State dia-
grams for role set, product type and rule resource types are
not shown because the respective state transitions are similar
with the ones of the first use case.

The starting point in the description of this second use
case is that the orange, sugar and orange-juice product types
have been registered by the RegulatoryDepartmentMSP
organization but they are still in the Blocked state. Further-
more the same rule of the first use case has been associ-
ated with the orange-juice product type and for each of the
organizations of the system a role set has been registered.

Initially the ProducerMSP organization requests the reg-
istration of the orangeX and sugarX products associated with

the orange and sugar product types respectively (steps 1, 2).
However, this requests fail because the orange and sugar
product types are still in the Blocked state and this prevent
to register products (and the corresponding batches) related
to these product types. After the RegulatoryDepartmentMSP
organization unblocks the two product types (steps 3, 4 in
Fig. 16), the ProducerMSP organization retries to execute
the requests and, since this time the two products are already
registered on the system, they are accepted and pass to the
Pending state (steps 5, 6 in Fig. 17). Then the ProducerMSP
organization also requests the registration of the orangeY
product associated with the orange product type (step 7).
The RegulatoryDepartmentMSP organization accepts the
registration requests for the orangeX and sugarX products
causing them to pass to the Unblocked state (steps 8, 9 in
Fig. 17), but, let us assume that it refuses the registration
request for the orangeY product causing it to pass to the
Refused state (step 10). Similarly, the ManufacturerMSP
organization requests the registration of the orange-juiceX
product associated with the orange-juice product type, but
the request fails because the orange-juice product is in the
Blocked state (step 11). After the RegulatoryDepartment-
MSP organization unblocks the orange-juice product type
(steps 12), the ManufacturerMSP organization retries to exe-
cute the request and this time it is accepted and the product
is registered on the system, starting from the Pending state
(step 13). Then the RegulatoryDepartmentMSP organization
accepts the registration request for the product causing it to
pass to the Unblocked state (step 14).

The ProducerMSP organization then registers two
batches associated with the orangeX and sugarX products

Fig. 16   UC2 state diagram of
resource type ProductType

	 SN Computer Science (2022) 3: 279279  Page 18 of 21

SN Computer Science

respectively (steps 15, 16). These batches are identified by
the orangeX:1 and sugarX:1 ids respectively and, initially,
are in the Unblocked state. Then the RegulatoryDepart-
mentMSP organization decides to block temporarily the two
batches to execute some quality control tests on them, caus-
ing the batches to pass to the BatchBlocked state (steps 17,
18 in Fig. 18). In the meantime the ManufacturerMSP organ-
ization submits two transfer requests for the two batches,
but they are automatically rejected because the batches are
in the BatchBlocked state (steps 19, 20). After the quality
control tests complete successfully the RegulatoryDepart-
mentMSP organization unblocks the two batches (steps
21, 22). Then the ManufacturerMSP organization retries to
submit the transfer requests for the two batches: this time
they are accepted, causing them to pass to the Pending state
(steps 23, 24). After the ProducerMSP organization accepts
the transfer requests, the ManufacturerMSP organization
becomes the new owner of the requested batches and these
return to the Unblocked state (steps 25, 26).

Let us assume now that the ManufacturerMSP organi-
zation tries to register a batch associated with the orange-
juiceX product, using the new acquired batches as ingre-
dients and specifying the value 60.0◦hboxC for the batch
parameter temp (step 27). When the registration request is
submitted, the rule orange-juice:1 gets activated and the
request is rejected because the rule condition is not met.
The ManufacturerMSP organization then retries the request
specifying the value 85.0 ◦hboxC for the batch parameter
temp and this time the request is accepted causing the two
batches ingredients to pass to the Processed state: a new
batch with orange-juiceX:1 id is created that starts from the
Unblocked state (step 28). After noticing the first batch reg-
istration request was not accepted due to the fact that the
rule condition was not met, the RegulatoryDepartmentMSP
organization decides to temporarily block the orange-juiceX
product to carry out some checks (step 29). This causes the
orange-juiceX product and the orange-juiceX:1 batch to pass
to the state ProductBlocked.

