
Vol.:(0123456789)

SN Computer Science (2022) 3:174
https://doi.org/10.1007/s42979-022-01073-5

SN Computer Science

ORIGINAL RESEARCH

Communicationless Evaluation of Quadratic Functions over Secret
Shared Dynamic Database

Daniel Berend1,2 · Dor Bitan1 · Shlomi Dolev2

Received: 20 January 2021 / Accepted: 10 February 2022 / Published online: 25 February 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
One of the most active fields of research in cryptography is finding efficient homomorphic encryption schemes, particu-
larly information-theoretically secure schemes which are not based on unproven computational hardness assumptions. We
suggest here an information-theoretically secure secret sharing scheme based on Shamir’s secret sharing scheme. While
Shamir’s scheme supports no homomorphic multiplications of secrets, our scheme efficiently supports one homomorphic
multiplication of secrets in addition to homomorphic additions of, practically, any number of such multiplied secrets. We
focus on the single-client–multi-server setting. Therefore, our scheme enables a single user to share a database of m records
(secrets) among N semi-honest servers with O(m2) ciphertext, using a novel variant of Shamir’s secret sharing scheme and
polynomials of degree N − 1 . Then, our scheme enables homomorphic evaluation of quadratic functions and 2-CNF circuits
over the database with no communication between the servers. Our scheme is perfectly secure against attacks of a single
server and information-theoretically statistically secure against attacks of coalitions of less than N − 1 servers. One of the
main advantages of our scheme over known schemes is enabling the evaluation of quadratic functions and 2-CNF secrets
over a dynamic database of secrets. A dynamic database of secrets is a database of secrets that can grow in the future with
no need for storing and re-sharing existing secrets by the user. To the best of our knowledge, the challenging support for the
dynamic property was not obtained in this setting elsewhere before.

Keywords Dynamic secret sharing · Information-theoretic security · Outsourcing of computation

Introduction

Background

The Secure Outsourcing Problem

Consider the following scenario. A user is holding some
highly confidential data (hereafter referred to as ‘the
secrets’) and wishes to outsource the storage of this data
to an untrusted server while enabling the server to perform
computations over the data obliviously. A vast amount
of papers were written on this problem in the past 4 dec-
ades ever since it was brought up by Rivest, Adelman, and

Dertouzos in [22]. Solutions differ in their overall approach,
in their security and efficiency level, and various attributes.

Two main approaches for solving the secure outsourcing
problem are discussed in the literature. Some of the known
solutions are base on the centralized approach, in which a
single server is employed [2, 9, 16–18, 25–27]. Other solu-
tions take the distributed approach, in which the user dis-
tributes the information between several servers [1, 4, 5, 10,
12, 13, 15, 21].

In the distributed approach, the user employs a secret
sharing scheme to distributes secret shares of the data among
the servers. Secret sharing is a fundamental cryptographic
primitive, first introduced by Shamir [24] and Blakley
[7] (independently) in 1979. Therefore, shares of a secret
value are distributed to a set of parties in such a way that
only authorized sets of parties can reconstruct the secret,
while unauthorized sets cannot gain information about it.
In the centralized approach, the user typically encrypts the
information using a homomorphic encryption scheme and
uploads an encrypted version of the data to the server. The

 * Dor Bitan
 dorbi@post.bgu.ac.il

1 Department of Mathematics, Ben-Gurion University
of the Negev, Beer Sheva, Israel

2 Department of Computer Science, Ben-Gurion University
of the Negev, Beer Sheva, Israel

http://orcid.org/0000-0001-9295-6541
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01073-5&domain=pdf

 SN Computer Science (2022) 3:174174 Page 2 of 16

SN Computer Science

centralized approach typically compels two security issues.
First, it creates a single point of failure (SPOF) by putting all
the information on a single server. Second, it requires storing
and managing encryption keys. This work is based on the
distributed approach, which avoids these issues.

Security of Cryptographic Schemes

The security of cryptographic schemes may be either infor-
mation-theoretic or computational. In information-theo-
retically (IT) secure schemes, the security of the system is
derived purely from information theory and depends neither
on the computing power of the adversary nor on any compu-
tational hardness assumptions. It is possible in such schemes
that some information about the plaintext will be revealed to
an adversary by the ciphertext, but that leakage of informa-
tion can be quantified by statistical tools and may be con-
trolled by an appropriate choice of parameters. IT-secure
schemes, in which there is negligible leakage of information,
are often called statistically information-theoretic secure, or
simply statistically secure. IT-secure systems, in which there
is absolutely no leakage of information, are perfectly secure
schemes. The second type of security is computational secu-
rity. It refers to cryptographic schemes that are based on
computational hardness assumptions. The security of these
schemes is based on unproven assumptions regarding the
existence of algorithms for solving specific mathematical
problems and the computing power of the possible adver-
sary. While the centralized approach can achieve no more
than computational security, the distributed approach often
achieves IT-security. In this work, we suggest an IT-secure
solution to the outsourcing problem.

Dynamic Outsourcing

As mentioned, in this work, we look for solutions for the
secure outsourcing problem. We assume that a single user
holds a highly confidential database and wishes to distribute
the database among several servers to minimize the risk of
a security leak. An essential requirement that arises in this
setting is adding new records to the database over time. A
secure outsourcing scheme is dynamic if it enables the user
to add (or remove) new records to the database with no need
for storing and re-sharing existing secrets by the dealer [6].In
many practical applications, dynamic outsourcing schemes
have significant benefits over non-dynamic schemes. When
outsourcing a database to semi-trusted clouds, part of the
records may not be known and determined in the future. A
user who employs a non-dynamic scheme must store a copy
of the entire database. In this work, we suggest a dynamic
solution for the secure outsourcing problem.

Homomorphic Properties of Cryptographic Schemes

Another essential requirement that arises when outsourcing
a confidential database is to enable performing computations
over the data. To this end, it is useful for the secure distrib-
uting mechanism to have homomorphic properties. We now
describe the main ideas concerning homomorphic encryp-
tion systems. Assume � is a cryptographic system, m is a
message and c its encryption, denoted Enc�(m) . Let f be a
function defined over the message space of � . How, if at all,
can c be publicly converted into an encryption of f(m)? This
interesting question is a main subject of research in cryp-
tography. If we assume that the messages and the cipher-
texts are elements of a field or a ring (as is often the case),
then a more specific form of that question is as follows. Let
m1,… ,md be messages, and c1,… , cd their encryptions. Can
c1,… , cd be used to publicly generate cadd = Enc�

�∑d

i=1
mi

�

or cmult = Enc�
(
Πd

i=1
mi

)
 ? If it is possible to use c1,… , cd to

publicly generate cadd = Enc�
�∑d

i=1
mi

�
 (respectively, cmult =

Enc�

(
Πd

i=1
mi

)
), then � is additively homomorphic (respec-

tively, multiplicatively homomorphic). If both tasks can be
carried out, then � is a fully homomorphic encryption (FHE)
system. There are several single-operation homomorphic
schemes, such as the RSA cryptosystem, which is multipli-
catively homomorphic (but cannot support homomorphic
additions, and is only computationally secure), and Shamir’s
secret sharing scheme, which is additively homomorphic
(but cannot support homomorphic multiplications).

Midway between single-operation homomorphic encryp-
tion systems and FHE systems are somewhat homomorphic
encryption systems. These systems are additively homo-
morphic and also support a bounded number of homomor-
phic multiplications (or multiplicatively homomorphic and
support a bounded number of homomorphic additions).
To make the concept ‘somewhat homomorphic’ clear, we
modify the above definitions. In the above definition of an
additively (respectively, multiplicatively) homomorphic
cryptographic system, d could be arbitrarily large. Now we
define a cryptographic system to be d1-additively homomor-
phic (respectively, d1-multiplicatively homomorphic) if it is
additively (respectively, multiplicatively) homomorphic for
d ≤ d1 . Thus, additively homomorphic systems are ∞-addi-
tively homomorphic, and multiplicatively homomorphic
systems are ∞-multiplicatively homomorphic. In this work
we suggest a somewhat homomorphic scheme. We support
a single multiplication of secrets, followed by homomor-
phic additions of, practically, any number of such multiplied
secrets.

Party Interaction

In the distributed approach, the security of the private data is
maintained as long as the number of servers that collaborate

SN Computer Science (2022) 3:174 Page 3 of 16 174

SN Computer Science

in an adversarial attempt to reveal the secrets is less than
some integer t. To carry computations over the secret shared
data, the servers are often required to communicate with
each other. Such interaction between the servers increases
the risk of generation of large adversarial coalitions that can
compromise the security of the data. To minimize that risk,
one may allow no communication between the servers. With
no communication between them, the servers can remain
utterly oblivious to the number and identity of other serv-
ers participating in the scheme. The outsourcing scheme we
suggest in this work is communicationless and has t = N − 1 ,
hence significantly reducing the risk of generation of effec-
tive adversarial coalitions.

Related Work

Our work is based on Shamir’s secret sharing scheme. In
Shamir’s secret sharing scheme, the secret s is an element
of a finite field denoted �p and is shared by a dealer among
a set of N parties (where p > N) in the following way. Each
party Pi , 1 ≤ i ≤ N , is assigned by the dealer with an ele-
ment �i of � ×

p
 , where the �i s are distinct. Random elements

aj of �p , 1 ≤ j ≤ t − 1 , are picked by the dealer. Let f be the
polynomial defined by f (x) = s +

∑t−1

j=1
ajx

j . Each party Pi
gets the value f (�i) . It was proved by Shamir [24] that, in
this way, every group of t parties will be able to reconstruct
s, but no group of t − 1 parties gains any information about
s. These properties are derived directly from the fact that
a polynomial of degree t − 1 is uniquely determined by its
values at t points.

