
Vol.:(0123456789)

SN Computer Science (2022) 3:179
https://doi.org/10.1007/s42979-022-01066-4

SN Computer Science

ORIGINAL RESEARCH

On the Importance of the Newborn Stage When Learning Patterns
with the Spatial Pooler

Damir Dobric1  · Andreas Pech2 · Bogdan Ghita3 · Thomas Wennekers3

Received: 10 May 2021 / Accepted: 11 February 2022 / Published online: 3 March 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Hierarchical Temporal Memory (HTM-CLA)—Spatial Pooler (SP) is a Cortical Learning Algorithm for learning inspired
by the neocortex. It is designed to learn the spatial pattern by generating the Sparse Distributed Representation code (SDR)
of the input. It encodes the set of active input neurons as SDR defined by the set of active neurons organized in groups called
mini-columns. This paper provides additional findings extending the previous work, that demonstrates how and why the
Spatial Pooler forgets learned SDRs in the training progress. The previous work introduced the newborn stage of the algo-
rithm, which takes a control of the boosting of mini-columns by deactivating the Homeostatic Plasticity mechanism inside
of the SP in layer 4. The newborn stage was inspired by findings in neurosciences that show that this plasticity mechanism
is only active during the development of newborn mammals and later deactivated or shifted from cortical layer L4, where
the SP is supposed to be active. The extended SP showed the stable learned state of the model. In this work, the plasticity
was deactivated by disabling the homeostatic excitation of synaptic connections between input neurons and slightly inactive
mini-columns. The final solution that includes disabling of boosting of inactive mini-columns and disabling excitation of
synaptic connections after exiting the introduced newborn stage, shows that learned SDRs remain stable during the lifetime
of the Spatial Pooler.

Keywords  Hierarchical Temporal Memory · Cortical learning algorithm · Spatial Pooler · Homeostatic plasticity

Introduction

The Hierarchical Temporal Memory Cortical Learning Algo-
rithm (HTM CLA) is an algorithm inspired by the biological
functioning of the neocortex. It combines a combination of
spatial pattern recognition and temporal sequence learning
[1]. The HTM CLA is the algorithm that can be used to solve
several kinds of problems like anomaly detection [2], object
recognition [3], document categorization [4], Sequence
Learning [5] and many others. In a nutshell, the HTM-CLA
organizes neurons in layers of column-like populations built
from many neurons, such that the units are connected into
structures called areas. Areas, columns and mini-columns
are hierarchically organized [6] and are usually connected in
more complex structures, which implement higher cognitive
functions like invariant representations, pattern and sequence
recognition, etc. HTM CLA in general consists of two major
algorithms: Spatial Pooler and Temporal Memory.

The Spatial Pooler, which is of interest in this work oper-
ates on mini-columns connected to input neurons [7]. This
can be some sensory input or a set of cells activated by

This article is part of the topical collection “Pattern Recognition
Applications and Methods” guest edited by Ana Fred, Maria De
Marsico and Gabriella Sanniti di Baja.

 *	 Damir Dobric
	 ddobric@daenet.de
	 http://damirdobric.me

	 Andreas Pech
	 pech@fb2.fra-uas.de

	 Bogdan Ghita
	 bogdan.ghita@plymouth.ac.uk

	 Thomas Wennekers
	 thomas.wennekers@plymouth.ac.uk

1	 Frankfurt University of Applied Sciences, Daenet GmbH,
Frankfurt, Germany

2	 Frankfurt University of Applied Sciences, Frankfurt,
Germany

3	 University of Plymouth, Plymouth, UK

http://orcid.org/0000-0002-7150-8421
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01066-4&domain=pdf

	 SN Computer Science (2022) 3:179179  Page 2 of 10

SN Computer Science

cortical learning of some connected population of neurons.
The SP is responsible to learn spatial patterns by encoding
the pattern into the sparse distributed representation (SDR).
The created SDR is represented as a population of active
mini-columns, which is further used as the input for the
Temporal Memory (TM) algorithm.

The TM is an algorithm that is responsible for learning
sequences. Experiments in previous work [8] show that the
originally designed version of the Spatial Pooler is unstable.
This means, that the learned patterns will be forgotten dur-
ing the learning process and then learned again. Results also
showed that the Spatial Pooler oscillates between stable and
unstable state. Experiments show the instability in the learn-
ing process does not happen for all patterns at the same time.
Instability was always detected for a single or few patterns.
Over time, unstable patterns become stable, but some new
patterns can become unstable.

For example, the Spatial Pooler can keep the stable SDR1
for pattern p1, while SDR2 for pattern p2 becomes unstable
and so on. Having a stable SDR is essential for all other cor-
tical functions that rely on the generated SDR. An unstable
Spatial Pooler will also cause the Temporal Memory algo-
rithm to forget learned sequences.