Fig. 17   UC2 state diagram of resource type Product

SN Computer Science (2022) 3: 279	 Page 19 of 21  279

SN Computer Science

In the meantime, the DelivererMSP organization submits a
transfer request for the orange-juiceX:1 batch but the request
is rejected because it is now in the ProductBlocked state (step
30). After the checks complete successfully, the Regulato-
ryDepartmentMSP organization unblocks the orange-juiceX
product causing it and the orange-juiceX:1 batch to pass to the
Unblocked state (step 31). Then the DelivererMSP organiza-
tion retries to submit the transfer request for the batch causing
it to pass to the Pending state (step 32). After the Manufactur-
erMSP organization accepts the transfer request, the Deliver-
erMSP organization becomes the new owner of the requested
batch and this returns to the Unblocked state (step 33). Finally,
in the same way as the first use case, the RetailerMSP organi-
zation submits a transfer request for the same batch and the
DelivererMSP organization accepts the request causing the

RetailerMSP organization to become the new owner (steps
34, 35).

The realization of the use cases, despite their simplicity,
demonstrates that the proposed system supports all the basic
lifecycle management steps of an agri-food product, from its
origin to the end consumer. The simple rule-based system
embedded within the framework, also show the flexibility of
the framework: it is possible to add any kind of rule at runtime
to cope with specific quality control strategies needed by any
of the organization involved in the supply chain.

Fig. 18   UC2 state diagram of resource type Batch

	 SN Computer Science (2022) 3: 279279  Page 20 of 21

SN Computer Science

Conclusions

A complete model of a blockchain-based agri-food supply
chain traceability system has been proposed in this work,
also showing a prototype implementation. The system is
based on the Hyperledger Fabric permissioned blockchain,
a category of blockchain where participation is limited to
a well-defined set of members. This type of blockchain fits
well in the context of agri-food supply chains because typi-
cally only a limited set of organizations can participate in
supply chain operations. By using blockchain technology,
supply chain traceability data can be stored in a more trans-
parent and reliable way with respect to using a centralized
entity. Furthermore, as a fully distributed system, blockchain
mitigates the problems of limited scalability and single point
of failure. The proposed system allows to automate supply
chain management operations with the use of the smart con-
tract primitive and maintain traceability information in a
transparent, secure and immutable way. Moreover, the sys-
tem gives the possibility to add and modify rules at runtime
and this allows to implement product-specific quality control
mechanisms. Finally, the system provides a complete view
of the different phases of harvesting, processing and distri-
bution to which batches of product are subject allowing to
reconstruct the entire life cycle of each batch, also obtaining
provenance information.

Future works will involve the design of a more complex
rule engine system to implement more sophisticated qual-
ity control mechanisms. At the moment the rule engine is
implemented as a library used by the smart contract. Our
intention is to use more complex rule engines deployed as
external services that can be contacted by the smart contract.
Furthermore, some experiments will be conducted to evalu-
ate the performances of the system in terms of transaction
throughput and scalability.

Funding Information  Open access funding provided by Università
degli Studi di Catania within the CRUI-CARE Agreement. This work
has been partially financially supported by the funding programme PO
FESR Sicilia 2014/2020, research project QUALIAGRO 4.0 (project
no. 08CT6201000224).

Declarations 

Conflict of interest  The authors declare that they have no competing
interests

Open Access  Open access funding provided by Università degli Studi
di Catania within the CRUI-CARE Agreement. This article is licensed
under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other

third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regula-
tion or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Androulaki E, Barger A, Bortnikov V, et al. Hyperledger fabric:
A distributed operating system for permissioned blockchains. In:
Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18,
2018; https://​doi.​org/​10.​1145/​31905​08.​31905​38

	 2.	 Antonucci F, Figorilli S, Costa C, et al. A review on block-
chain applications in the agri-food sector. J Sci Food Agricult.
2019;99(14):6129–38. https://​doi.​org/​10.​1002/​jsfa.​9912.

	 3.	 Baralla G, Pinna A, Tonelli R, et al. Ensuring transparency and
traceability of food local products: A blockchain application to
a smart tourism region. Concurrency and Computation: Practice
and Experience, 2021;33(1). https://​doi.​org/​10.​1002/​cpe.​5857

	 4.	 Biswas K, Muthukkumarasamy V, Lum W. Blockchain based
wine supply chain traceability system. In: Future Technologies
Conference (FTC 2017), 2017; 56–62

	 5.	 Bosona T, Gebresenbet G. Food traceability as an integral part
of logistics management in food and agricultural supply chain.
Food Control. 2013;33(1):32–48. https://​doi.​org/​10.​1016/j.​
foodc​ont.​2013.​02.​004.

