
Vol.:(0123456789)

SN Computer Science (2022) 3:145
https://doi.org/10.1007/s42979-022-01031-1

SN Computer Science

ORIGINAL RESEARCH

Deep Neural Network Based Real‑Time Intrusion Detection System

Sharuka Promodya Thirimanne1 · Lasitha Jayawardana1 · Lasith Yasakethu1 · Pushpika Liyanaarachchi2 ·
Chaminda Hewage3

Received: 31 July 2021 / Accepted: 10 January 2022 / Published online: 29 January 2022
© The Author(s) 2022

Abstract
In recent years, due to the rapid growth in network technology, numerous types of intrusions have been uncovered that differ
from the existing ones, and the conventional firewalls with specific rule sets and policies are incapable of identifying those
intrusions in real-time. Therefore, that demands the requirement of a real-time intrusion detection system (RT-IDS). The
ultimate purpose of this research is to construct an RT-IDS capable of identifying intrusions by analysing the inbound and
outbound network data in real-time. The proposed system consists of a deep neural network (DNN) trained using 28 features
of the NSL-KDD dataset. In addition, it contains the machine learning (ML) pipeline with sequential components for cat-
egorical data encoding and feature scaling, which is used before transmitting the real-time data to the trained DNN model to
make predictions. Moreover, a real-time feature extractor, which is a C++ program that sniffs data from the real-time network
traffic and derives relevant data related to the features of the NSL-KDD dataset using the sniffed data, is deployed between
the gateway router and the local area network (LAN). Together with the trained DNN model, the ML pipeline is hosted in a
server that can be accessed via a representational state transfer application programming interface (REST API). The DNN
has revealed outstanding testing performance results achieving 81%, 96%, 70% and 81% for accuracy, precision, recall and
f1-score accordingly. This research comprises a comprehensive technical explanation concerning the implementation and
functionality of the complete system. Moreover, leveraging the extensive explanations provided in this paper, advanced IDSs
capable of identifying modern intrusions can be constructed.

Keywords Deep neural network · Real-time intrusion detection system · Machine learning · Pipelines

Introduction

The internet has become the most significant resource in
this century since it has become incorporated into our daily
lives, assisting us in a variety of ways; however, because of
its extraordinary popularity and accessibility, networks in
the corporate and personal sectors are exposed to a range of
manual and machine-generated attacks. Even though fire-
walls are designed to secure networks, they are incapable
of detecting intrusions in real-time. As a result, destructive
cyber-attacks pose severe security difficulties, necessitating
the need for adaptable and reliable intrusion detection sys-
tems (IDS) capable of monitoring policy violations, mali-
cious activity, and unauthorized access in real-time. Intru-
sion detection can be done in higher efficacy by employing
ML algorithms since those have pattern identification capa-
bility utilizing the statistical modelling concept based on the
past data. Therefore, the ultimate objective of this research is
to implement a fully functional ML based RT-IDS capable

This article is part of the topical collection “Cyber Security and
Privacy in Communication Networks” guest edited by Rajiv Misra,
R. K. Shyamsunder, Alexiei Dingli, Natalie Denk, Omer Rana,
Alexander Pfeiffer, Ashok Patel and Nishtha Kesswani”.

 * Lasith Yasakethu
 lasithy@sltc.ac.lk

 Sharuka Promodya Thirimanne
 sharukat@sltc.edu.lk

 Lasitha Jayawardana
 lasithaj@sltc.edu.lk

 Pushpika Liyanaarachchi
 klpushpika@eng.pdn.ac.lk

 Chaminda Hewage
 chewage@cardiffmet.ac.uk

1 Faculty of Engineering, Sri Lanka Technological Campus,
Padukka, Sri Lanka

2 Faculty of Engineering, University of Peradeniya,
Peradeniya, Sri Lanka

3 Department of Computer Science, Cardiff Metropolitan
University, Cardiff, UK

http://orcid.org/0000-0002-9571-6866
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01031-1&domain=pdf

 SN Computer Science (2022) 3:145145 Page 2 of 12

SN Computer Science

of predicting whether an intrusion or not based on the infor-
mation captured from the inbound data packet in real-time.

