
Vol.:(0123456789)

SN Computer Science (2022) 3:239 
https://doi.org/10.1007/s42979-022-01121-0

SN Computer Science

ORIGINAL RESEARCH

Combining Forward Compression with PPM

Rachel Mustakis Avrunin1 · Shmuel T. Klein2 · Dana Shapira1 

Received: 10 November 2021 / Accepted: 30 March 2022 / Published online: 23 April 2022 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
A new Forward Looking variant of dynamic Huffman or arithmetic encoding has been recently proposed, that provably 
always performs better than the corresponding general static encoding schemes, as far as the net compressed file, without 
the necessary header, is concerned. The current paper suggests to integrate the Forward Looking paradigm with the well-
known adaptive PPM—Prediction by Partial Matching algorithm. This combination, that attempts to predict the following 
character based on the context that has already occurred in past, but uses its knowledge of the exact frequencies in the future, 
is empirically shown to enhance the prediction capability, and therefore to improve the compression efficiency.

Keywords  Lossless compression · Arithmetic coding · PPM

Introduction

Data compression techniques are often partitioned into static 
and adaptive algorithms. Alternatively, they can be classi-
fied by whether being statistical or dictionary-based meth-
ods. In this research, we combine the well-known adaptive 
Prediction by Partial Matching (PPM) [1] algorithm with a 
recently introduced compression paradigm named Forward 
Looking, which is based on statistical coding such as Huff-
man [2] and arithmetic coding.

Huffman coding is one of the foundations of data 
compression algorithms, used in both lossless and lossy 

techniques, and is well known for its optimality under cer-
tain constraints, while still being simple. Given is a text

T of size n over some alphabet Σ = {�1,… , �m} with a 
corresponding probability distribution P = {p1,… , pm} , 
such that the probability of the occurrence of �i in T is pi . 
The problem is to assign binary codewords of lengths �i 
bits to the characters �i , such that the set of codewords is 
uniquely decipherable, and such that the expected codeword 
length 

∑m

i=1
pi�i , given in bits, is minimized.

If the restriction that all the codeword lengths �i have to be 
integers is removed, then an optimal assignment of lengths 
would be the information content �i = − log pi , and the aver-
age codeword length would then be H = −

∑m

i=1
pi log pi , 

called the entropy. This average can be reached by applying 
arithmetic coding [3]. Note that the term alphabet should 
be understood in a broader sense, as its elements are not 
restricted to merely standard characters and may consist of 
strings or words, as long as there is a well-defined way to 
break T into a sequence of elements of Σ.

Static compressors encode a character using the same 
codeword throughout the text. Static codes can be of fixed 
lengths, such as the American Standard Code for Informa-
tion Interchange ASCII code, or variable length codes, such 
as Huffman [2], Elias [4], and Fibonacci coding [5]. Though 
many compression methods are based on the use of vari-
able length codes, there are also certain methods in which 
the lengths of the codewords are more restricted, which can 
be useful for fast decoding and compressed searches [6, 7].
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Adaptive compressors allow the model to be constructed 
dynamically by both the encoder and the decoder during the 
course of the transmission, and have been shown to incur a 
smaller coding overhead than explicit transmission of the 
model’s statistics. A family of adaptive dictionary methods 
was introduced by Ziv and Lempel, in particular, LZ77 [8] 
and LZ78 [9]. Storer and Szymanski [10] proposed LZSS 
a practical variant of the LZ77 compressor, which is based 
on the principle of finding redundant strings or patterns 
and replacing them by pointers to a common copy. LZW 
[11] is an implementation of LZ78, in which the dictionary 
is initialized by the single characters of the alphabet, and 
then is updated dynamically by adding newly encountered 
substrings that have not been seen previously in the parsing 
of the underlying text.

PPM is yet another adaptive coding method, proposed by 
Cleary et al. [1] as a combination of statistical coding with 
a Markov model, and it is known as one of the best lossless 
compression algorithms to date. Their experimental results 
show that English texts can be coded using 2.2 bits per char-
acter on average with no prior knowledge of the source [12]. 
Despite its space efficiency, the technique suffers from slow 
processing time, and therefore, the use of this method is not 
as common as expected.

Forward looking adaptive compression is a variant 
of dynamic statistical encoding, and has been proven 
to be better than static Huffman compression [13]. This 
is achieved by redefining the reference pointers of the 
encoded elements to those forming the model of the encod-
ing; the new definition reverses the direction of the pointers 
from pointing backwards into the past to looking forward 
into the future.

The lower bound shown for Forward looking on the size 
of its compressed file is smaller than the lower bound of 
other dynamic statistical coding methods. An extension of 
the Forward looking algorithm to bidirectional adaptive 
compression was proposed in Ref. [14], taking both past and 
future into account, and its net encoding is provably at least 
as good as the variant based solely on the future.

