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Abstract
Knowing the relevant amount of information needed to correctly predict patterns present in a data series is an important 
question to address. This is known as the problem of model order determination and is not adequately solved yet. This 
paper proposes to determine model order based on the scheme of a topological dynamic neural network that examines the 
dimensionality of the non-linear function that reconstructs the process. The novelty of the approach lies in the use of a neural 
network optimized by an evolutionary multi-objective selection mechanism that is capable of determining model order and 
performing robust estimations based on joint minimization of the length of the past and of the prediction error. Since the 
size of the input layer of the neural network is associated with the model order, the results show that the model order can 
be determined by the Pareto-optimal solutions that emerge from the optimization process. The practicality of the model is 
demonstrated on three univariate examples extracted from a time series database.

Keywords Model order · Artificial neural networks · Evolutionary neural networks · Multi-objective optimization · Time 
series forecasting · Pareto-optimal curve

Introduction

Systems with causal associations and temporal dependence 
are of great importance in many natural and social phenom-
ena. In many of these systems, their most important features 
can be isolated by a collection of observations made sequen-
tially through time. It is possible to discover some structures 
that emerge from the models behind these systems. Knowing 
the model order, i.e., the relevant amount of information 
needed by an observer to correctly predict patterns present 
in a data series, is therefore an essential question to address. 
Especially when long memory or long-range dependence 
arise in the analysis of data, indicating that the behavior 
of a time-dependent process denotes statistically significant 
correlations across very large time scales. Simply put, model 

order refers to the optimal number of inputs to be used by 
a model, which is an important pre-processing stage, espe-
cially when using large-scale dynamic systems [1].

Time series forecasting is a well-known procedure for 
projecting future behaviors of such systems based on the pre-
sent and past observations of time-ordered information. It is 
an extremely topical area of signal processing research that 
involves fields like statistics, economics, physics, signal pro-
cessing and computational intelligence, just to name a few. 
It has many applications in areas as diverse as finance, econ-
omy, medicine, energy, weather, geology, geophysics, biol-
ogy, among others [2–5].

Classical methods for time series forecasting, including 
autoregressive integrated moving average (ARIMA) [6], 
Kalman filter [7] and Bayesian Forecasting [8] are still effec-
tive and very useful today. More recently, deep learning [9, 
10] has brought improvements in time series forecasting, 
especially in the analysis of large-scale data. Long-Short 
Term Memory (LSTM) [11] networks are a gated archi-
tecture variant of Recurrent Neural Networks (RNN), that 
has been successfully used for handling sequential data. 
However, LSTMs have a complex structure, need massive 
training samples, and show limitations when facing time 
interval irregularities in data. LSTMs are also intimately 

 * Rui Ligeiro 
 rui.ligeiro@gmail.com

 Joao Paulo Carvalho 
 joao.carvalho@inesc-id.pt

1 Instituto Superior Técnico, Universidade de Lisboa, Lisboa, 
Portugal

2 INESC-ID/Instituto Superior Técnico, Universidade de 
Lisboa, Lisboa, Portugal

http://orcid.org/0000-0003-1454-0959
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01134-9&domain=pdf


 SN Computer Science (2022) 3:252252 Page 2 of 13

SN Computer Science

connected with the determination of the model order, since 
one of LSTMs’ most important hyperparameters, the number 
of layers, is optimal when its value corresponds to that of 
the model order.

When modelling time series data, an observer cannot 
obtain full information about the underlying system with 
some degree of uncertainty being nearly unavoidable. 
Despite these facts, patterns often arise in the analysis of 
spatial or time series data, indicating that the behavior of a 
time-dependent process denotes statistically significant cor-
relations across short or even very large time scales. During 
(or prior to) the construction of any such model, the amount 
of past memory or spatial range needed should be accurately 
determined and such determination should not be hindered 
by the assumptions implied in the model.

