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Abstract
Hierarchical Temporal Memory (HTM-CLA)—Spatial Pooler (SP) is a Cortical Learning Algorithm for learning inspired 
by the neocortex. It is designed to learn the spatial pattern by generating the Sparse Distributed Representation code (SDR) 
of the input. It encodes the set of active input neurons as SDR defined by the set of active neurons organized in groups called 
mini-columns. This paper provides additional findings extending the previous work, that demonstrates how and why the 
Spatial Pooler forgets learned SDRs in the training progress. The previous work introduced the newborn stage of the algo-
rithm, which takes a control of the boosting of mini-columns by deactivating the Homeostatic Plasticity mechanism inside 
of the SP in layer 4. The newborn stage was inspired by findings in neurosciences that show that this plasticity mechanism 
is only active during the development of newborn mammals and later deactivated or shifted from cortical layer L4, where 
the SP is supposed to be active. The extended SP showed the stable learned state of the model. In this work, the plasticity 
was deactivated by disabling the homeostatic excitation of synaptic connections between input neurons and slightly inactive 
mini-columns. The final solution that includes disabling of boosting of inactive mini-columns and disabling excitation of 
synaptic connections after exiting the introduced newborn stage, shows that learned SDRs remain stable during the lifetime 
of the Spatial Pooler.
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Introduction

The Hierarchical Temporal Memory Cortical Learning Algo-
rithm (HTM CLA) is an algorithm inspired by the biological 
functioning of the neocortex. It combines a combination of 
spatial pattern recognition and temporal sequence learning 
[1]. The HTM CLA is the algorithm that can be used to solve 
several kinds of problems like anomaly detection [2], object 
recognition [3], document categorization [4], Sequence 
Learning [5] and many others. In a nutshell, the HTM-CLA 
organizes neurons in layers of column-like populations built 
from many neurons, such that the units are connected into 
structures called areas. Areas, columns and mini-columns 
are hierarchically organized [6] and are usually connected in 
more complex structures, which implement higher cognitive 
functions like invariant representations, pattern and sequence 
recognition, etc. HTM CLA in general consists of two major 
algorithms: Spatial Pooler and Temporal Memory.

The Spatial Pooler, which is of interest in this work oper-
ates on mini-columns connected to input neurons [7]. This 
can be some sensory input or a set of cells activated by 
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cortical learning of some connected population of neurons. 
The SP is responsible to learn spatial patterns by encoding 
the pattern into the sparse distributed representation (SDR). 
The created SDR is represented as a population of active 
mini-columns, which is further used as the input for the 
Temporal Memory (TM) algorithm.

The TM is an algorithm that is responsible for learning 
sequences. Experiments in previous work [8] show that the 
originally designed version of the Spatial Pooler is unstable. 
This means, that the learned patterns will be forgotten dur-
ing the learning process and then learned again. Results also 
showed that the Spatial Pooler oscillates between stable and 
unstable state. Experiments show the instability in the learn-
ing process does not happen for all patterns at the same time. 
Instability was always detected for a single or few patterns. 
Over time, unstable patterns become stable, but some new 
patterns can become unstable.

For example, the Spatial Pooler can keep the stable SDR1 
for pattern p1, while SDR2 for pattern p2 becomes unstable 
and so on. Having a stable SDR is essential for all other cor-
tical functions that rely on the generated SDR. An unstable 
Spatial Pooler will also cause the Temporal Memory algo-
rithm to forget learned sequences.

The previous work [8] investigated the instability of the 
SP and introduced a newborn stage of SP. The extended 
algorithm prevents the original SP algorithm to enter unsta-
ble (“epileptic”) behaviour. The newborn stage was designed 
to first enable the homeostatic plasticity mechanism [9] 
that boosts inactive columns, and then to disable it. The 
modification has shown better stability of the SP, but it still 
produced oscillations in the learning process. This paper 
extends the previous work and shows that the SP can become 
almost completely stable if the excitation of inactive synap-
tic connections between input neurons and mini-columns is 
also controlled and disabled after exiting the newborn stage.

Methods

To analyse the learning process of the Spatial Pooler, an 
instance of the SP with the set of common parameters was 
used (see Table 1).