Many studies have been conducted to assess the perfor-
mance of various ML algorithms trained on the KDD99,
NSL-KDD [1], and USNW-NB15 [2] datasets. However,
a limited number of studies have been published based on
experiments to construct a RT-IDS. However, most of the
existing studies on RT-IDSs lack descriptive technical expla-
nations. Consequently, that deficiency is addressed in this
research. Moreover, most of the research that reveals per-
formance comparisons between various state-of-the-art ML
algorithms was done utilizing the Weka tool. The originality
of our research is that all the algorithms were constructed
using industry-utilized frameworks and libraries to demon-
strate the performance of ML in real-world applications.
The DNN was selected as the ML algorithm for this experi-
ment utilizing the conclusion of the previous research that
we have done on comparative algorithm analysis for ML-
based IDS using six ML algorithms: DNN, support vector
machines (SVM), K-nearest neighbours (KNN), one-class
SVM (OCSVM), K-means and expectation–maximization
(EM) [3].

The research reveals the experiment carried out to cre-
ate a RT-IDS using an ML algorithm. In this experiment, a
DNN was trained using the NSL-KDD dataset, which was
created using the KDD99 dataset to overcome the inherent
flaws such as redundant records [4]. Moreover, a real-time
feature extractor, which performs packet sniffing and feature
extraction from inbound and outbound data packets, is estab-
lished between the gateway router and the local network.
An ML pipeline, which consists of sequential components
for categorical feature encoding and feature scaling together
with the trained DNN, was developed to perform real-time
intrusion prediction. Furthermore, the real-time prediction
system is hosted in a server connected to the local network
via an application programming interface (API). This sys-
tem is capable of predicting whether or not a network state
represents an intrusion based on the data extracted by the
data packets. In addition, this system's uniqueness is that the
real-time prediction system is hosted in a server that can be
accessed using an API, enabling both corporate and personal
networks to utilize this system for preserving their network
from external attacks.

Overall, this study has contributed by introducing a
descriptive approach to the RT-IDS, which contains an ML
pipeline together with a fully trained DNN utilizing the
NSL-KDD dataset. Since the methodology and the perfor-
mance of the RT-IDS have been discussed, advanced RT-
IDSs with DNNs, trained using datasets with modern intru-
sion types can be developed quickly. Moreover, the intrusion
prediction ML pipeline is hosted in a server; therefore, any-
one can access this system and integrate it with their local
network.

The structure of this paper is organized as follows.
Related works are presented in "Related Work", and "Prob-
lem Statement" includes the problem statement. Moreover,
"Background" contains the background, and subsequently,
the system model of the experiment is in "System Model".
"Methodology" explains the methodology, and the perfor-
mance evaluation is addressed in "Simulations Results".
"Performance Comparison" and "Future Works" comprise
the discussion and the conclusion accordingly. Finally, the
future works are stated in "Conclusion".

Related Work

This section contains a collection of recent studies and
experiments on RT-IDS. However, majority of the studies
on IDS have been done performing benchmarking on differ-
ent ML algorithms using various datasets. Therefore, limited
number of studies are available on RT-IDSs. Hayoung et al.
have proposed a real-time intrusion and anomaly detec-
tion system based on self-organizing map (SOP). It clas-
sifies neurons as ‘normal’ or ‘attacks”, and once an attack
is identified, it categorizes according to the relevant attack
type. Moreover, they have used two subsets of the KDD99
dataset for training and testing purposes [5]. However, this
work lacks descriptive technical explanations on real-time
data capturing.