The previous work [8] investigated the instability of the
SP and introduced a newborn stage of SP. The extended
algorithm prevents the original SP algorithm to enter unsta-
ble (“epileptic”) behaviour. The newborn stage was designed
to first enable the homeostatic plasticity mechanism [9]
that boosts inactive columns, and then to disable it. The
modification has shown better stability of the SP, but it still
produced oscillations in the learning process. This paper
extends the previous work and shows that the SP can become
almost completely stable if the excitation of inactive synap-
tic connections between input neurons and mini-columns is
also controlled and disabled after exiting the newborn stage.

Methods

To analyse the learning process of the Spatial Pooler, an
instance of the SP with the set of common parameters was
used (see Table 1).

Experiments were done with a different number of columns.
Results shown in this paper are produced by using 2048 mini-
columns. In this specific case, the scalar encoder was used
to encode the scalar input values, which are presented to the
Spatial Pooler during the learning process. The SP was trained
to remember values between 0 and 100. Before presenting an
input to the Spatial Pooler, every input value was encoded with
200 bits, each value is encoded with 15 non-zero bits.

Figure 1 shows three examples of encoded scalar values
used as input for SP. For more detailed information about
the meaning of all parameters, please see [10].

Figure 1 represents scalar values 0, 1 and 2. The encoded
input value is on the right and the corresponding SDR is on
the left. The grey colour in the figure represents zero bits
(background of the image) and the black colour represents
the non-zero bits. Grey dots on the left represent a set of
active columns after encoding the given input.

Inspired by the homeostatic plasticity mechanism [9, 11,
12], the Spatial Pooler algorithm implements a boosting
of inactive columns and excitation of inactive (weak) syn-
apses. This influences the excitation and inhibition balance
of neural cells and is likely important for maintaining a sta-
ble cortical state. The functional stability of neural circuits
is achieved by homeostatic plasticity. It keeps in balance the
network excitation and inhibition and coordinates changes
in circuit connectivity [13]. This mechanism is implemented
explicitly in the Spatial Pooler [8] and it makes that all col-
umns are uniformly used across all seen patterns.

Because this mechanism is continuously active, it can
perform the boosting of mini-columns and excitation of syn-
apses that already build learned SDRs. Once that happens
the Spatial Pooler will “forget” some learned patterns. If the
forgotten pattern is presented again to the SP, it will start
learning it again.

To analyse the learning behaviour of the Spatial Pooler,
a set of input patterns was presented to the SP instance over
many iteration steps.

Every input pattern is encoded by the Spatial Pooler into
SDR represented as a set of indices of active columns Ak of
the given pattern in iteration k. In every learning step of the
same pattern, the similarity between SDR in step k and step
k + 1 is calculated as shown in Eq. 1.

Table 1   Spatial Pooler parameters used in experiments

Set of parameters shown in the table that are used in experiments
with the Spatial Pooler

Parameters Value

INPUT BITS 200
COLUMNS 2048
GLOBAL_INHIBITION True
NUM_ACTIVE_COLUMNS_PER_INH_AREA 2% (40)
STIMULUS_THRESHOLD 0.5
SYN_PERM_INACTIVE_DEC 0.01
SYN_PERM_ACTIVE_INC 0.01
SYN_PERM_CONNECTED 0.1
MIN_PCT_OVERLAP_DUTY_CYCLES 0.001
MIN_PCT_ACTIVE_DUTY_CYCLES 0.001
POTENTIAL_RADIUS 1024
DUTY_CYCLE_PERIOD 100
MAX_BOOST 10

SN Computer Science (2022) 3:179	 Page 3 of 10  179

SN Computer Science

The similarity s is defined as a ratio between the num-
ber of elements (cardinality) of the same active columns in
SDRs generated in steps k and k + 1 and a maximum num-
ber of active columns in two comparison steps. The Spatial
Pooler is by definition stable if the generated SDR of the
same pattern does not change for the entire life cycle of the
Spatial Pooler. In this case, the similarity between all SDRs
of the same pattern is 100%.

Figure 2 shows the SDR of the same input pattern pre-
sented to SP in more than 25,000 iterations.

The Spatial Pooler learns patterns very fast. It requires
usually no more than two to three iterations to learn the pre-
sented pattern. The y-axis shows the similarity s of SDRs in
the current iteration step and the previous step. The x-axis
shows the iteration step. The similarity of 100% means the
learned SDR does not change over time. After an unspecified
number of iterations, the SP forgets the learned SDR and
starts learning again. Every time the SDR changes, it means

(1)s =
|Ak ∩ Ak+1|

max(|Ak|, |Ak+1|)
.

the learned SDR for that pattern is changed. Because the
new SDR for the pattern is created, the previously learned
one is forgotten. In that case, the similarity drops from 100%
to zero or some other value.

In contrast, keeping the similarity at 100% means that the
learned SDR for the same input is the same for the entire
iteration interval. If the similarity is less than 100%, gener-
ated SDRs of the same input are different. This indicates
an unstable Spatial Pooler. As shown in Fig. 2, the learned
state oscillates between stable and unstable states during
the entire learning time, which is not a useful behaviour for
real-life applications.