Experiments were done with a different number of columns. 
Results shown in this paper are produced by using 2048 mini-
columns. In this specific case, the scalar encoder was used 
to encode the scalar input values, which are presented to the 
Spatial Pooler during the learning process. The SP was trained 
to remember values between 0 and 100. Before presenting an 
input to the Spatial Pooler, every input value was encoded with 
200 bits, each value is encoded with 15 non-zero bits.

Figure 1 shows three examples of encoded scalar values 
used as input for SP. For more detailed information about 
the meaning of all parameters, please see [10].

Figure 1 represents scalar values 0, 1 and 2. The encoded 
input value is on the right and the corresponding SDR is on 
the left. The grey colour in the figure represents zero bits 
(background of the image) and the black colour represents 
the non-zero bits. Grey dots on the left represent a set of 
active columns after encoding the given input.

Inspired by the homeostatic plasticity mechanism [9, 11, 
12], the Spatial Pooler algorithm implements a boosting 
of inactive columns and excitation of inactive (weak) syn-
apses. This influences the excitation and inhibition balance 
of neural cells and is likely important for maintaining a sta-
ble cortical state. The functional stability of neural circuits 
is achieved by homeostatic plasticity. It keeps in balance the 
network excitation and inhibition and coordinates changes 
in circuit connectivity [13]. This mechanism is implemented 
explicitly in the Spatial Pooler [8] and it makes that all col-
umns are uniformly used across all seen patterns.

Because this mechanism is continuously active, it can 
perform the boosting of mini-columns and excitation of syn-
apses that already build learned SDRs. Once that happens 
the Spatial Pooler will “forget” some learned patterns. If the 
forgotten pattern is presented again to the SP, it will start 
learning it again.

To analyse the learning behaviour of the Spatial Pooler, 
a set of input patterns was presented to the SP instance over 
many iteration steps.

Every input pattern is encoded by the Spatial Pooler into 
SDR represented as a set of indices of active columns Ak of 
the given pattern in iteration k. In every learning step of the 
same pattern, the similarity between SDR in step k and step 
k + 1 is calculated as shown in Eq. 1.

Table 1  Spatial Pooler parameters used in experiments

Set of parameters shown in the table that are used in experiments 
with the Spatial Pooler

Parameters Value

INPUT BITS 200
COLUMNS 2048
GLOBAL_INHIBITION True
NUM_ACTIVE_COLUMNS_PER_INH_AREA 2% (40)
STIMULUS_THRESHOLD 0.5
SYN_PERM_INACTIVE_DEC 0.01
SYN_PERM_ACTIVE_INC 0.01
SYN_PERM_CONNECTED 0.1
MIN_PCT_OVERLAP_DUTY_CYCLES 0.001
MIN_PCT_ACTIVE_DUTY_CYCLES 0.001
POTENTIAL_RADIUS 1024
DUTY_CYCLE_PERIOD 100
MAX_BOOST 10
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The similarity s is defined as a ratio between the num-
ber of elements (cardinality) of the same active columns in 
SDRs generated in steps k and k + 1 and a maximum num-
ber of active columns in two comparison steps. The Spatial 
Pooler is by definition stable if the generated SDR of the 
same pattern does not change for the entire life cycle of the 
Spatial Pooler. In this case, the similarity between all SDRs 
of the same pattern is 100%.

Figure 2 shows the SDR of the same input pattern pre-
sented to SP in more than 25,000 iterations.

The Spatial Pooler learns patterns very fast. It requires 
usually no more than two to three iterations to learn the pre-
sented pattern. The y-axis shows the similarity s of SDRs in 
the current iteration step and the previous step. The x-axis 
shows the iteration step. The similarity of 100% means the 
learned SDR does not change over time. After an unspecified 
number of iterations, the SP forgets the learned SDR and 
starts learning again. Every time the SDR changes, it means 

(1)s =
|Ak ∩ Ak+1|

max(|Ak|, |Ak+1|)
.

the learned SDR for that pattern is changed. Because the 
new SDR for the pattern is created, the previously learned 
one is forgotten. In that case, the similarity drops from 100% 
to zero or some other value.