The current paper suggests to integrate the Forward 
Looking paradigm with PPM. This combination, that 
attempts to predict the following character based on the 
context that has already occurred in past, but uses its knowl-
edge of the exact frequencies in the future, enhances the 
prediction capability on our tests, and therefore improves 
the compression efficiency. Our paper is organized as fol-
lows. “Forward Looking Dynamic Huffman Coding” and 
“PPM Compression” sections recall the details of Forward 
looking and PPM, respectively. “PPM + Forward Com-
pression” section combines the two algorithms, and pre-
sents a new implementation of the PPM algorithm that is 
based on Forward.

Forward Looking Dynamic Huffman Coding

A model consists of two main components, the alphabet ele-
ments and their corresponding statistics. For fixed length 
codes, the model is quite primitive and assumes a uniform 
distribution over the given alphabet. The model for static 
codes may be more advanced and assigns a fixed, not neces-
sarily uniform, distribution to the alphabet symbols through-
out the encoding of the entire file, whereas the model for 
adaptive codes may update both the alphabet and the distri-
bution of the involved elements while processing the input 
file.

The standard way for updating the model of adaptive 
codes is according to what has already been seen in the 
input file processed so far. The distribution of the following 
element to be encoded at some current location in the file 
is determined according to the distribution of the elements 
that have occurred up to (and not including) that position. 
In case the exact number of occurrences of each element 
in the entire file is known, e.g., when this information can 
be obtained by a preprocessing scan of the file, a different, 
Forward looking adaptive approach can be applied [13]. 
In this approach, the dynamic model gets adjusted accord-
ing to the information of what is still to come, i.e., it looks 
into the future, as opposed to what is done by traditional 
dynamic methods, which base their current model on what 
has already been seen in the past.

Utilizing the knowledge of what is still to come has also 
been proposed in Ref. [15] for performing streaming pattern 
matching in LZSS compressed files, where the locations of 
the references to reoccurring strings have been moved and 
their direction has been reversed to point forwards, rather 
than letting the Ziv–Lempel type (������, ������) ordered 
pairs to point backwards, as in the original encoding.

Traditional encoding algorithms concentrate on the 
present element that is being processed and increment its 
frequency, implying a decrease in its information content. 
However, consequently, the information content of certain 
other elements may increase, and thus also the entropy of the 
entire text. The forward looking paradigm provides a more 
“social” approach that takes all the elements into account, 
rather than only the one that is currently being processed: 
the frequency of the processed element is decreased, even at 
the price of the corresponding information content becom-
ing larger. However, this operation may reduce the over-
all entropy, yielding better space savings. To distinguish 
between the backward and forward approaches, we use the 
notations b-freq to refer to the (backward) frequencies of 
individual characters up to (and not including) the current 
point, and f-freq to refer to (forward) frequencies—the fre-
quencies of each character from (and including) the current 
point onward, up to the end of the file.
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The Forward looking coding can be applied to any sta-
tistical coding such as Huffman or arithmetic coding. It has 
been proven to be more effective than the original static 
Huffman coding and thus theoretically to be more efficient 
than the dynamic Huffman algorithm of Vitter [16], since it 
relies on known statistics instead of learning them “on the 
fly”. This proof can be easily extended to show the advantage 
of Forward over static arithmetic coding, which surprisingly 
implies a provably better than zero-order entropy encoding 
(see for example [17]). The Forward looking approach has 
been extended to weighted forward coding in Ref. [17], and 
to a backward weighted heuristic in Ref. [18].

Arithmetic coding represents the text T by a real num-
ber a in the range 0 ≤ a < 1 . An interval [�, h) is initialized 
by [0, 1), and is partitioned into sub-intervals according to 
the probability distribution of the characters. The procedure 
continues with the sub-interval selected according to the cur-
rently processed symbol of T. Therefore, the interval gradu-
ally gets narrowed as more characters from T are processed. 
The real number a is then chosen from the final interval, 
preferably being a number with economical representation 
size.

The general Forward algorithm initializes its model iden-
tically to the standard static version. That is, the Huffman 
implementation of Forward starts with the same Huffman 
tree as the static variant, where each leaf refers to a certain 
element of the alphabet and contains its frequency in the 
entire text. If the Forward arithmetic variant is used, each 
interval is partitioned into sub-intervals whose sizes are 
proportional to the probabilities in the distribution of the 
alphabet, as in the static arithmetic coding. Once the model 
is initialized, the general step of Forward consists of the two 
following commands: 

1.	 encode the next element based on the current model;
2.	 update the model by decrementing the (forward) fre-

quency f-freq of the current element and adjusting the 
distribution accordingly.

