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Abstract
One of the most active fields of research in cryptography is finding efficient homomorphic encryption schemes, particu-
larly information-theoretically secure schemes which are not based on unproven computational hardness assumptions. We 
suggest here an information-theoretically secure secret sharing scheme based on Shamir’s secret sharing scheme. While 
Shamir’s scheme supports no homomorphic multiplications of secrets, our scheme efficiently supports one homomorphic 
multiplication of secrets in addition to homomorphic additions of, practically, any number of such multiplied secrets. We 
focus on the single-client–multi-server setting. Therefore, our scheme enables a single user to share a database of m records 
(secrets) among N semi-honest servers with O(m2) ciphertext, using a novel variant of Shamir’s secret sharing scheme and 
polynomials of degree N − 1 . Then, our scheme enables homomorphic evaluation of quadratic functions and 2-CNF circuits 
over the database with no communication between the servers. Our scheme is perfectly secure against attacks of a single 
server and information-theoretically statistically secure against attacks of coalitions of less than N − 1 servers. One of the 
main advantages of our scheme over known schemes is enabling the evaluation of quadratic functions and 2-CNF secrets 
over a dynamic database of secrets. A dynamic database of secrets is a database of secrets that can grow in the future with 
no need for storing and re-sharing existing secrets by the user. To the best of our knowledge, the challenging support for the 
dynamic property was not obtained in this setting elsewhere before.

Keywords Dynamic secret sharing · Information-theoretic security · Outsourcing of computation

Introduction

Background

The Secure Outsourcing Problem

Consider the following scenario. A user is holding some 
highly confidential data (hereafter referred to as ‘the 
secrets’) and wishes to outsource the storage of this data 
to an untrusted server while enabling the server to perform 
computations over the data obliviously. A vast amount 
of papers were written on this problem in the past 4 dec-
ades ever since it was brought up by Rivest, Adelman, and 

Dertouzos in [22]. Solutions differ in their overall approach, 
in their security and efficiency level, and various attributes.

Two main approaches for solving the secure outsourcing 
problem are discussed in the literature. Some of the known 
solutions are base on the centralized approach, in which a 
single server is employed [2, 9, 16–18, 25–27]. Other solu-
tions take the distributed approach, in which the user dis-
tributes the information between several servers [1, 4, 5, 10, 
12, 13, 15, 21].

In the distributed approach, the user employs a secret 
sharing scheme to distributes secret shares of the data among 
the servers. Secret sharing is a fundamental cryptographic 
primitive, first introduced by Shamir [24] and Blakley 
[7] (independently) in 1979. Therefore, shares of a secret 
value are distributed to a set of parties in such a way that 
only authorized sets of parties can reconstruct the secret, 
while unauthorized sets cannot gain information about it. 
In the centralized approach, the user typically encrypts the 
information using a homomorphic encryption scheme and 
uploads an encrypted version of the data to the server. The 
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centralized approach typically compels two security issues. 
First, it creates a single point of failure (SPOF) by putting all 
the information on a single server. Second, it requires storing 
and managing encryption keys. This work is based on the 
distributed approach, which avoids these issues.

Security of Cryptographic Schemes

The security of cryptographic schemes may be either infor-
mation-theoretic or computational. In information-theo-
retically (IT) secure schemes, the security of the system is 
derived purely from information theory and depends neither 
on the computing power of the adversary nor on any compu-
tational hardness assumptions. It is possible in such schemes 
that some information about the plaintext will be revealed to 
an adversary by the ciphertext, but that leakage of informa-
tion can be quantified by statistical tools and may be con-
trolled by an appropriate choice of parameters. IT-secure 
schemes, in which there is negligible leakage of information, 
are often called statistically information-theoretic secure, or 
simply statistically secure. IT-secure systems, in which there 
is absolutely no leakage of information, are perfectly secure 
schemes. The second type of security is computational secu-
rity. It refers to cryptographic schemes that are based on 
computational hardness assumptions. The security of these 
schemes is based on unproven assumptions regarding the 
existence of algorithms for solving specific mathematical 
problems and the computing power of the possible adver-
sary. While the centralized approach can achieve no more 
than computational security, the distributed approach often 
achieves IT-security. In this work, we suggest an IT-secure 
solution to the outsourcing problem.

Dynamic Outsourcing

As mentioned, in this work, we look for solutions for the 
secure outsourcing problem. We assume that a single user 
holds a highly confidential database and wishes to distribute 
the database among several servers to minimize the risk of 
a security leak. An essential requirement that arises in this 
setting is adding new records to the database over time. A 
secure outsourcing scheme is dynamic if it enables the user 
to add (or remove) new records to the database with no need 
for storing and re-sharing existing secrets by the dealer [6].In 
many practical applications, dynamic outsourcing schemes 
have significant benefits over non-dynamic schemes. When 
outsourcing a database to semi-trusted clouds, part of the 
records may not be known and determined in the future. A 
user who employs a non-dynamic scheme must store a copy 
of the entire database. In this work, we suggest a dynamic 
solution for the secure outsourcing problem.

Homomorphic Properties of Cryptographic Schemes

Another essential requirement that arises when outsourcing 
a confidential database is to enable performing computations 
over the data. To this end, it is useful for the secure distrib-
uting mechanism to have homomorphic properties. We now 
describe the main ideas concerning homomorphic encryp-
tion systems. Assume � is a cryptographic system, m is a 
message and c its encryption, denoted Enc�(m) . Let f be a 
function defined over the message space of � . How, if at all, 
can c be publicly converted into an encryption of f(m)? This 
interesting question is a main subject of research in cryp-
tography. If we assume that the messages and the cipher-
texts are elements of a field or a ring (as is often the case), 
then a more specific form of that question is as follows. Let 
m1,… ,md be messages, and c1,… , cd their encryptions. Can 
c1,… , cd be used to publicly generate cadd = Enc�

�∑d

i=1
mi

�
 

or cmult = Enc�
(
Πd

i=1
mi

)
 ? If it is possible to use c1,… , cd to 

publicly generate cadd = Enc�
�∑d

i=1
mi

�
 (respectively, cmult = 

Enc�

(
Πd

i=1
mi

)
 ), then � is additively homomorphic (respec-

tively, multiplicatively homomorphic). If both tasks can be 
carried out, then � is a fully homomorphic encryption (FHE) 
system. There are several single-operation homomorphic 
schemes, such as the RSA cryptosystem, which is multipli-
catively homomorphic (but cannot support homomorphic 
additions, and is only computationally secure), and Shamir’s 
secret sharing scheme, which is additively homomorphic 
(but cannot support homomorphic multiplications).

Midway between single-operation homomorphic encryp-
tion systems and FHE systems are somewhat homomorphic 
encryption systems. These systems are additively homo-
morphic and also support a bounded number of homomor-
phic multiplications (or multiplicatively homomorphic and 
support a bounded number of homomorphic additions). 
To make the concept ‘somewhat homomorphic’ clear, we 
modify the above definitions. In the above definition of an 
additively (respectively, multiplicatively) homomorphic 
cryptographic system, d could be arbitrarily large. Now we 
define a cryptographic system to be d1-additively homomor-
phic (respectively, d1-multiplicatively homomorphic) if it is 
additively (respectively, multiplicatively) homomorphic for 
d ≤ d1 . Thus, additively homomorphic systems are ∞-addi-
tively homomorphic, and multiplicatively homomorphic 
systems are ∞-multiplicatively homomorphic. In this work 
we suggest a somewhat homomorphic scheme. We support 
a single multiplication of secrets, followed by homomor-
phic additions of, practically, any number of such multiplied 
secrets.

Party Interaction

In the distributed approach, the security of the private data is 
maintained as long as the number of servers that collaborate 
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in an adversarial attempt to reveal the secrets is less than 
some integer t. To carry computations over the secret shared 
data, the servers are often required to communicate with 
each other. Such interaction between the servers increases 
the risk of generation of large adversarial coalitions that can 
compromise the security of the data. To minimize that risk, 
one may allow no communication between the servers. With 
no communication between them, the servers can remain 
utterly oblivious to the number and identity of other serv-
ers participating in the scheme. The outsourcing scheme we 
suggest in this work is communicationless and has t = N − 1 , 
hence significantly reducing the risk of generation of effec-
tive adversarial coalitions.

Related Work

Our work is based on Shamir’s secret sharing scheme. In 
Shamir’s secret sharing scheme, the secret s is an element 
of a finite field denoted �p and is shared by a dealer among 
a set of N parties (where p > N ) in the following way. Each 
party Pi , 1 ≤ i ≤ N , is assigned by the dealer with an ele-
ment �i of � ×

p
 , where the �i s are distinct. Random elements 

aj of �p , 1 ≤ j ≤ t − 1 , are picked by the dealer. Let f be the 
polynomial defined by f (x) = s +

∑t−1

j=1
ajx

j . Each party Pi 
gets the value f (�i) . It was proved by Shamir [24] that, in 
this way, every group of t parties will be able to reconstruct 
s, but no group of t − 1 parties gains any information about 
s. These properties are derived directly from the fact that 
a polynomial of degree t − 1 is uniquely determined by its 
values at t points.