In contrast, keeping the similarity at 100% means that the 
learned SDR for the same input is the same for the entire 
iteration interval. If the similarity is less than 100%, gener-
ated SDRs of the same input are different. This indicates 
an unstable Spatial Pooler. As shown in Fig. 2, the learned 
state oscillates between stable and unstable states during 
the entire learning time, which is not a useful behaviour for 
real-life applications.

This experiment clearly shows the instability of the Spa-
tial Pooler, but it does not show any details about the encod-
ing of the SDR. Figure 3 shows the same behaviour from a 
different point of view. It shows how the SDR of the same 
pattern is encoded in the first 300 iterations (cycles) on the 
example of a single input value. The Spatial Pooler generates 
a stable SDR right at the beginning of the learning process 
and keeps it stable (unchanged) for approximately 200 itera-
tions. After that, SDR will change until the Spatial Pooler 
enters the stable state again (not shown in the figure).

In the next experiment, the boosting was disabled by set-
ting DUTY_CYCLE_PERIOD and MAX_BOOST to zero 
value. These two values disable the boosting algorithm in 
the Spatial Pooler.

Results show that the SP with these parameters pro-
duces stable SDRs as shown in Fig. 4. The figure shows an 
example of a stable encoding of the single pattern with the 
disabled boosting algorithm. The SP learns the pattern and 
encodes it to SDR in a few iterations (typically 2–3) and 
keeps it unchanged (stable) during the entire life cycle of 
the SP instance.

By following this result, the stable SP can be achieved by 
disabling the boosting algorithm.

Fig. 1  Examples of three input values encoded by the scalar encoder 
(right) and their corresponding Sparse Distributed Representation 
(left) encoded by the Spatial Pooler
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Fig. 2  Unstable Spatial Pooler. SP learns the pattern and keeps the 
SDR unchanged for some iterations. When boosting gets active SP 
forgets the SDR (similarity drops) and starts learning again
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Unfortunately, without the boosting mechanism, the SP 
generates SDRs with an unpredictable number of active 
mini-columns. Figure 5 shows two input values ‘0’ and ‘6’. 
The x-axis represents indexes of active mini-columns, which 
participates in the encoding of the input value. The y-axis 
represents the learning iteration. The SP is stable if the SDR 
code does not change over time. As already mentioned, disa-
bling boosting will cause the SP to enter the stable state as 
shown in Fig. 5. The value ‘0’ is encoded with approxi-
mately 40 active mini-columns and the value ‘6’ is encoded 
with 4 active mini-columns. This is a significant unwanted 
difference. Experiments showed that some patterns can even 
be encoded without any active mini-column if boosting is 
disabled completely or early disabled.

If the number of active mini-columns in an SDR for different 
inputs is significantly different, the further processing of memo-
rized SDRs will be negatively influenced. Most operations in the 
Hierarchical Temporal Memory rely on the calculation of the 

overlap between neural cells, synapses or mini-columns [14]. In 
that case, SDRs with a much higher number of active columns 
will statistically produce higher overlaps, which is not in balance 
with other SDRs with less active cells.

The parameter NUM_ACTIVE_COLUMNS_PER_INH_
AREA defines the percentage of columns in the inhibition area, 
which will be activated by the encoding of every single input 
pattern. Inspired by the neocortex, this value is typically set at 
2% [1, 15]. Using the global inhibition in these experiments 
by the entire column set of 2048 columns the SP will gener-
ate SDRs with approximately 40 active columns. The boosting 
mechanism inspired by homeostatic plasticity in the neocortex 
solves this problem by consequent boosting of passive mini-col-
umns and inhibiting too active mini-columns. As long the learn-
ing is occurring, the SP will continuously boost mini-columns. 
Every time the boosting takes a place, some learned patterns 
(SDRs) might be forgotten, and learning will continue when the 
same pattern appears the next time.

It can be concluded that the stability of the SP can be influ-
enced by the boosting mechanism. The SP can enter the stable 
state, but it will produce SDRs with a significantly different 
number of active mini-columns. In contrast, if boosting is 
enabled, the SP will uniformly activate mini-columns, but the 
learning will be unstable.