Shamir’s secret sharing scheme is one of the most influ-
ential schemes. It may be used to build schemes that enable
IT-secure outsourcing of computations [11, 13–15]. Dolev
et al. [13] used Shamir’s standard scheme for IT-secure dis-
tributed evaluation of RAM programs, where the parties
obliviously run a given RAM program over given input.
Their solution is based on secure multi-party computation
and requires ongoing communication between parties and
an external entity called reducer, and hence implies high
overhead. Earlier, Sander et al. [23] proposed a system to
evaluate NC1 circuits on encrypted values, considering the
following case: Alice holds an input x, and Bob is holding a
circuit C. We would like Alice to be able to compute C(x),
while keeping her input x private, and Bob keeping his cir-
cuit C private as well. A main drawback of the system is that
the ciphertext length grows exponentially in the depth of
the circuit. Their system is based on random self-reducible
probabilistic encryption, which may be either computation-
ally or information-theoretically secure. Either way, under
the suggested protocol, Alice’s input is computationally pri-
vate, while Bob’s circuit remains information-theoretically
private.

In 2005, Boneh et al. [8] proposed a computationally
secure public key encryption scheme and showed how it can
be used to evaluate 2-DNF circuits over ciphertexts. Their
scheme is somewhat homomorphic − additively homomor-
phic and 2-multiplicatively homomorphic. The first FHE
scheme was proposed by Gentry [16], followed by several
revisions and improvements [2, 9, 17, 18, 25–27]. Unfortu-
nately, the time complexity of the current implementations
of FHE scheme is too high to make the scheme practical.
Brakerski and Perlman [9] suggested a computationally
secure FHE scheme that can be carried out by an unbounded
number of parties. Let N be the number of parties whose
ciphertexts have been introduced into the computation so far
(inputs from more parties can join the computation later).
They used the multi-key approach and obtained a scheme
with fully dynamic properties, O(N) ciphertext expansion,
and O(N) space complexity for an atomic homomorphic
operation. Unfortunately, their results are only theoretical,
as their scheme is time-wise impractical.

To conclude, one may characterize solutions for the out-
sourcing problem according to the following criteria.

• Is the scheme distributed (or employs a single server,
creating a SPOF and a need to manage keys)?

• Is the scheme information-theoretically secure (or only
computationally secure)?

• Is the scheme dynamic (or adding new records over time
requires storing a plaintext copy of the database)?

• Is the scheme, at least, somewhat homomorphic (or at
most single-operation homomorphic)?

• If the scheme is based on the distributed approach, is
it communicationless and enables the servers to remain
utterly oblivious to the number and identity of one
another (or does the scheme require communication
between servers, hence increasing the risk of creation of
large adversarial coalitions)?

No system is known that answers ‘yes’ to all of the questions
mentioned above. Centralized fully homomorphic systems,
such as Gentry’s [16] and Brakerski and Perlman’s [9], are
neither IT-secure nor are they practical. No communication-
less IT-secure scheme is fully homomorphic, and no practi-
cal scheme is fully homomorphic. The scheme suggested by
Boneh et al. [8] is a centralized, somewhat homomorphic,
computationally secure and practical scheme.

Our Contribution

The main result we obtain in this work is a distributed, infor-
mation-theoretically secure, dynamic, somewhat homomor-
phic, and communicationless solution for the outsourcing
problem. Our scheme is based on a new function sieving
method we present here. Our method yields 1-homomorphic

 SN Computer Science (2022) 3:174174 Page 4 of 16

SN Computer Science

multiplicative pairs of polynomials, which enables us to
adjust Shamir’s secret sharing scheme to support one homo-
morphic multiplication of secrets. The secrets are shared
using polynomials of degree N − 1 among N parties, and
our scheme provides perfect security against an attack of a
single curious party and statistical security against an attack
of a coalition of up to N − 2 curious parties. We note that
the level of security achieved in our scheme is optimal (in
our setting). This follows from the result of Barkol et al. [3],
who showed that perfectly secure t-private d-multiplicative
secret sharing among N players is possible if and only if
N > dt . Our scheme enables homomorphic multiplication
of two secrets (i.e., d = 2) while keeping the secrets safe
against coalitions of less than t = N − 1 out-of N servers and
hence can achieve at most statistical security.

Of course, one can support homomorphic multiplica-
tions of secrets in Shamir’s scheme by taking polynomials
of a smaller degree to-begin-with. For example, one can use
Shamir’s original scheme to share two secrets among four
parties using linear polynomials, enabling one homomorphic
multiplication of secrets, but in this way, the security will
be compromised since any coalition of two parties can eas-
ily determine the exact value of the secrets. In our scheme,
for example, we can use cubic polynomials to share secrets
among four parties in such a way that no coalition of two
parties can find the secrets. Our scheme is based on a sophis-
ticated way of choosing the polynomials in a correlated way.

One can support homomorphic evaluation of quadratic
functions and 2-CNF circuits by sharing, along with each
pair of secrets, their product, (or using Beaver’s pre-process-
ing method, as suggested in [4]). Nevertheless, in this way,
if new secrets are expected to be joined with the primary
ones, then one must keep all the primary secrets in memory
to enable the homomorphic computations over the enlarged
set of secrets. Our scheme enables additional secrets to be
shared over time, while in each stage: (a) quadratic functions
and 2-CNF circuits over the new set of secrets can be homo-
morphically and securely evaluated; (b) the dealer is not
required to store the values of the already-shared secrets in
memory, but only the non-free (secret-independent) coeffi-
cients of the polynomial that are meant to be used to encrypt
the future secrets.

To the best of our knowledge, our scheme suggests the
first efficient solution for the outsourcing problem while
maintaining all the following attributes: IT-secure, dynamic,
somewhat homomorphic, and communicationless.

Organization

In the next section, we introduce the function sieving method
and our scheme for secret sharing and multiplication of two
secrets among N servers using polynomials of degree N − 1 .
In the following section, we prove the correctness of the

scheme and discuss its security against an attack of one curi-
ous server and against an attack of a coalition of up to N − 2
curious servers. Before the concluding section, we describe
how to use our scheme to distribute a confidential database
to a set of semi-honest servers while enabling homomor-
phic evaluation of quadratic functions and 2-CNF circuits
dynamically. The final section concludes the work.

Homomorphic Multiplication of Secret
Shares

In this section, we introduce our secret sharing scheme based
on Shamir’s secret sharing scheme. The scheme will enable
us to share two secrets among N servers (parties) using
polynomials of degree N − 1 , perform one homomorphic
multiplication of the secrets and consecutive homomorphic
additions with further secrets, without increasing the number
of parties required to extract the result. We will show that
the scheme has perfect security against an attack of a single
party. We also prove that our scheme is statistically secure
against coalitions of up to N − 2 parties.

We begin with a brief overview of our methods and con-
structions. Assume s1 and s2 are two secrets that were shared
by Shamir’s scheme among N parties, Pj , 1 ≤ j ≤ N , using
two polynomials of degree N − 1 , f1 and f2 , respectively. For
convenience, we denote from now on n = N − 1 . Each Pj

holds a share of each of the secrets:
(
�j, f1(�j)

)
 and (

�j, f2(�j)

)
 . As Shamir’s scheme is additively homomorphic,

the points
(
�j, f1(�j) + f2(�j)

)
 for 1 ≤ j ≤ n + 1 are shares of

s1 + s2 . Interpolation of these points will yield the unique
polynomial of degree ≤ n going through them, which is
f1 + f2 , whose value at 0 is s1 + s2 . Now, as Shamir’s scheme
is not multiplicatively homomorphic, the points (
�j, f1(�j) ⋅ f2(�j)

)
 are in general not shares of s1 ⋅ s2 . The

polynomial f1 ⋅ f2 is of degree ≤ 2n . Hence, 2n + 1 points are
required to determine it, so that the n + 1 points we have do
not suffice, i.e., no information regarding s1 ⋅ s2 may be

gained f rom the n + 1 points
(
�j, f1(�j) ⋅ f2(�j)

)

(1 ≤ j ≤ n + 1). If one insists on interpolating the points (
�j, f1(�j) ⋅ f2(�j)

)
 , that interpolation will yield some poly-

nomial g of degree ≤ n . It might be the case, though, that
g(0) = s1 ⋅ s2 . When does it happen? We seek pairs of poly-
nomials to be used with Shamir’s scheme that yield
g(0) = s1 ⋅ s2 . We call this procedure function sieving, and
as we will show below, it yields 1-homomorphic multiplica-
tive pairs of polynomials, which are pairs of polynomials
that meet the required condition. We will show that, given

SN Computer Science (2022) 3:174 Page 5 of 16 174

SN Computer Science

the �j s, these pairs are independent of the secrets and can be
determined according to the other coefficients of the poly-
nomials (i.e., all coefficients except for the free terms, which
are the secrets).

Function Sieving

Assume that the field �p , in which the secrets s1 and s2 reside,
is such that p ≡ 1 (mod n + 1) . In that case, since � ×

p
 is

cyclic, it contains a primitive root of unity of order n + 1 .
Let � be such a root. For 1 ≤ j ≤ n + 1 denote �j ∶= �j , and
assign to each party Pj the value �j.