Shamir’s secret sharing scheme is one of the most influ-
ential schemes. It may be used to build schemes that enable 
IT-secure outsourcing of computations [11, 13–15]. Dolev 
et al. [13] used Shamir’s standard scheme for IT-secure dis-
tributed evaluation of RAM programs, where the parties 
obliviously run a given RAM program over given input. 
Their solution is based on secure multi-party computation 
and requires ongoing communication between parties and 
an external entity called reducer, and hence implies high 
overhead. Earlier, Sander et al. [23] proposed a system to 
evaluate NC1 circuits on encrypted values, considering the 
following case: Alice holds an input x, and Bob is holding a 
circuit C. We would like Alice to be able to compute C(x), 
while keeping her input x private, and Bob keeping his cir-
cuit C private as well. A main drawback of the system is that 
the ciphertext length grows exponentially in the depth of 
the circuit. Their system is based on random self-reducible 
probabilistic encryption, which may be either computation-
ally or information-theoretically secure. Either way, under 
the suggested protocol, Alice’s input is computationally pri-
vate, while Bob’s circuit remains information-theoretically 
private.

In 2005, Boneh et al. [8] proposed a computationally 
secure public key encryption scheme and showed how it can 
be used to evaluate 2-DNF circuits over ciphertexts. Their 
scheme is somewhat homomorphic − additively homomor-
phic and 2-multiplicatively homomorphic. The first FHE 
scheme was proposed by Gentry [16], followed by several 
revisions and improvements [2, 9, 17, 18, 25–27]. Unfortu-
nately, the time complexity of the current implementations 
of FHE scheme is too high to make the scheme practical. 
Brakerski and Perlman [9] suggested a computationally 
secure FHE scheme that can be carried out by an unbounded 
number of parties. Let N be the number of parties whose 
ciphertexts have been introduced into the computation so far 
(inputs from more parties can join the computation later). 
They used the multi-key approach and obtained a scheme 
with fully dynamic properties, O(N) ciphertext expansion, 
and O(N) space complexity for an atomic homomorphic 
operation. Unfortunately, their results are only theoretical, 
as their scheme is time-wise impractical.

To conclude, one may characterize solutions for the out-
sourcing problem according to the following criteria.

• Is the scheme distributed (or employs a single server, 
creating a SPOF and a need to manage keys)?

• Is the scheme information-theoretically secure (or only 
computationally secure)?

• Is the scheme dynamic (or adding new records over time 
requires storing a plaintext copy of the database)?

• Is the scheme, at least, somewhat homomorphic (or at 
most single-operation homomorphic)?

• If the scheme is based on the distributed approach, is 
it communicationless and enables the servers to remain 
utterly oblivious to the number and identity of one 
another (or does the scheme require communication 
between servers, hence increasing the risk of creation of 
large adversarial coalitions)?

No system is known that answers ‘yes’ to all of the questions 
mentioned above. Centralized fully homomorphic systems, 
such as Gentry’s [16] and Brakerski and Perlman’s [9], are 
neither IT-secure nor are they practical. No communication-
less IT-secure scheme is fully homomorphic, and no practi-
cal scheme is fully homomorphic. The scheme suggested by 
Boneh et al. [8] is a centralized, somewhat homomorphic, 
computationally secure and practical scheme.

Our Contribution

The main result we obtain in this work is a distributed, infor-
mation-theoretically secure, dynamic, somewhat homomor-
phic, and communicationless solution for the outsourcing 
problem. Our scheme is based on a new function sieving 
method we present here. Our method yields 1-homomorphic 
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multiplicative pairs of polynomials, which enables us to 
adjust Shamir’s secret sharing scheme to support one homo-
morphic multiplication of secrets. The secrets are shared 
using polynomials of degree N − 1 among N parties, and 
our scheme provides perfect security against an attack of a 
single curious party and statistical security against an attack 
of a coalition of up to N − 2 curious parties. We note that 
the level of security achieved in our scheme is optimal (in 
our setting). This follows from the result of Barkol et al. [3], 
who showed that perfectly secure t-private d-multiplicative 
secret sharing among N players is possible if and only if 
N > dt . Our scheme enables homomorphic multiplication 
of two secrets (i.e., d = 2 ) while keeping the secrets safe 
against coalitions of less than t = N − 1 out-of N servers and 
hence can achieve at most statistical security.

Of course, one can support homomorphic multiplica-
tions of secrets in Shamir’s scheme by taking polynomials 
of a smaller degree to-begin-with. For example, one can use 
Shamir’s original scheme to share two secrets among four 
parties using linear polynomials, enabling one homomorphic 
multiplication of secrets, but in this way, the security will 
be compromised since any coalition of two parties can eas-
ily determine the exact value of the secrets. In our scheme, 
for example, we can use cubic polynomials to share secrets 
among four parties in such a way that no coalition of two 
parties can find the secrets. Our scheme is based on a sophis-
ticated way of choosing the polynomials in a correlated way.

One can support homomorphic evaluation of quadratic 
functions and 2-CNF circuits by sharing, along with each 
pair of secrets, their product, (or using Beaver’s pre-process-
ing method, as suggested in [4]). Nevertheless, in this way, 
if new secrets are expected to be joined with the primary 
ones, then one must keep all the primary secrets in memory 
to enable the homomorphic computations over the enlarged 
set of secrets. Our scheme enables additional secrets to be 
shared over time, while in each stage: (a) quadratic functions 
and 2-CNF circuits over the new set of secrets can be homo-
morphically and securely evaluated; (b) the dealer is not 
required to store the values of the already-shared secrets in 
memory, but only the non-free (secret-independent) coeffi-
cients of the polynomial that are meant to be used to encrypt 
the future secrets.

To the best of our knowledge, our scheme suggests the 
first efficient solution for the outsourcing problem while 
maintaining all the following attributes: IT-secure, dynamic, 
somewhat homomorphic, and communicationless.

Organization

In the next section, we introduce the function sieving method 
and our scheme for secret sharing and multiplication of two 
secrets among N servers using polynomials of degree N − 1 . 
In the following section, we prove the correctness of the 

scheme and discuss its security against an attack of one curi-
ous server and against an attack of a coalition of up to N − 2 
curious servers. Before the concluding section, we describe 
how to use our scheme to distribute a confidential database 
to a set of semi-honest servers while enabling homomor-
phic evaluation of quadratic functions and 2-CNF circuits 
dynamically. The final section concludes the work.

Homomorphic Multiplication of Secret 
Shares

In this section, we introduce our secret sharing scheme based 
on Shamir’s secret sharing scheme. The scheme will enable 
us to share two secrets among N servers (parties) using 
polynomials of degree N − 1 , perform one homomorphic 
multiplication of the secrets and consecutive homomorphic 
additions with further secrets, without increasing the number 
of parties required to extract the result. We will show that 
the scheme has perfect security against an attack of a single 
party. We also prove that our scheme is statistically secure 
against coalitions of up to N − 2 parties.

We begin with a brief overview of our methods and con-
structions. Assume s1 and s2 are two secrets that were shared 
by Shamir’s scheme among N parties, Pj , 1 ≤ j ≤ N , using 
two polynomials of degree N − 1 , f1 and f2 , respectively. For 
convenience, we denote from now on n = N − 1 . Each Pj 

holds a share of each of the secrets: 
(
�j, f1(�j)

)
 and (

�j, f2(�j)

)
 . As Shamir’s scheme is additively homomorphic, 

the points 
(
�j, f1(�j) + f2(�j)

)
 for 1 ≤ j ≤ n + 1 are shares of 

s1 + s2 . Interpolation of these points will yield the unique 
polynomial of degree ≤ n going through them, which is 
f1 + f2 , whose value at 0 is s1 + s2 . Now, as Shamir’s scheme 
is not multiplicatively homomorphic, the points (
�j, f1(�j) ⋅ f2(�j)

)
 are in general not shares of s1 ⋅ s2 . The 

polynomial f1 ⋅ f2 is of degree ≤ 2n . Hence, 2n + 1 points are 
required to determine it, so that the n + 1 points we have do 
not suffice, i.e., no information regarding s1 ⋅ s2 may be 

gained f rom the  n + 1 points  
(
�j, f1(�j) ⋅ f2(�j)

)
 

( 1 ≤ j ≤ n + 1 ). If one insists on interpolating the points (
�j, f1(�j) ⋅ f2(�j)

)
 , that interpolation will yield some poly-

nomial g of degree ≤ n . It might be the case, though, that 
g(0) = s1 ⋅ s2 . When does it happen? We seek pairs of poly-
nomials to be used with Shamir’s scheme that yield 
g(0) = s1 ⋅ s2 . We call this procedure function sieving, and 
as we will show below, it yields 1-homomorphic multiplica-
tive pairs of polynomials, which are pairs of polynomials 
that meet the required condition. We will show that, given 
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the �j s, these pairs are independent of the secrets and can be 
determined according to the other coefficients of the poly-
nomials (i.e., all coefficients except for the free terms, which 
are the secrets).