Previous findings in neural sciences [16] show that 
homeostatic plasticity boosting is only active during the 
development of a newborn animal and then deactivated or 
shifted from cortical layer L4, where Spatial Pooler is sup-
posed to be active. The Spatial Pooler operates on sensory 

Fig. 3  SDR shows active columns (SDR) of the learned input in the 
first 300 iterations (cycles). The learned SDR is unchanged (stable) 
in approximately. The first 200 iterations. After that, it gets unstable
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Fig. 5  Two SDRs with different numbers of active mini-columns pro-
duced by Spatial Pooler with disable boosting
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inputs, which are commonly connected to the cortical layer 
L4 [17]. By following this finding, this work extends the 
Spatial Pooler algorithm and introduces the newborn stage 
of the Hierarchical Temporal Memory and Spatial Pooler.

Deactivation of the boosting in homeostatic plasticity in 
the cortical layer L4 can also be applied to Spatial Pooler. It 
is still not clear exactly how this mechanism exactly works. 
However, by following findings in this area the same or simi-
lar mechanism inside of the SP can be adopted. Currently, in 
the HTM, this mechanism consists of boosting and inhibi-
tion algorithms, which operate on the mini-column level and 
not on the cell level inside of the mini-column. The reason 
for this is that SP operates explicitly on the population of 
neural cells in mini-columns and does not make usage of 
individual cells [7]. Individual cells rather play an important 
role in the Temporal Memory algorithm [1].

The main idea in this work, with the aim to stabilize the 
SP and keep using the plasticity, is to add an additional 
algorithm to SP, which does not influence the existing SP 
algorithm. The extended Spatial Pooler is based on the algo-
rithm implemented in the new component called Homeo-
static Plasticity Controller. The controller is “attached” to 
the existing implementation of the Spatial Pooler. After the 
computation in each iteration, the input pattern and cor-
responding SDR are passed from the SP to the controller. 
The controller keeps the boosting active until the SP enters 
the stable state, measured over the given number of itera-
tions. During this time the SP is operating in the so-called 
newborn stage and will produce results similar to results 
shown in Figs. 2 and 3. Once the SP enters the stable state, 
the new algorithm will disable the boosting and notify the 
application about the state change. The controller tracks the 
participation of mini-columns overall seen patterns. After 
the controller notices that all mini-columns are approxi-
mately uniformly used and all seen SDRs are encoded with 
approximately the same number of active mini-columns, the 
SP has entered the stable state. From that moment, the SP 
will leave the newborn stage and continue operating as usual 
but without the boosting. The previous work [8] focused 
exclusively on the boosting of mini-columns. That is, mini-
columns that do not participate enough in the learning pro-
cess will be boosted. In the boosting process of the mini-
column, the calculated overlap will be multiplied by some 
factor. Unboosted mini-columns will use the factor 1.0. This 
delivers acceptable results. In this work, the Homeostatic 
Plasticity Controller takes also the control of synapse excita-
tion in the Spatial Pooler into account. Every mini-column 
creates a set of synaptic connections to the input neurons. 
These synapses are strengthened in every learning cycle if 
the synapse is connected to the active input neuron. If the 
mini-columns, synapses do not connect often enough to the 
active input neurons, then the value of the permanence of 
synapses (known as weight in classic neural networks) is 

incremented. We call the process of this increment “weak 
synapse excitation”.

In this work, the weak synapse excitation was also switched 
off to initiate the exit of the newborn stage of the Spatial Pooler. 
This makes sure that the stable Spatial Pooler will no longer get 
unstable in future learning iterations if some mini-column does 
not uniformly activate synapses across the entire input pattern set.

Results

To validate that the Spatial Pooler algorithm can be improved 
to reliably generate a stable state with the help of the Home-
ostatic Plasticity controller, the following experiment was 
designed. The experiment (see Listing 1) executes 25,000 
iterations and presents 100 scalar values to the SP. It was 
repeated more than a thousand times for various configura-
tions. The scalar encoder used in line 11 is configured with 
the set of parameters (line 5) described in Table 2. Every 
input value (0–100) will be encoded as the vector of 200 
bits. Also, every single value from the specified range will 
be encoded with 15 non-zero bits as shown in Fig. 1—right.