Sangkatsanee et al. have experimentally demonstrated
that the decision tree (DT) technique outperforms Ripper
Rule, back-propagation neural network (BPNN), Bayesian
network (BN), Naïve Bayes (NB), and radial basis function
neural network (RBF-NN). Moreover, the DT algorithm-
based RT-IDS can classify inbound data as normal or attack
with a detection rate higher than 98%. The DT algorithm
was trained using the RLD09 (Reliability Lab Data 2009)
dataset [6]. Furthermore, they have extracted 12 features and
the information gain method has been used for feature selec-
tion. Post-processing methods for lowering the false alarm
rate was used and have shown that the RT-IDS is efficient
in detection rate and memory utilization and can categorize
the incoming network data within 2 s [7].

A team of researchers in [8] have developed an RT-IDS
capable of detecting intrusions for network traffic with a
higher precision. It comprises four modules: network data
acquisition, data pre-processing, convolutional neural net-
work (CNN), and intrusion detection. The CNN was trained
using the NSL-KDD dataset. In data pre-processing, one-hot
encoding and feature normalisation were used for categori-
cal data encoding and feature scaling accordingly. The RT-
IDS can capture network data in using TCPDUMP, which
uses the LIBPCAP library to capture data from the network
layer. In addition, an open-source tool called Bro was used

SN Computer Science (2022) 3:145 Page 3 of 12 145

SN Computer Science

to analyse and segment the inbound data packets based on
predefined series of Bro rule scripts. This implementation
provides real-time network monitoring capability to detect
abnormal network behaviour.

Zhang et al. [9] have introduced a novel framework
design, which consists of five modules: pre-processing,
autoencoder (AE), database, classification, and feedback.
The proposed framework was evaluated using the CIC-
IDS2017 dataset. The sparse autoencoder (SAE) was used to
handle dimensionality by eliminating unimportant features.
The random forest (RF) was used as the main supervised
classification algorithm in this framework. To make com-
parisons with previous work, the accuracy of binary classi-
fication and multiclass classification were utilized as experi-
mental outcomes. Researchers obtained promising results
in their evaluation, with an accuracy of 0.9992 for binary
classification and 0.9990 for multiclass classification [9].

A group of researchers in [10] have proposed an intru-
sion detection approach based on deep SAE and self-taught
learning. Through unsupervised learning, the deep SAE
technique has been used to extract features effectively. The
deep SAE trained on regression-related tasks was utilized to
extract features from the NSL-KDD dataset. Even though
the source task does not have similar data distribution as
the target domain, both domains are related to each other by
the time-series nature of input features and unpredictable
behaviour. Finally, the NSL-KDD dataset features and the
extracted features were fed as an input to train the SAE. They
have experimentally proved that the SAE trained utilizing a
combination of original and extracted features outperforms
the SAE trained only on original features.

Karbir et al. [11] have proposed a network intrusion
detection framework based on a Bayesian network using a
wrapper approach. The proposed system eliminates irrel-
evant features using genetic algorithm feature selection tech-
niques, and a Bayesian classifier is employed as the base
classifier to identify attack types. The performance has been
evaluated using the NSL-KDD dataset and has achieved an
accuracy of 98.2653%, outperforming algorithms such as
KNN, Boosted DT, Hidden NB, and Markov Chain [11].

Below table illustrates the summary of previous works
related to intrusion detection (Table 1).

Problem Statement

The existence of numerous sorts of threats have necessi-
tated a system capable of defending systems and networks.
Although a firewall can accept, discard, or deny inbound
data packets based on the ruleset, it is incapable of identi-
fying intrusions. However, even though extensive research
has been done to analyse the performance of various ML
algorithms based on the existing datasets, a viable RT-IDS,
which can identify intrusions, is not yet developed. The com-
parative analysis we performed between six ML algorithms
to identify the optimum ML algorithm for an IDS during
our previous study [3], the scarcity of studies related to RT-
IDSs developed using deep learning approaches, which can
make predictions by analysing network traffic in real-time,
and the unavailability of a fully featured RT-IDS, which can
be implemented in any system or used as a software-as-a-
service (SaaS), stimulated the motivation for this research.
This research aims to develop a DNN based RT-IDS utilising
the NSL-KDD dataset to address the above challenge.

Background

This section contains the background information of the
dataset, technologies, and methods used in this research:
NSL-KDD dataset, DNN, ML pipeline, and packet sniffing.