Let ai, bi ∈ �p , 1 ≤ i ≤ n , and consider the polynomials

in �p[x] . Share the secrets s1, s2 among the parties using f1, f2 .
Namely, distribute to each Pj the values f1(�j), f2(�j) . Let

The pairs (�j, yj) ∈ �
2
p

 are n + 1 distinct points through
which the polynomial (f1 ⋅ f2)(x) passes. Since f ∶= f1 ⋅ f2 is
of degree ≤ 2n , it is uniquely determined by 2n + 1 points.
Since there are only n + 1 points (�j, yj) , interpolation of
them will certainly not yield (f1 ⋅ f2)(x) . Nevertheless, let g(x)
be the interpolation polynomial for the n + 1 points, (�j, yj) .
Obviously, g is of degree ≤ n.

Now, let

Since f and g agree on the roots of � , we have
g(x) ≡ f (x) (mod �(x)) . Since the �j s are all the roots of
unity of order n + 1 , we have

Hence, it is easy to compute g. In fact, denote

We have xn+1 ≡ 1 (mod �(x)) , and therefore,

This in turn implies that g(0) = s1s2 + cn+1.
Thus, if we take f1 and f2 such that cn+1 = 0 , we get

g(0) = f (0) . Now, cn+1 =
∑n

i=1
aibn+1−i . This observation

yields a useful variant of Shamir’s secret sharing scheme.
Instead of picking the coefficients of f1 and f2 uniformly

f1(x) = s1 +

n∑
i=1

aix
i, f2(x) = s2 +

n∑
i=1

bix
i,

yj = f1(�j) ⋅ f2(�j), 1 ≤ j ≤ n + 1.

�(x) =

n+1∏
j=1

(x − �j).

(1)�(x) = xn+1 − 1.

f (x) = s1s2 +

2n∑
i=1

cix
i.

g(x) ≡ f (x) ≡ s1s2 + cn+1 +

n∑
i=1

(ci + cn+1+i)x
i (mod �(x)).

at random, one may pick them in such a way that cn+1 = 0 .
This is, in essence, the function sieving process. Instead of
using Shamir’s secret sharing scheme with random polyno-
mials from �p[x] , we use it with polynomials f1, f2 , for which
cn+1 = 0 , which compels g(0) = f (0) . Such a pair (f1, f2) is a
1-homomorphic multiplicative pair of polynomials.

We define the set of acceptable coefficients for these pairs

where a = (a1,… , an) and b = (b1,… , bn).
1

Next, since elements should be picked from Vp , we must
define a probability measure on it. First, we compute the
cardinality of Vp.

Proposition 1 |Vp| = (pn − 1)(pn−1 − 1) + 1.

Proof The element 0 ∈ �
2n
p

 contributes 1 to |Vp| . The n-tuple
(a1,… , an) may be chosen in pn − 1 different ways. For each
of these, the n-tuple (b1,… , bn) is required to satisfy

Since (a1,… , an) ≠ 0 , this equation has pn−1 − 1 non-zero
solutions b . All in all, we get (pn − 1)(pn−1 − 1) + 1 elements
in Vp . ◻

Define a probability measure Q on Vp by:

One verifies readily, using Proposition 1, that Q is indeed
a probability.

The set Vp and the probability measure Q are used in the
next section, where we present the multiplication scheme.

The Scheme

We now present our secret sharing scheme. A single homo-
morphic multiplication of two secrets is supported, to which
further secrets can be added homomorphically. Assume a
dealer D has two secrets s1, s2 ∈ �p and private connection
channels with N servers Pi , 1 ≤ j ≤ N . As a preliminary

Vp ∶=

{
(a1,… , an, b1,… , bn) ∈ �

2n
p

||||
n∑
i=1

aibn+1−i = 0,

a ≠ 0 ≠ b

}
∪
{
0 ∈ �

2n
p

}
,

n∑
i=1

aibn+1−i = 0.

Q(v) =

{
1

pn
, v = 0 ∈ �

2n
p
,

1

pn(pn−1−1)
, v ≠ 0.

1 Each of the 0 s refers to the zero vector of the vector space it
belongs to. We include these zero vectors in V

p
 for technical reasons

explained below.

 SN Computer Science (2022) 3:174174 Page 6 of 16

SN Computer Science

phase, the dealer D assigns to each server Pj an �j = �j ∈ �
×
p

 ,
where � is a primitive root of unity of order N. The scheme
stages are as follows:

Party P
1

P
2

P
3

P
4

x value 4 16 13 1
f
1
(x) ⋅ f

2
(x) 13 0 12 6

2 Clearly, one can use the proof of Proposition 1 to implement stage
1 in time O(n).
3 In fact, given the y

j
 s, g(0) can be computed without finding g. That

procedure is not of our main interests.

As one can see, we use here a polynomial of degree n to
represent each of the secrets, and yet we are able to recon-
struct their product with only n + 1 parties (versus 2n + 1 that
would be needed originally).

Regarding stage 1 of the protocol, a simple way to Q-pick
a suitable element is to create an array with the elements
of the set Vp and insert the element 0 ∈ �

2n
p

 into the array
pn−1 − 2 more times. Then, picking an element uniformly
at random from that array is equivalent to Q-picking an ele-
ment of Vp.2 In stage 5, since 1 ≤ i ≤ n + 1 , the polynomial
g is obviously of degree ≤ n.3

Example We provide a simple example. Let p = 17
and consider a dealer that holds the secret elements
s1 = 3 and s2 = 4 in �17 . Let N = 4 and assign four
par t ies with the x-values �1 = 4, �2 = 16, �3 = 13
and �4 = 1 . He re , �(x) =

∏
1≤i≤4(x − �i) = x4 − 1 .

L e t v = (1, 3, 2, 5, 2, 1) ∈ V17 , w h i c h i m p l i e s
f1(x) = 2x3 + 3x2 + x + 3 and f2(x) = x3 + 2x2 + 5x + 4 .
Here, f (x) = f1(x)f2(x) = 2x6 + 7x5 + 11x3 + 6x2 + 2x + 12 .
When the dealer shares the secrets s1 and s2 among the four
parties, the parties obtain the following values.

Party P
1

P
2

P
3

P
4

x value 4 16 13 1
f
1
(x) 13 3 4 9

f
2
(x) 1 0 3 12

Multiplying the y values, the parties obtain:

Now, let g be the polynomial of degree (at most) three
determined by the four points (�i, f1(�i)f2 ⋅ (�i)) . Here, these
are the points: (4, 13), (16, 0), (13, 12), (1, 6). The polyno-
mial g, of course, can be obtained using Lagrange interpola-
tion. Nevertheless, since the (non-free) coefficients of f1 and
f2 were Q-picked from V17 , the polynomial g may also be
computed by dividing f by � and taking the residue. Indeed,
using polynomials division one finds

i.e., g(x) = 11x
3 + 8x

2 + 9x + 12 , and g(0) = 12 = s1 ⋅ s2 = f (0) .
It is easy to check that g is the only polynomial of
degree (at most) three that goes through the four points
(4, 13), (16, 0), (13, 12) and (1, 6). In our scheme, the dealer
computes g from the four points received from the parties,
and we prove that (following our scheme) the value of g at
zero always equals s1 ⋅ s2.

The Main Results

In this section, we discuss the correctness and security of our
secret sharing scheme. We begin with correctness.

The Scheme Correctness

We prove the following proposition:

Proposition 2 The value s, calculated at stage 6 of Algo-
rithm 1, is equal to s1 ⋅ s2.

Proof The proposition follows directly from the function
sieving process, described in “Homomorphic multiplica-
tion of secret shares”. The coefficients of the polynomials

f (x) = 2x6 + 7x5 + 11x3 + +6x2 + 2x + 12

= (2x2 + 7x)(x4 − 1) + 11x3 + 8x2 + 9x + 12

= (2x2 + 7x) ⋅ �(x) + g(x),

SN Computer Science (2022) 3:174 Page 7 of 16 174

SN Computer Science

f1, f2 were picked from Vp , and hence
∑n

i=1
aibn+1−i = 0 . By

(1), the �j s were picked in such a way that �(x) = xn+1 − 1 .
In stage 5 of the scheme, the dealer finds a polynomial g of
degree ≤ n such that g(�j) = yj for 1 ≤ j ≤ n + 1 . This implies
that

Hence, g(0) = s1s2 + cn+1 ≡ s1s2 (mod �(x)) . ◻

Note that g may now be treated as if it was originally used
to share s1 ⋅ s2 among N parties since each of them is now
holding yj . Hence, further secrets can be shared and homo-
morphically added to s1 ⋅ s2 as in Shamir’s standard scheme.

The Scheme Security

We now analyze the scheme security against curious par-
ties’ attacks. We follow standard security definitions that
can be found in literature (e.g., in [20]). We will show that
our scheme has perfect passive security against one party
attack and statistical security against an attack of a coalition
of size up to N − 2 . To conclude such arguments, first, we
must make our assumptions clear. We assume the following:

• Assumption 1: The pair of secrets (s1, s2) ∈ �
2
p
 is arbi-

trary. To be precise, we assume they are picked accord-
ing to an arbitrary distribution Γ , on which we have no
assumptions.

• Assumption 2: The prime p, the distribution Γ , the set
Vp and the distribution Q over it are public. Namely, if
we denote by S1 and S2 the �p-valued random variables
indicating the Γ-picked secrets, then the probability
P[(S1, S2) = (s1, s2)] is known for each pair (s1, s2) ∈ �

2
p
.

• Assumption 3: The element (a1,… , an, b1,… , bn) ∈ Vp ,
that is Q-picked during stage 1 of the scheme, is kept
secret. So are the values f1(�j) and f2(�j) , 1 ≤ j ≤ N , that
D sends to each party Pj at stages 2 and 3 of the scheme.
In the single party attack scenario, Pj does not know
f1(�i) and f2(�i) for i ≠ j . In the scenario of an attack of
a coalition of k parties, we assume, without loss of gen-
erality, that P1,… ,Pk are curious parties that join their
shares in an attempt to find the secrets, but they do not
know the shares of other parties.