Table 2  Scalar Encoder 
parameters

Parameters Value

W—Bits for coding of 
the single value

15

N—Input bits 200
MinVal 0
MaxVal 100
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The instance of the Spatial Pooler (line 7) with the com-
mon set of parameters (line 3) has been created. The same 
configuration was used in the experiment described in the 
previous section, which produced results shown in Figs. 2 
and 3. The Homeostatic Plasticity Controller (line 6) is typi-
cally attached to the Spatial Pooler instance (line 7, second 
argument) and used inside of the compute method.

The Homeostatic Plasticity Controller (HPC) requires 
the callback function (line 6, second argument), which is 
invoked when the controller detects the stable state of the 
Spatial Pooler. The experiment is designed to execute any 
number of training iterations (line 8 defines 25,000 itera-
tions). In every iteration, the Spatial Pooler is trained with 
the whole set of input values Ι (line 9).

The spatial input is trained in line 11. The output of the 
training step in line 11 is an SDR code (set of active mini-
columns) associated with the encoded input value i. Before 
being presented to the Spatial Pooler, the input value i is 
encoded by the Scalar Encoder configured with the named 
set of parameters shown in Table 2. The encoder is repre-
sented as a function e that converts the given scalar value to 
the binary array:

e ∶ ℝ → {0, 1}.

The computation inside of HTM operates exclusively 
on binary arrays as the neocortex does it. The existing SP 
compute algorithm is in this work extended to invoke the 
algorithm implemented in the Homeostatic Plasticity Con-
troller (HPC) shown in Algorithm 1. The HPC computation 
takes place after the Spatial Pooler has computed the current 
iteration.

The HPC Algorithm 1 starts with two inputs. The first 
one is the binary array of an encoded input pattern and the 
second one is the SDR as calculated by the SP for the given 
input

In the beginning, the algorithm does not perform any 
change in the SP. This period is called the newborn stage. 
The Homeostatic Plasticity Controller will disable the boost-
ing in the Spatial Pooler after the minimum required num-
ber of iterations m (minCycles) is reached (line 15). When 
the iteration number is larger than m, the boosting is disa-
bled by setting parameters DUTY_CYCLE_PERIOD and 
MAX_BOOST to zero. These parameters update the boost 
factors for every single column in every iteration. The boost 
factors are used in the Spatial Pooler to increase the num-
ber of connected synapses (overlap) of inactive columns. 
Increased overlap of inactive columns improves the chance 
of the column becoming active.
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After disabling the plasticity, the algorithm starts track-
ing all seen patterns and their associated SDRs. To avoid 
the saving of the entire input dataset internally, function 
hash calculates the hash value (line 6) over the sequence 
of bits of the input in the current iteration. The calculated 
hash value is a sequence of bytes defined as a set H (line 
7). In line 8, the tuple of the input’s hash value H and the 
number of active columns of the corresponding SDR is 
associated with the set E. The set E remembers p tuples of 
every input. As discussed in the previous section, the goal 
is to keep the number of active columns uniform across 
all generated SDRs. The value � is the average change of 
the number of active columns in each SDR in the cycle 
interval p (line 9).

The cycle interval p is the number of previous iterations 
used to calculate the � . In most experiments, this value was 
set to five. This is an acceptable value because the SP does 
not change the number of active columns, once the stable 
state is entered.

The value � is calculated as an average sum of deltas 
�Hk − �H(k+1) in the last p iterations for the given input hash 
value H.

Having this value zero is the first condition of the stability 
of the new Spatial Pooler. This value is zero if the number 
of active columns of the SDR of the same input does not 
change over time defined by the number of iterations p.

The second condition for stability of the Spatial Pooler 
is the achieving of the constant SDR for every input seen 
by the Spatial Pooler during the entire training process. For 
this reason, the set ℋ is used to keep tuples (H,o) of input 
hash values and their SDRs. SDRs of inputs in upcoming 
iterations override the previously stored tuple of the current 
input. There is always a single tuple (H,o) for every input 
inside of H . Tuples in H are used to calculate the correlation 
c between the previous and the current SDR of the given 
input (lines 10, 11). If the correlation between the last SDR 
(output of learning cycle for the given input pattern) o′ and 
the new (current) SDR o of the given input i is larger, then 
the specified tolerance threshold � (typically near 100%) and 
the first condition � = 0 is fulfilled, then the counter of stable 
iterations of the given input i is incremented (line 12). If the 
correlation between o and o� is under the tolerance threshold 
� , the number of stable iterations for the given input pattern 
is reset to zero. The threshold � can theoretically be set to 
1.0. However, the SP internally always select the specific 
number of active mini-columns. If two mini-columns have 
the same overlap, they will compete for activation. The 
selection of competing mini-columns is a random process, 
which can lead to the selection of a different mini-column in 

