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Abstract
In recent years, due to the rapid growth in network technology, numerous types of intrusions have been uncovered that differ 
from the existing ones, and the conventional firewalls with specific rule sets and policies are incapable of identifying those 
intrusions in real-time. Therefore, that demands the requirement of a real-time intrusion detection system (RT-IDS). The 
ultimate purpose of this research is to construct an RT-IDS capable of identifying intrusions by analysing the inbound and 
outbound network data in real-time. The proposed system consists of a deep neural network (DNN) trained using 28 features 
of the NSL-KDD dataset. In addition, it contains the machine learning (ML) pipeline with sequential components for cat-
egorical data encoding and feature scaling, which is used before transmitting the real-time data to the trained DNN model to 
make predictions. Moreover, a real-time feature extractor, which is a C++ program that sniffs data from the real-time network 
traffic and derives relevant data related to the features of the NSL-KDD dataset using the sniffed data, is deployed between 
the gateway router and the local area network (LAN). Together with the trained DNN model, the ML pipeline is hosted in a 
server that can be accessed via a representational state transfer application programming interface (REST API). The DNN 
has revealed outstanding testing performance results achieving 81%, 96%, 70% and 81% for accuracy, precision, recall and 
f1-score accordingly. This research comprises a comprehensive technical explanation concerning the implementation and 
functionality of the complete system. Moreover, leveraging the extensive explanations provided in this paper, advanced IDSs 
capable of identifying modern intrusions can be constructed.
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Introduction

The internet has become the most significant resource in 
this century since it has become incorporated into our daily 
lives, assisting us in a variety of ways; however, because of 
its extraordinary popularity and accessibility, networks in 
the corporate and personal sectors are exposed to a range of 
manual and machine-generated attacks. Even though fire-
walls are designed to secure networks, they are incapable 
of detecting intrusions in real-time. As a result, destructive 
cyber-attacks pose severe security difficulties, necessitating 
the need for adaptable and reliable intrusion detection sys-
tems (IDS) capable of monitoring policy violations, mali-
cious activity, and unauthorized access in real-time. Intru-
sion detection can be done in higher efficacy by employing 
ML algorithms since those have pattern identification capa-
bility utilizing the statistical modelling concept based on the 
past data. Therefore, the ultimate objective of this research is 
to implement a fully functional ML based RT-IDS capable 

This article is part of the topical collection “Cyber Security and 
Privacy in Communication Networks” guest edited by Rajiv Misra, 
R. K. Shyamsunder, Alexiei Dingli, Natalie Denk, Omer Rana, 
Alexander Pfeiffer, Ashok Patel and Nishtha Kesswani”.

 * Lasith Yasakethu 
 lasithy@sltc.ac.lk

 Sharuka Promodya Thirimanne 
 sharukat@sltc.edu.lk

 Lasitha Jayawardana 
 lasithaj@sltc.edu.lk

 Pushpika Liyanaarachchi 
 klpushpika@eng.pdn.ac.lk

 Chaminda Hewage 
 chewage@cardiffmet.ac.uk

1 Faculty of Engineering, Sri Lanka Technological Campus, 
Padukka, Sri Lanka

2 Faculty of Engineering, University of Peradeniya, 
Peradeniya, Sri Lanka

3 Department of Computer Science, Cardiff Metropolitan 
University, Cardiff, UK

http://orcid.org/0000-0002-9571-6866
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01031-1&domain=pdf


 SN Computer Science (2022) 3:145145 Page 2 of 12

SN Computer Science

of predicting whether an intrusion or not based on the infor-
mation captured from the inbound data packet in real-time.

Many studies have been conducted to assess the perfor-
mance of various ML algorithms trained on the KDD99, 
NSL-KDD [1], and USNW-NB15 [2] datasets. However, 
a limited number of studies have been published based on 
experiments to construct a RT-IDS. However, most of the 
existing studies on RT-IDSs lack descriptive technical expla-
nations. Consequently, that deficiency is addressed in this 
research. Moreover, most of the research that reveals per-
formance comparisons between various state-of-the-art ML 
algorithms was done utilizing the Weka tool. The originality 
of our research is that all the algorithms were constructed 
using industry-utilized frameworks and libraries to demon-
strate the performance of ML in real-world applications. 
The DNN was selected as the ML algorithm for this experi-
ment utilizing the conclusion of the previous research that 
we have done on comparative algorithm analysis for ML-
based IDS using six ML algorithms: DNN, support vector 
machines (SVM), K-nearest neighbours (KNN), one-class 
SVM (OCSVM), K-means and expectation–maximization 
(EM) [3].