Example

Forward

As example, consider the text T = lossless. The alphabet 
Σ is {�, �, �, �} with frequencies {1, 2, 1, 4} , respectively. We 
denote the distribution of the forward, static and adaptive 
encodings after having processed the first i characters of the 
text by P�

i
 , P�

i
 and P�

i
 , respectively, so that the initial distribu-

tion for forward is given by

and the character l at position 0 is encoded with probability 
1

4
 , having information content of 2 bits. The frequency for 
l, f-freq(l), is then decremented by 1 reflecting the fact 
that only a single l remains in the text, and the updated 
distribution is

The symbol � is then encoded with probability 1
7
 , and it is 

eliminated from the alphabet, since this is the last occur-
rence of o. The distribution gets updated to

The character s is then encoded with probability 2
3
 , and the 

distribution is updated to

and so on. Note that when only a single symbol remains in 
the text to be processed, no additional encoding is needed, 
because the decoder also realizes this case. Therefore, the 
last two symbols s are not encoded.

Table 1 is a comparative chart to highlight the differ-
ences between static, adaptive, and forward arithmetic 
coding, showing for each character ti of T the currently used 
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Table 1   The information 
content of Forward Looking 
as compared to static and 
adaptive on T = lossless 

i ti static adaptive Forward

p(ti) − log(p(ti)) p(ti) − log(p(ti)) p(ti) − log(p(ti))

0 l 1/4 2.000 1/4 2.000 1/4 2.000
1 o 1/8 3.000 1/5 2.322 1/7 2.807
2 s 1/2 1.000 1/6 2.585 2/3 0.585
3 s 1/2 1.000 2/7 1.807 3/5 0.737
4 l 1/4 2.000 1/4 2.000 1/4 2.000
5 e 1/8 3.000 1/9 3.170 1/3 1.585
6 s 1/2 1.000 3/10 1.737 1.0 0.000
7 s 1/2 1.000 4/11 1.459 1.0 0.000
Total 14.000 17.080 9.714
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probability p(ti) and the corresponding information content 
− log(p(ti)) . The last line of the table shows the total number 
of bits used by each method. This is in fact the information 
content of choosing a real number in the final interval.

static

Continuing with our running example, the initial interval 
[0, 1) for the static variant is partitioned, like for the for-
ward case, according to

for example, choosing lexicographic order. This yields the 
partition of [0, 1) into sub-intervals [0, 1

8
), [

1

8
,
3

8
), [

3

8
,
1

2
) and 

[
1

2
, 1) for e, l, o and s, respectively. The first step is then to 

select the sub-interval [ 1
8
,
3

8
) referring to l, which is the first 

character of T. The size of this interval is 1
4
 , corresponding to 

an information content of 2 bits. The current interval is nar-
rowed by a factor of 1/8 which is the probability of the next 
character � and adds 3 bits to the size of the encoded file. 
Generally, the number of bits added to the encoded file by 
each processed character is exactly its information content.

adaptive

Unlike the static coding, in which the partition of [0, 1) into 
sub-intervals for arithmetic coding, or the tree for Huffman 
coding, is fixed throughout the process, the dynamic vari-
ants update this partition or the tree adaptively, according to 
the probability distribution of the alphabet within the prefix 
of the text that has already been processed. The frequency 
of the currently processed character is incremented and the 
relative sizes of all the intervals in the partition for arithme-
tic, or the weights of all the leaves for Huffman, are adjusted 
accordingly.

For the adaptive variant, the initial partition of the inter-
val [0, 1) for our running example is divided into four sub-
intervals of equal size 1

4
 , suiting the uniform distribution, and 

the first character l is encoded by 2 bits. The (backward) 
frequency of l, b-freq(l), is then incremented by 1, and the 
distribution is updated to

and the next character � is encoded with probability 1
5
 . The 

frequency of o, b-freq(o), is then incremented, and the dis-
tribution is updated to
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The character s is encoded with probability 1
6
 , and so on. 

Adaptive arithmetic coding applied on our running example 
is presented in the second set of columns of Table 1 headed 
by adaptive.

PPM Compression

Prediction by Partial Matching (PPM) is an adaptive com-
pression algorithm which is based on statistical encoding. 
The main idea is to encode each symbol in the sequence 
in the framework of its context. It is based on the known 
inequality that for any random variables X and Y, the condi-
tional entropy of X given Y, H(X|Y) , is at most the entropy 
of X, H(X), that is

The entropy H =
∑m

i=1
−pi log pi is the expected number of 

bits to encode the following character; therefore, there is a 
gain when we take a context into account. The parameter 
kmax is defined as the maximum allowed context size, that 
is, the number of examined previous characters ti−kmax

⋯ ti−1 , 
that are used to predict and encode the current character ti . 
kmax is also named the order of PPM, and is typically less or 
equal to 8; otherwise, the space for storing all the details of 
the model becomes too large to be handled in RAM.

The process for encoding each symbol ti , 0 ≤ i < n , is 
initialized by assigning k = kmax . If no prediction for ti can be 
made based on its k preceding symbols ti−k ⋯ ti−1 , because ti 
did not yet occur previously in the text immediately follow-
ing the context ti−k ⋯ ti−1 , a new prediction is attempted with 
only k − 1 symbols ti−(k−1) ⋯ ti−1 . This process is repeated 
until a context that already appeared previously in the text 
has been found, or no more symbols remain in the context, 
that is, k = 0 in case the character already appeared in the 
first i − 1 symbols of T, or k = −1 in case the character is 
encountered in T for the first time.