Perfect Security Against Single Party Attack

 To show that our scheme has perfect security against one
curious party attack, we need to show that, when Pj receives

g(x) ≡ (f1 ⋅ f2)(x) = s1s2 +

2n∑
i=1

cix
i

≡ s1s2 + cn+1 +

n∑
i=1

(ci + cn+1+i)xi (mod �(x)).

information from D during stages 2 and 3 of the scheme, he
gains absolutely no information about the values of s1 and
s2 . We can summarize the information that Pj receives dur-
ing stages 2 and 3 of the scheme by the following equations:

The unknowns in these equations are s1, s2, ai and bi ,
1 ≤ i ≤ n , while all other quantities are known parameters
to Pj . We start with

Theorem 1 For an arbitrary fixed � ∈ �
×
p

 denote

u =

�∑n

i=1
ai�

i∑n

i=1
bi�

i

�
 . Under the above assumptions ,

P[u =

(
x

y

)
] =

1

p2
 , for every

(
x

y

)
∈ �

2
p
.

Proof of Theorem 1 Call u the result vector. Since p and
� are set, u depends only on the Q-choice of v ∈ Vp . For
v = (a1,… , an, b1,… , bn) ∈ Vp , denote

We define a mapping �� ∶ Vp → �
2
p
 by

For convenience denote � = �� . Thus,

To compute P[u =

(
x

y

)
] , we first partition � 2

p
 into four sub-

sets Uj , 1 ≤ j ≤ 4:

• U1 = {

(
0

0

)
} ⊂ �

2
p .

• U2 = {

(
x

0

)
∈ �

2
p
∣ x ≠ 0}.

• U3 = {

(
0

y

)
∈ �

2
p
∣ y ≠ 0}.

• U4 = {

(
x

y

)
∈ �

2
p
∣ x ≠ 0, y ≠ 0}.

We will compute P[u =

(
x

y

)
] for

(
x

y

)
∈ Uj for each j

separately.
Starting with j = 1 . We look for elements v ∈ Vp such that

(2)

s1 +

n∑
i=1

ai�
i
j
= yj,

s2 +

n∑
i=1

bi�
i
j
= y�

j
.

Mv =

(
a1 … an
b1 … bn

)
∈ M2×n(�p).

��(v) = Mv

(�

⋮

�n

)
.

P[u =

(
x

y

)
] = P[�(v) =

(
x

y

)
].

 SN Computer Science (2022) 3:174174 Page 8 of 16

SN Computer Science

Of course, v = 0 ∈ �
2n
p

 is a solution of (2). Assume
v = (a1,… , an, b1,… , bn) ∈ Vp is such that v ≠ 0 and Mv is
a solution of (2). Namely:

where (a1,… , an) ≠ 0 ≠ (b1,… , bn) . Each solution for (3)
gives a suitable element of Vp . Now, (3)I is a linear equation
in n variables ai . Since the trivial solution is not accept-
able, it has pn−1 − 1 possible solutions (a1,… , an) . For
each of these solutions, (3)II-(3)III is a linear system of
two equations in n variables bi . If the equations are inde-
pendent, the system has pn−2 − 1 non-trivial solutions
(b1 … , bn) . Can they be dependent? If they are, there is a
c ∈ �p such that c ⋅ �i = an+1−i for 1 ≤ i ≤ n . By (3)I we get
then

∑n

i=1
c ⋅ �n+1−i ⋅ �i = 0 , so that n ⋅ c ⋅ �n+1 = 0 . Each

of the factors is non-zero, and hence (3)II-(3)III are inde-
pendent. All in all, we get (pn−1 − 1)(pn−2 − 1) solutions
(a1,… , an, b1,… , bn) ≠ 0.

We conclude that

where v0 is any non-zero element of Vp . That is

We move to U2 . Thus, we are looking for elements v ∈ Vp
such that

Similar to the computation of
|||||
�−1

((
0

0

))|||||
 , we get the

system

(3)�(v) =

(
0

0

)
.

(4)

I

n∑
i=1

ai�
i = 0,

II

n∑
i=1

bi�
i = 0,

III

n∑
i=1

aibn+1−i = 0,

P[u =

(
0

0

)
] = 1 ⋅ Q(0) + (pn−1 − 1)(pn−2 − 1) ⋅ Q(v0),

P[u =

(
0

0

)
] = 1 ⋅

1

pn
+

(pn−1 − 1)(pn−2 − 1)

pn(pn−1 − 1)
=

1

p2
.

(5)�(v) =

(
x

0

)
, (x ≠ 0).

(6)

I

n∑
i=1

ai�
i = x,

II

n∑
i=1

bi�
i = 0,

III

n∑
i=1

aibn+1−i = 0,

where (a1,… , an) ≠ 0 ≠ (b1,… , bn) , x ≠ 0 , and each solu-
tion of (4) gives a suitable element of Vp . (4)I is a non-
homogenous linear equation in n variables ai , and hence
has pn−1 solutions, 0 is not one of which. For each of these
solutions, (4)II-(4)III is a system of two linear equations in n
variables bi . If they are independent, it has pn−2 − 1 non-zero
solutions for bi . Assume they are dependent. Hence, there
is c ∈ �p such that c ⋅ �n+1−i = ai for 1 ≤ i ≤ n . By (4)I we
get then

∑n

i=1
c ⋅ �n+1−i ⋅ �i = x . Then n ⋅ c ⋅ �n+1 = x , which

gives c = xn−1 . Hence, there is exactly one solution ai for
(4)I that yields dependent equations (4)II-(4)III . Namely, for
ai = c ⋅ �−i = xn−1�−i the system (4)II-(4)III is dependent,
and hence has pn−1 − 1 non-zero solutions. All in all, we
get that

We use that and the fact that the trivial solution is not in
�−1

((
x

0

))
 to compute

The computation of P[u =

(
x

y

)
] for

(
x

y

)
∈ U3 is analo-

gous, which implies P[u =

(
0

y

)
] =

1

p2
 for y ≠ 0.

Now, knowing
|||||
�−1

(
Uj

)|||||
 for 1 ≤ j ≤ 3 , we subtract from

|||||
Vp

|||||
 and get

|||||
�−1

(
U4)

)|||||
= (p − 1)2 ⋅ pn−2(pn−1 − 1) . Observe

that so far, for a specific j ∈ {1, 2, 3} , all elements of Uj had
the same size of preimage under � . If we show that the same
holds for U4 as well, then together with the fact that
|||||
U4

|||||
= (p − 1)2 we get that

|||||
�−1

((
x

y

))|||||
= pn−2(pn−1 − 1)

for
(
x

y

)
∈ U4 . This in turn will imply that

|||||
�−1

((
x

0

))|||||
= (pn−1 − 1) ⋅ (pn−2 − 1) + 1 ⋅ (pn−1 − 1) = pn−2(pn−1 − 1).

P[u =

(
x

0

)
] = P[�(v) =

(
x

0

)
] = P[v ∈ �−1

(
(
x

0
)

)
]

=
pn−2(pn−1 − 1)

pn(pn−1 − 1)
=

1

p2
.

P[u =

(
x

y

)
] = P[�−1(v) =

(
x

y

)
] = pn−2(pn−1 − 1) ⋅ Q(v)

=
pn−2(pn−1 − 1)

pn(pn−1 − 1)
=

1

p2
.

SN Computer Science (2022) 3:174 Page 9 of 16 174

SN Computer Science

for
(
x

y

)
∈ U4 . Thus, all that is left is to show is that all ele-

ments of U4 actually have the same size of preimage under
�.

To this end, we define a family of transformations Tk,l
over Vp . For arbitrary fixed k, l ∈ �

×
p

 , let Tk,l ∶ Vp → Vp be
defined by

The map Tk,l is clearly bijective. In fact, the number and
positions of zeros in v (if any) are the same as in Tk,l(v) .
The set Vp and some of its subsets have important properties
regarding Tk,l:

• Vp is Tk,l-invariant: If v = (a1,… , an, b1,… , bn) ∈ Vp ,
then

∑n

i=1
aibn+1−i = 0 . It immediately follows that

Tk,l(v) = kl
∑n

i=1
aibn+1−i = 0 . Hence Tk,l(v) is indeed in

Vp.
• T h e s e t s �−1(Uj) a r e Tk,l - i nv a r i a n t : I f

v = (a1,… , an, b1,… , bn) ∈ Vp , and �(v) ∈ Uj for a cer-
tain j, then

 We have

 Then

 Since k, l ≠ 0 , an entry of �(v) vanishes if and only if
the corresponding entry of �

(
Tk,l(v)

)
 does. Namely, if

�(v) ∈ Uj , then �
(
Tk,l(v)

)
∈ Uj . We conclude that the sets

𝜇−1(Uj) ⊆ Vp are invariant under Tk,l.

Now, let
(
x

y

)
,

(
x�

y�

)
∈ Uj for some 1 ≤ j ≤ 4 . Take

v = (a1,… , an, b1,… , bn) ∈ �−1

(
(
x

y
)

)
 . We h a v e

�(v) =

� ∑n

i=1
a1�

i∑n

i=1
b1�

i

�
=

�
x

y

�
 . Put

Tk,l(a1,… , an, b1,… , bn) = (ka1,… , kan, lb1,… , lbn).

�(v) =

�
a1 … an
b1 … bn

�� �

⋮

�n

�
=

� ∑n

i=1
a1�

i∑n

i=1
b1�

i

�
∈ Uj.