The research reveals the experiment carried out to cre-
ate a RT-IDS using an ML algorithm. In this experiment, a 
DNN was trained using the NSL-KDD dataset, which was 
created using the KDD99 dataset to overcome the inherent 
flaws such as redundant records [4]. Moreover, a real-time 
feature extractor, which performs packet sniffing and feature 
extraction from inbound and outbound data packets, is estab-
lished between the gateway router and the local network. 
An ML pipeline, which consists of sequential components 
for categorical feature encoding and feature scaling together 
with the trained DNN, was developed to perform real-time 
intrusion prediction. Furthermore, the real-time prediction 
system is hosted in a server connected to the local network 
via an application programming interface (API). This sys-
tem is capable of predicting whether or not a network state 
represents an intrusion based on the data extracted by the 
data packets. In addition, this system's uniqueness is that the 
real-time prediction system is hosted in a server that can be 
accessed using an API, enabling both corporate and personal 
networks to utilize this system for preserving their network 
from external attacks.

Overall, this study has contributed by introducing a 
descriptive approach to the RT-IDS, which contains an ML 
pipeline together with a fully trained DNN utilizing the 
NSL-KDD dataset. Since the methodology and the perfor-
mance of the RT-IDS have been discussed, advanced RT-
IDSs with DNNs, trained using datasets with modern intru-
sion types can be developed quickly. Moreover, the intrusion 
prediction ML pipeline is hosted in a server; therefore, any-
one can access this system and integrate it with their local 
network.

The structure of this paper is organized as follows. 
Related works are presented in "Related Work", and "Prob-
lem Statement" includes the problem statement. Moreover, 
"Background" contains the background, and subsequently, 
the system model of the experiment is in "System Model". 
"Methodology" explains the methodology, and the perfor-
mance evaluation is addressed in "Simulations Results". 
"Performance Comparison" and "Future Works" comprise 
the discussion and the conclusion accordingly. Finally, the 
future works are stated in "Conclusion".

Related Work

This section contains a collection of recent studies and 
experiments on RT-IDS. However, majority of the studies 
on IDS have been done performing benchmarking on differ-
ent ML algorithms using various datasets. Therefore, limited 
number of studies are available on RT-IDSs. Hayoung et al. 
have proposed a real-time intrusion and anomaly detec-
tion system based on self-organizing map (SOP). It clas-
sifies neurons as ‘normal’ or ‘attacks”, and once an attack 
is identified, it categorizes according to the relevant attack 
type. Moreover, they have used two subsets of the KDD99 
dataset for training and testing purposes [5]. However, this 
work lacks descriptive technical explanations on real-time 
data capturing.

Sangkatsanee et al. have experimentally demonstrated 
that the decision tree (DT) technique outperforms Ripper 
Rule, back-propagation neural network (BPNN), Bayesian 
network (BN), Naïve Bayes (NB), and radial basis function 
neural network (RBF-NN). Moreover, the DT algorithm-
based RT-IDS can classify inbound data as normal or attack 
with a detection rate higher than 98%. The DT algorithm 
was trained using the RLD09 (Reliability Lab Data 2009) 
dataset [6]. Furthermore, they have extracted 12 features and 
the information gain method has been used for feature selec-
tion. Post-processing methods for lowering the false alarm 
rate was used and have shown that the RT-IDS is efficient 
in detection rate and memory utilization and can categorize 
the incoming network data within 2 s [7].

A team of researchers in [8] have developed an RT-IDS 
capable of detecting intrusions for network traffic with a 
higher precision. It comprises four modules: network data 
acquisition, data pre-processing, convolutional neural net-
work (CNN), and intrusion detection. The CNN was trained 
using the NSL-KDD dataset. In data pre-processing, one-hot 
encoding and feature normalisation were used for categori-
cal data encoding and feature scaling accordingly. The RT-
IDS can capture network data in using TCPDUMP, which 
uses the LIBPCAP library to capture data from the network 
layer. In addition, an open-source tool called Bro was used 
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to analyse and segment the inbound data packets based on 
predefined series of Bro rule scripts. This implementation 
provides real-time network monitoring capability to detect 
abnormal network behaviour.

Zhang et  al. [9] have introduced a novel framework 
design, which consists of five modules: pre-processing, 
autoencoder (AE), database, classification, and feedback. 
The proposed framework was evaluated using the CIC-
IDS2017 dataset. The sparse autoencoder (SAE) was used to 
handle dimensionality by eliminating unimportant features. 
The random forest (RF) was used as the main supervised 
classification algorithm in this framework. To make com-
parisons with previous work, the accuracy of binary classi-
fication and multiclass classification were utilized as experi-
mental outcomes. Researchers obtained promising results 
in their evaluation, with an accuracy of 0.9992 for binary 
classification and 0.9990 for multiclass classification [9].