This experiment clearly shows the instability of the Spa-
tial Pooler, but it does not show any details about the encod-
ing of the SDR. Figure 3 shows the same behaviour from a
different point of view. It shows how the SDR of the same
pattern is encoded in the first 300 iterations (cycles) on the
example of a single input value. The Spatial Pooler generates
a stable SDR right at the beginning of the learning process
and keeps it stable (unchanged) for approximately 200 itera-
tions. After that, SDR will change until the Spatial Pooler
enters the stable state again (not shown in the figure).

In the next experiment, the boosting was disabled by set-
ting DUTY_CYCLE_PERIOD and MAX_BOOST to zero
value. These two values disable the boosting algorithm in
the Spatial Pooler.

Results show that the SP with these parameters pro-
duces stable SDRs as shown in Fig. 4. The figure shows an
example of a stable encoding of the single pattern with the
disabled boosting algorithm. The SP learns the pattern and
encodes it to SDR in a few iterations (typically 2–3) and
keeps it unchanged (stable) during the entire life cycle of
the SP instance.

By following this result, the stable SP can be achieved by
disabling the boosting algorithm.

Fig. 1   Examples of three input values encoded by the scalar encoder
(right) and their corresponding Sparse Distributed Representation
(left) encoded by the Spatial Pooler

0

10

20

30

40

50

60

70

80

90

100

0
89

3
17

86
26

79
35

72
44

65
53

58
62

51
71

44
80

37
89

30
98

23
10

71
6

11
60

9
12

50
2

13
39

5
14

28
8

15
18

1
16

07
4

16
96

7
17

86
0

18
75

3
19

64
6

20
53

9
21

43
2

22
32

5
23

21
8

24
11

1

SDR similarity in dependence on the itera�on step

Fig. 2   Unstable Spatial Pooler. SP learns the pattern and keeps the
SDR unchanged for some iterations. When boosting gets active SP
forgets the SDR (similarity drops) and starts learning again

	 SN Computer Science (2022) 3:179179  Page 4 of 10

SN Computer Science

Unfortunately, without the boosting mechanism, the SP
generates SDRs with an unpredictable number of active
mini-columns. Figure 5 shows two input values ‘0’ and ‘6’.
The x-axis represents indexes of active mini-columns, which
participates in the encoding of the input value. The y-axis
represents the learning iteration. The SP is stable if the SDR
code does not change over time. As already mentioned, disa-
bling boosting will cause the SP to enter the stable state as
shown in Fig. 5. The value ‘0’ is encoded with approxi-
mately 40 active mini-columns and the value ‘6’ is encoded
with 4 active mini-columns. This is a significant unwanted
difference. Experiments showed that some patterns can even
be encoded without any active mini-column if boosting is
disabled completely or early disabled.

If the number of active mini-columns in an SDR for different
inputs is significantly different, the further processing of memo-
rized SDRs will be negatively influenced. Most operations in the
Hierarchical Temporal Memory rely on the calculation of the

overlap between neural cells, synapses or mini-columns [14]. In
that case, SDRs with a much higher number of active columns
will statistically produce higher overlaps, which is not in balance
with other SDRs with less active cells.

The parameter NUM_ACTIVE_COLUMNS_PER_INH_
AREA defines the percentage of columns in the inhibition area,
which will be activated by the encoding of every single input
pattern. Inspired by the neocortex, this value is typically set at
2% [1, 15]. Using the global inhibition in these experiments
by the entire column set of 2048 columns the SP will gener-
ate SDRs with approximately 40 active columns. The boosting
mechanism inspired by homeostatic plasticity in the neocortex
solves this problem by consequent boosting of passive mini-col-
umns and inhibiting too active mini-columns. As long the learn-
ing is occurring, the SP will continuously boost mini-columns.
Every time the boosting takes a place, some learned patterns
(SDRs) might be forgotten, and learning will continue when the
same pattern appears the next time.

It can be concluded that the stability of the SP can be influ-
enced by the boosting mechanism. The SP can enter the stable
state, but it will produce SDRs with a significantly different
number of active mini-columns. In contrast, if boosting is
enabled, the SP will uniformly activate mini-columns, but the
learning will be unstable.

Previous findings in neural sciences [16] show that
homeostatic plasticity boosting is only active during the
development of a newborn animal and then deactivated or
shifted from cortical layer L4, where Spatial Pooler is sup-
posed to be active. The Spatial Pooler operates on sensory

Fig. 3   SDR shows active columns (SDR) of the learned input in the
first 300 iterations (cycles). The learned SDR is unchanged (stable)
in approximately. The first 200 iterations. After that, it gets unstable

0

20

40

60

80

100

0
13

16
26

32
39

48
52

64
65

80
78

96
92

12
10

52
8

11
84

4
13

16
0

14
47

6
15

79
2

17
10

8
18

42
4

19
74

0
21

05
6

22
37

2
23

68
8

SP keeps stable SDR

Fig. 4   Spatial Pooler generates stable SDR after the boosting is disa-
bled

Fig. 5   Two SDRs with different numbers of active mini-columns pro-
duced by Spatial Pooler with disable boosting

SN Computer Science (2022) 3:179	 Page 5 of 10  179

SN Computer Science

inputs, which are commonly connected to the cortical layer
L4 [17]. By following this finding, this work extends the
Spatial Pooler algorithm and introduces the newborn stage
of the Hierarchical Temporal Memory and Spatial Pooler.