An escape codeword, denoted by $, is used to inform the 
decoder to switch to a smaller context. The escape codeword 
is treated as a special character, and is assigned a probability 
within the distribution of the context it is sent. Different 
variants of PPM use different heuristics for its probability. 
In this paper, we follow PPMC that sets the frequency of 
the escape codeword to the number of different characters 
seen in the given context.

P�
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H(X|Y) ≤ H(X).
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We continue with our running example T = t0 ⋯ t7

i 0 1 2 3 4 5 6 7

t
i

l o s s l e s s

with kmax = 2 , where the small numbers above the text 
are the position indices. At position 7 of T, when encoding 
the character s, we first consider its context of size kmax = 2 , 
that is, the context es starting at position 5. This context 
has not occurred before position 7; therefore, the encoder 
outputs an escape symbol $, informing the decoder that no 
context of length 2 has been found. Note that the probability 
for $ is 1, as also the decoder realizes that the context es 
occurs at position 7 for the first time, and therefore, no bits 
are needed for the encoding of $ in this case. The context is 
then shortened to size 1, which is the single character s at 
position 6. The context s appears before for the characters s 
and l at positions 3 and 4 with a single occurrence for each. 
As noted above, the PPMC variant sets the frequency of $ to 
the number of different characters seen in the given context, 
which is 2 in our case. The distribution in the context t6 = � , 
after having processed the 7 first characters lossles, is 
therefore

The character s at position 7 is thus encoded in the context 
s with probability 1

4
 , using 2 bits. The Prediction Frequency 

Table (PFT) is updated to include the contexts for s:

–	 for es: s and $ with frequency 1;
–	 for s: s with frequency 2, l with frequency 1, and $ with 

frequency 2;

Significant additional savings of the PPM encoding are 
achieved using the Exclusion Principle (EP). The idea is 
that in case k < kmax , one can exclude all characters that 
appear in longer contexts than k, from appearing in the con-
text of k. The reason for the exclusion of a character � is 
that if � does appear in a higher context than that indexed 
k, and � is the following character to be encoded, it would 
have already been used at that higher context, and the con-
text length would not have been shortened. As the encoder 
switched down to a shorter context, � is not the following 
character to be encoded, and can therefore be removed from 
the current context. The EP enhancement increases the 
probabilities of the characters in the context of size k, and 
thus, the encoding may become more efficient. 

p���
7

(�) =
1

4
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7
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4
, p���

7
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1

2
.

Assume our running example is extended by ly to the 
text losslessly indexed 0 to 9, and the encoder is 
about to encode the character y at position 9. The context 
of length kmax = 2 is sl, which occurs also at position 3 as 
the context for e. As y does not appear in the context of 
sl, the character $ is encoded with probability 1

2
 (e and $ 

are both with frequency 1). Shortening the context to only 
the character l, the decoder already rules out the charac-
ter e for being the following character to be decoded. The 
characters that appear with context l are o and e and occur 
once in this context. Thus, PPMC assigns the (backward) 
frequency 2 to $. After applying the EP, e is already ruled 
out by its appearance in a higher context; thus, the original 
distribution

is changed to

p���
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The character $ is encoded and the context is shortened by 
1. The empty context, k = 0 , contains all characters that have 
already occurred in T, that is, l, o, s and e. By EP, 
characters e and o are ruled out, leaving only l, s and $ 
with frequencies 3, 4 and 4, respectively. $ is then encoded 
with probability 4

11
 , and the context index changes to k = −1 

where y is given the probability 1
2
 , because all characters 

other than $ are excluded. Note that the $ is needed in con-
text k = −1 for encoding EOF. The character y is encoded 
by $$$y with probabilities 1

2
 , 2
3
 , 4
11

 and 1
2
 , instead of with 

probabilities 1
2
 , 1
2
 , 4
13

 and 1
6
 in case EP is not used. The entropy 

is reduced by 2.24 bits using EP.
The encoding algorithm with PPMC is given for self-

containment. The PPMC decoding is symmetrical. Algo-
rithm 1 presents the way each individual character ti of T 
gets processed assuming a maximal size context of kmax . It 
uses a local list L to store the characters on which the EP 
applies. At a prefix T[1, kmax − 1] of T when ti gets processed 
for i < kmax , the parameter kmax of PPM_Encode is initial-
ized by i − 1 , the number of the already processed characters. 
Otherwise, kmax is the order of PPMC. The local variable 
str stores the current context, starting with the maximal 
sized context and progressively shortening it when ti has 
never been seen in that context. If ti has already been seen 
in the context of str, it is encoded according to that prob-
ability distribution and the PFT is updated by increment-
ing the frequency, b-freq, of ti in the str context, denoted 
by b-freq(ti | str) . Otherwise, the $ sign is encoded in the 
context of str, the prediction frequency table is updated and 
the length of str is shortened by eliminating its leftmost 
character. The EP is implemented by eliminating all other 
characters that appear in context str from shorter contexts for 
ti . For more details, we refer the reader to [12].