Function Sieving

Assume that the field �p , in which the secrets s1 and s2 reside, 
is such that p ≡ 1 (mod n + 1) . In that case, since � ×

p
 is 

cyclic, it contains a primitive root of unity of order n + 1 . 
Let � be such a root. For 1 ≤ j ≤ n + 1 denote �j ∶= �j , and 
assign to each party Pj the value �j.

Let ai, bi ∈ �p , 1 ≤ i ≤ n , and consider the polynomials

in �p[x] . Share the secrets s1, s2 among the parties using f1, f2 . 
Namely, distribute to each Pj the values f1(�j), f2(�j) . Let

The pairs (�j, yj) ∈ �
2
p

 are n + 1 distinct points through 
which the polynomial (f1 ⋅ f2)(x) passes. Since f ∶= f1 ⋅ f2 is 
of degree ≤ 2n , it is uniquely determined by 2n + 1 points. 
Since there are only n + 1 points (�j, yj) , interpolation of 
them will certainly not yield (f1 ⋅ f2)(x) . Nevertheless, let g(x) 
be the interpolation polynomial for the n + 1 points, (�j, yj) . 
Obviously, g is of degree ≤ n.

Now, let

Since f and g agree on the roots of �  , we have 
g(x) ≡ f (x) (mod �(x)) . Since the �j s are all the roots of 
unity of order n + 1 , we have

Hence, it is easy to compute g. In fact, denote

We have xn+1 ≡ 1 (mod �(x)) , and therefore,

This in turn implies that g(0) = s1s2 + cn+1.
Thus, if we take f1 and f2 such that cn+1 = 0 , we get 

g(0) = f (0) . Now, cn+1 =
∑n

i=1
aibn+1−i . This observation 

yields a useful variant of Shamir’s secret sharing scheme. 
Instead of picking the coefficients of f1 and f2 uniformly 

f1(x) = s1 +

n∑
i=1

aix
i, f2(x) = s2 +

n∑
i=1

bix
i,

yj = f1(�j) ⋅ f2(�j), 1 ≤ j ≤ n + 1.

�(x) =

n+1∏
j=1

(x − �j).

(1)�(x) = xn+1 − 1.

f (x) = s1s2 +

2n∑
i=1

cix
i.

g(x) ≡ f (x) ≡ s1s2 + cn+1 +

n∑
i=1

(ci + cn+1+i)x
i (mod �(x)).

at random, one may pick them in such a way that cn+1 = 0 . 
This is, in essence, the function sieving process. Instead of 
using Shamir’s secret sharing scheme with random polyno-
mials from �p[x] , we use it with polynomials f1, f2 , for which 
cn+1 = 0 , which compels g(0) = f (0) . Such a pair (f1, f2) is a 
1-homomorphic multiplicative pair of polynomials.

We define the set of acceptable coefficients for these pairs

where a = (a1,… , an) and b = (b1,… , bn).
1

Next, since elements should be picked from Vp , we must 
define a probability measure on it. First, we compute the 
cardinality of Vp.

Proposition 1 |Vp| = (pn − 1)(pn−1 − 1) + 1.

Proof The element 0 ∈ �
2n
p

 contributes 1 to |Vp| . The n-tuple 
(a1,… , an) may be chosen in pn − 1 different ways. For each 
of these, the n-tuple (b1,… , bn) is required to satisfy

Since (a1,… , an) ≠ 0 , this equation has pn−1 − 1 non-zero 
solutions b . All in all, we get (pn − 1)(pn−1 − 1) + 1 elements 
in Vp .   ◻

Define a probability measure Q on Vp by:

One verifies readily, using Proposition 1, that Q is indeed 
a probability.

The set Vp and the probability measure Q are used in the 
next section, where we present the multiplication scheme.

The Scheme

We now present our secret sharing scheme. A single homo-
morphic multiplication of two secrets is supported, to which 
further secrets can be added homomorphically. Assume a 
dealer D has two secrets s1, s2 ∈ �p and private connection 
channels with N servers Pi , 1 ≤ j ≤ N  . As a preliminary 

Vp ∶=

{
(a1,… , an, b1,… , bn) ∈ �

2n
p

||||
n∑
i=1

aibn+1−i = 0,

a ≠ 0 ≠ b

}
∪
{
0 ∈ �

2n
p

}
,

n∑
i=1

aibn+1−i = 0.

Q(v) =

{
1

pn
, v = 0 ∈ �

2n
p
,

1

pn(pn−1−1)
, v ≠ 0.

1 Each of the 0 s refers to the zero vector of the vector space it 
belongs to. We include these zero vectors in V

p
 for technical reasons 

explained below.



 SN Computer Science (2022) 3:174174 Page 6 of 16

SN Computer Science

phase, the dealer D assigns to each server Pj an �j = �j ∈ �
×
p

 , 
where � is a primitive root of unity of order N. The scheme 
stages are as follows:

Party P
1

P
2

P
3

P
4

x value 4 16 13 1
f
1
(x) ⋅ f

2
(x) 13 0 12 6

2 Clearly, one can use the proof of Proposition 1 to implement stage 
1 in time O(n).
3 In fact, given the y

j
 s, g(0) can be computed without finding g. That 

procedure is not of our main interests.

As one can see, we use here a polynomial of degree n to 
represent each of the secrets, and yet we are able to recon-
struct their product with only n + 1 parties (versus 2n + 1 that 
would be needed originally).

Regarding stage 1 of the protocol, a simple way to Q-pick 
a suitable element is to create an array with the elements 
of the set Vp and insert the element 0 ∈ �

2n
p

 into the array 
pn−1 − 2 more times. Then, picking an element uniformly 
at random from that array is equivalent to Q-picking an ele-
ment of Vp.2 In stage 5, since 1 ≤ i ≤ n + 1 , the polynomial 
g is obviously of degree ≤ n.3

Example We provide a simple example. Let p = 17 
and consider a dealer that holds the secret elements 
s1 = 3 and s2 = 4 in �17 . Let N = 4 and assign four 
par t ies with the x-values �1 = 4, �2 = 16, �3 = 13 
and  �4 = 1 .  He re ,  �(x) =

∏
1≤i≤4(x − �i) = x4 − 1 . 

L e t  v = (1, 3, 2, 5, 2, 1) ∈ V17  ,  w h i c h  i m p l i e s 
f1(x) = 2x3 + 3x2 + x + 3 and f2(x) = x3 + 2x2 + 5x + 4 . 
Here, f (x) = f1(x)f2(x) = 2x6 + 7x5 + 11x3 + 6x2 + 2x + 12 . 
When the dealer shares the secrets s1 and s2 among the four 
parties, the parties obtain the following values.

Party P
1

P
2

P
3

P
4

x value 4 16 13 1
f
1
(x) 13 3 4 9

f
2
(x) 1 0 3 12

Multiplying the y values, the parties obtain:

Now, let g be the polynomial of degree (at most) three 
determined by the four points (�i, f1(�i)f2 ⋅ (�i)) . Here, these 
are the points: (4, 13), (16, 0), (13, 12), (1, 6). The polyno-
mial g, of course, can be obtained using Lagrange interpola-
tion. Nevertheless, since the (non-free) coefficients of f1 and 
f2 were Q-picked from V17 , the polynomial g may also be 
computed by dividing f by � and taking the residue. Indeed, 
using polynomials division one finds

i.e., g(x) = 11x
3 + 8x

2 + 9x + 12 , and g(0) = 12 = s1 ⋅ s2 = f (0) . 
It is easy to check that g is the only polynomial of 
degree (at most) three that goes through the four points 
(4, 13), (16, 0), (13, 12) and (1, 6). In our scheme, the dealer 
computes g from the four points received from the parties, 
and we prove that (following our scheme) the value of g at 
zero always equals s1 ⋅ s2.

The Main Results

In this section, we discuss the correctness and security of our 
secret sharing scheme. We begin with correctness.

The Scheme Correctness

We prove the following proposition:

Proposition 2 The value s, calculated at stage 6 of Algo-
rithm 1, is equal to s1 ⋅ s2.