Deactivation of the boosting in homeostatic plasticity in
the cortical layer L4 can also be applied to Spatial Pooler. It
is still not clear exactly how this mechanism exactly works.
However, by following findings in this area the same or simi-
lar mechanism inside of the SP can be adopted. Currently, in
the HTM, this mechanism consists of boosting and inhibi-
tion algorithms, which operate on the mini-column level and
not on the cell level inside of the mini-column. The reason
for this is that SP operates explicitly on the population of
neural cells in mini-columns and does not make usage of
individual cells [7]. Individual cells rather play an important
role in the Temporal Memory algorithm [1].

The main idea in this work, with the aim to stabilize the
SP and keep using the plasticity, is to add an additional
algorithm to SP, which does not influence the existing SP
algorithm. The extended Spatial Pooler is based on the algo-
rithm implemented in the new component called Homeo-
static Plasticity Controller. The controller is “attached” to
the existing implementation of the Spatial Pooler. After the
computation in each iteration, the input pattern and cor-
responding SDR are passed from the SP to the controller.
The controller keeps the boosting active until the SP enters
the stable state, measured over the given number of itera-
tions. During this time the SP is operating in the so-called
newborn stage and will produce results similar to results
shown in Figs. 2 and 3. Once the SP enters the stable state,
the new algorithm will disable the boosting and notify the
application about the state change. The controller tracks the
participation of mini-columns overall seen patterns. After
the controller notices that all mini-columns are approxi-
mately uniformly used and all seen SDRs are encoded with
approximately the same number of active mini-columns, the
SP has entered the stable state. From that moment, the SP
will leave the newborn stage and continue operating as usual
but without the boosting. The previous work [8] focused
exclusively on the boosting of mini-columns. That is, mini-
columns that do not participate enough in the learning pro-
cess will be boosted. In the boosting process of the mini-
column, the calculated overlap will be multiplied by some
factor. Unboosted mini-columns will use the factor 1.0. This
delivers acceptable results. In this work, the Homeostatic
Plasticity Controller takes also the control of synapse excita-
tion in the Spatial Pooler into account. Every mini-column
creates a set of synaptic connections to the input neurons.
These synapses are strengthened in every learning cycle if
the synapse is connected to the active input neuron. If the
mini-columns, synapses do not connect often enough to the
active input neurons, then the value of the permanence of
synapses (known as weight in classic neural networks) is

incremented. We call the process of this increment “weak
synapse excitation”.

In this work, the weak synapse excitation was also switched
off to initiate the exit of the newborn stage of the Spatial Pooler.
This makes sure that the stable Spatial Pooler will no longer get
unstable in future learning iterations if some mini-column does
not uniformly activate synapses across the entire input pattern set.

Results

To validate that the Spatial Pooler algorithm can be improved
to reliably generate a stable state with the help of the Home-
ostatic Plasticity controller, the following experiment was
designed. The experiment (see Listing 1) executes 25,000
iterations and presents 100 scalar values to the SP. It was
repeated more than a thousand times for various configura-
tions. The scalar encoder used in line 11 is configured with
the set of parameters (line 5) described in Table 2. Every
input value (0–100) will be encoded as the vector of 200
bits. Also, every single value from the specified range will
be encoded with 15 non-zero bits as shown in Fig. 1—right.

Table 2   Scalar Encoder
parameters

Parameters Value

W—Bits for coding of
the single value

15

N—Input bits 200
MinVal 0
MaxVal 100

	 SN Computer Science (2022) 3:179179  Page 6 of 10

SN Computer Science

The instance of the Spatial Pooler (line 7) with the com-
mon set of parameters (line 3) has been created. The same
configuration was used in the experiment described in the
previous section, which produced results shown in Figs. 2
and 3. The Homeostatic Plasticity Controller (line 6) is typi-
cally attached to the Spatial Pooler instance (line 7, second
argument) and used inside of the compute method.

The Homeostatic Plasticity Controller (HPC) requires
the callback function (line 6, second argument), which is
invoked when the controller detects the stable state of the
Spatial Pooler. The experiment is designed to execute any
number of training iterations (line 8 defines 25,000 itera-
tions). In every iteration, the Spatial Pooler is trained with
the whole set of input values Ι (line 9).

The spatial input is trained in line 11. The output of the
training step in line 11 is an SDR code (set of active mini-
columns) associated with the encoded input value i. Before
being presented to the Spatial Pooler, the input value i is
encoded by the Scalar Encoder configured with the named
set of parameters shown in Table 2. The encoder is repre-
sented as a function e that converts the given scalar value to
the binary array:

e ∶ ℝ → {0, 1}.