PPM + Forward Compression

As mentioned above, the Forward looking paradigm “looks 
into the future”, and uses the information of what is still to 
come. At first sight, it seems worthwhile to use as much 
knowledge as possible about the text, that is, the frequencies 
of all characters for each possible context of length ≤ kmax . 
However, encoding this information implies a storage over-
head on the compressed form that might be prohibitive in 
terms of the amount of RAM that can still be handled effi-
ciently. The extra information needed for merely pairs of 
characters is already a factor of |Σ| larger than that needed 
for single characters, which is too expensive to justify the 
forward looking approach. The idea is thus to use only the 
information about the global frequencies of the individual 
symbols (context of size 0), similarly to Forward, that may 

imply only a negligible overhead for large files and fixed size 
alphabets, typically up to size 256.

The proposed algorithm integrates both strategies: it uses 
the past, like PPM, to predict the current symbol, and uti-
lizes its limited knowledge of the future, as in Forward, 
to enhance the prediction. As the alphabet and the exact 
frequencies of the characters in the underlying text are 
known in advance, there is no need in the context referring 
to k = −1.

Consequently, the escape symbol $ is not required for 
k = 0 . The frequencies in a context of size 0 are updated 
to reflect the number of occurrences f-freq of each symbol 
in the remaining portion of the file, while the frequencies 
b-freq of characters in higher contexts correspond to the 
number of occurrences seen in the already processed por-
tion of the file up to the current point. After processing ti of 
T, f-freq(ti ) in a context of size 0 is reduced by 1 accord-
ing to the forward looking paradigm. In case f-freq(ti) = 0 , 
we wish to remove ti from all entries in the PFT that con-
tain ti , either in their context or as the predicted character. 
This elimination must be performed gradually, and only at 
position i + kmax , all relevant entries would effectively be 
removed.

More precisely, in the special case when f-freq(ti) in con-
text 0 becomes 0 after processing position i, ti is removed 
from being the next predicted character in the columns 
headed � in the PFT. After processing position i + 1 , the 
entries of the PFT that have ti as the rightmost character of 
their context can be removed. Generally, an entry referring 
to context str can be deleted from PFT after processing posi-
tion i + j , in case ti occurs at the jth position from the right 
of str, 1 ≤ j ≤ min(|str|, kmax).

Using our running example, Table 2 presents the contexts 
up to size kmax after the prefix lossle of T has been pro-
cessed. The upper part of the table is the prediction made 
by PPM, while the lower part is the prediction frequency 
table for PPM+F. Each main column corresponds to a dif-
ferent context size starting from k = kmax = 2 and ending 
with k = −1 , which is not applicable for PPM+F. Each col-
umn is internally divided into sub-columns presenting the 
context, headed by con, a symbol � ∈ Σ , and the frequency 
of � within that context (headed by b-freq, except for context 
of size 0 of PPM+F that corresponds to f-freq). As can be 
seen, the prediction for PPM+F is more accurate on this 
example, resulting in lower average information content.

Discussion

For an input file T to be encoded, let T��� and T���+� denote 
the actual symbols that are produced by PPM and PPM+F, 
respectively, i.e., including the escape codewords denoted by 
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$, which have been adjoined to T. In fact, T��� and T���+� 
differ only for the following two cases: 

1.	 there is a missing $ in T���+� whenever T��� uses the 
context of size −1;

2.	 the last appearance of a symbol is not coded in T���+� , 
and in particular, the last symbol of T, or a run of identi-
cal last symbols, is not coded.

For 0 < k ≤ kmax , the distribution of the symbols in the con-
text of size k for PPM+F is the same as for PPM, except for 
when symbols start to disappear. We consider the distribu-
tion at position i of T���+� , and partition the characters that 
occur in the context of size k into two subsets:

–	 Xi is the set of characters that do not occur in the remain-
ing portion of T���+�;

–	 Yi is the set of characters that will still occur in the 
remaining portion of T���+�;

At position i of T���+� = s
1
s
2
⋯ , the current character si is 

encoded using the probability for si according to the distri-
bution of the maximum possible current context of size k, 
following the escape code for longer contexts, if any. The 
probability of an occurrence of si according to PPM is

where the denominator sums the frequencies of all the char-
acters of Σ , and |X

i
| and |Y

i
| are added as the frequency of 

p1 =
b-freq (si)∑

x∈Xi
b-freq (x) +

∑
y∈Yi

b-freq (y) + �Xi� + �Yi�
,

the escape symbol, while the probability of an occurrence 
of si according to PPM+F for context k > 0 is

as above, but including only the characters in Yi that will 
still appear. Obviously, p1 ≤ p2 , implying that for contexts 
of size k > 0

The additional symbols that only occur in T��� and not in 
T���+� may only increase the size of the compressed file by 
PPM.