	 6.	 Caro MP, Ali MS, Vecchio M, et al. Blockchain-based trace-
ability in agri-food supply chain management: a practical imple-
mentation. In: 2018 IoT Vertical and Topical Summit on Agri-
culture - Tuscany (IOT Tuscany), 2018; 1–4 https://​doi.​org/​10.​
1109/​IOT-​TUSCA​NY.​2018.​83730​21

	 7.	 Casino F, Kanakaris V, Dasaklis T, et al. Modeling food sup-
ply chain traceability based on blockchain technology. IFAC-
PapersOnLine. 2019;52:2728–33. https://​doi.​org/​10.​1016/j.​
ifacol.​2019.​11.​620.

	 8.	 Chen K, xin WANG X, ying SONG H,. Food safety regula-
tory systems in europe and china: A study of how co-regulation
can improve regulatory effectiveness. J Integrative Agricult.
2015;14(11):2203–17. https://​doi.​org/​10.​1016/​S2095-​3119(15)​
61113-3.

	 9.	 Cocco L, Mannaro K, Tonelli R, et al. A blockchain-based
traceability system in agri-food sme: case study of a traditional
bakery. IEEE Access, 2021;9:62,899–62,915. https://​doi.​org/​
10.​1109/​ACCESS.​2021.​30748​74

	10.	 Dabbene F, Gay P, Tortia C. Traceability issues in food supply
chain management: a review. Biosyst Eng. 2014;120:65–80.
https://​doi.​org/​10.​1016/j.​biosy​stems​eng.​2013.​09.​006.

	11.	 Feng Tian. A supply chain traceability system for food safety
based on haccp, blockchain internet of things. In: 2017 interna-
tional conference on service systems and service management,
2017;1–6. https://​doi.​org/​10.​1109/​ICSSSM.​2017.​79961​19

	12.	 Galvez JF, Mejuto J, Simal-Gandara J. Future challenges on the
use of blockchain for food traceability analysis. TrAC Trends
Anal Chem. 2018;107:222–32. https://​doi.​org/​10.​1016/j.​trac.​
2018.​08.​011.

	13.	 Gamage HTM, Weerasinghe HD, Dias NGJ. A survey on
blockchain technology concepts, applications, and issues.
SN Comput Sci. 2020;1(2):114. https://​doi.​org/​10.​1007/​
s42979-​020-​00123-0.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1002/jsfa.9912
https://doi.org/10.1002/cpe.5857
https://doi.org/10.1016/j.foodcont.2013.02.004
https://doi.org/10.1016/j.foodcont.2013.02.004
https://doi.org/10.1109/IOT-TUSCANY.2018.8373021
https://doi.org/10.1109/IOT-TUSCANY.2018.8373021
https://doi.org/10.1016/j.ifacol.2019.11.620
https://doi.org/10.1016/j.ifacol.2019.11.620
https://doi.org/10.1016/S2095-3119(15)61113-3
https://doi.org/10.1016/S2095-3119(15)61113-3
https://doi.org/10.1109/ACCESS.2021.3074874
https://doi.org/10.1109/ACCESS.2021.3074874
https://doi.org/10.1016/j.biosystemseng.2013.09.006
https://doi.org/10.1109/ICSSSM.2017.7996119
https://doi.org/10.1016/j.trac.2018.08.011
https://doi.org/10.1016/j.trac.2018.08.011
https://doi.org/10.1007/s42979-020-00123-0
https://doi.org/10.1007/s42979-020-00123-0

SN Computer Science (2022) 3: 279	 Page 21 of 21  279

SN Computer Science

	14.	 Kolb J, AbdelBaky M, Katz RH, et al. Core concepts, challenges,
and future directions in blockchain: A centralized tutorial. ACM
Comput Surv, 2020;53(1). https://​doi.​org/​10.​1145/​33663​70

	15.	 Li D, Wang X, Chan HK, et al. Sustainable food supply chain
management. Int J Prod Econ. 2014;152:1–8. https://​doi.​org/​10.​
1016/j.​ijpe.​2014.​04.​003.