The computation inside of HTM operates exclusively
on binary arrays as the neocortex does it. The existing SP
compute algorithm is in this work extended to invoke the
algorithm implemented in the Homeostatic Plasticity Con-
troller (HPC) shown in Algorithm 1. The HPC computation
takes place after the Spatial Pooler has computed the current
iteration.

The HPC Algorithm 1 starts with two inputs. The first
one is the binary array of an encoded input pattern and the
second one is the SDR as calculated by the SP for the given
input

In the beginning, the algorithm does not perform any
change in the SP. This period is called the newborn stage.
The Homeostatic Plasticity Controller will disable the boost-
ing in the Spatial Pooler after the minimum required num-
ber of iterations m (minCycles) is reached (line 15). When
the iteration number is larger than m, the boosting is disa-
bled by setting parameters DUTY_CYCLE_PERIOD and
MAX_BOOST to zero. These parameters update the boost
factors for every single column in every iteration. The boost
factors are used in the Spatial Pooler to increase the num-
ber of connected synapses (overlap) of inactive columns.
Increased overlap of inactive columns improves the chance
of the column becoming active.

SN Computer Science (2022) 3:179	 Page 7 of 10  179

SN Computer Science

After disabling the plasticity, the algorithm starts track-
ing all seen patterns and their associated SDRs. To avoid
the saving of the entire input dataset internally, function
hash calculates the hash value (line 6) over the sequence
of bits of the input in the current iteration. The calculated
hash value is a sequence of bytes defined as a set H (line
7). In line 8, the tuple of the input’s hash value H and the
number of active columns of the corresponding SDR is
associated with the set E. The set E remembers p tuples of
every input. As discussed in the previous section, the goal
is to keep the number of active columns uniform across
all generated SDRs. The value � is the average change of
the number of active columns in each SDR in the cycle
interval p (line 9).

The cycle interval p is the number of previous iterations
used to calculate the � . In most experiments, this value was
set to five. This is an acceptable value because the SP does
not change the number of active columns, once the stable
state is entered.

The value � is calculated as an average sum of deltas
�Hk − �H(k+1) in the last p iterations for the given input hash
value H.

Having this value zero is the first condition of the stability
of the new Spatial Pooler. This value is zero if the number
of active columns of the SDR of the same input does not
change over time defined by the number of iterations p.

The second condition for stability of the Spatial Pooler
is the achieving of the constant SDR for every input seen
by the Spatial Pooler during the entire training process. For
this reason, the set ℋ is used to keep tuples (H,o) of input
hash values and their SDRs. SDRs of inputs in upcoming
iterations override the previously stored tuple of the current
input. There is always a single tuple (H,o) for every input
inside of H . Tuples in H are used to calculate the correlation
c between the previous and the current SDR of the given
input (lines 10, 11). If the correlation between the last SDR
(output of learning cycle for the given input pattern) o′ and
the new (current) SDR o of the given input i is larger, then
the specified tolerance threshold � (typically near 100%) and
the first condition � = 0 is fulfilled, then the counter of stable
iterations of the given input i is incremented (line 12). If the
correlation between o and o� is under the tolerance threshold
� , the number of stable iterations for the given input pattern
is reset to zero. The threshold � can theoretically be set to
1.0. However, the SP internally always select the specific
number of active mini-columns. If two mini-columns have
the same overlap, they will compete for activation. The
selection of competing mini-columns is a random process,
which can lead to the selection of a different mini-column in

� =
1

p
×

p−1∑

k=0

|εHk − εH(k+1)|ϵH ∈ E.

learning cycles. The HPC algorithm encounters this behav-
iour and builds in the explicit tolerance defined by � less
than 1.0. The better solution here would be to change the
SP algorithm to allow side by side activation of competing
mini-columns, which would be a probably more biological
way of activation than the current one.

The second condition that corresponds to the stable state
of the Spatial Pooler is fulfilled if the γH (number of stable
iterations) reach the defined threshold � (line 13) for every
seen input during the training process. In all experiments, �
= 50 was used. In most experiments, the chosen value was
between 15 and 150. Every time, the correlation value is less
than threshold � the counter of stable iterations γH for the
given input is reset.

After entering the stable state, all generated SDRs should
remain unchanged for the entire lifetime of the Spatial Pooler
instance. The SP is defined as stable if both described con-
ditions are satisfied: Uniform number of active cells in all
SDRs and Required number of stable iterations for all SDRs
is reached.

The implementation of the algorithm of HPC [18] con-
tinues to track the stability after the SP has reached a stable
state. Results show that the extended Spatial Pooler with
HPC algorithm gets always stable with the uniformly dis-
tributed number of active columns for all SDRs.