Imagine an intermediate algorithm, inter-Algo, that for 
context k = 0 , uses the backward frequencies as done by 
PPM+F for contexts k > 0 , instead of the forward frequen-
cies. That is, inter-Algo operates just as PPM, except that 
it is also given the exact frequencies f-freq of the characters 
of the input file, and it removes irrelevant entries from PFT 
when possible, similarly to PPM+F.

Obviously, the claim in (1) for k > 0 can be extended to 
k = 0 , resulting in

where, here and below, the net size refers to the compressed 
file only, excluding the header with the frequencies. Our 
motivation for the PPM+F algorithm is the theorem proved 
in Ref. [19] that for a given input file and adaptive coding

p2 =
b-freq (si)∑

y∈Y b-freq (y) + �Yi�
,

(1)
the information content of si by ���

cannot be smaller than that for ��� + �.

(2)
the net size of the inter-Algo encoded file

is no more than that of PPM encoding,

Table 2   PFT: Prediction 
frequencies after having 
processed the prefix  lossle 
of T = lossle ssly for PPM 
and for PPM+F 

For each context con of size k, −1 ≤ k ≤ 2 , the possible characters � and their (backward) frequencies are 
listed

Size k = −1 k = 0 k = 1 k = kmax = 2

con � con � b-freq con � b-freq con � b-freq

PPM – Σ ∪ $ 1 � l 2 l o 1 lo s 1
e 1 e 1 $ 1
s 2 $ 2 os s 1
o 1 o s 1 $ 1
$ 4 $ 1 ss l 1

s s 1 $ 1
l 1 sl e 1
$ 2 $ 1

con � con � f-freq con � b-freq con � b-freq

PPM+F – – – � l 1 s s 1 ss l 1
s 2 l 1 $ 1
y 1 $ 2
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Therefore, we replace the backward frequencies of context 
k = 0 with the forward ones to enhance the compression effi-
ciency. We do not know if claim 3 can be extended to show-
ing that PPM+F is always better than PPM, even though 
our empirical results support this claim, as can be seen in 
“Conclusion” section.

In any case, even if the claim holds for the entire file, it is 
not necessarily true that each codeword of PPM+F, at every 
position, is of equal length or shorter than the corresponding 
codeword of the PPM code, as illustrated in the following 
subsection.

Examples

Consider as example the file T = ��
1023 . The traditional 

PPM uses log2 3 bits to encode the first a, as the probability 
for the context corresponding to k = −1 is 1/3 for the alpha-
bet of size 2 and the adjoined escape symbol. On the other 
hand, PPM+F uses the context 0 with frequencies 1 and 
1023 for a and b, respectively, encoding the a by 10 bits, for 
its probability at the first point of the file is 1/1024. This gap 
vanishes when the bs are encoded, no matter what parameter 
kmax is used. While PPM+F has all the information needed 
to encode the run of 1023 bs without any additional bits, the 
traditional PPM only then starts learning the distribution. 
As example assume that kmax = 1 . In this case, the encoding 
of two $s follow the encoding of the a, with probabilities 
1 and 1/2 for context sizes 1 and 0, respectively, because in 
context 0, a appears in addition to the $ symbol. The first b 
then uses the probability 1/3 with log2 3 bits. The second b 
is encoded by an escape code for context 1 with probability 
1, as it is the first time that b appears in the context of b. 
The b is then encoded with probability 1/4 as the distribu-
tion for context 0 is

From this point onward, only the context of size 1 is used for 
the encoding of the following bs with probabilities 1/2, 2/3, 
3/4,..., 1021/1022 while increasingly more bs are encoun-
tered in the context of b. The final EOF then uses three $ 
signs with probabilities 1/1023, 2/1026, and 1/3, in which 
the first two are used to escape from context of size 1 and 
from context of size 0.

Interestingly, if T is the text ��1022� , the bs must be 
encoded by PPM+F. Both algorithms operate identically for 
encoding the bs in context 1, starting from the third appear-
ance of b with probabilities 1/2, 2/3, 3/4,… , 1020/1021. 
While PPM starts as in the previous example, PPM+F 
encodes $  and a  in contexts of sizes 1 and 0 with 

(3)
the net size of the Forward encoded file

is less than that of the backward encoding .

p���
1

(�) =
1

4
, p���

1
(�) =

1

4
, p���

1
($) =

2

4
.

probabilities 1 and 2/1024, the latter with occurrences a=2 
and b=1022 (as $ does not occur in the empty context). 
Next, $, b, $ and b are encoded in contexts of sizes 1, 0, 
1, and 0 with probabilities 1, 1022/1023, 1, and 1021/1022, 
respectively. The last a is not encoded by PPM+F, but is 
encoded by PPM as $ and a in contexts of sizes 1 and 0 
and probabilities 1/1022 and 1/1025. The EOF is encoded 
again by three $ signs and probabilities 1/1022, 2/1026, and 
1/3, for contexts of sizes 1, 0, and −1 . Obviously, the 10 bits 
for the encoding the first a by PPM+F and the encodings 
of the bs in context of size 1 are approximately balanced by 
the encoding of the two escape symbols for the EOF and the 
encodings of the bs in context of size 1 by PPM. Neverthe-
less, the remaining encodings only belong to PPM, implying 
a larger compressed file.