	16.	 Malik S, Kanhere SS, Jurdak R. ProductChain: Scalable block-
chain framework to support provenance in supply chains. In: NCA
2018 - 2018 IEEE 17th international symposium on network com-
puting and applications, 2018; https://​doi.​org/​10.​1109/​NCA.​2018.​
85483​22

	17.	 Marchese A, Tomarchio O. An agri-food supply chain traceability
management system based on hyperledger fabric blockchain. In:
Proceedings of the 23rd international conference on enterprise
information systems - Volume 2: ICEIS,, INSTICC. SciTePress,
2021; 648–658 https://​doi.​org/​10.​5220/​00104​47606​480658

	18.	 Marchesi L, Mannaro K, Porcu R. Automatic generation of block-
chain agri-food traceability systems. In: 2021 IEEE/ACM 4th
international workshop on emerging trends in software engineer-
ing for Blockchain (WETSEB), 2021;41–48. https://​doi.​org/​10.​
1109/​WETSE​B52558.​2021.​00013

	19.	 Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System.
2008; https://​bitco​in.​org/​bitco​in.​pdf

	20.	 Olsen P, Borit M. The components of a food traceability system.
Trends Food Sci Technol. 2018;77:143–9. https://​doi.​org/​10.​
1016/j.​tifs.​2018.​05.​004.

	21.	 Ray Z, Xun X, Lihui W. Food supply chain management:
systems, implementations, and future research. Ind Manag
Data Syst. 2017;117(9):2085–114. https://​doi.​org/​10.​1108/​
IMDS-​09-​2016-​0391.

	22.	 Shahid A, Almogren A, Javaid N, et al. Blockchain-based
agri-food supply chain: A complete solution. IEEE Access,
2020;8:69,230–69,243. https://​doi.​org/​10.​1109/​ACCESS.​2020.​
29862​57

	23.	 Tian F (2016) An agri-food supply chain traceability system for
china based on rfid & blockchain technology. In: 2016 13th inter-
national conference on service systems and service management
(ICSSSM), https://​doi.​org/​10.​1109/​ICSSSM.​2016.​75384​24

	24.	 Wang S, Li D, Zhang Y, et al. Smart contract-based product
traceability system in the supply chain scenario. IEEE Access,
2019;7:115,122–115,133. https://​doi.​org/​10.​1109/​ACCESS.​2019.​
29358​73

	25.	 Wang Y, Han JH, Beynon-Davies P. Understanding blockchain
technology for future supply chains: a systematic literature review
and research agenda. Supply Chain Management: An International
Journal. 2018;24. https://​doi.​org/​10.​1108/​SCM-​03-​2018-​0148.

	26.	 Wüst K, Gervais A. Do you need a blockchain? In: 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT), 2018;
45–54. https://​doi.​org/​10.​1109/​CVCBT.​2018.​00011

	27.	 Zhao G, Liu S, Lopez C, et al. Blockchain technology in agri-food
value chain management: a synthesis of applications, challenges
and future research directions. Comput Ind. 2019;109:83–99.
https://​doi.​org/​10.​1016/j.​compi​nd.​2019.​04.​002.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3366370
https://doi.org/10.1016/j.ijpe.2014.04.003
https://doi.org/10.1016/j.ijpe.2014.04.003
https://doi.org/10.1109/NCA.2018.8548322
https://doi.org/10.1109/NCA.2018.8548322
https://doi.org/10.5220/0010447606480658
https://doi.org/10.1109/WETSEB52558.2021.00013
https://doi.org/10.1109/WETSEB52558.2021.00013
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1016/j.tifs.2018.05.004
https://doi.org/10.1016/j.tifs.2018.05.004
https://doi.org/10.1108/IMDS-09-2016-0391
https://doi.org/10.1108/IMDS-09-2016-0391
https://doi.org/10.1109/ACCESS.2020.2986257
https://doi.org/10.1109/ACCESS.2020.2986257
https://doi.org/10.1109/ICSSSM.2016.7538424
https://doi.org/10.1109/ACCESS.2019.2935873
https://doi.org/10.1109/ACCESS.2019.2935873
https://doi.org/10.1108/SCM-03-2018-0148
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1016/j.compind.2019.04.002

	A Blockchain-Based System for Agri-Food Supply Chain Traceability Management
	Abstract
	Introduction
	Background and Related Work
	Blockchain Technology and Hyperledger Fabric
	Related Work

	System Architecture
	Business Logic
	Domain Model
	Smart Contract Operations
	Resource Types State Transitions

	System Implementation
	Use Cases
	Conclusions
	References