A group of researchers in [10] have proposed an intru-
sion detection approach based on deep SAE and self-taught 
learning. Through unsupervised learning, the deep SAE 
technique has been used to extract features effectively. The 
deep SAE trained on regression-related tasks was utilized to 
extract features from the NSL-KDD dataset. Even though 
the source task does not have similar data distribution as 
the target domain, both domains are related to each other by 
the time-series nature of input features and unpredictable 
behaviour. Finally, the NSL-KDD dataset features and the 
extracted features were fed as an input to train the SAE. They 
have experimentally proved that the SAE trained utilizing a 
combination of original and extracted features outperforms 
the SAE trained only on original features.

Karbir et  al. [11] have proposed a network intrusion 
detection framework based on a Bayesian network using a 
wrapper approach. The proposed system eliminates irrel-
evant features using genetic algorithm feature selection tech-
niques, and a Bayesian classifier is employed as the base 
classifier to identify attack types. The performance has been 
evaluated using the NSL-KDD dataset and has achieved an 
accuracy of 98.2653%, outperforming algorithms such as 
KNN, Boosted DT, Hidden NB, and Markov Chain [11].

Below table illustrates the summary of previous works 
related to intrusion detection (Table 1).

Problem Statement

The existence of numerous sorts of threats have necessi-
tated a system capable of defending systems and networks. 
Although a firewall can accept, discard, or deny inbound 
data packets based on the ruleset, it is incapable of identi-
fying intrusions. However, even though extensive research 
has been done to analyse the performance of various ML 
algorithms based on the existing datasets, a viable RT-IDS, 
which can identify intrusions, is not yet developed. The com-
parative analysis we performed between six ML algorithms 
to identify the optimum ML algorithm for an IDS during 
our previous study [3], the scarcity of studies related to RT-
IDSs developed using deep learning approaches, which can 
make predictions by analysing network traffic in real-time, 
and the unavailability of a fully featured RT-IDS, which can 
be implemented in any system or used as a software-as-a-
service (SaaS), stimulated the motivation for this research. 
This research aims to develop a DNN based RT-IDS utilising 
the NSL-KDD dataset to address the above challenge.

Background

This section contains the background information of the 
dataset, technologies, and methods used in this research: 
NSL-KDD dataset, DNN, ML pipeline, and packet sniffing.

NSL‑KDD Dataset

The dataset availability for intrusion detection is rare because 
most datasets cannot be shared due to various security and 
privacy concerns. The NSL-KDD dataset, on the other hand, 
provides open access to the entire dataset and was developed to 
overcome the inherent problems of the KDD99 dataset, which 
was developed based on the data captured in DARPA’98 [1]. 
Even though KDD99 has been used in many research studies, 

Table 1  Summary of previous related works

Ref Methods Dataset Achievement

[5] SOP KDD99 Misclassification rate of 0.05 with 0.5 s prediction time
[6] DT RLD09 Detection rate higher than 98% with 2 s prediction time
[8] CNN NSL-KDD Intrusion detection for network data streams with higher detection precision
[9] RF CICIDS-2017 Accuracy of 0.9992 for binary classification and 0.9990 for multiclass classification
[10] SAE NSL-KDD SAE trained using both original and extracted features outperforms SAE trained only on original 

features
[11] Bayesian network NSL-KDD An accuracy of 98.2653% outperforming KNN, Boosted DT, Hidden NB, and Markov Chain
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there are several advantages when using the NSL-KDD data-
set. The ML classifier will not be biased towards classes with 
frequent records due to the elimination of duplicate data. 
Since the selected record count from each difficulty-level 
group is inversely proportional to the percentage of records 
in the KDD99 dataset, the classification rates of various ML 
algorithms vary, allowing the accuracy of multiple learning 
approaches effective. Moreover, the test set duplicate records 
were totally removed and, even though NSL-KDD is substan-
tially smaller than KDD99, the number of records in the train-
ing sets is adequate to train an ML algorithm.

There are a few disadvantages when using the NSL-KDD 
dataset, such as inadequate documentation outlining the calcu-
lation mechanisms used to derive the features and containing 
obsolete data. Therefore, this dataset demonstrates less pro-
ductivity while designing a modern commercial-level applica-
tion. The NSL-KDD dataset is 52.3 MB in size and includes 
two separate datasets for training and testing. The table below 
shows the number of records in each dataset, as well as the 
number of records associated with each attack type (Table 2).

Furthermore, UNSW-NB15 and CICDS2017 are two 
other datasets available for intrusion detection. However, 
the UNSW-NB15 dataset contains a considerable number of 
duplicate records, and the elimination of duplicate records 
reduces the number of records available for training. Moreo-
ver, the CICDS2017 dataset suffers from a class imbalance 
problem, which leads to biasing the ML model towards the 
majority class.