Next, we propose a hybrid approach that combines PPM 
and Forward Looking, but tries to overcome the expensive 
overhead of transmitting the entire set of character frequen-
cies. We consider a sequence of subsets S of  Σ of increasing 
size, starting with the empty set, and ending with the entire 
alphabet Σ . Thus, the traditional PPM corresponds to the 
alphabet of size 0, and PPM+F corresponds to the alphabet 
of size Σ . The hybrid approach requires the context corre-
sponding to k = −1 , used when a character is encountered 
for the first time, because only a partial alphabet is known. 
We then use the uniform distribution, as in the traditional 
PPM, over the alphabet of size |Σ| − |S|.

It turns out that the compression efficiency is not cor-
related with the number of individual characters used in the 
PPM+F algorithm. That is, for a given subset S of Σ , the 
compression efficiency of PPM+F given the knowledge of 
the frequencies of the characters in S does not necessarily 
improve as S becomes larger. One could have expected that 
as the size of the subset S of Σ increases, the better the com-
pression efficiency gets. However, the following example 
shows that this is not true.

Let T be a text over the alphabet Σ = {�, �, �, �} with fre-
quencies 1, 5, 16, and 2, respectively, and assume a prefix 
cd of T. We encode T using PPM+F with kmax = 1 , and we 
assume that we start with S = � and that the characters �, �, � 
and � are adjoined to S in this (lexicographic) order.

For S = {�} , only the frequency for a is known. When c, the 
first character of T, is processed, the distribution according to the 
current knowledge is P���+�

0
=

{
p
���+�
0

(�) =
1

2
, p

���+�
0

($) =
1

2

}
 , 

and the character c at position 0 is encoded by two $s with proba-
bilities 1 and 1

2
 , respectively, since c does not occur in the context of 

length k = 1 , nor in the context of length k = 0 . These two $s are 
followed by the encoding of c, with probability 1

4
 in the context of 

size −1 . The information content is 0, 1, and 2 bits for $, $ and c, 
respectively, for a total of 3 bits. The distribution for the empty con-
text is updated to P���+�

1
=

{
p
���+�
1

(�) =
1

4
, p

���+�
1

(�) =
1

4
,

p
���+�
1

($) =
1

2

}
 , and the character d at position 1 is encoded again 
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by two $s followed by d, with the same probabilities and, conse-
quently, the same information content of 3 bits.

For S = {�, �} , the frequency for b is also known in addi-
tion to the frequency for a. When c is processed, the known 
d i s t r ibu t ion  fo r  t he  con tex t  o f  s i ze  0  i s 
P
���+�
0

=

{
p
���+�
0

(�) =
1

8
, p

���+�
0

(�) =
5

8
, p

���+�
0

($) =
1

4

}
 , and 

the character c at position 0 is encoded by two $s with prob-
abilities 1 and 1

4
 , as c does not occur in the contexts of length 

k = 1 and k = 0 , followed by the encoding for c, with prob-
ability 1

4
 . The information content is 0, 2, and 2 bits for both 

$s and c, respectively, for a total of 4 bits, which is one bit 
more than for the case S = {�} . The next character d at posi-
tion 1 is encoded by two $s followed by d, with probabili-
ties, 1, 3

10
 , and 1

3
 , with information content 0, 1.736 and 

1.585, as the distribution for the empty context is revised to

The total information content, 3.321, is again larger than the 
information content for the case of S = {�} . Table 3 sum-
marizes this example, showing that for S = {�, �} , we need 
6.906 bits, while for S = {�} , we need 6 bits. The example 
illustrates that more information does not necessarily reduce 
the size of the encoding.

Experimental Results

To evaluate the compression savings of the suggested 
PPM+F method relative to the original PPM compression 
algorithm, we have considered severaldatasets of different 
sizes and nature, and using different alphabets. The last six 
datasets have been downloaded from the Pizza & Chili 
Corpus1.

{

p���+�
1 (�) = 1

10
, p���+�

1 (�) = 1
2
, p���+�

1 (�) = 1
10
, p���+�

1 ($) = 3
10

}

.