NSL‑KDD Dataset

The dataset availability for intrusion detection is rare because
most datasets cannot be shared due to various security and
privacy concerns. The NSL-KDD dataset, on the other hand,
provides open access to the entire dataset and was developed to
overcome the inherent problems of the KDD99 dataset, which
was developed based on the data captured in DARPA’98 [1].
Even though KDD99 has been used in many research studies,

Table 1 Summary of previous related works

Ref Methods Dataset Achievement

[5] SOP KDD99 Misclassification rate of 0.05 with 0.5 s prediction time
[6] DT RLD09 Detection rate higher than 98% with 2 s prediction time
[8] CNN NSL-KDD Intrusion detection for network data streams with higher detection precision
[9] RF CICIDS-2017 Accuracy of 0.9992 for binary classification and 0.9990 for multiclass classification
[10] SAE NSL-KDD SAE trained using both original and extracted features outperforms SAE trained only on original

features
[11] Bayesian network NSL-KDD An accuracy of 98.2653% outperforming KNN, Boosted DT, Hidden NB, and Markov Chain

 SN Computer Science (2022) 3:145145 Page 4 of 12

SN Computer Science

there are several advantages when using the NSL-KDD data-
set. The ML classifier will not be biased towards classes with
frequent records due to the elimination of duplicate data.
Since the selected record count from each difficulty-level
group is inversely proportional to the percentage of records
in the KDD99 dataset, the classification rates of various ML
algorithms vary, allowing the accuracy of multiple learning
approaches effective. Moreover, the test set duplicate records
were totally removed and, even though NSL-KDD is substan-
tially smaller than KDD99, the number of records in the train-
ing sets is adequate to train an ML algorithm.

There are a few disadvantages when using the NSL-KDD
dataset, such as inadequate documentation outlining the calcu-
lation mechanisms used to derive the features and containing
obsolete data. Therefore, this dataset demonstrates less pro-
ductivity while designing a modern commercial-level applica-
tion. The NSL-KDD dataset is 52.3 MB in size and includes
two separate datasets for training and testing. The table below
shows the number of records in each dataset, as well as the
number of records associated with each attack type (Table 2).

Furthermore, UNSW-NB15 and CICDS2017 are two
other datasets available for intrusion detection. However,
the UNSW-NB15 dataset contains a considerable number of
duplicate records, and the elimination of duplicate records
reduces the number of records available for training. Moreo-
ver, the CICDS2017 dataset suffers from a class imbalance
problem, which leads to biasing the ML model towards the
majority class.

Deep Neural Network

The artificial neural network (ANN) is concept developed
based on the biology of the human brain [12]. Because neural
network (NN) can generate any decision boundary classifica-
tion in feature space, they can operate as nonlinear discrimi-
nating functions [13]. In recent years, the use of DNN in the
domain of intrusion detection has been a prominent research
focus, and it is an effective method that emerged from the
shallow neural network (SNN). DNN is superior at modelling
or abstracting representations and can simulate exceedingly
complicated models. DNN has enormous potential for achiev-
ing effective data representation to build useful solutions. The
above-mentioned facts and the comparative analysis carried
out between six ML algorithms, classified under supervised,
semi-supervised, and unsupervised learning in our previous
study [3] led us to employ DNN for the proposed method.

The DNN produces outputs based on the weights applied
to the connections and the related activation functions of
the neurons and it is made up of numerous processing layers
[14]. The proposed approach trains the DNN using the NSL-
KDD dataset, resulting in higher classification accuracy.

Machine Learning Pipeline

Manual data transformation prior to training ML algorithm
is ineffective and impractical for real-time commercial-level
applications. ML workflow of data transformation and cor-
relating the data into the model can be automated using the
ML pipelines. The efficiency and the simplicity of build-
ing ML models will be increased by utilizing ML pipelines
since the redundant tasks associated with the workflow will
be eliminated. ML pipeline is an aggregate of five essen-
tial tasks associated with the ML workflow namely, data
ingestion, cleaning, pre-processing, model validation and
deployment. Since ML pipelines are not one-way and itera-
tive behavioural capabilities of those, improve the perfor-
mance scores of the ML algorithms [15].