Deep Neural Network

The artificial neural network (ANN) is concept developed 
based on the biology of the human brain [12]. Because neural 
network (NN) can generate any decision boundary classifica-
tion in feature space, they can operate as nonlinear discrimi-
nating functions [13]. In recent years, the use of DNN in the 
domain of intrusion detection has been a prominent research 
focus, and it is an effective method that emerged from the 
shallow neural network (SNN). DNN is superior at modelling 
or abstracting representations and can simulate exceedingly 
complicated models. DNN has enormous potential for achiev-
ing effective data representation to build useful solutions. The 
above-mentioned facts and the comparative analysis carried 
out between six ML algorithms, classified under supervised, 
semi-supervised, and unsupervised learning in our previous 
study [3] led us to employ DNN for the proposed method.

The DNN produces outputs based on the weights applied 
to the connections and the related activation functions of 
the neurons and it is made up of numerous processing layers 
[14]. The proposed approach trains the DNN using the NSL-
KDD dataset, resulting in higher classification accuracy.

Machine Learning Pipeline

Manual data transformation prior to training ML algorithm 
is ineffective and impractical for real-time commercial-level 
applications. ML workflow of data transformation and cor-
relating the data into the model can be automated using the 
ML pipelines. The efficiency and the simplicity of build-
ing ML models will be increased by utilizing ML pipelines 
since the redundant tasks associated with the workflow will 
be eliminated. ML pipeline is an aggregate of five essen-
tial tasks associated with the ML workflow namely, data 
ingestion, cleaning, pre-processing, model validation and 
deployment. Since ML pipelines are not one-way and itera-
tive behavioural capabilities of those, improve the perfor-
mance scores of the ML algorithms [15].

Packet Sniffing

Packet sniffing is a technique for intercepting data packets as 
they travel across a network. Because data passes via the net-
work in the form of packets, packet sniffing tools can swiftly 
capture the data packets. Packet sniffing applications are 
known as packet sniffers, and they can read packets that pass 
through the network layer of the TCP/IP layer. The packet 
sniffing applications are divided into two categories based 
on their intended use. Commercial packet sniffers are used 
by network administrators to monitor and validate network 
traffic, whereas underground packet sniffers are used by indi-
viduals' who sniff other people's personal and sensitive data 
for personal benefit. Packet sniffing tools are commonly used 
for monitoring network traffic, troubleshooting communica-
tion issues, assessing network performance, extracting user-
names, and identifying network intruders [16].

System Model

The system model of the research is shown in Fig. 1. The 
functional block diagram illustrates the overall flow of the 
entire system. The Linux environment is installed inline 
between the organization's network and the gateway router. 

Table 2  Details of normal and 
attack data

Total Normal DoS Probe U2R R2L

Train 125,973 67,343 45,927 11,656 52 995
Test 22,544 9711 7458 2421 200 2654
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The network traffic flowing through the Linux environment 
will then be sniffed by the packet sniffing method. The fea-
ture extraction then extracts the features from the data that 
was sniffed by the packet sniffing technique. Then the Linux 
environment’s controller arranges the extracted data as a 
feature array and sends it as a hypertext transfer protocol 
(HTTP) request via the internet to the API endpoint of the 
API backend. The API backend controller extracts the data 
from the HTTP request and feeds it into the ML pipeline. 
The ML pipeline consists of two components: categori-
cal data encoding, which transforms categorical data into 
numerical values, and feature scaling, which scales the entire 
dataset to a standard scale. Once the data pre-processing 
is completed, the pre-processed data is fed into the trained 
DNN model. Following that, the API backend controller 
returns the prediction result as an HTTP response for the 
corresponding HTTP request. Finally, the Linux environ-
ment controller alerts the network administrator if the HTTP 
response contains an anomaly.

Methodology

The implementation of this research was conducted under 
eight methodological steps: data pre-processing, DNN 
implementation, ML pipeline development, API endpoint 
development and documentation, ML integration, API 
deployment, network configuration and feature extraction. 
ML Development.

Data Pre‑processing

Data pre-processing is the initial step that should be per-
formed before feeding the data into the ML model. The tasks 
are feature selection, categorical data encoding and feature 
scaling.

Feature selection: The NSL-KDD dataset's 41 attributes 
are classified into three categories. They are basic, content, 
and traffic features. Without inspecting the payload, the 
basic features can be derived from the packet headers. The 
time interval is used to calculate traffic features. Domain 
expertise is required, however, to assess the payload of the 
packet to derive content features [10]. Furthermore, the 
NSL-KDD dataset authors have not explicitly stated how 
to derive the content features from the packets. Due to the 
difficulty of deriving features from the payload in real-time, 
the DNN model was trained using the remaining 28 features 
while excluding the 13 content features. The below table 
reveals the selected attributes for training the ML algorithm 
(Table 3).