� =
1

p
×

p−1∑

k=0

|εHk − εH(k+1)|ϵH ∈ E.

learning cycles. The HPC algorithm encounters this behav-
iour and builds in the explicit tolerance defined by � less 
than 1.0. The better solution here would be to change the 
SP algorithm to allow side by side activation of competing 
mini-columns, which would be a probably more biological 
way of activation than the current one.

The second condition that corresponds to the stable state 
of the Spatial Pooler is fulfilled if the γH (number of stable 
iterations) reach the defined threshold � (line 13) for every 
seen input during the training process. In all experiments, � 
= 50 was used. In most experiments, the chosen value was 
between 15 and 150. Every time, the correlation value is less 
than threshold � the counter of stable iterations γH for the 
given input is reset.

After entering the stable state, all generated SDRs should 
remain unchanged for the entire lifetime of the Spatial Pooler 
instance. The SP is defined as stable if both described con-
ditions are satisfied: Uniform number of active cells in all 
SDRs and Required number of stable iterations for all SDRs 
is reached.

The implementation of the algorithm of HPC [18] con-
tinues to track the stability after the SP has reached a stable 
state. Results show that the extended Spatial Pooler with 
HPC algorithm gets always stable with the uniformly dis-
tributed number of active columns for all SDRs.

Figure 6 shows the SDRs of two coincidently used spatial 
input samples. Values ‘0’ and ‘1’ are both encoded with the 
stable SDR after approximately 300 iterations. As shown 
in the figure, generated SDRs are unstable in the first 300 
iterations. Active columns which encode SDRs are in the 
first 300 steps continuously changed. This iteration inter-
val is called HTM newborn stage and it is defined by the 
parameter m (line 15). In this stage, the stimulation of 
mini-columns and weak synapses is active and SDRs of all 
inputs are changing frequently during the learning process 
(approximately the first 300 hundred cycles in Fig. 6). After 
approximately 300 cycles the HPC disables the stimulation 
and SDRs converge very quickly to the stable state, which 
remains during the life cycle of the Spatial Pooler. In this 
experiment, tests were done with up to 30,000 iterations. 
The SP remains stable with one exception. Some experi-
ments show that SP can also get unstable shortly after enter-
ing the stable state.

This instability is according to the design of the HPC 
algorithm enforced when the currently processing input 
changes its SDR. The HPC will in this case reset the coun-
ter of stable iterations for the given input (line 14), which 
will declare the SP as unstable. When this exception occurs, 
the learning can continue until the SP enters the stable 
state again for the entire life cycle of the SP instance. This 
unwanted behaviour occurs mostly when the chosen num-
ber of minimum required iterations m is too low. Choosing 
larger values for m seems to solve this exceptional behaviour 
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but it takes a longer time to leave the newborn stage and 
enter the stable state. However, even when choosing higher 
values for m, the SDR of a pattern might slightly change 
over time.

The HPC uses the tolerance threshold � to decide when 
the SP gets stable or unstable. SP chooses the set of active 
mini-columns by sorting them by overlap. During the 
learning process, some synapses between columns and 
input neurons might increase their permanence. This can 
increase the overlap of some mini-columns and include 
them in the set of active mini-columns. Because the SP 
holds constant the number of mini-columns per input pat-
tern, some previously active mini-columns will be removed 
from the set of active mini-columns. For example, assume 
that the four-active-column SDR(i,t) of the input i at the 
stable iteration t is C1–10, C5–10, C15–9, C20–9. The first 
number is the index of the column and the second one is 
the overlap of the column. At the current iteration, col-
umn C14 has an overlap 8. It is not included in the SDR, 
because 4 mini-columns with the highest overlap build the 
SDR. During the learning process in the next iteration, 
column C14 might increase its overlap from 8 to 9. In this 
case, the SDR(i,t + 1) will become C1–10, C5–10, C14–9 
and C15–9. The previously active mini-column C20 with 
the same overlap 9 is now replaced with C14–9. With the 
tolerance threshold � = 1.0 , this change would cause the 
HPC to degrade the stable SP to the unstable one in the 
iteration t + 1. In contrast, the tolerance threshold � = 0.75 , 
would keep the SP stable if a single mini-column in the 