�
�
T
k,l
(v)

�
=

�
ka

1
… ka

n

lb
1

… lb
n

�� �

⋮

�n

�
=

� ∑n

i=1
ka

1
�i

∑n

i=1
lb

1
�i

�
.

�
�
Tk,l(v)

�
=

�
k
∑n

i=1
a1�

i

l
∑n

i=1
b1�

i

�
.

k =

{
x�

x
, x ≠ 0,

1, x = 0,
, l =

{
y�

y
, y ≠ 0,

1, y = 0.

We get �
�
Tk,l(v)

�
=

�
k
∑n

i=1
a1�

i

l
∑n

i=1
b1�

i

�
=

� x�

x
x

y�

y
y

�
=

�
x�

y�

�
 .

Thus, for every v ∈ �−1

(
(
x

y
)

)
 we have Tk,l(v) ∈ �−1

(
(
x�

y�
)

)

fo r a p p r o p r i a t e k , l . T h i s i m p l i e s t h a t

||�−1

(
(
x

y
)

)
|| = ||�−1

(
(
x�

y�
)

)
|| for

(
x

y

)
,

(
x�

y�

)
∈ Uj . To con-

clude, for a given j, all elements of Uj have the same proba-
bility. ◻

We use Theorem 1 to prove the perfect security of our
scheme in this scenario. We claim now

Proposition 3 P[(S
1
, S

2
) = (s

1
, s

2
) ∣ (1)] = P[(S

1
, S

2
) = (s

1
, s

2
)].

Proof Denote

Explicitly4,

Hence,

According to Theorem 1, we have P
[
u =

(x
y

)]
=

1

p2
 . Hence,

the values of u are independent of (S1, S2) , so that

 ◻

Security Against Coalitions of k < N − 1 Curious
Parties

We now turn to analyze the scheme’s security against a coa-
lition of k parties for k < N − 1 . Without loss of generality,
we consider the coalition {P1,… ,Pk} . We will refer to this
coalition as the adversary. As in the preceding scenario, we

� = P[(S1, S2) = (s1, s2) ∣ (1)].

� = P

�
(S1, S2) = (s1, s2)

�����
s1 +

∑n

i=1
ai�

i = y

s2 +
∑n

i=1
bi�

i = y�

�
.

� = P
[
(S1, S2) = (s1, s2)

|||u =

(
y − s1
y� − s2

)]

=

P
[
(S1, S2) = (s1, s2) ∩ u =

(
y − s1
y� − s2

)]

P
[
u =

(
y − s1
y� − s2

)] .

� =

P[(S1, S2) = (s1, s2)] ⋅
1

p2

1

p2

= P[(S1, S2) = (s1, s2)].

4 We omit the index j and write �, y, y′.

 SN Computer Science (2022) 3:174174 Page 10 of 16

SN Computer Science

can summarize the information the adversary is holding by
the system of 2k equations:

The unknowns in these equations are ai, bi, s1, s2 , while all
other parameters are known to the adversary. We will now
prove two useful results concerning this scenario. First,
given (5), all p2 options for (s1, s2) ∈ �

2
p
 are possible. Sec-

ond, given a pair of secrets, the shares y11,… , y1k, y21,… , y2k
distribute almost uniformly. We will soon make this state-
ment precise by analyzing how the matrix

(
y11 … y1k
y21 … y2k

)
 is

distributed over M2×k(�p) , given a pair of secrets (s1, s2) , and
show that this distribution is statistically close to the uniform
distribution. Let (s1, s2) be a pair of secrets, and Y(s1,s2) be the
M2×k(�p)-valued random variable indicating the matrix (
y11 … y1k
y21 … y2k

)
 induced by (s1, s2) . We will show that the

statistical difference [20] between the distributions Y(s1,s2) and
the uniform distribution over M2×k(�p) is ≈ 1

pn−k
 . Since statis-

tical difference is a metric, we will conclude by the triangle
inequality that the statistical difference between two such
distributions, Y(s1,s2) and Y(s�

1
,s�
2
) , is no more than ≈ 2

pn−k
.

To this end, we need the following theorem. Denote

We call U the result matrix.

Theorem 2 The distribution of the result matrix is given by

where Ω is a proper subset of M2×k(�p) , with cardinality of
(pk − 1)(pk−1 − 1).

Proof of Theorem 2 Since p and �1,… , �k are set, the result
matrix U depends only on the Q-choice of v ∈ Vp . Using
the same notation for Mv as in the proof of Theorem 1, we
state the connection between U and v. For �1,… , �k ∈ �

×
p

 ,
we define a mapping � ∶ Vp → M2×k(�p) by

(7)

s1 +

n∑
i=1

ai�
i
1
= y11, … , s1 +

n∑
i=1

ai�
i
k
= y1k,

s2 +

n∑
i=1

bi�
i
1
= y21, … , s2 +

n∑
i=1

bi�
i
k
= y2k.

U =

� ∑n

i=1
ai�

i
1
, … ,

∑n

i=1
ai�

i
k∑n

i=1
bi�

i
1
, … ,

∑n

i=1
bi�

i
k

�
.

P

�
U =

�
y1 … yk
y�
1
… y�

k

��

=

⎧⎪⎪⎨⎪⎪⎩

1

pn
+

(pn−k−1)(pn−k−1−1)

pn(pn−1−1)
,

�
y1 … yk
y�
1
… y�

k

�
=

�
0 … 0

0 … 0

�
,

pn−k−1(pn−k+p−1)

pn(pn−1−1)
,

�
y1 … yk
y�
1
… y�

k

�
∈ Ω,

pn−k−1(pn−k−1)

pn(pn−1−1)
, otherwise,

Thus,

L e t
(
y1 … yk
y�
1
… y�

k

)
∈ M2×k(�p) . W e c o m p u t e

P[U =

(
y1 … yk
y�
1
… y�

k

)
] by finding the number of elements

v ∈ Vp for which �(v) =
(
y1 … yk
y�
1
… y�

k

)
 , and use the probabil-

ity Q defined above. These elements are exactly the elements
(a1,… , an, b1,… , bn) ∈ Vp w i t h
(a1,… , an) ≠ 0 ≠ (b1,… , bn) that solve the system of
equations

We solve (6) and analyze the number of solutions for given
y1,… , yk, y

�
1
,… , y�

k
 . The sub-system (6)I1-…-(6)Ik consists of

k independent equations with n variables a1,… , an . Its inde-
pendence follows from the fact that the matrix of the coef-
ficients (�i

j
)i,j is a sub-matrix of Vandermonde matrix with

distinct generators �1,… , �k . Hence, (6)I1-…-(6)Ik has pn−k
solutions (a1,… , an) . For each of them, the system (6)II1-…
-(6)IIk-(6)III consists of k + 1 equations with n variables
b1,… , bn . Is this system independent? The equations (6)II1
-…-(6)IIk are independent for the same reason that (6)I1-…-
(6)Ik are. Hence, we only need to find out whether (6)III is
dependent of (6)II1-…-(6)IIk . This may happen only if there
exist c1,… , ck ∈ �p , such that an+1−i =

∑k

j=1
cj ⋅ �

i
j
 for all

1 ≤ i ≤ n . Replacing i for n + 1 − i and using the fact that
�n+1
j

= 1 , we get equivalently that ai =
∑k

j=1
cj ⋅ �

−i
j

 . Now, ai
must satisfy (6)I1-…-(6)Ik , so we replace each ai in (6)I1-…-
(6)Ik with

∑k

j=1
cj ⋅ �

−i
j

 and get

�(v) = Mv

(�1 … �k
⋮ ⋮

�n
1

… �n
k

)
.

P[U =

(
y1 … yk
y�
1
… y�

k

)
] = P[�(v) =

(
y1 … yk
y�
1
… y�

k

)
].

(8)

I1

n∑
i=1

ai�
i
1
= y1,

⋮ ⋮

Ik

n∑
i=1

ai�
i
k
= yk,

II1

n∑
i=1

bi�
i
1
= y�

1
,

⋮ ⋮

IIk

n∑
i=1

bi�
i
k
= y�

k
,

III

n∑
i=1

aibn+1−i = 0.

SN Computer Science (2022) 3:174 Page 11 of 16 174

SN Computer Science

Given y1,… , yk , this is a system of k equations with k
unknowns c1,… , ck . Write (6.1) in the form

Now,

Hence, we may write (6.2) in the form

The matrix A on the left-hand side of (7) has ns on the main
diagonal and −1 elsewhere. Namely, it can be generated by
cyclic permutations of its first row (or column). A matrix
like that is a circulant matrix. We compute its determinant
using [19] (or directly) to get det(A) = (n − k + 1)(n + 1)k−1 .
Since k < n < p , we have det(A) ≠ 0 , and hence A is invert-
ible. Denote c = (c1,… , ck)

T and y the result vector of (7).
We solve (7) to get the unique solution of this system

For g iven y = (y1,… , yk)
T , set c = A−1y . Then

a0 = (a1,… , an) with ai =
∑k

j=1
cj�

−i
j

 is a solution for (6)I1-…
-(6)Ik for which the left-hand side of (6)III is dependent of
the left-hand side of (6)II1-…-(6)IIk . Any other solution
(a1,… , an) ≠ a0 of (6)I1-…-(6)Ik yields an independent sys-
tem (6)II1-…-(6)IIk-(6)III . For such a0 , the right-hand side of
(6)III will be dependent of the right-hand side of (6)II1-…-
(6)IIk if

∑k

j=1
y�
j
⋅ cj = 0 . Denoting (y�

1
,… , y�

k
)T = y� , we write

that condition equivalently as ⟨y�, c⟩ = 0.