Figure 6 shows the SDRs of two coincidently used spatial
input samples. Values ‘0’ and ‘1’ are both encoded with the
stable SDR after approximately 300 iterations. As shown
in the figure, generated SDRs are unstable in the first 300
iterations. Active columns which encode SDRs are in the
first 300 steps continuously changed. This iteration inter-
val is called HTM newborn stage and it is defined by the
parameter m (line 15). In this stage, the stimulation of
mini-columns and weak synapses is active and SDRs of all
inputs are changing frequently during the learning process
(approximately the first 300 hundred cycles in Fig. 6). After
approximately 300 cycles the HPC disables the stimulation
and SDRs converge very quickly to the stable state, which
remains during the life cycle of the Spatial Pooler. In this
experiment, tests were done with up to 30,000 iterations.
The SP remains stable with one exception. Some experi-
ments show that SP can also get unstable shortly after enter-
ing the stable state.

This instability is according to the design of the HPC
algorithm enforced when the currently processing input
changes its SDR. The HPC will in this case reset the coun-
ter of stable iterations for the given input (line 14), which
will declare the SP as unstable. When this exception occurs,
the learning can continue until the SP enters the stable
state again for the entire life cycle of the SP instance. This
unwanted behaviour occurs mostly when the chosen num-
ber of minimum required iterations m is too low. Choosing
larger values for m seems to solve this exceptional behaviour

	 SN Computer Science (2022) 3:179179  Page 8 of 10

SN Computer Science

but it takes a longer time to leave the newborn stage and
enter the stable state. However, even when choosing higher
values for m, the SDR of a pattern might slightly change
over time.

The HPC uses the tolerance threshold � to decide when
the SP gets stable or unstable. SP chooses the set of active
mini-columns by sorting them by overlap. During the
learning process, some synapses between columns and
input neurons might increase their permanence. This can
increase the overlap of some mini-columns and include
them in the set of active mini-columns. Because the SP
holds constant the number of mini-columns per input pat-
tern, some previously active mini-columns will be removed
from the set of active mini-columns. For example, assume
that the four-active-column SDR(i,t) of the input i at the
stable iteration t is C1–10, C5–10, C15–9, C20–9. The first
number is the index of the column and the second one is
the overlap of the column. At the current iteration, col-
umn C14 has an overlap 8. It is not included in the SDR,
because 4 mini-columns with the highest overlap build the
SDR. During the learning process in the next iteration,
column C14 might increase its overlap from 8 to 9. In this
case, the SDR(i,t + 1) will become C1–10, C5–10, C14–9
and C15–9. The previously active mini-column C20 with
the same overlap 9 is now replaced with C14–9. With the
tolerance threshold � = 1.0 , this change would cause the
HPC to degrade the stable SP to the unstable one in the
iteration t + 1. In contrast, the tolerance threshold � = 0.75 ,
would keep the SP stable if a single mini-column in the

SDR of four mini-columns is replaced. In most tests, we
figured out that � = 0.975 by 40 active mini-columns of
2048 generates stable SP. Higher � values cause the SP to
temporary becomes unstable after a stable state.

Application developers should choose a reasonable
value for their specific use case. Even if this value is not
ideally selected, the HPC will notify the application when
the SP gets unstable. With this, any required action can be
performed inside of the application.

Figure 7 shows this behaviour. The HPC was configured
in this experiment to use a relatively low iteration value
m = 30 for the minimum required number of iterations for
the newborn stage. This is typically a very short interval
for a newborn stage. In the first experiment Fig. 7 (left) �
=1.0 was used. It means no SDR change is allowed to keep
the stable state. In the second experiment Fig. 7 (right) �
= 0.975 was used. It means the single mini-column can be
replaced by 40 active mini-columns. In the first experiment,
the SP entered the stable state in iteration 129 (left, green
line), but, it got temporarily unstable in iteration 391 (left,
red line), because the single mini-column was replaced. In
the second experiment, the SP entered the stable state at
iteration 84 (right, green line). Because in the second experi-
ment with the � = 0.975, few column replacements during
the learning process are allowed. Figure 7 (right) shows
stable SP, even if some columns are replaced after enter-
ing the stable state (right, blue line). In both cases, the SP
behaves the same way, but HPC uses a different threshold
to decide the iteration step of stability. Please note that in

Fig. 6   Spatial Pooler in the stable state representing two SDRs of two
input pattern examples with the activated Homeostatic Plasticity Con-
troller

Fig. 7   Spatial Pooler soon after entering the stable state become tem-
porarily unstable for some input patterns in few learning iterations.
After a few iterations, the SP becomes stable again and remains in a
stable state. Used similarity threshold � = 0.97 and � = 1.0.

SN Computer Science (2022) 3:179	 Page 9 of 10  179

SN Computer Science

described experiments stability was entered by learning dif-
ferent inputs.

In this work, it was also analysed how stability is reached
across the entire input data set. To test this, the HPC trace
was created at the iteration that occurred long after enter-
ing the stable state. The trace contains the number of stable
cycles for all patterns. As shown in Fig. 8, all patterns have
mostly a different number of stable cycles. In this experi-
ment, the SP entered the stable state at iteration 441 (shown
previously in Fig. 7) and the experiment was stopped at iter-
ation step 4012, which is in the stable state. The minimum
number of stable states 3637 was detected for the input 64
and the maximum number 3962 of stable states was detected
for multiple numbers 0, 1, 2, 3, 4, 5, 6 and some more. As
described, the SP stability in experiments was defined by
� = 50 . Notice, by subtracting 4012 − � we get the maxi-
mum number of stable cycles. That means that inputs with
the maximum number of stable cycles entered a stable state
at the very beginning of the learning process. This shows
that some patterns are stabilized very early and some others
need a more cycles to learn the pattern even if all patterns
have been uniformly presented.