The dichotomy between the past length and the forecast-
ing error accepted by the observer is central when tackling 
signal processing and pattern recognition problems. Par-
ticularly in the minimal classification of relevant patterns 
raised by the process’s causal structures, whose complexity 
can be, informally, related to the model order. The overall 
picture is simple: increasing the length of the past should 
lead to lower prediction errors, but at the unbearable cost 
of affecting model complexity, whereas the short-length-
past should provide tractable models but with higher error. 
Even knowing that these premises are not always true, it is 
clear that the underlying objectives have optimal solutions 
(minimization of the length of the past and minimization of 
the error) that conflict with each other, and for that reason, 
this problem can be seen as a multi-objective optimization 
problem (see Fig. 1). In this work we propose to combine 
Layered Feedforward Neural Networks (FNN) and Genetic 
Algorithms (GA) to address the problem of the determi-
nation of the model order of a generic ordered series. We 
address it as a multi-objective optimization problem in time 
series forecasting—minimization of the length of the past 
and minimization of the error: given a generic time series, 
we use a feedforward neural network classifier (FNN) opti-
mized using a GA, to make short-term predictions of its 
future behavior based on the present and past observations. 
The goal is not to use the (NN) as an optimal forecaster: 
the NN is only used as a tool to determine the model order 

size. Subsequently, any forecasting method can be optimized 
based on this knowledge.

Since the size of the input layer of the optimal FNN cor-
responds to the de facto model order, the proposed multi-
objective optimization problem allows us to determine the 
model order based on the resulting Pareto front.

This article is organized as follows: “Research Back-
ground” reviews the most important aspects of Evolution-
ary Artificial Neural Networks (EANNs), Lipschitz indexes, 
Multi-Objective Optimization Problems (MOPs), as well 
as other topics related to this study. In “Model Order as 
a Multi-Objective Optimization Problem” the problem of 
model order determination is discussed as a multi-objective 
optimization problem, and next, in “Methodology” the pro-
posed method is detailed. Applications and the obtained 
results are presented in “Applications” and summarized in 
“Conclusion”, the conclusion.

Research Background

For the benefit of the reader, we present a brief preliminary 
overview describing some research background concern-
ing Lipschitz indexes, model structure, EANNs, MOPs and 
other topics related to this study.

A. Lipschitz Indexes

In this work, Model Order refers to the optimal number of 
relevant past inputs used in a model. One of the best-known 
methods used to determine model order is the Lipschitz 
indexes [19]. This method does not depend on the use of 
any approximation method or particular structure because 
it is based on the continuity property of the non-linear func-
tion that represents the input–output model of a continuous 
dynamic system. To determine the order, it is necessary to 
calculate the Lipschitz quotients; as a ratio of the absolute 
values between two output values and the distance between 
two points in the input space. Next, the Lipschitz indexes are 
determined by the weighted geometric mean of the largest 
Lipschitz quotients calculated from the set of input–output 
pairs in the data.

More formally, from a set of candidate points given, the 
goal is to estimate the relevant inputs of the general nonlin-
ear input–output formulation:

It is necessary to reconstruct the nonlinear function f(x) 
only from data, i.e., from the input–output data pairs (x1, y2). 
The Lipschitz quotients are then determined by:

(1)y = f (x) = f
(
x1, x2,… , xn

)

Fig. 1  Illustration of a generic model. The estimation considers its 
error predictions and the length of the past
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where N is the number of samples in the dataset, x is the 
input and y is the output of the system.

From the Lipschitz quotients, the indexes, also called Lip-
schitz numbers, are calculated as:

where r is a positive integer number, recommended to be 
one or two percent of the sample size, and q(s)(k) is the kth 
largest Lipschitz quotient among all qij

(s). To determine the 
order, it is necessary to find the point where the slope of the 
Q(s) curve changes from decreasing in a pronounced way to 
decreasing in a less pronounced way (examples can be seen 
later on in “Methodology”).

Applications of Lipschitz indexes have been the object 
of study in several works [20–22]. The main drawback of 
the Lipschitz indexes method for model order determina-
tion is its high sensitivity to noisy data. The problem of 
order determination needs more attention from researchers; 
however, this approach can still have an important role in the 
settlement of the number of past inputs to use.