Packet Sniffing

Packet sniffing is a technique for intercepting data packets as
they travel across a network. Because data passes via the net-
work in the form of packets, packet sniffing tools can swiftly
capture the data packets. Packet sniffing applications are
known as packet sniffers, and they can read packets that pass
through the network layer of the TCP/IP layer. The packet
sniffing applications are divided into two categories based
on their intended use. Commercial packet sniffers are used
by network administrators to monitor and validate network
traffic, whereas underground packet sniffers are used by indi-
viduals' who sniff other people's personal and sensitive data
for personal benefit. Packet sniffing tools are commonly used
for monitoring network traffic, troubleshooting communica-
tion issues, assessing network performance, extracting user-
names, and identifying network intruders [16].

System Model

The system model of the research is shown in Fig. 1. The
functional block diagram illustrates the overall flow of the
entire system. The Linux environment is installed inline
between the organization's network and the gateway router.

Table 2 Details of normal and
attack data

Total Normal DoS Probe U2R R2L

Train 125,973 67,343 45,927 11,656 52 995
Test 22,544 9711 7458 2421 200 2654

SN Computer Science (2022) 3:145 Page 5 of 12 145

SN Computer Science

The network traffic flowing through the Linux environment
will then be sniffed by the packet sniffing method. The fea-
ture extraction then extracts the features from the data that
was sniffed by the packet sniffing technique. Then the Linux
environment’s controller arranges the extracted data as a
feature array and sends it as a hypertext transfer protocol
(HTTP) request via the internet to the API endpoint of the
API backend. The API backend controller extracts the data
from the HTTP request and feeds it into the ML pipeline.
The ML pipeline consists of two components: categori-
cal data encoding, which transforms categorical data into
numerical values, and feature scaling, which scales the entire
dataset to a standard scale. Once the data pre-processing
is completed, the pre-processed data is fed into the trained
DNN model. Following that, the API backend controller
returns the prediction result as an HTTP response for the
corresponding HTTP request. Finally, the Linux environ-
ment controller alerts the network administrator if the HTTP
response contains an anomaly.

Methodology

The implementation of this research was conducted under
eight methodological steps: data pre-processing, DNN
implementation, ML pipeline development, API endpoint
development and documentation, ML integration, API
deployment, network configuration and feature extraction.
ML Development.

Data Pre‑processing

Data pre-processing is the initial step that should be per-
formed before feeding the data into the ML model. The tasks
are feature selection, categorical data encoding and feature
scaling.

Feature selection: The NSL-KDD dataset's 41 attributes
are classified into three categories. They are basic, content,
and traffic features. Without inspecting the payload, the
basic features can be derived from the packet headers. The
time interval is used to calculate traffic features. Domain
expertise is required, however, to assess the payload of the
packet to derive content features [10]. Furthermore, the
NSL-KDD dataset authors have not explicitly stated how
to derive the content features from the packets. Due to the
difficulty of deriving features from the payload in real-time,
the DNN model was trained using the remaining 28 features
while excluding the 13 content features. The below table
reveals the selected attributes for training the ML algorithm
(Table 3).

Categorical data encoding The one-hot encoding (OHE)
was adopted to perform categorical data encoding since ML
algorithms achieve best performance when numerical val-
ues are used. Instead of integer encoding, OHE was used
because if the nominal categorical data were encoded using
integer encoding, an ordered numerical list would be cre-
ated, which would mislead the ML algorithms by assigning
irrelevant importance to the values based on their magni-
tude. The shortcoming of the OHE is that it creates a new
column for each category, resulting the "curse of dimension-
ality." Therefore, the categories with the lowest frequency
were combined into a single category. Table 4 shows the
category count before and after grouping.