Categorical data encoding The one-hot encoding (OHE) 
was adopted to perform categorical data encoding since ML 
algorithms achieve best performance when numerical val-
ues are used. Instead of integer encoding, OHE was used 
because if the nominal categorical data were encoded using 
integer encoding, an ordered numerical list would be cre-
ated, which would mislead the ML algorithms by assigning 
irrelevant importance to the values based on their magni-
tude. The shortcoming of the OHE is that it creates a new 
column for each category, resulting the "curse of dimension-
ality." Therefore, the categories with the lowest frequency 
were combined into a single category. Table 4 shows the 
category count before and after grouping. 

Fig. 1  Functional block diagram

Table 3  Selected attributes for training the DNN

No Feature Name No Feature Name

1 duration 15 srv_rerror_rate
2 protocol_type 16 same_srv_rate
3 service 17 diff_srv_rate
4 flag 18 srv_diff_host_rate
5 src_bytes 19 dst_host_count
6 dst_bytes 20 dst_host_srv_count
7 land 21 dst_host_same_srv_rate
8 wrong_fragment 22 dst_host_diff_srv_rate
9 urgent 23 dst_host_same_src_port_rate
10 count 24 dst_host_srv_diff_host_rate
11 srv_count 25 dst_host_serror_rate
12 serror_rate 26 dst_host_srv_serror_rate
13 srv_serror_rate 27 dst_host_rerror_rate
14 rerror_rate 28 dst_host_srv_rerror_rate
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After the category reduction phase is completed, OHE 
is undertaken for categorical features using the 'OneHotEn-
coder' function in the Scikit-Learn library.

Feature scaling the feature scaling concludes the data 
pre-processing, and it is employed to transform the numeri-
cal values of the complete dataset to a standard scale. Fur-
thermore, the Standardization method is a scaling mecha-
nism capable of rescaling the attributes to zero mean and 
the distribution with unit standard deviation. Equation 1 
demonstrates the standardization equation, which was used 
for feature scaling.

For feature scaling, the ‘StandardScaler’ function of the 
Scikit-Learn [17] library was used.

Deep Neural Network Implementation

The DNN was built using the Keras, which is an open-source 
software library that is used for developing ANN. The DNN 
consists of 16 layers (excluding output layer) with different 
number of neurons in each hidden layer. Table 5 depicts the 
number of neurons associated with each hidden layer.

Several hyperparameters are associated in DNNs, which 
should be predetermined, that have a direct impact on the 
performance of the final model, such as the number of hid-
den layers, the number of neurons, activation function, 
weights initializer, bias initializer, learning rate, regularisa-
tion coefficient, and the optimizer. In the DNN model, the 

(1)Xstandardized =
X−mean (X)

standard deviation (X)
.

input layer and all the hidden layers were activated using 
ReLU (Rectified Linear Unit) function. The Eq. 2 depicts 
the ReLU activation function and it is a piecewise linear 
function and when the input is positive it directly output the 
input, otherwise, the output will be zero. The nodes which 
are activated using this function is referred as a rectified 
linear activation unit [18].

The output layer was activated using the Sigmoid func-
tion, which can map any real value to the range (0,1). This 
function converts the output of the DNN network into a 
probability score. The Eq. 3 depicts the equation of the Sig-
moid function.

The initialization of the weights and the biases is crucial 
since improper initialization may lead to gradient exploding 
or vanishing phenomena. Thus, when the initialization is too 
large, it leads to exploding gradients, while too small ini-
tialization leads to vanishing gradients. In order to avoid the 
above phenomenon, the activations should have zero mean, 
and the variance should be constant across every layer [19]. 
Therefore, the weights of the layers which were activated 
using the ReLU [20] function were initialized using He Uni-
form initializer, and the output layer was initialized using 
the Glorot Uniform initializer [21]. Moreover, the Tensor-
Flow-based Keras initializer functions called HeUniform and 
GlorotUniform functions were used for weight initialization. 
The bias initialization of all the layers was performed using 
the Zero initializer.

In the DNN, stochastic gradient descent (SGD) was used 
as the optimizer with a learning rate of 0.001. The binary 
cross-entropy was used as the loss function, and it is capa-
ble of estimating the loss of the model, which weights of 
the DNN can be updated accordingly to reduce the loss on 
the subsequent evaluation. Moreover, it is used for binary 
classification problems where the target values are in the 
set {0,1}. The DNN model was trained after executing it for 
100 epochs, and the cross-validation technique was used to 
identify the performance of the model for untrained data. In 
addition, it is possible to identify whether the model is over-
fitting or underfitting by analysing the training and cross-
validation accuracy curves. Therefore, to avoid overfitting, 
the ‘early stopping’ method was utilized. Hyperparameter 
tuning is required to enhance the performance of the ML 
model. Furthermore, the Keras Tuner library was used to 
tune the hyperparameters: the number of hidden layers, the 
number of neurons in each hidden layer, regularization coef-
ficient, and learning rate.