Proof The proposition follows directly from the function 
sieving process, described in “Homomorphic multiplica-
tion of secret shares”. The coefficients of the polynomials 

f (x) = 2x6 + 7x5 + 11x3 + +6x2 + 2x + 12

= (2x2 + 7x)(x4 − 1) + 11x3 + 8x2 + 9x + 12

= (2x2 + 7x) ⋅ �(x) + g(x),
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f1, f2 were picked from Vp , and hence 
∑n

i=1
aibn+1−i = 0 . By 

(1), the �j s were picked in such a way that �(x) = xn+1 − 1 . 
In stage 5 of the scheme, the dealer finds a polynomial g of 
degree ≤ n such that g(�j) = yj for 1 ≤ j ≤ n + 1 . This implies 
that

Hence, g(0) = s1s2 + cn+1 ≡ s1s2 (mod �(x)) .   ◻

Note that g may now be treated as if it was originally used 
to share s1 ⋅ s2 among N parties since each of them is now 
holding yj . Hence, further secrets can be shared and homo-
morphically added to s1 ⋅ s2 as in Shamir’s standard scheme.

The Scheme Security

We now analyze the scheme security against curious par-
ties’ attacks. We follow standard security definitions that 
can be found in literature (e.g., in [20]). We will show that 
our scheme has perfect passive security against one party 
attack and statistical security against an attack of a coalition 
of size up to N − 2 . To conclude such arguments, first, we 
must make our assumptions clear. We assume the following:

• Assumption 1: The pair of secrets (s1, s2) ∈ �
2
p
 is arbi-

trary. To be precise, we assume they are picked accord-
ing to an arbitrary distribution Γ , on which we have no 
assumptions.

• Assumption 2: The prime p, the distribution Γ , the set 
Vp and the distribution Q over it are public. Namely, if 
we denote by S1 and S2 the �p-valued random variables 
indicating the Γ-picked secrets, then the probability 
P[(S1, S2) = (s1, s2)] is known for each pair (s1, s2) ∈ �

2
p
.

• Assumption 3: The element (a1,… , an, b1,… , bn) ∈ Vp , 
that is Q-picked during stage 1 of the scheme, is kept 
secret. So are the values f1(�j) and f2(�j) , 1 ≤ j ≤ N , that 
D sends to each party Pj at stages 2 and 3 of the scheme. 
In the single party attack scenario, Pj does not know 
f1(�i) and f2(�i) for i ≠ j . In the scenario of an attack of 
a coalition of k parties, we assume, without loss of gen-
erality, that P1,… ,Pk are curious parties that join their 
shares in an attempt to find the secrets, but they do not 
know the shares of other parties.

Perfect Security Against Single Party Attack

   To show that our scheme has perfect security against one 
curious party attack, we need to show that, when Pj receives 

g(x) ≡ (f1 ⋅ f2)(x) = s1s2 +

2n∑
i=1

cix
i

≡ s1s2 + cn+1 +

n∑
i=1

(ci + cn+1+i)xi (mod �(x)).

information from D during stages 2 and 3 of the scheme, he 
gains absolutely no information about the values of s1 and 
s2 . We can summarize the information that Pj receives dur-
ing stages 2 and 3 of the scheme by the following equations:

The unknowns in these equations are s1, s2, ai and bi , 
1 ≤ i ≤ n , while all other quantities are known parameters 
to Pj . We start with

Theorem  1 For an arbitrary fixed � ∈ �
×
p

 denote 

u =

�∑n

i=1
ai�

i∑n

i=1
bi�

i

�
 .  Under the above assumptions , 

P[u =

(
x

y

)
] =

1

p2
 , for every 

(
x

y

)
∈ �

2
p
.

Proof of Theorem 1 Call u the result vector. Since p and 
� are set, u depends only on the Q-choice of v ∈ Vp . For 
v = (a1,… , an, b1,… , bn) ∈ Vp , denote

We define a mapping �� ∶ Vp → �
2
p
 by

For convenience denote � = �� . Thus,

To compute P[u =

(
x

y

)
] , we first partition � 2

p
 into four sub-

sets Uj , 1 ≤ j ≤ 4:

• U1 = {

(
0

0

)
} ⊂ �

2
p .

• U2 = {

(
x

0

)
∈ �

2
p
∣ x ≠ 0}.

• U3 = {

(
0

y

)
∈ �

2
p
∣ y ≠ 0}.

• U4 = {

(
x

y

)
∈ �

2
p
∣ x ≠ 0, y ≠ 0}.

We will compute P[u =

(
x

y

)
] for 

(
x

y

)
∈ Uj for each j 

separately.
Starting with j = 1 . We look for elements v ∈ Vp such that

(2)

s1 +

n∑
i=1

ai�
i
j
= yj,

s2 +

n∑
i=1

bi�
i
j
= y�

j
.

Mv =

(
a1 … an
b1 … bn

)
∈ M2×n(�p).

��(v) = Mv

( �

⋮

�n

)
.

P[u =

(
x

y

)
] = P[�(v) =

(
x

y

)
].
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Of course, v = 0 ∈ �
2n
p

 is a solution of (2). Assume 
v = (a1,… , an, b1,… , bn) ∈ Vp is such that v ≠ 0 and Mv is 
a solution of (2). Namely:

where (a1,… , an) ≠ 0 ≠ (b1,… , bn) . Each solution for (3) 
gives a suitable element of Vp . Now, (3)I is a linear equation 
in n variables ai . Since the trivial solution is not accept-
able, it has pn−1 − 1 possible solutions (a1,… , an) . For 
each of these solutions, (3)II-(3)III is a linear system of 
two equations in n variables bi . If the equations are inde-
pendent, the system has pn−2 − 1 non-trivial solutions 
(b1 … , bn) . Can they be dependent? If they are, there is a 
c ∈ �p such that c ⋅ �i = an+1−i for 1 ≤ i ≤ n . By (3)I we get 
then 

∑n

i=1
c ⋅ �n+1−i ⋅ �i = 0 , so that n ⋅ c ⋅ �n+1 = 0 . Each 

of the factors is non-zero, and hence (3)II-(3)III are inde-
pendent. All in all, we get (pn−1 − 1)(pn−2 − 1) solutions 
(a1,… , an, b1,… , bn) ≠ 0.

We conclude that

where v0 is any non-zero element of Vp . That is

We move to U2 . Thus, we are looking for elements v ∈ Vp 
such that

Similar to the computation of 
|||||
�−1

((
0

0

))|||||
 , we get the 

system

(3)�(v) =

(
0

0

)
.

(4)

I

n∑
i=1

ai�
i = 0,

II

n∑
i=1

bi�
i = 0,

III

n∑
i=1

aibn+1−i = 0,

P[u =

(
0

0

)
] = 1 ⋅ Q(0) + (pn−1 − 1)(pn−2 − 1) ⋅ Q(v0),

P[u =

(
0

0

)
] = 1 ⋅

1

pn
+

(pn−1 − 1)(pn−2 − 1)

pn(pn−1 − 1)
=

1

p2
.

(5)�(v) =

(
x

0

)
, (x ≠ 0).

(6)

I

n∑
i=1

ai�
i = x,

II

n∑
i=1

bi�
i = 0,

III

n∑
i=1

aibn+1−i = 0,

where (a1,… , an) ≠ 0 ≠ (b1,… , bn) , x ≠ 0 , and each solu-
tion of (4) gives a suitable element of Vp . (4)I is a non-
homogenous linear equation in n variables ai , and hence 
has pn−1 solutions, 0 is not one of which. For each of these 
solutions, (4)II-(4)III is a system of two linear equations in n 
variables bi . If they are independent, it has pn−2 − 1 non-zero 
solutions for bi . Assume they are dependent. Hence, there 
is c ∈ �p such that c ⋅ �n+1−i = ai for 1 ≤ i ≤ n . By (4)I we 
get then 

∑n

i=1
c ⋅ �n+1−i ⋅ �i = x . Then n ⋅ c ⋅ �n+1 = x , which 

gives c = xn−1 . Hence, there is exactly one solution ai for 
(4)I that yields dependent equations (4)II-(4)III . Namely, for 
ai = c ⋅ �−i = xn−1�−i the system (4)II-(4)III is dependent, 
and hence has pn−1 − 1 non-zero solutions. All in all, we 
get that

We use that and the fact that the trivial solution is not in 
�−1

((
x

0

))
 to compute

The computation of P[u =

(
x

y

)
] for 

(
x

y

)
∈ U3 is analo-

gous, which implies P[u =

(
0

y

)
] =

1

p2
 for y ≠ 0.

Now, knowing 
|||||
�−1

(
Uj

)|||||
 for 1 ≤ j ≤ 3 , we subtract from 

|||||
Vp

|||||
 and get 

|||||
�−1

(
U4)

)|||||
= (p − 1)2 ⋅ pn−2(pn−1 − 1) . Observe 

that so far, for a specific j ∈ {1, 2, 3} , all elements of Uj had 
the same size of preimage under � . If we show that the same 
holds for U4 as well, then together with the fact that 
|||||
U4

|||||
= (p − 1)2 we get that 

|||||
�−1

((
x

y

))|||||
= pn−2(pn−1 − 1) 

for 
(
x

y

)
∈ U4 . This in turn will imply that

|||||
�−1

((
x

0

))|||||
= (pn−1 − 1) ⋅ (pn−2 − 1) + 1 ⋅ (pn−1 − 1) = pn−2(pn−1 − 1).