B. Evolutionary Artificial Neural Networks

Neural network architecture design and parameter setting is 
very much a human expert’s endeavor that requires signifi-
cant effort and tedious trial-and-error procedures.

FNNs are universal approximators, good at fitting non-
linear functions and for that reason have been used success-
fully to solve time series forecasting problems [12–14]. The 
accuracy of the approximation depends not only on the com-
plexity of the problem but also on the architecture of the 
network, as well as, the amount and quality of labeled data 
available for training [40]. The backpropagation algorithm 
[15] is a gradient search technique conventionally applied 
in neural networks during the supervised training phase. 
However, gradient search techniques tend to get trapped at 
local minima. Drawbacks of the local search backpropaga-
tion, as well as its mitigation techniques have been widely 
discussed in literature ([16–18] and [45] are good examples 
among many others).

Constructive algorithms have been successfully used in 
the past for good network architecture. These methods start 
with a small network structure and then add additional hid-
den units and weights until a satisfactory solution is found. 
They always search for small network solutions first. In the-
ory, they are thus more computationally economical than 

(2)qij =

|
|
|
yi − yj

|
|
|

|
|
|
xi − xj

|
|
|

, (i ≠ j) and i, j = 1, 2,… ,N

(3)Q(s) ≡

�
√
s

r�

k=1

q(s)(k)

� 1

r

pruning algorithms, in which most of the training time is 
spent on networks larger than necessary [23].

EANNs refer to a special class of artificial neural net-
works (ANNs) in which evolution is another fundamental 
form of adaptation in addition to learning [24]. EANNs 
employ evolutionary computation techniques like Genetic 
Algorithms (GA) [25] to perform various tasks, such as con-
nection weight training, architecture design, learning rule 
adaptation and neuron activation function selection among 
others. ANN performance depends on its ability to learn, 
which is directly related with the network topology, training 
algorithm, as well as the neuron activation function.

One distinct feature of EANNs is their adaptability to 
a dynamic environment. EAs are not problem-specific and 
adjust an entire population of candidate solutions to an 
objective without direct intervention. They are not suscep-
tible to initial conditions of training and are particularly 
useful for dealing with large complex problems which gen-
erate many local optima; they are less likely to be trapped 
in local optimal solutions than traditional gradient-based 
search algorithms. However, EANNs can be very slow when 
dealing with problems that require multiple processing lay-
ers to learn representations of data with multiple levels of 
abstraction.

Convolutional neural networks (CNN) are complex net-
work models that have recently demonstrated impressive 
performance in image classification and object detection. 
Pruning deep learning models is important for achieving 
generalization improvements [26–30]. In a typical deep-
learning system, there may be hundreds of millions of 
adjustable weights and hundreds of labelled examples with 
which to train the machine (see [31] for more information 
about deep learning and convolutional networks).

C. Multi‑Objective Evolutionary Algorithms

In general, problems with multiple objectives have a set of 
optimal solutions known as Pareto-optimal solutions, instead 
of a single optimal solution. Often, multi-objective problems 
are converted into a single objective in order to simplify 
its analysis. However, this approach does not find multiple 
Pareto-optimal solutions present in the feasible objective 
space in a single simulation run, while, on the other hand, 
multi-objective evolutionary algorithms (MOEAs) are good 
at finding multiple solutions in one simulation run. Evolu-
tionary Algorithms are powerful stochastic search and opti-
mization algorithms developed by taking inspiration from 
the biological process of evolution.

MOEAs work with a population of multiple solutions 
processed in every generation and, for that reason, it is possi-
ble to choose one, or more solution(s) from the resulting set 
by using relevant complementary information and considera-
tions. The work of Fonseca and Fleming’s [32, 33], Coello 



 SN Computer Science (2022) 3:252252 Page 4 of 13

SN Computer Science

Coello [34] and Deb and colleague’s [35–38] stood out in the 
use of evolutionary algorithms applied to MOPs and deserve 
special attention from researchers in future studies.