SDR of four mini-columns is replaced. In most tests, we 
figured out that � = 0.975 by 40 active mini-columns of 
2048 generates stable SP. Higher � values cause the SP to 
temporary becomes unstable after a stable state.

Application developers should choose a reasonable 
value for their specific use case. Even if this value is not 
ideally selected, the HPC will notify the application when 
the SP gets unstable. With this, any required action can be 
performed inside of the application.

Figure 7 shows this behaviour. The HPC was configured 
in this experiment to use a relatively low iteration value 
m = 30 for the minimum required number of iterations for 
the newborn stage. This is typically a very short interval 
for a newborn stage. In the first experiment Fig. 7 (left) � 
=1.0 was used. It means no SDR change is allowed to keep 
the stable state. In the second experiment Fig. 7 (right) � 
= 0.975 was used. It means the single mini-column can be 
replaced by 40 active mini-columns. In the first experiment, 
the SP entered the stable state in iteration 129 (left, green 
line), but, it got temporarily unstable in iteration 391 (left, 
red line), because the single mini-column was replaced. In 
the second experiment, the SP entered the stable state at 
iteration 84 (right, green line). Because in the second experi-
ment with the � = 0.975, few column replacements during 
the learning process are allowed. Figure 7 (right) shows 
stable SP, even if some columns are replaced after enter-
ing the stable state (right, blue line). In both cases, the SP 
behaves the same way, but HPC uses a different threshold 
to decide the iteration step of stability. Please note that in 

Fig. 6  Spatial Pooler in the stable state representing two SDRs of two 
input pattern examples with the activated Homeostatic Plasticity Con-
troller

Fig. 7  Spatial Pooler soon after entering the stable state become tem-
porarily unstable for some input patterns in few learning iterations. 
After a few iterations, the SP becomes stable again and remains in a 
stable state. Used similarity threshold � = 0.97 and � = 1.0.
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described experiments stability was entered by learning dif-
ferent inputs.

In this work, it was also analysed how stability is reached 
across the entire input data set. To test this, the HPC trace 
was created at the iteration that occurred long after enter-
ing the stable state. The trace contains the number of stable 
cycles for all patterns. As shown in Fig. 8, all patterns have 
mostly a different number of stable cycles. In this experi-
ment, the SP entered the stable state at iteration 441 (shown 
previously in Fig. 7) and the experiment was stopped at iter-
ation step 4012, which is in the stable state. The minimum 
number of stable states 3637 was detected for the input 64 
and the maximum number 3962 of stable states was detected 
for multiple numbers 0, 1, 2, 3, 4, 5, 6 and some more. As 
described, the SP stability in experiments was defined by 
� = 50 . Notice, by subtracting 4012 − � we get the maxi-
mum number of stable cycles. That means that inputs with 
the maximum number of stable cycles entered a stable state 
at the very beginning of the learning process. This shows 
that some patterns are stabilized very early and some others 
need a more cycles to learn the pattern even if all patterns 
have been uniformly presented.

Figure 9 shows all SDRs stored in the Spatial Pooler after 
entering the stable state. As mentioned, the set of encoded 
scalar input values 1–100 was used to train the SP. The 
x-axis shows input value 1–100. Y-axis shows the columns 
that are active for every of the given inputs. For example, 
black dots along the green line shows the SDR code of the 
scalar input value 60. When presenting the input 60 to SP, 
the mini-columns along the green line are activated.