To conclude, given
(
y1 … yk
y�
1
… y�

k

)
∈ M2×k(�p) , set c = A−1y

and a0 = (a1,… , an) with ai =
∑k

j=1
cj�

−i
j

 . If ⟨y�,A−1y⟩ = 0

(9)

I1

n∑
i=1

�i
1
⋅

(k∑
j=1

cj ⋅ �
−i
j

)
= y1,

⋮ ⋮

Ik

n∑
i=1

�i
k
⋅

(k∑
j=1

cj ⋅ �
−i
j

)
= yk.

(10)

I1

k∑
j=1

cj ⋅

n∑
i=1

(�j

�1

)i

= y1,

⋮ ⋮

Ik

k∑
j=1

cj ⋅

n∑
i=1

(�j

�k

)i

= yk.

n�
i=1

�
�j

�l

�i

=

⎧
⎪⎪⎨⎪⎪⎩

∑n

i=1
1 = n, j = l,

�j

�l
⋅

1−

�
�j

�l

�n

1−
�j

�l

=

�j⋅

�
1−

�
�j

�l

�−1�

�l−�j
= −1, j ≠ l.

(11)
(n … − 1

⋮ ⋱ ⋮

−1 … n

)(c1
⋮

ck

)
=

(y1
⋮

yk

)
.

(12)c = A−1y.

then a0 is a solution of (6)I1-…-(6)Ik for which (6)II1-…-(6)IIk
-(6)III has pn−k solutions. If ⟨y�,A−1y⟩ ≠ 0 then a0 is a solu-
tion of (6)I1-…-(6)Ik for which (6)II1-…-(6)IIk-(6)III has no
solutions.

We can now count the total number of solutions
(a1,… , an, b1,… , bn) of (6) in each of the following cases.

• Case 1. y = y� = 0 . In this case, one solution is the trivial
solution, (a1,… , an, b1,… , bn) = 0 . By (12) we get here
c = 0 , implying a0 = 0 . Now, (6)I1-…-(6)Ik has pn−k solu-
tions (a1,… , an) . The solution a0 yields pn−k solutions
(b1,… , bn) for (6)II1-…-(6)IIk-(6)III . Among them, only
b = 0 is acceptable, but we have already counted it. So
we are left with pn−k − 1 solutions a for (6)I1-…-(6)Ik .
Each of these yields pn−k−1 solutions b for (6)II1-…-(6)IIk-
(6)III . The vector b = 0 is always one of them, so we omit
it. All in all we get a total of 1 + (pn−k − 1)(pn−k−1 − 1)
valid solutions for (6).

• Case 2. y = 0, y� ≠ 0.
 By (12), we get again c = 0 , implying a0 = 0 . Since

y′ ≠ 0 , b = 0 is not a solution of (6)II1-…-(6)IIk , we
obtain no valid solutions for a0 = 0 . Each of the other
pn−k − 1 solutions a of (6)I1-…-(6)Ik yields pn−k−1 solu-
tions b of (6)II1-…-(6)IIk-(6)III , all of which are valid. All
in all we get a total of pn−k−1(pn−k − 1) valid solutions for
(6).

• Case 3. y� = 0, y ≠ 0.
 Analogous to Case 2.
• Case 4. y ≠ 0 ≠ y′ with ⟨y�,A−1y⟩ ≠ 0.
 In this case there are no solutions with a = 0 or b = 0 .

Here, a0 is a solution for (6)I1-…-(6)Ik which yields no
solution of (6)II1-…-(6)IIk-(6)III . For each of the other
pn−k − 1 solutions of (6)I1-…-(6)Ik there are pn−k−1 solu-
tions of (6)II1-…-(6)IIk-(6)III . Hence, we get a total of
pn−k−1(pn−k − 1) valid solutions for (6).

• Case 5. y ≠ 0 ≠ y′ with ⟨y�,A−1y⟩ = 0.
 As in the previous case, there are no solu-

tions with a = 0 or b = 0 . Here, a0 is a solution of
(6)I1-…-(6)Ik which yields pn−k solutions of (6)II1
-…-(6)IIk-(6)III . For each of the other pn−k − 1 solu-
tions of (6)I1-…-(6)Ik there are pn−k−1 solutions
for (6)II1-…-(6)IIk-(6)III . Hence, we get a total of
pn−k−1(pn−k − 1) + pn−k = pn−k−1(pn−k + p − 1) va l i d
solutions for (6).

Denote

To compute |Ω| , observe that y can be chosen in pk − 1 dif-
ferent ways. For each of these, the condition ⟨y�,A−1y⟩ = 0
is a linear equation with pk−1 solutions. We omit the trivial

Ω =

��
y1 … yk
y�
1
… y�

k

�
∈ M2×k(�p)

���y ≠ 0 ≠ y�, ⟨y�,A−1y⟩ = 0

�
.

 SN Computer Science (2022) 3:174174 Page 12 of 16

SN Computer Science

solution and get |Ω| = (pk − 1)(pk−1 − 1) . By the definition
of Q, the rest follows. ◻

An immediate consequence of Theorem 2 is that, given
(5), all p2 options for (s1, s2) ∈ �

2
p
 are indeed possible: if the

adversary is holding
(
y11 … y1k
y21 … y2k

)
∈ M2×k(�p) , then, for

each of the p2 possible pairs of secrets (s1, s2) ∈ �
2
p
 , there is

a single suitable
(
y1 … yk
y�
1
… y�

k

)
∈ M2×k(�p) . This matrix is

Since all matrices
(
y1 … yk
y�
1
… y�

k

)
∈ M2×k(�p) occur with posi-

tive probability, the adversary simply does not have enough
information to determine the secrets. Now, not all elements (
y1 … yk
y�
1
… y�

k

)
 have the same probability. According to Theo-

rem 2, exactly (pk − 1)(pk−1 − 1) + 1 out of the p2k elements
of M2×k(�p) have a slightly larger probability. We use the
statistical difference function to measure the leakage of
information: if (s1, s2) is a pair of secrets, we denote by Y(s1,s2)
the M2×k(�p)-valued random variables indicating the matrix (
y11 … y1k
y21 … y2k

)
 induced by (s1, s2) , over the Q-picking of v

from Vp . We compute the statistical difference SD(Y(s1,s2),�)
between the distribution Y(s1,s2) and the uniform distribution
over M2×k(�p):

Using Theorem 2, a straightforward computation yields

(
y1 … yk
y�
1
… y�

k

)
=

(
y11 − s1 … y1k − s1
y21 − s2 … y2k − s2

)
.

SD(Y(s1,s2),�) =
1

2
⋅

�
Y∈M2×k(�p)

�����
P
�
Y(s1,s2) = Y

�
− P

�
� = Y

������
=

1

2
⋅

�
�
y1 … yk
y�
1
… y�

k

�
�����
P

��
s1 +

∑n

i=1
ai�

i
1
… s1 +

∑n

i=1
ai�

i
k

s2 +
∑n

i=1
bi�

i
1
… s2 +

∑n

i=1
bi�

i
k

�

=

�
y1 … yk
y�
1
… y�

k

��

−
1

p2k

�����
=

1

2
⋅

�
�
y1 … yk
y�
1
… y�

k

�
�����
P

��∑n

i=1
ai�

i
1
…

∑n

i=1
ai�

i
k∑n

i=1
bi�

i
1
…

∑n

i=1
bi�

i
k

�

=

�
y1 − s1 … yk − s1
y�
1
− s2 … y�

k
− s2

��
−

1

p2k

�����
.

Since the statistical difference is a metric, by the triangle
inequality we get that

for any couple of distributions induced by pairs of secrets,
(s1, s2), (s

�
1
, s�

2
) ∈ �

2
p
.

IT‑Secure Dynamic Somewhat Homomorphic
Database Outsourcing

Our scheme can be used to perform homomorphic evalu-
ation of quadratic functions over variables s1,… , sm , and
arbitrarily long 2-CNF circuits. A quadratic function over
the variables s1,… , sm is of the form

with rij, tk, c ∈ �p . There are p
1

2
(m2+3m+2) such functions. We

can use our scheme to homomorphically evaluate F. For
each of the m

2+m

2
 pairs of variables si, sj , use our scheme

to generate a pair of 1-homomorphic-multiplicative-
polynomials fij, fji , and distribute si, sj among the parties.
This pre-processing stage requires the user send to the
servers O(m2) data, but now F can be homomorphically
evaluated in a straightforward way. Each party Pl simply
evaluates F over its shares of the secrets and sends the
result yl to the dealer. The dealer in turn calculates the
polynomial g going through the points (�l, yl) and finds
g(0) = F(s1,… , sm).

The space complexity of the aforementioned scheme may
be reduced in the cost of lower security parameters. We now
show how one can adjust the suggested scheme and achieve
a scheme with O(m) cyphertext instead of O(m2) . Pick an
element v = (a1,… , an, b1,… , bn) from Vp under the condi-
tion that

∑n

i=1
ai�

i
l
≠ 0 ≠

∑n

i=1
bi�

i
l
 for 1 ≤ l ≤ N . Pick

k1,… , km, l1,… , lm from �p uniformly at random and set
fj(x) = sj + kj

∑n

i=1
aix

i , a n d hj(x) = sj + lj
∑n

i=1
bix

i,
1 ≤ j ≤ m . Distr ibute to par ty Pl the 2m vector (
f1(�l),… , fm(�l), h1(�l),… , hm(�l)

)
 . Now, each party eval-

uates F over his shares of the secrets. The linear parts of F
are computed by each party using either fk or hk . The quad-
ratic parts of F are evaluated by each party as fi(�l) ⋅ hj(�l) .