Model Order as a Multi‑Objective 
Optimization Problem

When considering a time series signal without knowing the 
dynamical system that represents its temporal evolution, the 
problem to solve is:

-By looking at the data, what is the relevant (minimum) 
amount of information necessary to accurately predict future 
values? Or in other words, what is the model order for robust 
estimation?

In our approach, the problem can be reformulated in a 
more concrete way:

-What is the relevant number of neurons in the input layer 
of the network that guarantees optimal forecasting?

A main concern in supervised learning is to avoid over-
fitting. To achieve good generalization, it is necessary to 
control the complexity of the learned function. If it is too 
complex, it may incorporate irrelevant properties of the 
dataset on which it is trained (overfitting), thus perform-
ing poorly on future data. On the other hand, a very simple 
function may not be able to capture the main behavior of the 
underlying relationship (underfitting) [39].

For a chosen input length, too many neurons in the hid-
den layer may cause overfitting, while too few neurons may 
cause underfitting. Moreover, and not forgetting the role 
of the hidden layer dynamic structure, if we increase the 
number of neurons in the input layer we may tend to pre-
dict successfully and naturally the opposite is also true, i.e., 
short-length-past generates higher estimation error. These 
objectives have different and conflicting optimal solutions 
(minimization of the length of the past and minimization of 
the error), which means that we can treat this problem as 
a multi-objective optimization problem. It is important to 
mention at this point that the answer to the problem may not 
be confined to a single model order but to multiple Pareto-
optimal model orders present in the feasible objective space. 
Also, the method used here for determination of the model 
order is independent from the data series as well as the tech-
nique chosen to make the forecast.

Methodology

In the proposed learning system, the signal to be learned is 
a sequence of discrete time sampling points, spread at an 
interval Δ in the form:

where n is a discrete time step and N is the length of the 
series. For simplicity we consider the set X⃗ to be a vector, 
where the x values are real values in the form:

where j is decreased to a discrete time step n to indicate the 
starting index of the sliding window and p is its length. The 
sliding window moves along the signal gathering all values 
of the vector for processing. The elements of the vector X⃗ 
are inputs to a feedforward neural network with three layers: 
input, hidden and output, with {W} denoting the full set of 
connection strengths and Y

(
X⃗
)
= fw

(
X⃗
)
 the output.

The aim is to choose a set of connection strengths that 
sustain the prediction:

Our approach consists of the application of a genetic algo-
rithm using a multi-objective selection mechanism to evolve 
a neural network that determines a model order with robust 
estimations (lower error). At each iteration the fitness over 
a population of candidates is evaluated (individual ANNs 
that are candidate solutions to the problem) based on perfor-
mance on the problem. If a candidate is evaluated favorably 
then it is allowed to propagate via producing offspring, oth-
erwise the candidate is discarded. The output of the dynamic 
network is the model order and anon-linear function that 
starts off with a large error when making predictions that 
learns to make better estimations with increasing iterations.

The scheme starts with a population of predetermined 
random networks containing an equally distributed variable 
number of input neurons; the same number of ANNs with 
one input neuron, the same number of ANNs with two input 
neurons, and so on. The maximum number of input neurons 
is recommended to be the sample size divided by ten. The 
number of neurons in the hidden layer are random but less 
than a predefined value. After scoring each network by its 
ability to predict, a multi-objective selection mechanism is 
then applied as follows: first, minimization of the error—a 
worthy parent network is selected via a tournament selection 
method (the best one is chosen between a pair of networks); 
then minimization of the length of the past—the other parent 
network is chosen via the roulette wheel selection method 
among the networks with input neurons less than a value that 
starts large and progressively decreases during the iterations. 
The algorithm terminates after a finite number of iterations.