Once the training is being done, the DNN machine learn-
ing model is saved in a JavaScript Object Notation (JSON) 

(2)ReLU(x) = max (0, x).

(3)Sigmoid (x) =
1

1+e−x
.

Table 4  NSL-KDD, before and after category reduction

Name No. categories before No. cat-
egories 
after

Protocol_type 3 3
Service 70 25
Flag 11 11

Table 5  Neuron count in each 
layer

Layer no Neurons

1 64
2 160
3 352
4 320
5 448
6 384
7 192
8 224
9–16 32
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file, which is a text format for data storage and transpor-
tation; moreover, the weights of the DNN are saved in a 
hierarchical data format 5 file (H5), which saves data in 
the hierarchical data format (HDF). Even though the ML 
model is saved to retrieve back whenever predictions are 
being made, the predicting process will be interrupted due 
to a dimension mismatch incurred while ingesting the data 
into the ML model. Therefore, data should be pre-processed 
in the exact same format in which the data pre-processing 
is done in the training stage. Consequently, the state of the 
‘ColumnTransformer’ is also saved in a PICKLE file, which 
converts a Python object into a character stream and saves 
it on the disk.

Machine Learning Pipeline Development

The developed ML pipeline predominantly includes two 
sequential components: column transformer and the trained 
DNN model. Moreover, the column transformer is an aggre-
gate of one-hot encoder and the Standard Scaler, which 
are used for categorical data encoding and feature scaling 
accordingly. The below figure illustrates the architecture of 
the ML pipeline built for real-time data transformation and 
prediction.

Before initiating the real-time prediction process, the pre-
trained DNN model and the saved Column Transformer files 
are ingested into the ML pipeline as sequential components. 
Firstly, the real-time data extracted from the inbound traffic 
will be fed into the ML pipeline, and then the ‘Column-
Transformer’ performs OHE on three predetermined col-
umns. Following that, feature scaling is performed using the 
Standard Scaler on all columns with decimal values. Upon 
the completion of data pre-processing, those data will be fed 
to the trained DNN, and the predictions will be made based 
on experience (Fig. 2).

When using a pipeline, there are various benefits. The 
pipeline used to train the ML model can be used to pre-
process the test dataset and test the trained model. Moreover, 
the pipeline can process continuous streams of network traf-
fic data in real-time.

API Development

API Endpoint Development and Documentation

The API serves as the backend of the real-time prediction 
system and was constructed with Flask [22]. Furthermore, 
the basis for utilizing Flask is that it does not require any 
specialized tools or libraries; hence, it is regarded as a 
microframework. One end of the communication chan-
nel is known as the API endpoint. The backend server is 
one of the RESTful API's endpoints, which is identifi-
able by the URL: host/API/V2. In this system, an HTTP 
request will be generated using the Get () method, contain-
ing a comma-separated string comprising a subset of the 
features space of the NSL-KDD dataset. When the URL 
is called back along with the query, a response will be 
returned indicating whether or not there is an anomaly via 
the API endpoint. API documentation is a technical expla-
nation that offers instructions on how to use and interact 
with an API, such as procedures for calling the API, the 
format of the returning response from the API, and dif-
ferent response formats dependent on the error type. The 
Swagger documentation framework was used to produce 
the API documentation, which is viewable via the “host/.” 
URL.

ML Integration

A microservice is launched with Flask, and all routing 
pathways were configured. To run the ML pipeline, three 
files must be added to the webserver. As a result, in the 
ML integration section, the JSON file of the ML model, the 
H5 file containing the DNN weights, and the PICKLE file 
of the ColumnTransformer including the categorical data 
encoder and the feature scaler were imported using Flask. In 
addition, the Python file containing the ML pipeline code is 
loaded at the same time. The trained ML model is in standby 
mode whenever the Flask server is active, and when an API 
request is made, an immediate response is transmitted to the 
client via the API endpoint.

API Deployment

The deployment phase of the Flask application required a 
production level server at the end of its development. As 
a result, the Gunicorn server [23], a Python Web Server 
Gateway Interface (WSGI), was used. Furthermore, for 
portability between platforms, the Gunicorn and Flask 
applications were containerised using Docker technology. 
However, to provide accessibility during the development 
phase, the Nginx web server was used, and it was built into Fig. 2  Pipeline architecture
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a single container. Following that, the Nginx container and 
the container containing the Gunicorn and Flask applica-
tion were combined into a single docker file. Consequently, 
this system can be executed in any environment using 
Docker technology. Finally, the docker file containing both 
containers was executed on a Linux server.