Figure 9 shows all SDRs stored in the Spatial Pooler after
entering the stable state. As mentioned, the set of encoded
scalar input values 1–100 was used to train the SP. The
x-axis shows input value 1–100. Y-axis shows the columns
that are active for every of the given inputs. For example,
black dots along the green line shows the SDR code of the
scalar input value 60. When presenting the input 60 to SP,
the mini-columns along the green line are activated.

Conclusion

The Hierarchical Temporal Memory algorithm is inspired
by the neocortex and implements many known features that
have roots in neurosciences. Nowadays, many results show
that the algorithm is very flexible and can solve different
kinds of problems like sequence learning, anomaly detec-
tion, object recognition, classification, etc., [1–5]. However,
the reverse engineering of the neocortex is still a complex
and unsolved task. All design decisions in the algorithm
are based on findings in neuroscience, but some features
still might be assumptions and work in progress. This paper
focuses on the instability issue of the HTM Spatial Pooler
algorithm when memorizing spatial patterns in an unsuper-
vised way. As discussed, the original Spatial Pooler already
integrates some sort of homeostatic plasticity mechanism
discovered in previous work in neurosciences. However, the
original algorithm caused instability in the learning pro-
cess, which makes it very difficult to build reliable applica-
tions. This work briefly analysed this issue and provides
the solution by extending the existing SP algorithm with
the new component called Homeostatic Plasticity Controller
(HPC). The new Spatial Pooler extended with the HPC is
also motivated by findings in neurosciences, that document
the activity of this mechanism during the development of
the species. Inspired by this finding the new Homeostatic
Plasticity Controller introduces the newborn stage of the
Spatial Pooler. This work demonstrates how important is
the high activity of plasticity in the early development phase
of the cortical tissue in this work modelled as HTM. This

3400

3500

3600

3700

3800

3900

4000

0 10 20 30 40 50 60 70 80 90

Pa�ern stable cycles
last itera�on=4012, min=36637, max=3962

Fig. 8   The internal trace of the Homeostatic Plasticity Controller
showing a number of stable cycles of each generated SDR for the
entire input data set

Fig. 9   All SDRs at once. Representation of all generated SDRs seen
in the training process of 100 input patterns. The horizontal axis
shows the index of the input. The vertical axis shows the SDR. Every
black “dot” represents the active mini-column

	 SN Computer Science (2022) 3:179179  Page 10 of 10

SN Computer Science

plasticity mechanism has the disadvantage of disrupting the
stable learning process, but at the same time ensures that
the activity of the mini-columns is evenly distributed in the
experimental tissue. In this newborn stage, the SP stimu-
lates the inactive mini-columns and synapses connected to
input neurons. The new HPC extension of the SP algorithm
waits for a specified number of iterations (newborn stage)
and then switches off the synaptic and mini-column stim-
ulation mechanism waiting on the SP to enter the stable
state. With this approach, the SP converges very quickly to
a stable state. Applications can subscribe to the event that
notifies about the state change of the SP. The immediate
disabling of boosting is not a natural mechanism. However,
if required, disabling of boosting can be easily adapted to
slow down exiting the newborn stage in a more natural (bio-
logical) way. To conclude, the original version of the SP
enters unexpectedly the unstable state that behaves similar
to an “epileptic” state. The new SP with the HPC and the
newborn stage controlled by HPC improves the overall qual-
ity of the learning of the SP and enables the implementation
of more reliable solutions. Another work in progress in this
context is related to the design of the parallel version of the
HTM. The new HPC algorithm needs to be validated for
parallel implementation [19].

Funding  Not applicable.

Availability of data and materials  Not applicable.

Code availability  All experiments described in this paper are imple-
mented in C#/.NET dotnet standard 2.1 compatible with the latest
release.NET 6.0. The Hierarchical Temporal Memory framework with
the Spatial Pooler used in experiments is based on the open-source pro-
ject NeocortexApi. The source code and documentation can be found
at GitHub [10]. The experiment related to the stability of the Spatial
Pooler is implemented in a form of the UnitTest inside of the Microsoft
Unit Testing framework integrated with Visual Studio. The test used
for the stability experiment is called SpatialPooler_Stability_Experi-
ment_3. It is implemented in the source file SpStabilityExperiments.
cs. This code generates three output CSV files: -ActiveColumns.csv,
-ActiveColumns-plotlyinput.csv and -Oscillations.csv.

ActiveColumns files hold the same information in a slightly dif-
ferent format than ActiveColumns-plotlyinput.csv. Both files con-
tain active columns (SDR) for every trained digit in every iteration.
ActiveColumns-plotlyinput.csv can be used as the input for the Python
script to generate diagrams that represent active columns shown in
Fig. 6.