The most important steps to evolve the network are as 
follows:

(4)x[n] = x[nΔ], n = 1, 2,… ,N

(5)

X⃗ =
{
x
[
n − j

]
, x
[
n − j + 1

]
, x
[
n − j + 2

]
,… , x

[
n − j + p

]}

J = 0, 1,… ,N

(6)f̂w

(
X⃗, t − 1

)
= x[t]



SN Computer Science (2022) 3:252 Page 5 of 13 252

SN Computer Science

Initialize Population

The population is created with N random networks (chromo-
somes) containing an equally distributed variable number 
of input neurons, a hidden layer with a random number of 
neurons that is less than a predefined limiting value, and a 
single output neuron. Only one output neuron is necessary 
as it represents the single prediction value for an input vec-
tor. For a better understanding, see Fig. 2 for an illustration 
of the network and its chromosome representation. Weights 
are randomly generated between 0 and 1 and one of the fol-
lowing activation functions is chosen with equal probability: 
identity, sigmoid, radial basis and reLU (see [41, 42] for 
details and references therein). It is very unlikely that these 
networks have a good score without learning, therefore the 
next phase is very important.

Learning and Training

Evaluate Population

Every network is evaluated by comparing its estimation 
with the target value. The Mean Squared Error (MSE) loss 
function measures the error of the networks for all possi-
ble input vectors in the series. As expected, the decay of 
the loss function is more pronounced and with a longer tail 
for data with less uncertainty. Chromosomes are chosen for 
production of the next generation through their fitness value. 
In elitism selection mechanisms the best chromosomes are 
preferred against others. Chromosomes with higher fitness 
values are more likely to be chosen than others in selection 
methods like roulette wheel or tournament selection. Here, a 
parent network is selected via a tournament selection method 
among all networks. The other parent network is chosen via 
the roulette wheel selection method among the networks 
with input neurons less than a value that starts large and 
progressively decreases during the iterations.

Reproduce Population

The Crossover operation is applied to the parents selected 
in Step 2. The generated child is formed by exchanging 
some portion of the elements of a pair of fittest parents 
(weights, activation function). This combination can be 
achieved by copying continuous or alternate parts of both 
parents. Mutation intends to provoke a small perturbation 
in the weights of the produced children, thus, the explora-
tion of new regions on the search space (see Fig. 3). After 
a fixed number of I iterations the algorithm terminates, 
otherwise it jumps to step 2.1 (every chromosome is evalu-
ated by comparing its estimation with the target value) and 
the process repeats again, starting a new iteration loop 
with the resulting population of chromosomes.

One of the key advantages of this approach is the 
dynamic character of the network. The fact that in the 
same network we can have neurons with different activa-
tion functions, increases the fitting and non-linear nature 
of the derived function. Also, implicit in the algorithm 
is the assumption that we are in the basis of attraction of 
the global minimum. GA permits this by performing an 
evolution strategy with mutation and crossover operators 
that explore new regions of the search space, as well as by 
keeping some of the non-top networks: this helps to find 
potentially successful combinations between worse-per-
formers and top-performers. Algorithm 1—Multi-Objec-
tive Evolutionary ANN is outlined next in pseudo code.

Fig. 2  A network with three neurons in the hidden layer (a) and its 
chromosome representation (b)

Fig. 3  Crossover (a) and mutate (b) operation examples
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Let us now discuss the implications of introducing an 
operator that selects chromosomes with a number of inputs 
less than a fixed limit that decreases its value during the 
algorithm iterations (see lines 11 and 15 of Algorithm 1). 
Initially, candidate solutions are spread all over the search 
space in a uniform manner. During the iterations the model 
gradually reduces the search space aiming to explore 
shorter-length-past solutions, preserving however diversity 
by considering solutions throughout the whole population of 
chromosomes (see line 14 of the Algorithm 1). Therefore, by 
combining the population of all chromosomes P with a sub-
set of chromosomes P’ that gradually decreases the length 
of the past, the model converges to a set of Pareto-optimal 
solutions containing the networks capable of determining 
model order and performing robust estimations.

Applications

In this section we show how the model order emerges from 
the method proposed here.

Since there is no other well-known method with insights 
for the problem under analysis in this study, results obtained 
from the scheme are compared with the corresponding ones 
reached by the Lipschitz index calculation.

Now that we are equipped with a system that predicts pat-
terns, it is important to assess its performance considering 

two important factors: a variable length of the past and the 
corresponding error obtained in prediction.