P[u =

(
x

0

)
] = P[�(v) =

(
x

0

)
] = P[v ∈ �−1

(
(
x

0
)

)
]

=
pn−2(pn−1 − 1)

pn(pn−1 − 1)
=

1

p2
.

P[u =

(
x

y

)
] = P[�−1(v) =

(
x

y

)
] = pn−2(pn−1 − 1) ⋅ Q(v)

=
pn−2(pn−1 − 1)

pn(pn−1 − 1)
=

1

p2
.
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for 
(
x

y

)
∈ U4 . Thus, all that is left is to show is that all ele-

ments of U4 actually have the same size of preimage under 
�.

To this end, we define a family of transformations Tk,l 
over Vp . For arbitrary fixed k, l ∈ �

×
p

 , let Tk,l ∶ Vp → Vp be 
defined by

The map Tk,l is clearly bijective. In fact, the number and 
positions of zeros in v (if any) are the same as in Tk,l(v) . 
The set Vp and some of its subsets have important properties 
regarding Tk,l:

• Vp is Tk,l-invariant: If v = (a1,… , an, b1,… , bn) ∈ Vp , 
then 

∑n

i=1
aibn+1−i = 0 . It immediately follows that 

Tk,l(v) = kl
∑n

i=1
aibn+1−i = 0 . Hence Tk,l(v) is indeed in 

Vp.
• T h e  s e t s  �−1(Uj)  a r e  Tk,l - i nv a r i a n t :  I f 

v = (a1,… , an, b1,… , bn) ∈ Vp , and �(v) ∈ Uj for a cer-
tain j, then 

 We have 

 Then 

 Since k, l ≠ 0 , an entry of �(v) vanishes if and only if 
the corresponding entry of �

(
Tk,l(v)

)
 does. Namely, if 

�(v) ∈ Uj , then �
(
Tk,l(v)

)
∈ Uj . We conclude that the sets 

𝜇−1(Uj) ⊆ Vp are invariant under Tk,l.

Now, let 
(
x

y

)
,

(
x�

y�

)
∈ Uj for some 1 ≤ j ≤ 4 . Take 

v = (a1,… , an, b1,… , bn) ∈ �−1

(
(
x

y
)

)
 .  We  h a v e 

�(v) =

� ∑n

i=1
a1�

i∑n

i=1
b1�

i

�
=

�
x

y

�
 . Put

Tk,l(a1,… , an, b1,… , bn) = (ka1,… , kan, lb1,… , lbn).

�(v) =

�
a1 … an
b1 … bn

�� �

⋮

�n

�
=

� ∑n

i=1
a1�

i∑n

i=1
b1�

i

�
∈ Uj.

�
�
T
k,l
(v)

�
=

�
ka

1
… ka

n

lb
1

… lb
n

�� �

⋮

�n

�
=

� ∑n

i=1
ka

1
�i

∑n

i=1
lb

1
�i

�
.

�
�
Tk,l(v)

�
=

�
k
∑n

i=1
a1�

i

l
∑n

i=1
b1�

i

�
.

k =

{
x�

x
, x ≠ 0,

1, x = 0,
, l =

{
y�

y
, y ≠ 0,

1, y = 0.

We get �
�
Tk,l(v)

�
=

�
k
∑n

i=1
a1�

i

l
∑n

i=1
b1�

i

�
=

� x�

x
x

y�

y
y

�
=

�
x�

y�

�
 . 

Thus, for every v ∈ �−1

(
(
x

y
)

)
 we have Tk,l(v) ∈ �−1

(
(
x�

y�
)

)
 

fo r  a p p r o p r i a t e  k ,   l .  T h i s  i m p l i e s  t h a t 

||�−1

(
(
x

y
)

)
|| = ||�−1

(
(
x�

y�
)

)
|| for 

(
x

y

)
,

(
x�

y�

)
∈ Uj . To con-

clude, for a given j, all elements of Uj have the same proba-
bility.   ◻

We use Theorem 1 to prove the perfect security of our 
scheme in this scenario. We claim now

Proposition 3 P[(S
1
, S

2
) = (s

1
, s

2
) ∣ (1)] = P[(S

1
, S

2
) = (s

1
, s

2
)].

Proof Denote

Explicitly4,

Hence,

According to Theorem 1, we have P
[
u =

( x
y

)]
=

1

p2
 . Hence, 

the values of u are independent of (S1, S2) , so that

  ◻

Security Against Coalitions of k < N − 1 Curious 
Parties

We now turn to analyze the scheme’s security against a coa-
lition of k parties for k < N − 1 . Without loss of generality, 
we consider the coalition {P1,… ,Pk} . We will refer to this 
coalition as the adversary. As in the preceding scenario, we 

� = P[(S1, S2) = (s1, s2) ∣ (1)].

� = P

�
(S1, S2) = (s1, s2)

�����
s1 +

∑n

i=1
ai�

i = y

s2 +
∑n

i=1
bi�

i = y�

�
.

� = P
[
(S1, S2) = (s1, s2)

|||u =

(
y − s1
y� − s2

)]

=

P
[
(S1, S2) = (s1, s2) ∩ u =

(
y − s1
y� − s2

)]

P
[
u =

(
y − s1
y� − s2

)] .

� =

P[(S1, S2) = (s1, s2)] ⋅
1

p2

1

p2

= P[(S1, S2) = (s1, s2)].

4 We omit the index j and write �, y, y′.
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can summarize the information the adversary is holding by 
the system of 2k equations:

The unknowns in these equations are ai, bi, s1, s2 , while all 
other parameters are known to the adversary. We will now 
prove two useful results concerning this scenario. First, 
given (5), all p2 options for (s1, s2) ∈ �

2
p
 are possible. Sec-

ond, given a pair of secrets, the shares y11,… , y1k, y21,… , y2k 
distribute almost uniformly. We will soon make this state-
ment precise by analyzing how the matrix 

(
y11 … y1k
y21 … y2k

)
 is 

distributed over M2×k(�p) , given a pair of secrets (s1, s2) , and 
show that this distribution is statistically close to the uniform 
distribution. Let (s1, s2) be a pair of secrets, and Y(s1,s2) be the 
M2×k(�p)-valued random variable indicating the matrix (
y11 … y1k
y21 … y2k

)
 induced by (s1, s2) . We will show that the 

statistical difference [20] between the distributions Y(s1,s2) and 
the uniform distribution over M2×k(�p) is ≈ 1

pn−k
 . Since statis-

tical difference is a metric, we will conclude by the triangle 
inequality that the statistical difference between two such 
distributions, Y(s1,s2) and Y(s�

1
,s�
2
) , is no more than ≈ 2

pn−k
.

To this end, we need the following theorem. Denote

We call U the result matrix.

Theorem 2 The distribution of the result matrix is given by

where Ω is a proper subset of M2×k(�p) , with cardinality of 
(pk − 1)(pk−1 − 1).

Proof of Theorem 2 Since p and �1,… , �k are set, the result 
matrix U depends only on the Q-choice of v ∈ Vp . Using 
the same notation for Mv as in the proof of Theorem 1, we 
state the connection between U and v. For �1,… , �k ∈ �

×
p

 , 
we define a mapping � ∶ Vp → M2×k(�p) by

(7)

s1 +

n∑
i=1

ai�
i
1
= y11, … , s1 +

n∑
i=1

ai�
i
k
= y1k,

s2 +

n∑
i=1

bi�
i
1
= y21, … , s2 +

n∑
i=1

bi�
i
k
= y2k.

U =

� ∑n

i=1
ai�

i
1
, … ,

∑n

i=1
ai�

i
k∑n

i=1
bi�

i
1
, … ,

∑n

i=1
bi�

i
k

�
.