SD(Y(s1,s2),�) =
(pk − pk−1 + 2)(pk − 1)(pk−1 − 1)

p2k(pn−1 − 1)

≈
p3k−1

p2k ⋅ pn−1
=

1

pn−k
.

SD(Y(s1,s2), Y(s�1,s
�
2
)) ≈

2

pn−k

F(s1,… , sm) =
∑

1≤i,j,≤m

rijsisj +

m∑
k=1

tksk + c,

SN Computer Science (2022) 3:174 Page 13 of 16 174

SN Computer Science

This scheme is perfectly secure against a single party attack,
but is insecure against coalitions of two or more parties.

In various applications, the number of variables is grow-
ing over time. In that case, the method described above can
be modified to allow new variables to be joined with the
primary ones. Explicitly, assume a dealer has s1,… , sm ∈ �p ,
and sm+1,… , sm+k are k more variables whose value may
not be determined yet, and are expected to be determined
and joined with s1,… , sm in the future. We wish to share
s1,… , sm among N parties, in a way that (a) enables homo-
morphic evaluation of quadratic functions over the m vari-
ables; (b) will enable to share, in the future, the k additional
variables among the parties; (c) will enable homomorphic
evaluation of quadratic functions over the m + k variables.
We wish to achieve all that without keeping s1,… , sm in
memory.

We now demonstrate how these dynamic properties
are obtained. For each of the pairs of variables si, sj ,
1 ≤ i ≤ m , i ≤ j ≤ m , use our scheme to generate a 1-homo-
morphic-multiplicative-pair of polynomials, fij, fji , and
distribute si, sj among N parties. As in the non-dynamic
version, quadratic functions over s1,… , sm can now be
homomorphically evaluated. For each of the pairs si, sj ,
1 ≤ i ≤ m , m + 1 ≤ j ≤ m + k , use our scheme to gener-
ate a 1-homomorphic-multiplicative-pair of polynomi-
als, fij, fji . Assuming sm+1,… , sm+k are not known yet, for
m + 1 ≤ j ≤ m + k let the free coefficient of fji be zero,
and keep fji in memory. Distribute si to the parties using
the first of each pair of 1-homomorphic-multiplicative
polynomials, i.e., using fij . Now, when the values of sj ,
m + 1 ≤ j ≤ m + k , are determined, add each of them to
the corresponding polynomial fji , 1 ≤ i ≤ m , and distrib-
ute sj among the parties. In addition to that, for each pair
of variables si, sj , m + 1 ≤ i ≤ m + k , i ≤ j ≤ m + k , gener-
ate a 1-homomorphic-multiplicative-pair of polynomials,
fij, fji , and distribute si, sj among the parties. Now, quad-
ratic functions over the m + k variables, s1,… , sm+k , can
be homomorphically evaluated in a straightforward way as
in the non-dynamic version described above.

A 2-CNF expression over literals s1,… , sm is an expres-
sion of the form (si1 ∨ si2) ∧⋯ ∧ (si2t−1 ∨ si2t) . As we work
in �p , we replace the logic values True and False with the
elements 1 and 0 in �p , respectively (other elements of �p
are not logically defined). Logic operations are replaced
with �p operations as follows. Given literals s1 and s2 , dis-
junction is implemented by s1 + s2 − s1s2 and conjunction
is considered as addition in �p . Negation of s1 is 1 − s1 .
Then, a 2-CNF expression of length 2t is a multi-variable
quadratic function, and is assigned True if the function is
evaluated to t ∈ �p , and False otherwise. There are 22m2+m
such expressions that can be homomorphically evaluated
using our scheme.

Known IT‑Secure Somewhat Homomorphic
Solutions are Not Dynamic

We now review several conventional methods for IT-secure
somewhat homomorphic outsourcing and examine their
(non-) dynamic features.

One may consider using Shamir’s standard scheme and
supporting homomorphic multiplication of secrets by just
taking the polynomials to be of lower degree to-begin-with.
However, such a solution yields a smaller threshold, e.g., if
one runs Shamir’s standard secret sharing scheme with four
parties, and would like to be able to extract a product of
two secrets, he/she would be obligated to work with linear
polynomials. In that case, if an adversary manages to dis-
cover two of the shares of a certain secret, then the secret is
revealed. If one tried to work with quadratic polynomials in
the standard scheme (to achieve security against coalitions of
two parties), then the product polynomial would be of degree
4, and it requires five parties to extract the product. Hence,
this method is not somewhat homomorphic. In our scheme,
even if an adversary manages to reveal two out of four shares
of a certain secret, the secret is information-theoretically
kept. We proved that each of the parties holding two cor-
related secret shares gains absolutely no information about
the secrets. We also proved that a coalition of up to N − 2
curious parties still cannot reveal the exact value of (s1, s2) ,
and that the statistical difference is negligible.

Now, to achieve a somewhat homomorphic effect, one
may consider using Shamir’s standard scheme and sharing,
for each pair of secrets, their product. This method enables
homomorphic evaluation of quadratic functions and 2-CNF
circuits over m secrets using O(m2) ciphertext. Nevertheless,
it is not dynamic since, in this solution, to allow new secrets
to be joined with the primary ones, the user must keep the
old secrets in memory. In our scheme, the primary secrets are
not required to be stored in memory once they were shared.
For example, assume a dealer holds three elements s1, s2, s3
of a finite field �p . Following the simple scheme described
above, the dealer computes the products s1s2, s1s3, s2s3 and
shares the six elements s1, s2, s3, s1s2, s1s3, s2s3 among N
parties. After some time, the dealer obtains a fourth secret,
s4 (that was not known beforehand). To enable evaluation
of quadratic functions over {s1, s2, s3, s4} the dealer must
compute the products s1s4, s2s4, s3s4 and share them among
the parties. To this end, the dealer must store s1, s2, s3 in
memory. In contrast, using our scheme, once the dealer
shared s1, s2, s3 among the parties (using pairs of 1-homo-
morphic-multiplicative-polynomials), there is no need
to keep the secrets in memory by the dealer. Instead, the
dealer prepares pairs of such 1-homomorphic-multiplicative
polynomials for future computation of the products with the
new secret: s1s4, s2s4, s3s4 . To support computation of the

 SN Computer Science (2022) 3:174174 Page 14 of 16

SN Computer Science

product sis4 (1 ≤ i ≤ 3) , the user Q-picks from Vp a 2n-tuple
(a1,… , an, b1,… , bn) , uses a1,… , an as the non-free coef-
ficients for sharing si , and keeps in memory b1, ..., bn to be
used as the non-free coefficients of the polynomials used for
sharing s4 in the future.

One may consider using (a variant of) Beaver’s multi-
plication trick [4] to enable homomorphic multiplication
of m secrets as follows. First, the user N-out-of-N secret
shares sk (for 1 ≤ k ≤ m) among the servers using an addi-
tive secret sharing scheme. E.g., for each secret sk , the
user randomly uniformly picks N − 1 elements of �p and
sets an N’th share to satisfy the condition that the sum of
all N elements equals sk . Then, for each pair of secrets
(si, sj) the user generates independent one-time secret �p
-triples (�ij, �ij, �ij ⋅ �ij) , N-out-of-N secret shares the triples
among the parties using the same additive secret shar-
ing scheme, and reveals si + �ij and sj + �ij to the network.
Now, since s

i
⋅ s

j
= (s

i
+ �

ij
− �

ij
) ⋅ (s

j
+ �

ij
− �

ij
) = (s

i
+ �

ij
)⋅

(s
j
+ �

ij
) − �

ij
(s

j
+ �

ij
) − �

ij
(s

i
+ �

ij
) + �

ij
�
ij
 , IT-secure com-

municationless evaluation of quadratic functions over the
set of secrets is possible. However, this scheme is not
dynamic. If new secrets are to be joined with the primary
ones then, to enable homomorphic multiplication of old
and new secrets, the user must generate an independent
triple for the new and old secrets and publish the corre-
sponding values.

For example, assume (again) that a dealer holds three
elements s1, s2, s3 of �p . Following the variant of Bea-
ver’s trick described above, the dealer N-out-of-N secret
shares s1, s2, s3 among the parties, generates and secret
shares independent random triples (�ij, �ij, �ij ⋅ �ij) (for
1 ≤ i ≤ j ≤ 3), and for each pair of secrets reveals the
corresponding values to the network. After some time,
the dealer obtains a fourth secret, s4 (that was not known
beforehand). To enable homomorphic multiplication of,
say, s1 and s4 , the dealer must generate a random triple
(�14, �14, �14 ⋅ �14) , publish s1 + �14 and s4 + �14 , and secret
share �14 ⋅ �14 . Now, to publish s1 + �14 , the user must keep
s1 in memory, which results in a non dynamic scheme.
In an attempt to avoid it, assume that the dealer picked
�14 before s4 was known and already published s1 + �14 to
the network. Now, when the time comes and s4 is known,
the user should publish s4 + �14 to the network and secret
share �14 ⋅ �14 . To this end, the user must keep �14 in mem-
ory. Now, since s1 + �14 is public, keeping �14 in memory
is (security-wise) equivalent to storing s1 in memory. The
fact that the user is required to store in memory all the �ij s
and that the values si + �ij are all public creates a SPOF
and makes this scheme non-dynamic. We conclude that
this simple variation of Beaver’s multiplication trick can-
not be used to construct a dynamic solution for the out-
sourcing problem.

Conclusions

We have proposed a scheme to perform a homomorphic
multiplication over secret shares without increasing the
number of parties required to extract the product. In our
scheme, we have dealt with N parties and used polynomials
of degree N − 1 . We have shown how to use our scheme to
perform homomorphic and information-theoretically secure
evaluation of quadratic functions and 2-CNF circuits over a
dynamic database of m secrets with O(m2) ciphertext.