For simplicity, we only explore univariate data col-
lected from real datasets obtained from the Time Serie
s Data Library  [43]. We are looking for datasets with 
numeric values only, however the same approach can be 
applied with other alphabets. A set of three datasets were 
chosen to span a variety of scenarios; prominent trends 
with seasonal, cyclic and periodic fluctuations of data, and 
irregular behavior of data. Although we have applied the 
approach to other datasets of the library, for simplicity, 
we show here relevant partial results, deemed sufficient to 
support our proposal.

A simulation explores solutions in all generations of 
chromosomes. For the input parameters, several combina-
tions of value variations were evaluated to optimize the 
performance and computational cost of the algorithm. 
It was noted that parameter values affect the prediction 
and convergence speed of the model. To reach the desired 
degree of accuracy, the parameters were initialized with 
the following empirical values:

Parameter Value

Population size (N) 1000
Max number of generations (M) 5000
Max number of neurons in the hidden layer (H) 10

All datasets were first normalized by removing its mean 
value within a certain time period (8-time steps), and then 
bounded between 0 and 1 by using the following basic 
function to each value in the series:

where min and max are minimum and maximum value in 
the data series respectively.

For each isolated prediction (see Fig. 2), the error is 
calculated by the difference between the observed value 
and the corresponding forecast value of the model. The 
predicting error of the dataset is determined by the average 
value of all isolated predictions per iteration.

Before the normalization of the signal, the Lipschitz 
index is calculated for every dataset with the NNSYSID 
toolbox [44]. Results are compared with those obtained by 
our multi-objective model.

To assess the model’s performance, many simulations 
were done with similar/comparable results. For demonstra-
tion we randomly pick the results of a simulation for each 
dataset under study. The results can be visualized in a graph 
with the past length and corresponding error obtained. In 
each graph, a curve determines the Pareto-optimal solu-
tions for the dataset in the feasible objective region. Note 

(7)Normalize (X) =
(X −min)

(max−min)
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that since we are using a stochastic model, some simulation 
results contain small deviations, however the main behavior 
of the model remains unchanged. With this in mind, and 
considering the importance of properly evaluating the mod-
el’s consistency, a Box and Whiskers plot was generated for 
each data series. The graph shows the Pareto-optimal solu-
tions obtained for 10 simulations; the top and bottom of the 
whisker line indicate the maximum and minimum observa-
tions of the distribution, the ends of the box are the upper 
and lower quartiles, the median is marked by the horizontal 
line inside the box, the cross represents the mean value and 
the dots represent outliers.

All experiments were conducted on a Laptop with an 
 Intel® Core™ i7—2.50 GHz CPU, and with 16 GB of RAM.

Dataset A. Montly av. Residential Gas Usage in Iowa

This dataset refers to the monthly average (cubic feet × 100) 
residential gas usage in Iowa from 1971 until 1979.

It shows a strong seasonality. The peaks of gas usage pre-
sent in Fig. 4 are related with seasons of cold periods.

Figure 5 shows the curve of the Lipschitz index (see 
“Research Background” for details) of the dataset A, for var-
ying lag space from 1 to 10. As expected, the Lipschitz index 
obtained is decreasing as the lag space is increasing. No 
sharp breakpoint is clearly perceptible, nevertheless 7 seems 
to be the best choice for the optimal model order candidate.

Next, Fig. 6 shows the graph of the results obtained by 
a simulation of the model in the dataset A. Since this data-
set has 106 values, then the maximum past allowed by the 

model is 10 that is approximately a decimal part of the size 
of the series. At the end of the simulation, the 1000 networks 
are arranged in groups of 1, 2, 3, 4, 6 and 8 inputs. Net-
works with 6 inputs have the highest occurrences. It is easy 
to see that some of them exhibit good performance while 
others do not. This happens mostly due to the maintenance 
of non-top networks during evolution, as well as, the muta-
tions and crossover operations performed in order to explore 
new regions of the search space. Also, as already discussed 
before, changes in the number of neurons in the hidden lay-
ers may drastically affect performance of the networks. In 
simple terms, variations on network topologies during the 
learning/training phase may result in large performance 
adjustments.