Real‑Time Feature Extraction

Network Configuration

The initial stage of implementing real-time feature extrac-
tion is the network configuration. A Linux workstation with 
two network interfaces was installed between the gateway 
router and the LAN inline to the data connection to sniff the 
inbound and outbound data packets. Furthermore, by using 
the Linux machine configurations the two network interfaces 
were bridged virtually, then it will capture inbound and out-
bound data packets that flow via the Linux workstation uti-
lising the packet sniffing mechanism developed in the C++ 
programming language.

Feature Extraction

The Packet Sniffing method was utilized for feature extrac-
tion, and it is a low-resource consuming application that 
can be deployed on any machine on a network, which con-
sists of two or more network interfaces. C++ programming 
language was used to code the packet capturing system 
using  the LIBPCAP package. Moreover, LIBPCAP is a 
library that provides a high-level API for capturing network 
traffic. Then the C++ application captures the packet as a 
string buffer. In addition, the packet analysis function was 
developed to process packets with some protocols such as 
ICMP, TCP, and UDP.

Cost Analysis

The performance of DL algorithms improves as the 
amount of data increases. However, as the amount of data 
increases, the performance of most conventional ML meth-
ods decreases. When employing DL, the advantage of per-
formance improvement can be used for complex problems. 
However, it requires a very large volume of data (> 100,000) 

to outperform many ML algorithms. Furthermore, the pro-
posed DL approach necessitates a significant amount of pro-
cessing power when compared to other conventional ML 
algorithms, and the training time is significantly longer. The 
hardware and software utilized for training the ML algo-
rithms are depicted in the below table (Table 6).

Based on the specifications mentioned above, the pro-
posed DNN consumed approximately 30 min to complete 
the training process. In addition, the hyperparameter tuning 
process of the proposed DNN was time-consuming due to 
the larger number of hyperparameters associated with DNN.

Simulations Results

The DNN model’s performance was evaluated using the 
accuracy, loss, precision, recall, f1-score, and confusion 
matrix (CM) together with the curves illustrated below. The 
below Figs. 3, 4, 5 and 6 were obtained using the Tensor-
Board, the TensorFlow visualization toolkit to demonstrate 
the behaviour of the accuracy, loss, precision, and recall of 

Table 6  Hardware specifications and utilized libraries

CPU Intel(R) Xeon(R) CPU @ 2.30 GHz

Memory 12.00 GB
Platform Google Colab
Libraries Pandas, TensorFlow, Keras, Scikit
Language Python

Fig. 3  Accuracy curves of training and validation set

Fig. 4  Loss curves of training and validation set
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the training and cross-validation sets with the number of 
epochs (Fig. 7).

Precision, recall, and F1-score depends on the number 
of predicted true positives (TP), false positives (FP), true 
negatives (TN) and false negatives (FN). These performance 

indicators are particularly effective when analysing the per-
formance when the class distribution is skewed.

• TP: predicts 1 and the actual class is 1.
• FP: predicts 1 and the actual class is 0.
• TN: predicts 0 and the actual class is 0.
• FN: predicts 0 and the actual class is 1.

The above figure illustrates the confusion matrix obtained 
using the test dataset of the NSL-KDD. The Eqs. 4–7 below 
shows the equations of the accuracy, precision, recall and 
F1-score.

Precisions determines the number of positive predic-
tions that are truly positive. Moreover, recall calculates the 
proportion of positive predictions created employing the 
positive instances in the dataset. The F1-score is derived 
by computing the weighted average between precision and 
recall, and it may be used to seek a balance between preci-
sion and recall [24]. The performance of the model is excep-
tional when the F1-score is greater. Tables 7 and 8 shows the 
training and test results for accuracy, precision, recall, and 
f1-score obtained using the NSL-KDD test dataset.

According to the accuracy, loss, precision, and recall 
graphs in Figs. 3, 4, 5 and 6, the trained DNN model does 
not overfit or underfit since both curves in each graph have 
shown almost similar values without any considerable 

(4)Accuracy =
TP+TN

total samples
,

(5)Precision (P) =
TP

TP+FP
,

(6)Recall (R) =
TP

TP+FN
,

(7)F1 - score = 2 ×
P×R

P+R
.