Fig. 1 Functional block diagram

Table 3 Selected attributes for training the DNN

No Feature Name No Feature Name

1 duration 15 srv_rerror_rate
2 protocol_type 16 same_srv_rate
3 service 17 diff_srv_rate
4 flag 18 srv_diff_host_rate
5 src_bytes 19 dst_host_count
6 dst_bytes 20 dst_host_srv_count
7 land 21 dst_host_same_srv_rate
8 wrong_fragment 22 dst_host_diff_srv_rate
9 urgent 23 dst_host_same_src_port_rate
10 count 24 dst_host_srv_diff_host_rate
11 srv_count 25 dst_host_serror_rate
12 serror_rate 26 dst_host_srv_serror_rate
13 srv_serror_rate 27 dst_host_rerror_rate
14 rerror_rate 28 dst_host_srv_rerror_rate

 SN Computer Science (2022) 3:145145 Page 6 of 12

SN Computer Science

After the category reduction phase is completed, OHE
is undertaken for categorical features using the 'OneHotEn-
coder' function in the Scikit-Learn library.

Feature scaling the feature scaling concludes the data
pre-processing, and it is employed to transform the numeri-
cal values of the complete dataset to a standard scale. Fur-
thermore, the Standardization method is a scaling mecha-
nism capable of rescaling the attributes to zero mean and
the distribution with unit standard deviation. Equation 1
demonstrates the standardization equation, which was used
for feature scaling.

For feature scaling, the ‘StandardScaler’ function of the
Scikit-Learn [17] library was used.

Deep Neural Network Implementation

The DNN was built using the Keras, which is an open-source
software library that is used for developing ANN. The DNN
consists of 16 layers (excluding output layer) with different
number of neurons in each hidden layer. Table 5 depicts the
number of neurons associated with each hidden layer.

Several hyperparameters are associated in DNNs, which
should be predetermined, that have a direct impact on the
performance of the final model, such as the number of hid-
den layers, the number of neurons, activation function,
weights initializer, bias initializer, learning rate, regularisa-
tion coefficient, and the optimizer. In the DNN model, the

(1)Xstandardized =
X−mean (X)

standard deviation (X)
.

input layer and all the hidden layers were activated using
ReLU (Rectified Linear Unit) function. The Eq. 2 depicts
the ReLU activation function and it is a piecewise linear
function and when the input is positive it directly output the
input, otherwise, the output will be zero. The nodes which
are activated using this function is referred as a rectified
linear activation unit [18].

The output layer was activated using the Sigmoid func-
tion, which can map any real value to the range (0,1). This
function converts the output of the DNN network into a
probability score. The Eq. 3 depicts the equation of the Sig-
moid function.

The initialization of the weights and the biases is crucial
since improper initialization may lead to gradient exploding
or vanishing phenomena. Thus, when the initialization is too
large, it leads to exploding gradients, while too small ini-
tialization leads to vanishing gradients. In order to avoid the
above phenomenon, the activations should have zero mean,
and the variance should be constant across every layer [19].
Therefore, the weights of the layers which were activated
using the ReLU [20] function were initialized using He Uni-
form initializer, and the output layer was initialized using
the Glorot Uniform initializer [21]. Moreover, the Tensor-
Flow-based Keras initializer functions called HeUniform and
GlorotUniform functions were used for weight initialization.
The bias initialization of all the layers was performed using
the Zero initializer.

In the DNN, stochastic gradient descent (SGD) was used
as the optimizer with a learning rate of 0.001. The binary
cross-entropy was used as the loss function, and it is capa-
ble of estimating the loss of the model, which weights of
the DNN can be updated accordingly to reduce the loss on
the subsequent evaluation. Moreover, it is used for binary
classification problems where the target values are in the
set {0,1}. The DNN model was trained after executing it for
100 epochs, and the cross-validation technique was used to
identify the performance of the model for untrained data. In
addition, it is possible to identify whether the model is over-
fitting or underfitting by analysing the training and cross-
validation accuracy curves. Therefore, to avoid overfitting,
the ‘early stopping’ method was utilized. Hyperparameter
tuning is required to enhance the performance of the ML
model. Furthermore, the Keras Tuner library was used to
tune the hyperparameters: the number of hidden layers, the
number of neurons in each hidden layer, regularization coef-
ficient, and learning rate.