Fig. 4  Monthly av. residential 
gas usage in Iowa (cubic feet) × 
100′71 –’79

Fig. 5  Order index vs number of past inputs for the dataset A 
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The Pareto-optimal curve is obtained by joining the opti-
mal points of the networks by considering its number of 
inputs. By analyzing the shape of the Pareto-optimal curve 
in the objective space, one can see that no past length stands 
out significantly from all the others. However, a model order 
of 3, 4, 6, or 8 seems to be very good candidates for this 
dataset when not accepting an error less than 10.

Four order values were discarded as good solutions to be 
proposed from the model (5, 7, 9 and 10).

Figure 7 depicts the Box and Whiskers plot containing 
the Pareto-optimal solutions obtained during 10 simulations 
of the model in the dataset A. The NN with the best per-
formance of all simulations has 6 inputs and gives an error 
value of 5. Now that more simulations were performed, net-
works with 5, 7 and 9 input neurons could also contribute to 
the Pareto-optimal curve. The mean value is very close to 

the median and interquartile range, especially lower in the 
results obtained with networks with past size 1 and 9.

Considering the mean or median values of the plot it can 
easily be seen that it shows similar performance to the one 
obtained by the graph in Fig. 7.

Comparing the results with those obtained from the Lip-
schitz index, one can easily see that our model provides 
more insightful information. Furthermore, the model order 
obtained by the Lipschitz index is included in the Pareto-
optimal solutions depicted in the Box and Whiskers plot.

Dataset B. Quarterly Production of Gas in Australia

This dataset refers to the quarterly production of gas (million 
megajoules) in Australia, from July 1956 until September 
1994. This dataset (see Fig. 8) shows an increasing trend of 
consumption and some seasonal oscillations.

In Fig. 9 one can examine the Lipschitz index curve that 
determines the model order for the dataset B. There is a 
definite sharp breakpoint at value 4 indicating the number 
of optimal past inputs.

Like the previous case, the graph of the dataset B (see 
Fig. 10) reveals that some networks perform badly in con-
trast with others that show very good results. Naturally, the 
results are directly related to the classification of data under 
study.

Fig. 6  Pareto-optimal solutions 
of the model in the dataset A

Fig. 7  Box and Whiskers plot containing the Pareto-optimal solutions 
obtained during 10 simulations of the model in the dataset A. The X 
axis indicates the past length and the Y axis the error
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Since this dataset has 155 values, then the maximum past 
allowed by the model is 15 that is approximately a decimal 
part of the size of the series.

Seven of the fifteen possible solutions were not consid-
ered as valid from the model (2, 4, 8, 10, 13, 14 and 15). 
When analyzing the shape of the Pareto-optimal curve, it 
is easy to see that the past length 5 stands out significantly 
from all the others. However, like we have seen before, this 
plot represents a single simulation and for that reason it is 
important to verify if this behavior can be generalized or not.

The Box and Whiskers plot containing the Pareto-optimal 
solutions obtained during 10 simulations of the dataset B 
can be seen in Fig. 11. There are six NNs with different 
input lengths that obtained the best performance (error 4) at 

least one time. Now that more simulations were performed, 
networks with 2, 4, 8, 10, 13 and 14 input neurons could 
also contribute to the Pareto-optimal curve. Still, there is 
no single ANN with past length 15. There are cases where 
the mean value differs from the median and the interquar-
tile range is especially lower on the results obtained with 
networks with past size 1, 11, 13 and 14. Interquartile is 
lower due to two distinct reasons: homogeneity of results 
(in every simulation ANNs with past length 1 gave result 
11) and lack of contribution (ANNs with past length 11, 13 
and 14 only had one or two Pareto-optimal solutions during 
the 10 simulations).