Fig. 5  Precision curves of training and validation set

Fig. 6  Recall curves of training and validation set

Fig. 7  Normalized confusion matrix of testing dataset

Table 7  Training set 
performance results

Training set results

Accuracy 0.9948
Precision 0.9952
Recall 0.9934
F1-score 0.9942

Table 8  Testing set 
performance results

Test set results

Accuracy 0.8187
Precision 0.9645
Recall 0.7071
F1-score 0.8159
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differences. In addition, the normalized confusion matrix 
obtained using the test dataset has shown satisfactory results 
by achieving higher values for TPs and TNs. Finally, the 
accuracy, precision, recall, and f1-score calculated using 
the Eqs. 4–7 have revealed that the trained DNN performs 
optimally for unseen data by getting higher performance 
results as shown in Table 8. Consequently, the trained DNN 
is optimal for a RT-IDS.

Performance Comparison

Table 9 shows a comparison of the proposed DNN model 
performance with different ML classifiers for binary clas-
sification, which were trained using 28 features of the NSL-
KDD dataset.

The below graph illustrates the performance of different 
ML classifiers for easy understanding.

According to Table 9 and Fig. 8, the proposed DNN has 
shown promising results by outperforming all the other algo-
rithms in terms of accuracy, precision, recall, and f1-score. 
Other algorithms have shown poor recall values, which 
leads to an increment in the number of false alarms. Since 
the f1-score is the weighted average between precision and 
recall, it was considered the dominant performance metric 
during evaluation. The f1-score of the DNN is significantly 

higher compared to others. Consequently, DNN is the opti-
mum algorithm for the RT-IDS.

Furthermore, the proposed RT-IDS has several advan-
tages. By implementing the RT-IDS near the gateway 
router, network protection for the entire organization can be 
gained, and by deploying it on a single host, personal net-
work protection can be obtained. Moreover, since the trained 
DNN, along with the ML pipeline installed in the backend, 
is containerized using Docker technology, the deployment 
of the proposed is easier.

Future Works

Several constraints were encountered during the implemen-
tation of the RT-IDS. One of the most major constraints has 
been the unavailability of a rich dataset that contains mod-
ern intrusion types and portrays current network traffic pat-
terns. Furthermore, a lack of information about the methods 
employed for deriving features during the development of 
the NSL-KDD dataset has restricted the number of features 
that can be extracted from the network traffic. In addition, 
there are two disadvantages in the proposed system. Firstly, 
training the DNN using the NSL-KDD dataset, which con-
tains outdated intrusion types and network traffic patterns, 
has hampered the deployment of RT-IDS as a contempo-
rary real-world application. Moreover, testing result for the 
recall is lower compared to precision since the number of 
normal class records is greater than intrusions. As a result, 
the proposed system exhibits some bias towards normal data 
and has a modest tendency to generate false alarms. Conse-
quently, the future scope of the project is aimed at develop-
ing a dataset that represents current network traffic patterns 
together with employing the anomaly detection technique 
to identify intrusions and integrating it with an automated 
system to block intrusions.

Conclusion

This research presents a descriptive technical information 
about RT-IDS based on DNN ML algorithm. It can capture 
real-time network traffic and identify destructive intrusions 
and it is hosted in a web server to provide accessibility for 
personal and corporate sector networks to employ it to their 
networks via a RESTful API. Since the real-time feature 
extraction module is containerized, it is effortless to inte-
grate into any system. The proposed system's usability and 
efficacy have been boosted by its ease of implementation 
and remote accessibility. The proposed system is extremely 
advantageous for instantly detecting intrusions by analysing 
inbound and outbound network traffic. This system outputs 
descriptive information regarding intrusion data packets, 

Table 9  Performance comparison using test set accuracy, precision, 
recall and f1-score

Algorithm Accuracy Precision Recall F1-score

KNN 0.7908 0.9584 0.6136 0.7481
SVM 0.7397 0.9643 0.5568 0.7059
OCSVM 0.7959 0.9600 0.5429 0.6935
K-Means 0.7328 0.9576 0.5369 0.6880
Proposed DNN 0.8187 0.9645 0.7071 0.8159
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easing network administrators' decision-making for appro-
priate measures. Furthermore, because sufficient API docu-
mentation is available, even users with limited programming 
skills can utilize the proposed system. The construction of 
the DNN, which is trained using the NSL-KDD dataset is 
systematically discussed together with the technical imple-
mentation and the simulation results on both training and 
testing aspects. Moreover, the techniques and procedures 
employed for real-time feature extraction from the inbound 
and outbound network traffic are clearly mentioned. In addi-
tion, how the ML prediction pipeline is hosted in a web 
server is descriptively discussed in this paper. The observed 
results of the DNN training and testing have showed excep-
tional training results and satisfactory results in the testing 
stage with a precision of 96%. Finally, our research work has 
contributed by presenting a fully functional RT-IDS which 
can be practically implemented as an extra layer of the net-
work protection.
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