Conclusion

The Hierarchical Temporal Memory algorithm is inspired 
by the neocortex and implements many known features that 
have roots in neurosciences. Nowadays, many results show 
that the algorithm is very flexible and can solve different 
kinds of problems like sequence learning, anomaly detec-
tion, object recognition, classification, etc., [1–5]. However, 
the reverse engineering of the neocortex is still a complex 
and unsolved task. All design decisions in the algorithm 
are based on findings in neuroscience, but some features 
still might be assumptions and work in progress. This paper 
focuses on the instability issue of the HTM Spatial Pooler 
algorithm when memorizing spatial patterns in an unsuper-
vised way. As discussed, the original Spatial Pooler already 
integrates some sort of homeostatic plasticity mechanism 
discovered in previous work in neurosciences. However, the 
original algorithm caused instability in the learning pro-
cess, which makes it very difficult to build reliable applica-
tions. This work briefly analysed this issue and provides 
the solution by extending the existing SP algorithm with 
the new component called Homeostatic Plasticity Controller 
(HPC). The new Spatial Pooler extended with the HPC is 
also motivated by findings in neurosciences, that document 
the activity of this mechanism during the development of 
the species. Inspired by this finding the new Homeostatic 
Plasticity Controller introduces the newborn stage of the 
Spatial Pooler. This work demonstrates how important is 
the high activity of plasticity in the early development phase 
of the cortical tissue in this work modelled as HTM. This 
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Fig. 8  The internal trace of the Homeostatic Plasticity Controller 
showing a number of stable cycles of each generated SDR for the 
entire input data set

Fig. 9  All SDRs at once. Representation of all generated SDRs seen 
in the training process of 100 input patterns. The horizontal axis 
shows the index of the input. The vertical axis shows the SDR. Every 
black “dot” represents the active mini-column
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plasticity mechanism has the disadvantage of disrupting the 
stable learning process, but at the same time ensures that 
the activity of the mini-columns is evenly distributed in the 
experimental tissue. In this newborn stage, the SP stimu-
lates the inactive mini-columns and synapses connected to 
input neurons. The new HPC extension of the SP algorithm 
waits for a specified number of iterations (newborn stage) 
and then switches off the synaptic and mini-column stim-
ulation mechanism waiting on the SP to enter the stable 
state. With this approach, the SP converges very quickly to 
a stable state. Applications can subscribe to the event that 
notifies about the state change of the SP. The immediate 
disabling of boosting is not a natural mechanism. However, 
if required, disabling of boosting can be easily adapted to 
slow down exiting the newborn stage in a more natural (bio-
logical) way. To conclude, the original version of the SP 
enters unexpectedly the unstable state that behaves similar 
to an “epileptic” state. The new SP with the HPC and the 
newborn stage controlled by HPC improves the overall qual-
ity of the learning of the SP and enables the implementation 
of more reliable solutions. Another work in progress in this 
context is related to the design of the parallel version of the 
HTM. The new HPC algorithm needs to be validated for 
parallel implementation [19].
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Code availability All experiments described in this paper are imple-
mented in C#/.NET dotnet standard 2.1 compatible with the latest 
release.NET 6.0. The Hierarchical Temporal Memory framework with 
the Spatial Pooler used in experiments is based on the open-source pro-
ject NeocortexApi. The source code and documentation can be found 
at GitHub [10]. The experiment related to the stability of the Spatial 
Pooler is implemented in a form of the UnitTest inside of the Microsoft 
Unit Testing framework integrated with Visual Studio. The test used 
for the stability experiment is called SpatialPooler_Stability_Experi-
ment_3. It is implemented in the source file SpStabilityExperiments.
cs. This code generates three output CSV files: -ActiveColumns.csv, 
-ActiveColumns-plotlyinput.csv and -Oscillations.csv.

ActiveColumns files hold the same information in a slightly dif-
ferent format than ActiveColumns-plotlyinput.csv. Both files con-
tain active columns (SDR) for every trained digit in every iteration. 
ActiveColumns-plotlyinput.csv can be used as the input for the Python 
script to generate diagrams that represent active columns shown in 
Fig. 6.

The script used to generate the diagram is called draw_figure.py 
and can be found at the following location: /Python/ColumnActivi-
tyDiagram/draw_figure.py.

Further information about running the script can be found in the 
Python script. The file Oscillations.csv file is used to generate the 
diagram shown in Fig. 1. This diagram was generated by Microsoft 
Excel.
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