Again, like the previous example, when joining the mean 
or median points of the plot it can easily be seen that it shows 
a curve shape like the one obtained by the graph in Fig. 10. 
Note that due to the stochastic behavior of the model, the 
imaginary curve presents a sharp point on input 4 instead 
of 5 and there are differences for inputs higher than 10 that 
should be ignored since they are irrelevant for understanding 
this phenomenon, and to avoid erroneous interpretations.

Again, the model order obtained by the Lipschitz index 
is included in the Pareto-optimal solutions depicted in the 
Box and Whiskers plot.

Dataset C. Montly Percipitation (in mm) in London

This dataset refers to the monthly precipitation (in mm) in 
London, United Kingdom, from Jan 1983 until April 1994 
(Fig. 12). This dataset does not show any visible trend.

Fig. 8  Quarterly production 
of Gas in Australia: million 
megajoules. Includes natural 
gas from July 1989. Mar 1956 – 
Sep 1994

Fig. 9  Order index vs number of past inputs for the dataset B
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Like the previous two examples the same method was 
applied to calculate the number of relevant inputs for data-
set C. Similarly, to dataset A, no number of inputs clearly 
stands out from the others as the optimal order. As already 
mentioned, the main problem with the Lipschitz method is 
that if noise is present in data, the estimation of the order 
will be improper, or the graph has no sharp breakpoint. By 
looking at Fig. 13, 5 seems to be the most likely optimal 
order for the dataset.

The graph of the dataset C depicted in Fig. 14 indicates 
homogeneous performance.

Since this dataset has 136 values, then the maximum 
past allowed by the model is 13, that is approximately a 
decimal part of the size of the series. At the end of the 
simulation, the networks are arranged only in two groups 

of 1 and 9 inputs. The model performs worse here (mini-
mum error 11) than in the previous datasets because this 
data has no relevant structures or patterns. There are more 
occurrences with better performance of networks with 9 
inputs in the population than with 1 input. There is no sin-
gle network in the plot with any other input count. In con-
trast with the two Pareto-optimal graphs analyzed before 
for the previous datasets no network performs badly. A 
model order of 9 seems to be the best candidate for this 
dataset.

Figure 15 depicts the Box and Whiskers plot of the data-
set C containing the Pareto-optimal solutions obtained dur-
ing 10 simulations. The trend of the graph is totally different 
from the previous datasets. Despite there being more than 
one input that could contribute to the Pareto-optimal curve, 
in all simulations each input gave a constant error value: 12 
for input 1 and 11 for inputs 5, 7, 8, 9 and 10. All these val-
ues are good candidates for model order, especially inputs 5 
and 7 that occurred more often in the simulations.

As shown in the previous two datasets, the model order 
obtained by the Lipschitz index is included in the Pareto-
optimal solutions depicted in the Box and Whiskers plot.

Fig. 10  Pareto-optimal solutions 
of the model in the dataset B

Fig. 11  Box and Whiskers plot containing the Pareto-optimal solu-
tions obtained during 10 simulations of the model in the dataset B. 
The X axis indicates the past length and the Y axis the error
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Conclusion

The main goal of this research is to develop a scheme that 
determines the model order of a dataset. The Lipschitz 
index method involves moderate computational effort, but 

it is very sensitive to noise and data distribution. In contrast 
with the Lipschitz index method, the general idea behind our 
approach lies in formulating this issue as a multi-objective 
optimization problem.

In our model, the parameter setting method is clear and 
easy to apply to any dataset under evaluation however it 
requires a relatively high computational cost for training the 
networks. Results show that model order can be determined 
by the Pareto-optimal solutions that emerge from a popula-
tion of neural networks optimized by an evolutionary multi-
objective selection mechanism.

When analyzing the several order candidates that belong 
to the Pareto-optimal solutions of a dataset, one can have an 
accurate idea of the performance variations performed by 
different topologies. For future research we plan to integrate 
our model with LSTM, in order to optimize its structure, as 
well as, to help find the best window length for input without 
requiring a huge amount of training samples.

Fig. 12  Monthly precipitation 
(in mm), Jan 1983–April 1994. 
London, United Kingdom

Fig. 13  Order index vs number of past inputs for the dataset C
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