The script used to generate the diagram is called draw_figure.py
and can be found at the following location: /Python/ColumnActivi-
tyDiagram/draw_figure.py.

Further information about running the script can be found in the
Python script. The file Oscillations.csv file is used to generate the
diagram shown in Fig. 1. This diagram was generated by Microsoft
Excel.

Declarations 

Conflict of interest  Not applicable.

References

	 1.	 Hawkins S. Why neurons have thousands of synapses, a theory
of sequence memory in neocortex. Front Neural Circuits. 2016.
https://​doi.​org/​10.​3389/​fncir.​2016.​00023.

	 2.	 Ahmad S, Lavin A, Purdy S. Unsupervised real-time
anomaly detection for streaming data. Neurocomputing.
2017;262:134–47.

	 3.	 Wielgosza M, Pietron M. Using spatial pooler of hierarchical
temporal memory to classify noisy videos. Krakow: aAGH Uni-
versity of Science and Technology; 2016.

	 4.	 Shah D, Ghate P, Paranjape M, Kumar A. Application of hierar-
chical temporal memory—theory for document categorization.
In: IEEE Xplore, San Francisco, 2018.

	 5.	 Cui Y, Ahmad S, Hawkins J. Continuous online sequence learn-
ing with an unsupervised neural network model. Neural Com-
put. 2016;28(11):2474–504.

	 6.	 Mountcastle. The columnar organization of the neocortex. J
Neurol. 1997;120:701–22.

	 7.	 Cui Y, Ahmad S, Hawkins J. The HTM spatial pooler, a neo-
cortical algorithm for online sparse distributed coding. Front
Comput Neurosci. 2017;11:111.

	 8.	 Dobric D, Pech A, Ghita B, Wennekers T. Improved HTM spa-
tial pooler with homeostatic plasticity control. In: Proceedings
of the 10th international conference on pattern recognition
applications and methods, Vienna, 2021.

	 9.	 Turrigiano GG, Nelson SB. Homeostatic plasticity in the devel-
oping nervous system. Nat Rev Neurosci. 2004;5:97–107.

	10.	 Dobric D. GitHub. 2018. [Online]. https://​github.​com/​ddobr​ic/​
neoco​rtexa​pi.

	11.	 Davis GW. Homeostatic control of neural activity—from
phenomenology to molecular design. Annu Rev Neurosci.
2006;29:307–23.

	12.	 Davis GW. Homeostatic signaling and the stabilization of neural
function. Neuron. 2013;80:09–044.

	13.	 Tien NW, Kerschensteiner D. Homeostatic plasticity in neural
development. ND Neural Dev. 2018. https://​doi.​org/​10.​1186/​
s13064-​018-​0105-x.

	14.	 Ahmad S, Hawkins J. How do neurons operate on sparse dis-
tributed representations? A mathematical theory of sparsity,
neurons and active dendrites. 2016. arXiv:​1601.​00720

	15.	 Finelli LA, Haney S, Bazhenov M, Stopfer M, Sejnowski TJ.
Synaptic learning rules and sparse coding in a model sensory
system. PLOS Comput Biol. 2008;4:e1000062.

	16.	 Maffei A, Nelson SB, Turrigiano GG. Selective reconfigura-
tion of layer 4 visual cortical circuitry by visual. Nat Neurosci.
2004;7:1353–9.

	17.	 Hawkins J, Ahmad S, Cui Y. A theory of how columns in the
neocortex enable learning the structure of the world. Front Neu-
ral Circuits. 2017;11:81–81.

	18.	 Dobric D. Implementation of Homeostatic Plasticity Control-
ler. 2020. [Online]. https://​github.​com/​ddobr​ic/​neoco​rtexa​pi/​
blob/​master/​NeoCo​rtexA​pi/​NeoCo​rtexA​pi/​Homeo​stati​cPlas​
ticit​yCont​roller.​cs.

	19.	 Dobric D, Pech An, Ghita B, Wennekers T. Scaling the HTM
spatial pooler. Int J Artif Intell. 2019;11(4):83–100.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3389/fncir.2016.00023
https://github.com/ddobric/neocortexapi
https://github.com/ddobric/neocortexapi
https://doi.org/10.1186/s13064-018-0105-x
https://doi.org/10.1186/s13064-018-0105-x
https://arxiv.org/abs/1601.00720
https://github.com/ddobric/neocortexapi/blob/master/NeoCortexApi/NeoCortexApi/HomeostaticPlasticityController.cs
https://github.com/ddobric/neocortexapi/blob/master/NeoCortexApi/NeoCortexApi/HomeostaticPlasticityController.cs
https://github.com/ddobric/neocortexapi/blob/master/NeoCortexApi/NeoCortexApi/HomeostaticPlasticityController.cs

	On the Importance of the Newborn Stage When Learning Patterns with the Spatial Pooler
	Abstract
	Introduction
	Methods
	Results
	Conclusion
	References