P

�
U =

�
y1 … yk
y�
1
… y�

k

��

=

⎧⎪⎪⎨⎪⎪⎩

1

pn
+

(pn−k−1)(pn−k−1−1)

pn(pn−1−1)
,

�
y1 … yk
y�
1
… y�

k

�
=

�
0 … 0

0 … 0

�
,

pn−k−1(pn−k+p−1)

pn(pn−1−1)
,

�
y1 … yk
y�
1
… y�

k

�
∈ Ω,

pn−k−1(pn−k−1)

pn(pn−1−1)
, otherwise,

Thus,

L e t  
(
y1 … yk
y�
1
… y�

k

)
∈ M2×k(�p)  .  W e  c o m p u t e 

P[U =

(
y1 … yk
y�
1
… y�

k

)
] by finding the number of elements 

v ∈ Vp for which �(v) =
(
y1 … yk
y�
1
… y�

k

)
 , and use the probabil-

ity Q defined above. These elements are exactly the elements 
(a1,… , an, b1,… , bn) ∈ Vp  w i t h 
(a1,… , an) ≠ 0 ≠ (b1,… , bn) that solve the system of 
equations

We solve (6) and analyze the number of solutions for given 
y1,… , yk, y

�
1
,… , y�

k
 . The sub-system (6)I1-…-(6)Ik consists of 

k independent equations with n variables a1,… , an . Its inde-
pendence follows from the fact that the matrix of the coef-
ficients (�i

j
)i,j is a sub-matrix of Vandermonde matrix with 

distinct generators �1,… , �k . Hence, (6)I1-…-(6)Ik has pn−k 
solutions (a1,… , an) . For each of them, the system (6)II1-…
-(6)IIk-(6)III consists of k + 1 equations with n variables 
b1,… , bn . Is this system independent? The equations (6)II1
-…-(6)IIk are independent for the same reason that (6)I1-…-
(6)Ik are. Hence, we only need to find out whether (6)III is 
dependent of (6)II1-…-(6)IIk . This may happen only if there 
exist c1,… , ck ∈ �p , such that an+1−i =

∑k

j=1
cj ⋅ �

i
j
 for all 

1 ≤ i ≤ n . Replacing i for n + 1 − i and using the fact that 
�n+1
j

= 1 , we get equivalently that ai =
∑k

j=1
cj ⋅ �

−i
j

 . Now, ai 
must satisfy (6)I1-…-(6)Ik , so we replace each ai in (6)I1-…-
(6)Ik with 

∑k

j=1
cj ⋅ �

−i
j

 and get

�(v) = Mv

( �1 … �k
⋮ ⋮

�n
1

… �n
k

)
.

P[U =

(
y1 … yk
y�
1
… y�

k

)
] = P[�(v) =

(
y1 … yk
y�
1
… y�

k

)
].

(8)

I1

n∑
i=1

ai�
i
1
= y1,

⋮ ⋮

Ik

n∑
i=1

ai�
i
k
= yk,

II1

n∑
i=1

bi�
i
1
= y�

1
,

⋮ ⋮

IIk

n∑
i=1

bi�
i
k
= y�

k
,

III

n∑
i=1

aibn+1−i = 0.
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Given y1,… , yk , this is a system of k equations with k 
unknowns c1,… , ck . Write (6.1) in the form

Now,

Hence, we may write (6.2) in the form

The matrix A on the left-hand side of (7) has ns on the main 
diagonal and −1 elsewhere. Namely, it can be generated by 
cyclic permutations of its first row (or column). A matrix 
like that is a circulant matrix. We compute its determinant 
using [19] (or directly) to get det(A) = (n − k + 1)(n + 1)k−1 . 
Since k < n < p , we have det(A) ≠ 0 , and hence A is invert-
ible. Denote c = (c1,… , ck)

T and y the result vector of (7). 
We solve (7) to get the unique solution of this system

For  g iven y = (y1,… , yk)
T  ,  set  c = A−1y  .  Then 

a0 = (a1,… , an) with ai =
∑k

j=1
cj�

−i
j

 is a solution for (6)I1-…
-(6)Ik for which the left-hand side of (6)III is dependent of 
the left-hand side of (6)II1-…-(6)IIk . Any other solution 
(a1,… , an) ≠ a0 of (6)I1-…-(6)Ik yields an independent sys-
tem (6)II1-…-(6)IIk-(6)III . For such a0 , the right-hand side of 
(6)III will be dependent of the right-hand side of (6)II1-…-
(6)IIk if 

∑k

j=1
y�
j
⋅ cj = 0 . Denoting (y�

1
,… , y�

k
)T = y� , we write 

that condition equivalently as ⟨y�, c⟩ = 0.

To conclude, given 
(
y1 … yk
y�
1
… y�

k

)
∈ M2×k(�p) , set c = A−1y 

and a0 = (a1,… , an) with ai =
∑k

j=1
cj�

−i
j

 . If ⟨y�,A−1y⟩ = 0 

(9)

I1

n∑
i=1

�i
1
⋅

( k∑
j=1

cj ⋅ �
−i
j

)
= y1,

⋮ ⋮

Ik

n∑
i=1

�i
k
⋅

( k∑
j=1

cj ⋅ �
−i
j

)
= yk.

(10)

I1

k∑
j=1

cj ⋅

n∑
i=1

( �j

�1

)i

= y1,

⋮ ⋮

Ik

k∑
j=1

cj ⋅

n∑
i=1

( �j

�k

)i

= yk.

n�
i=1

�
�j

�l

�i

=

⎧
⎪⎪⎨⎪⎪⎩

∑n

i=1
1 = n, j = l,

�j

�l
⋅

1−

�
�j

�l

�n

1−
�j

�l

=

�j⋅

�
1−

�
�j

�l

�−1�

�l−�j
= −1, j ≠ l.

(11)
( n … − 1

⋮ ⋱ ⋮

−1 … n

)( c1
⋮

ck

)
=

( y1
⋮

yk

)
.

(12)c = A−1y.

then a0 is a solution of (6)I1-…-(6)Ik for which (6)II1-…-(6)IIk
-(6)III has pn−k solutions. If ⟨y�,A−1y⟩ ≠ 0 then a0 is a solu-
tion of (6)I1-…-(6)Ik for which (6)II1-…-(6)IIk-(6)III has no 
solutions.

We can now count the total number of solutions 
(a1,… , an, b1,… , bn) of (6) in each of the following cases.

• Case 1. y = y� = 0 . In this case, one solution is the trivial 
solution, (a1,… , an, b1,… , bn) = 0 . By (12) we get here 
c = 0 , implying a0 = 0 . Now, (6)I1-…-(6)Ik has pn−k solu-
tions (a1,… , an) . The solution a0 yields pn−k solutions 
(b1,… , bn) for (6)II1-…-(6)IIk-(6)III . Among them, only 
b = 0 is acceptable, but we have already counted it. So 
we are left with pn−k − 1 solutions a for (6)I1-…-(6)Ik . 
Each of these yields pn−k−1 solutions b for (6)II1-…-(6)IIk-
(6)III . The vector b = 0 is always one of them, so we omit 
it. All in all we get a total of 1 + (pn−k − 1)(pn−k−1 − 1) 
valid solutions for (6).

• Case 2. y = 0, y� ≠ 0.
  By (12), we get again c = 0 , implying a0 = 0 . Since 

y′ ≠ 0 , b = 0 is not a solution of (6)II1-…-(6)IIk , we 
obtain no valid solutions for a0 = 0 . Each of the other 
pn−k − 1 solutions a of (6)I1-…-(6)Ik yields pn−k−1 solu-
tions b of (6)II1-…-(6)IIk-(6)III , all of which are valid. All 
in all we get a total of pn−k−1(pn−k − 1) valid solutions for 
(6).

• Case 3. y� = 0, y ≠ 0.
  Analogous to Case 2.
• Case 4. y ≠ 0 ≠ y′ with ⟨y�,A−1y⟩ ≠ 0.
  In this case there are no solutions with a = 0 or b = 0 . 

Here, a0 is a solution for (6)I1-…-(6)Ik which yields no 
solution of (6)II1-…-(6)IIk-(6)III . For each of the other 
pn−k − 1 solutions of (6)I1-…-(6)Ik there are pn−k−1 solu-
tions of (6)II1-…-(6)IIk-(6)III . Hence, we get a total of 
pn−k−1(pn−k − 1) valid solutions for (6).

• Case 5. y ≠ 0 ≠ y′ with ⟨y�,A−1y⟩ = 0.
  As in the previous case, there are no solu-

tions with a = 0 or b = 0 . Here, a0 is a solution of 
(6)I1-…-(6)Ik which yields pn−k solutions of (6)II1
-…-(6)IIk-(6)III . For each of the other pn−k − 1 solu-
tions of (6)I1-…-(6)Ik there are pn−k−1 solutions 
for (6)II1-…-(6)IIk-(6)III . Hence, we get a total of 
pn−k−1(pn−k − 1) + pn−k = pn−k−1(pn−k + p − 1)  va l i d 
solutions for (6).