–	 ftxt is the French version of the European Union’s JOC 
corpus, a collection of pairs of questions and answers on 
various topics used in the arcade evaluation project [20];

–	 etxt is the translation of ftxt into English;
–	 fe/ef are the concatenations of ftxt and etxt, fe for ftxt 

before etxt, and ef in the other order;
–	 XML provides bibliographic information on major com-

puter science publications, obtained from dblp.uni-trier.
de;

–	 dna is a sequence of gene DNA sequences obtained from 
the Gutenberg Project;

–	 english is the concatenation of English text files selected 
from the Gutenberg Project;

–	 pitches is a sequence of pitch values (bytes in 0-127, plus 
a few extra special values) obtained from a myriad of 
MIDI files freely available on Internet;

–	 proteins is a sequence of protein sequences obtained from 
the Swissprot database; and

Table 3   Example of the hybrid 
PPM + Forward Looking for 
T = ��⋯ , comparing alphabet 
subsets S = {�} and S = {�, �} 

The leftmost column shows the coded characters, the other columns give the probability distributions, the 
probability of the encoded character, and the corresponding information content in bits

S = {�} S = {�, �}

(p
�
, p

�
, p

�
, p

�
, p$) p − log(p) (p

�
, p

�
, p

�
, p

�
, p$) p − log(p)

$ (0,0,0,0,1) 1 0.000 (0,0,0,0,1) 1 0.000
$ (

1

2
, 0, 0, 0,

1

2
) 1/2 1.000 (

1

8
,
5

8
, 0, 0,

1

4
) 1/4 2.000

c (−,
1

4
,
1

4
,
1

4
,
1

4
) 1/4 2.000 (−,−,

1

3
,
1

3
,
1

3
) 1/3 1.585

$ (0, 0, 0, 0, 1) 1 0.000 (0,0,0,0,1) 1 0.000
$ (

1

4
, 0,

1

4
, 0,

1

2
) 1/2 1.000 (

1

10
,
1

2
,

1

10
, 0,

3

10
) 3/10 1.736

d (−,
1

4
,
1

4
,
1

4
,
1

4
) 1/4 2.000 (−,−,

1

3
,
1

3
,
1

3
) 1/3 1.585

Total 6.000 6.906

Table 4   Compression performance with kmax = 3

For every test file, the best performance is emphasized

File Size of Encoded file 
(bytes)

Size |Σ| PPM PPM-Forward

net-encoding total

ftxt 7,648,930 132 1,973,912 1,973,801 1,974,049
etxt 6,611,031 125 1,628,998 1,628,596 1,628,870
ef 14,259,961 134 3,880,801 3,880,232 3,880,500
fe 14,259,961 134 3,881,723 3,881,429 3,881,697
XML 4,194,304 91 666,194 665,985 666,215
dna 52,428,800 16 12,581,286 12,581,235 12,581,275
english 52,428,800 176 15,858,858 15,856,738 15,857,114
pitches 4,194,304 125 2,118,754 2,117,892 2,118,185
proteins 52,428,800 25 26,643,210 26,643,105 26,643,199
sources 4,194,304 99 1,105,969 1,105,560 1,105,839

1  http://​pizza​chili.​dcc.​uchile.​cl.

http://pizzachili.dcc.uchile.cl
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–	 sources is a C/Java source code file formed by the con-
catenation of .c, .h, .C and .java files of the linux-2.6.11.6 
and gcc-4.0.0 distributions.

The first three columns of Table 4 summarize the infor-
mation regarding the used datasets. The last three columns 
present the compression results given in bytes for kmax = 3 . 
The fourth column presents the size of the compressed file 
using the original PPM algorithm. The compression perfor-
mance of our proposed method PPM+F is shown in the last 
two columns, where the net size of the encoding is depicted 
in the fifth column and the total size, including the header, 
whose size is bounded by O(|Σ| log n) , is given in the last 
column, headed net-encoding and total, respectively.

On the shown examples the net encoding for PPM+F 
slightly improves on PPM. For ftxt and XML, while the com-
pressed file itself is smaller for PPM+F than for PPM alone, 
the addition of the header increases the size over that of pure 
PPM, so for these cases, it would not be worthwhile to apply 
the newly suggested combination of PPM with Forward.

We wish to emphasize that the purpose of the chosen 
experiments was not to show significant improvements by 
our newly suggested method. The difference between the 
classical PPM and the new method combining it with some 
features of the Forward looking paradigm relates only to the 
first appearances of each of the characters (context k = −1 
in PPM), generally quite close to the beginning of a file, as 
well as to their disappearance towards the end of the files. 
We therefore expect the corresponding encoding sizes to 
differ only at the beginning and ending of the compressed 
files, and these differences will become less significant for 
increasingly larger test files. On the other hand, restricting 
the tests only to very small files would not allow us to show 
the full power of PPM, whose good performance depends 
on the availability of significant statistics for ever-growing 
contexts.

Conclusion

In this paper, we integrate the Forward Looking variant 
of dynamic Huffman or arithmetic encoding with the PPM 
algorithm, and provide empirical evidence for the improve-
ment of the compression efficiency. The main idea of the 
combined algorithm is to predict the following character 
based on the symbols that have already been processed as 
well as using the knowledge of the exact frequencies in the 
text that are still to come.

Aiming at improving PPM, which is known as one of the 
best lossless compression schemes, was pretentious to begin 
with. However, with a limited knowledge of the text, we 

were able to present an enhancement, even though a minor 
one, for certain types of files.
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