Our scheme has several practical applications. For exam-
ple, every problem in 2-SAT is reducible to solving a 2-CNF
Boolean formula. Solving well-known problems in 2-SAT
privately can be very useful. Conflict-free placement of
geometric objects, data clustering, scheduling, and discrete
tomography are but several out of many interesting and prac-
tical problems in 2-SAT. Our scheme may also suggest an
alternative for applications in which Beaver’s multiplica-
tion trick is used to enable homomorphic multiplication of
shared secrets.

The scheme we suggest here is somewhat surprising. We
multiply two secrets that were shared via degree N − 1 poly-
nomial and manage to extract the product using no more
than the N parties we began with, proving it to be IT-secure.
The innovation is in the function sieving method, and in the
way that we built the set Vp and defined the probability Q
over it.

One of the main advantages of our scheme is being
dynamic. To emphasize the virtue of dynamic schemes,
consider a scenario in which a user holds a database con-
taining highly confidential information. It can be, e.g., a
database containing private medical information of patients
of a medical institution, biomedical information of citizens
of a specific country, financial information regarding stocks
in a market, or bank account details of clients of a big bank,
etc. Keeping the entire database on a single server is risky
since it creates a single point of failure (SPOF). If that server
is breached, then the privacy of the entire information is
compromised. An alternative solution is secret sharing the
entire database among several servers and keep no plaintext
copy of the database anywhere. This way, each server holds
zero (or a negligible amount of) information, and security
is maintained even if several servers (up to the threshold of
the secret sharing scheme used) have been breached. Secret
shared databases enable storing confidential information in
a distributed fashion with no SPOF risk. Furthermore, in
our scheme, the servers do not communicate with each other
and hence each server may remain utterly oblivious to the
number and identity of other servers that participate in the
scheme. This fact reduces the risk of adversarial attacks of
large coalitions of servers. In the distributed approach, when
the user needs to observe a specific record in the database,

SN Computer Science (2022) 3:174 Page 15 of 16 174

SN Computer Science

she may retrieve the corresponding shares from the servers
and reconstruct the plaintext.

Two essential requirements arise in this setting. The first
is adding new records to the database over time, and the
second is performing computations over the shared data.
Distributing the database using Shamir’s secret sharing
scheme (as it is) enables adding new records to the data-
base over time, but supports no homomorphic multiplica-
tion of secrets. If one also computes all the possible prod-
ucts of secrets and secret shares them among the servers,
it enables evaluating quadratic functions over secrets, but,
if new records are added to the database, they cannot be
homomorphically multiplied with the primary secrets, since
the corresponding products were not known when the data-
base was shared. To support multiplications of old and new
secrets, the user must keep a copy of the entire database in
memory, which again creates a SPOF and contradicts the
purpose of the distribution process. A dynamic scheme, like
the one we suggest, enables the user to add new records to
the secret shared database and evaluate quadratic functions
over the entire set of secrets, old and new.

Finally, we believe that our approach and proof tech-
niques may open an opportunity for fruitful research on
secure distributed computing, as well as other applications.

Acknowledgements With pleasure, we thank Amos Beimel and Niv
Gilboa for useful inputs.

Funding Research partially supported by the Lynne and William
Frankel Center for Computer Science, the Rita Altura Trust Chair in
Computer Science and also supported by a grant from the Ministry of
Science, Technology and Space, Infrastructure Research in the Field of
Advanced Computing and Cyber Security, the Israel & the Japan Sci-
ence and Technology Agency (JST), and the German Research Funding
Organization (DFG, Grant#8767581199).

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Applebaum B, Brakerski Z, Tsabary R. Perfect secure computa-
tion in two rounds. In: Theory of cryptography conference. New
York: Springer; 2018. p. 152–174.

 2. Akavia A, Gentry C, Halevi S, Leibovich M. Setup-free secure
search on encrypted data: faster and post-processing free. New
York: Technical report. Cryptology ePrint Archive Report; 2018.

 3. Barkol O, Ishai Y, Weinreb E. On d-multiplicative secret sharing.
J Cryptol. 2010;23(4):580–93.

 4. Beaver D. Efficient multiparty protocols using circuit randomiza-
tion. In: Annual international cryptology conference. New York:
Springer; 1991. p. 420–432.

 5. Ben-Or M, Goldwasser S, Wigderson A. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In:

Providing sound foundations for cryptography: on the work of
Shafi Goldwasser and Silvio Micali . 2019. p. 351–371.

 6. Bitan D, Dolev S. Invited paper: Homomorphic operations tech-
niques yielding communication efficiency. In: Devismes S, Mit-
tal N editors. Stabilization, safety, and security of distributed
systems—22nd international symposium, SSS 2020, Austin, TX,
USA, November 18–21, 2020, proceedings. Lecture notes in com-
puter science, vol 12514. New York: Springer; 2020. p. 16–28.

 7. Blakley GR. Safeguarding cryptographic keys. In: 1979 interna-
tional workshop on managing requirements knowledge (MARK).
New York: IEEE; 1979. p. 313–318.

 8. Boneh D, Goh E-J, Nissim K. Evaluating 2-dnf formulas on
ciphertexts. In: Theory of cryptography conference. New York:
Springer; 2005. p. 325–341.

 9. Brakerski Z, Perlman R. Lattice-based fully dynamic multi-key
the with short ciphertexts. In: Annual cryptology conference. New
York: Springer; 2016. p. 190–213.

 10. Chaum D, Crépeau C, Damgard I. Multiparty unconditionally
secure protocols. In: Proceedings of the twentieth annual ACM
symposium on theory of computing. New York: ACM; 1988. p.
11–19.

 11. Dawson E, Donovan D. The breadth of Shamir’s secret-sharing
scheme. Comput Secur. 1994;13(1):69–78.

 12. Damgård I, Ishai Y. Constant-round multiparty computation using
a black-box pseudorandom generator. In: Annual international
cryptology conference. New York: Springer; 2005. p. 378–394.

 13. Dolev S, Li Y. Secret shared random access machine. In: Algo-
rithmic aspects of cloud computing. New York: Springer; 2016.
p 19–34.

 14. Dolev S, Lahiani L, Yung M. Secret swarm unit reactive k-
secret sharing. In: International conference on cryptology in India.
New York: Springer; 2007. p. 123–137.

 15. Dolev S, Gilboa N, Li X. Accumulating automata and cascaded
equations automata for communicationless information theoreti-
cally secure multi-party computation. In: Proceedings of the 3rd
international workshop on security in cloud computing. New
York: ACM; 2015. p. 21–29.

 16. Gentry C. A fully homomorphic encryption scheme. Stanford:
Stanford University; 2009.

 17. Gentry C, Halevi S, Smart NP. Fully homomorphic encryption
with polylog overhead. In: Annual international conference on the
theory and applications of cryptographic techniques. New York:
Springer; 2012. p. 465–482.

 18. Gentry CB, Halevi S, Smart NP. Homomorphic evaluation includ-
ing key switching, modulus switching, and dynamic noise man-
agement. US Patent 9281941. 2016.

 19. Gray RM et al. Toeplitz and circulant matrices: a review. Found
Trends® Commun Inf Theory 2006; 2(3):155–239.

 20. Goldreich O. Foundations of cryptography. Vol. 2. Basic applica-
tions. Cambridge: Cambridge University Press; 2009.

 21. Goldreich O, Micali S, Wigderson A. How to play any mental
game. In: Proceedings of the nineteenth annual ACM symposium
on theory of computing. New York: ACM; 1987. p. 218–229.

 22. Rivest RL, Adleman L, Dertouzos ML, et al. On data
banks and privacy homomorphisms. Found Secur Comput.
1978;4(11):169–80.

 23. Sander T, Young A, Yung M. Non-interactive cryptocomputing
for nc/sup 1. In: 40th annual symposium on foundations of com-
puter science (Cat. No. 99CB37039). New York: IEEE; 1999. p.
554–566.

 24. Shamir A. How to share a secret. Commun ACM.
1979;22(11):612–3.

 25. Smart Nigel P, Vercauteren Frederik. Fully homomorphic encryp-
tion with relatively small key and ciphertext sizes. In International
Workshop on Public Key Cryptography, pages 420–443. Springer,
2010.

 SN Computer Science (2022) 3:174174 Page 16 of 16

SN Computer Science

 26. Van DM, Gentry C, Halevi S, Vaikuntanathan V. Fully homomor-
phic encryption over the integers. In: Annual international confer-
ence on the theory and applications of cryptographic techniques.
New York: Springer; 2010. p. 24–43.

 27. Xu J, Wei L, Zhang Y, Wang A, Zhou F, Gao C. Dynamic fully
homomorphic encryption-based Merkle tree for lightweight

streaming authenticated data structures. J Netw Comput Appl.
2018;107:113–24.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Communicationless Evaluation of Quadratic Functions over Secret Shared Dynamic Database
	Abstract
	Introduction
	Background
	The Secure Outsourcing Problem
	Security of Cryptographic Schemes
	Dynamic Outsourcing
	Homomorphic Properties of Cryptographic Schemes
	Party Interaction

	Related Work
	Our Contribution
	Organization

	Homomorphic Multiplication of Secret Shares
	Function Sieving
	The Scheme

	The Main Results
	The Scheme Correctness
	The Scheme Security

	Perfect Security Against Single Party Attack
	Security Against Coalitions of Curious Parties

	IT-Secure Dynamic Somewhat Homomorphic Database Outsourcing
	Known IT-Secure Somewhat Homomorphic Solutions are Not Dynamic

	Conclusions
	Acknowledgements
	References