Denote

To compute |Ω| , observe that y can be chosen in pk − 1 dif-
ferent ways. For each of these, the condition ⟨y�,A−1y⟩ = 0 
is a linear equation with pk−1 solutions. We omit the trivial 

Ω =

��
y1 … yk
y�
1
… y�

k

�
∈ M2×k(�p)

���y ≠ 0 ≠ y�, ⟨y�,A−1y⟩ = 0

�
.
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solution and get |Ω| = (pk − 1)(pk−1 − 1) . By the definition 
of Q, the rest follows.   ◻

An immediate consequence of Theorem 2 is that, given 
(5), all p2 options for (s1, s2) ∈ �

2
p
 are indeed possible: if the 

adversary is holding 
(
y11 … y1k
y21 … y2k

)
∈ M2×k(�p) , then, for 

each of the p2 possible pairs of secrets (s1, s2) ∈ �
2
p
 , there is 

a single suitable 
(
y1 … yk
y�
1
… y�

k

)
∈ M2×k(�p) . This matrix is

Since all matrices 
(
y1 … yk
y�
1
… y�

k

)
∈ M2×k(�p) occur with posi-

tive probability, the adversary simply does not have enough 
information to determine the secrets. Now, not all elements (
y1 … yk
y�
1
… y�

k

)
 have the same probability. According to Theo-

rem 2, exactly (pk − 1)(pk−1 − 1) + 1 out of the p2k elements 
of M2×k(�p) have a slightly larger probability. We use the 
statistical difference function to measure the leakage of 
information: if (s1, s2) is a pair of secrets, we denote by Y(s1,s2) 
the M2×k(�p)-valued random variables indicating the matrix (
y11 … y1k
y21 … y2k

)
 induced by (s1, s2) , over the Q-picking of v 

from Vp . We compute the statistical difference SD(Y(s1,s2),�) 
between the distribution Y(s1,s2) and the uniform distribution 
over M2×k(�p):

Using Theorem 2, a straightforward computation yields

(
y1 … yk
y�
1
… y�

k

)
=

(
y11 − s1 … y1k − s1
y21 − s2 … y2k − s2

)
.

SD(Y(s1,s2),�) =
1

2
⋅

�
Y∈M2×k(�p)

�����
P
�
Y(s1,s2) = Y

�
− P

�
� = Y

������
=

1

2
⋅

�
�
y1 … yk
y�
1
… y�

k

�
�����
P

��
s1 +

∑n

i=1
ai�

i
1
… s1 +

∑n

i=1
ai�

i
k

s2 +
∑n

i=1
bi�

i
1
… s2 +

∑n

i=1
bi�

i
k

�

=

�
y1 … yk
y�
1
… y�

k

��

−
1

p2k

�����
=

1

2
⋅

�
�
y1 … yk
y�
1
… y�

k

�
�����
P

��∑n

i=1
ai�

i
1
…

∑n

i=1
ai�

i
k∑n

i=1
bi�

i
1
…

∑n

i=1
bi�

i
k

�

=

�
y1 − s1 … yk − s1
y�
1
− s2 … y�

k
− s2

��
−

1

p2k

�����
.

Since the statistical difference is a metric, by the triangle 
inequality we get that

for any couple of distributions induced by pairs of secrets, 
(s1, s2), (s

�
1
, s�

2
) ∈ �

2
p
.

IT‑Secure Dynamic Somewhat Homomorphic 
Database Outsourcing

Our scheme can be used to perform homomorphic evalu-
ation of quadratic functions over variables s1,… , sm , and 
arbitrarily long 2-CNF circuits. A quadratic function over 
the variables s1,… , sm is of the form

with rij, tk, c ∈ �p . There are p
1

2
(m2+3m+2) such functions. We 

can use our scheme to homomorphically evaluate F. For 
each of the m

2+m

2
 pairs of variables si, sj , use our scheme 

to generate a pair of 1-homomorphic-multiplicative-
polynomials fij, fji , and distribute si, sj among the parties. 
This pre-processing stage requires the user send to the 
servers O(m2) data, but now F can be homomorphically 
evaluated in a straightforward way. Each party Pl simply 
evaluates F over its shares of the secrets and sends the 
result yl to the dealer. The dealer in turn calculates the 
polynomial g going through the points (�l, yl) and finds 
g(0) = F(s1,… , sm).

The space complexity of the aforementioned scheme may 
be reduced in the cost of lower security parameters. We now 
show how one can adjust the suggested scheme and achieve 
a scheme with O(m) cyphertext instead of O(m2) . Pick an 
element v = (a1,… , an, b1,… , bn) from Vp under the condi-
tion that 

∑n

i=1
ai�

i
l
≠ 0 ≠

∑n

i=1
bi�

i
l
 for 1 ≤ l ≤ N  . Pick 

k1,… , km, l1,… , lm from �p uniformly at random and set 
fj(x) = sj + kj

∑n

i=1
aix

i  ,  a n d  hj(x) = sj + lj
∑n

i=1
bix

i, 
1 ≤ j ≤ m .  Distr ibute to par ty Pl  the 2m  vector (
f1(�l),… , fm(�l), h1(�l),… , hm(�l)

)
 . Now, each party eval-

uates F over his shares of the secrets. The linear parts of F 
are computed by each party using either fk or hk . The quad-
ratic parts of F are evaluated by each party as fi(�l) ⋅ hj(�l) . 

SD(Y(s1,s2),�) =
(pk − pk−1 + 2)(pk − 1)(pk−1 − 1)

p2k(pn−1 − 1)

≈
p3k−1

p2k ⋅ pn−1
=

1

pn−k
.

SD(Y(s1,s2), Y(s�1,s
�
2
)) ≈

2

pn−k

F(s1,… , sm) =
∑

1≤i,j,≤m

rijsisj +

m∑
k=1

tksk + c,
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This scheme is perfectly secure against a single party attack, 
but is insecure against coalitions of two or more parties.

In various applications, the number of variables is grow-
ing over time. In that case, the method described above can 
be modified to allow new variables to be joined with the 
primary ones. Explicitly, assume a dealer has s1,… , sm ∈ �p , 
and sm+1,… , sm+k are k more variables whose value may 
not be determined yet, and are expected to be determined 
and joined with s1,… , sm in the future. We wish to share 
s1,… , sm among N parties, in a way that (a) enables homo-
morphic evaluation of quadratic functions over the m vari-
ables; (b) will enable to share, in the future, the k additional 
variables among the parties; (c) will enable homomorphic 
evaluation of quadratic functions over the m + k variables. 
We wish to achieve all that without keeping s1,… , sm in 
memory.

We now demonstrate how these dynamic properties 
are obtained. For each of the pairs of variables si, sj , 
1 ≤ i ≤ m , i ≤ j ≤ m , use our scheme to generate a 1-homo-
morphic-multiplicative-pair of polynomials, fij, fji , and 
distribute si, sj among N parties. As in the non-dynamic 
version, quadratic functions over s1,… , sm can now be 
homomorphically evaluated. For each of the pairs si, sj , 
1 ≤ i ≤ m , m + 1 ≤ j ≤ m + k , use our scheme to gener-
ate a 1-homomorphic-multiplicative-pair of polynomi-
als, fij, fji . Assuming sm+1,… , sm+k are not known yet, for 
m + 1 ≤ j ≤ m + k let the free coefficient of fji be zero, 
and keep fji in memory. Distribute si to the parties using 
the first of each pair of 1-homomorphic-multiplicative 
polynomials, i.e., using fij . Now, when the values of sj , 
m + 1 ≤ j ≤ m + k , are determined, add each of them to 
the corresponding polynomial fji , 1 ≤ i ≤ m , and distrib-
ute sj among the parties. In addition to that, for each pair 
of variables si, sj , m + 1 ≤ i ≤ m + k , i ≤ j ≤ m + k , gener-
ate a 1-homomorphic-multiplicative-pair of polynomials, 
fij, fji , and distribute si, sj among the parties. Now, quad-
ratic functions over the m + k variables, s1,… , sm+k , can 
be homomorphically evaluated in a straightforward way as 
in the non-dynamic version described above.

A 2-CNF expression over literals s1,… , sm is an expres-
sion of the form (si1 ∨ si2 ) ∧⋯ ∧ (si2t−1 ∨ si2t ) . As we work 
in �p , we replace the logic values True and False with the 
elements 1 and 0 in �p , respectively (other elements of �p 
are not logically defined). Logic operations are replaced 
with �p operations as follows. Given literals s1 and s2 , dis-
junction is implemented by s1 + s2 − s1s2 and conjunction 
is considered as addition in �p . Negation of s1 is 1 − s1 . 
Then, a 2-CNF expression of length 2t is a multi-variable 
quadratic function, and is assigned True if the function is 
evaluated to t ∈ �p , and False otherwise. There are 22m2+m 
such expressions that can be homomorphically evaluated 
using our scheme.

Known IT‑Secure Somewhat Homomorphic 
Solutions are Not Dynamic

We now review several conventional methods for IT-secure 
somewhat homomorphic outsourcing and examine their 
(non-) dynamic features.

One may consider using Shamir’s standard scheme and 
supporting homomorphic multiplication of secrets by just 
taking the polynomials to be of lower degree to-begin-with. 
However, such a solution yields a smaller threshold, e.g., if 
one runs Shamir’s standard secret sharing scheme with four 
parties, and would like to be able to extract a product of 
two secrets, he/she would be obligated to work with linear 
polynomials. In that case, if an adversary manages to dis-
cover two of the shares of a certain secret, then the secret is 
revealed. If one tried to work with quadratic polynomials in 
the standard scheme (to achieve security against coalitions of 
two parties), then the product polynomial would be of degree 
4, and it requires five parties to extract the product. Hence, 
this method is not somewhat homomorphic. In our scheme, 
even if an adversary manages to reveal two out of four shares 
of a certain secret, the secret is information-theoretically 
kept. We proved that each of the parties holding two cor-
related secret shares gains absolutely no information about 
the secrets. We also proved that a coalition of up to N − 2 
curious parties still cannot reveal the exact value of (s1, s2) , 
and that the statistical difference is negligible.

Now, to achieve a somewhat homomorphic effect, one 
may consider using Shamir’s standard scheme and sharing, 
for each pair of secrets, their product. This method enables 
homomorphic evaluation of quadratic functions and 2-CNF 
circuits over m secrets using O(m2) ciphertext. Nevertheless, 
it is not dynamic since, in this solution, to allow new secrets 
to be joined with the primary ones, the user must keep the 
old secrets in memory. In our scheme, the primary secrets are 
not required to be stored in memory once they were shared. 
For example, assume a dealer holds three elements s1, s2, s3 
of a finite field �p . Following the simple scheme described 
above, the dealer computes the products s1s2, s1s3, s2s3 and 
shares the six elements s1, s2, s3, s1s2, s1s3, s2s3 among N 
parties. After some time, the dealer obtains a fourth secret, 
s4 (that was not known beforehand). To enable evaluation 
of quadratic functions over {s1, s2, s3, s4} the dealer must 
compute the products s1s4, s2s4, s3s4 and share them among 
the parties. To this end, the dealer must store s1, s2, s3 in 
memory. In contrast, using our scheme, once the dealer 
shared s1, s2, s3 among the parties (using pairs of 1-homo-
morphic-multiplicative-polynomials), there is no need 
to keep the secrets in memory by the dealer. Instead, the 
dealer prepares pairs of such 1-homomorphic-multiplicative 
polynomials for future computation of the products with the 
new secret: s1s4, s2s4, s3s4 . To support computation of the 
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product sis4 (1 ≤ i ≤ 3) , the user Q-picks from Vp a 2n-tuple 
(a1,… , an, b1,… , bn) , uses a1,… , an as the non-free coef-
ficients for sharing si , and keeps in memory b1, ..., bn to be 
used as the non-free coefficients of the polynomials used for 
sharing s4 in the future.

One may consider using (a variant of) Beaver’s multi-
plication trick [4] to enable homomorphic multiplication 
of m secrets as follows. First, the user N-out-of-N secret 
shares sk (for 1 ≤ k ≤ m ) among the servers using an addi-
tive secret sharing scheme. E.g., for each secret sk , the 
user randomly uniformly picks N − 1 elements of �p and 
sets an N’th share to satisfy the condition that the sum of 
all N elements equals sk . Then, for each pair of secrets 
(si, sj) the user generates independent one-time secret �p
-triples (�ij, �ij, �ij ⋅ �ij) , N-out-of-N secret shares the triples 
among the parties using the same additive secret shar-
ing scheme, and reveals si + �ij and sj + �ij to the network. 
Now, since s

i
⋅ s

j
= (s

i
+ �

ij
− �

ij
) ⋅ (s

j
+ �

ij
− �

ij
) = (s

i
+ �

ij
)⋅

(s
j
+ �

ij
) − �

ij
(s

j
+ �

ij
) − �

ij
(s

i
+ �

ij
) + �

ij
�
ij
 , IT-secure com-

municationless evaluation of quadratic functions over the 
set of secrets is possible. However, this scheme is not 
dynamic. If new secrets are to be joined with the primary 
ones then, to enable homomorphic multiplication of old 
and new secrets, the user must generate an independent 
triple for the new and old secrets and publish the corre-
sponding values.

For example, assume (again) that a dealer holds three 
elements s1, s2, s3 of �p . Following the variant of Bea-
ver’s trick described above, the dealer N-out-of-N secret 
shares s1, s2, s3 among the parties, generates and secret 
shares independent random triples (�ij, �ij, �ij ⋅ �ij) (for 
1 ≤ i ≤ j ≤ 3 ), and for each pair of secrets reveals the 
corresponding values to the network. After some time, 
the dealer obtains a fourth secret, s4 (that was not known 
beforehand). To enable homomorphic multiplication of, 
say, s1 and s4 , the dealer must generate a random triple 
(�14, �14, �14 ⋅ �14) , publish s1 + �14 and s4 + �14 , and secret 
share �14 ⋅ �14 . Now, to publish s1 + �14 , the user must keep 
s1 in memory, which results in a non dynamic scheme. 
In an attempt to avoid it, assume that the dealer picked 
�14 before s4 was known and already published s1 + �14 to 
the network. Now, when the time comes and s4 is known, 
the user should publish s4 + �14 to the network and secret 
share �14 ⋅ �14 . To this end, the user must keep �14 in mem-
ory. Now, since s1 + �14 is public, keeping �14 in memory 
is (security-wise) equivalent to storing s1 in memory. The 
fact that the user is required to store in memory all the �ij s 
and that the values si + �ij are all public creates a SPOF 
and makes this scheme non-dynamic. We conclude that 
this simple variation of Beaver’s multiplication trick can-
not be used to construct a dynamic solution for the out-
sourcing problem.

Conclusions

We have proposed a scheme to perform a homomorphic 
multiplication over secret shares without increasing the 
number of parties required to extract the product. In our 
scheme, we have dealt with N parties and used polynomials 
of degree N − 1 . We have shown how to use our scheme to 
perform homomorphic and information-theoretically secure 
evaluation of quadratic functions and 2-CNF circuits over a 
dynamic database of m secrets with O(m2) ciphertext.

Our scheme has several practical applications. For exam-
ple, every problem in 2-SAT is reducible to solving a 2-CNF 
Boolean formula. Solving well-known problems in 2-SAT 
privately can be very useful. Conflict-free placement of 
geometric objects, data clustering, scheduling, and discrete 
tomography are but several out of many interesting and prac-
tical problems in 2-SAT. Our scheme may also suggest an 
alternative for applications in which Beaver’s multiplica-
tion trick is used to enable homomorphic multiplication of 
shared secrets.

The scheme we suggest here is somewhat surprising. We 
multiply two secrets that were shared via degree N − 1 poly-
nomial and manage to extract the product using no more 
than the N parties we began with, proving it to be IT-secure. 
The innovation is in the function sieving method, and in the 
way that we built the set Vp and defined the probability Q 
over it.

One of the main advantages of our scheme is being 
dynamic. To emphasize the virtue of dynamic schemes, 
consider a scenario in which a user holds a database con-
taining highly confidential information. It can be, e.g., a 
database containing private medical information of patients 
of a medical institution, biomedical information of citizens 
of a specific country, financial information regarding stocks 
in a market, or bank account details of clients of a big bank, 
etc. Keeping the entire database on a single server is risky 
since it creates a single point of failure (SPOF). If that server 
is breached, then the privacy of the entire information is 
compromised. An alternative solution is secret sharing the 
entire database among several servers and keep no plaintext 
copy of the database anywhere. This way, each server holds 
zero (or a negligible amount of) information, and security 
is maintained even if several servers (up to the threshold of 
the secret sharing scheme used) have been breached. Secret 
shared databases enable storing confidential information in 
a distributed fashion with no SPOF risk. Furthermore, in 
our scheme, the servers do not communicate with each other 
and hence each server may remain utterly oblivious to the 
number and identity of other servers that participate in the 
scheme. This fact reduces the risk of adversarial attacks of 
large coalitions of servers. In the distributed approach, when 
the user needs to observe a specific record in the database, 
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she may retrieve the corresponding shares from the servers 
and reconstruct the plaintext.

Two essential requirements arise in this setting. The first 
is adding new records to the database over time, and the 
second is performing computations over the shared data. 
Distributing the database using Shamir’s secret sharing 
scheme (as it is) enables adding new records to the data-
base over time, but supports no homomorphic multiplica-
tion of secrets. If one also computes all the possible prod-
ucts of secrets and secret shares them among the servers, 
it enables evaluating quadratic functions over secrets, but, 
if new records are added to the database, they cannot be 
homomorphically multiplied with the primary secrets, since 
the corresponding products were not known when the data-
base was shared. To support multiplications of old and new 
secrets, the user must keep a copy of the entire database in 
memory, which again creates a SPOF and contradicts the 
purpose of the distribution process. A dynamic scheme, like 
the one we suggest, enables the user to add new records to 
the secret shared database and evaluate quadratic functions 
over the entire set of secrets, old and new.

Finally, we believe that our approach and proof tech-
niques may open an opportunity for fruitful research on 
secure distributed computing, as well as other applications.
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