Once the training is being done, the DNN machine learn-
ing model is saved in a JavaScript Object Notation (JSON)

(2)ReLU(x) = max (0, x).

(3)Sigmoid (x) =
1

1+e−x
.

Table 4 NSL-KDD, before and after category reduction

Name No. categories before No. cat-
egories
after

Protocol_type 3 3
Service 70 25
Flag 11 11

Table 5 Neuron count in each
layer

Layer no Neurons

1 64
2 160
3 352
4 320
5 448
6 384
7 192
8 224
9–16 32

SN Computer Science (2022) 3:145 Page 7 of 12 145

SN Computer Science

file, which is a text format for data storage and transpor-
tation; moreover, the weights of the DNN are saved in a
hierarchical data format 5 file (H5), which saves data in
the hierarchical data format (HDF). Even though the ML
model is saved to retrieve back whenever predictions are
being made, the predicting process will be interrupted due
to a dimension mismatch incurred while ingesting the data
into the ML model. Therefore, data should be pre-processed
in the exact same format in which the data pre-processing
is done in the training stage. Consequently, the state of the
‘ColumnTransformer’ is also saved in a PICKLE file, which
converts a Python object into a character stream and saves
it on the disk.

Machine Learning Pipeline Development

The developed ML pipeline predominantly includes two
sequential components: column transformer and the trained
DNN model. Moreover, the column transformer is an aggre-
gate of one-hot encoder and the Standard Scaler, which
are used for categorical data encoding and feature scaling
accordingly. The below figure illustrates the architecture of
the ML pipeline built for real-time data transformation and
prediction.

Before initiating the real-time prediction process, the pre-
trained DNN model and the saved Column Transformer files
are ingested into the ML pipeline as sequential components.
Firstly, the real-time data extracted from the inbound traffic
will be fed into the ML pipeline, and then the ‘Column-
Transformer’ performs OHE on three predetermined col-
umns. Following that, feature scaling is performed using the
Standard Scaler on all columns with decimal values. Upon
the completion of data pre-processing, those data will be fed
to the trained DNN, and the predictions will be made based
on experience (Fig. 2).

When using a pipeline, there are various benefits. The
pipeline used to train the ML model can be used to pre-
process the test dataset and test the trained model. Moreover,
the pipeline can process continuous streams of network traf-
fic data in real-time.

API Development

API Endpoint Development and Documentation

The API serves as the backend of the real-time prediction
system and was constructed with Flask [22]. Furthermore,
the basis for utilizing Flask is that it does not require any
specialized tools or libraries; hence, it is regarded as a
microframework. One end of the communication chan-
nel is known as the API endpoint. The backend server is
one of the RESTful API's endpoints, which is identifi-
able by the URL: host/API/V2. In this system, an HTTP
request will be generated using the Get () method, contain-
ing a comma-separated string comprising a subset of the
features space of the NSL-KDD dataset. When the URL
is called back along with the query, a response will be
returned indicating whether or not there is an anomaly via
the API endpoint. API documentation is a technical expla-
nation that offers instructions on how to use and interact
with an API, such as procedures for calling the API, the
format of the returning response from the API, and dif-
ferent response formats dependent on the error type. The
Swagger documentation framework was used to produce
the API documentation, which is viewable via the “host/.”
URL.

ML Integration

A microservice is launched with Flask, and all routing
pathways were configured. To run the ML pipeline, three
files must be added to the webserver. As a result, in the
ML integration section, the JSON file of the ML model, the
H5 file containing the DNN weights, and the PICKLE file
of the ColumnTransformer including the categorical data
encoder and the feature scaler were imported using Flask. In
addition, the Python file containing the ML pipeline code is
loaded at the same time. The trained ML model is in standby
mode whenever the Flask server is active, and when an API
request is made, an immediate response is transmitted to the
client via the API endpoint.

API Deployment

The deployment phase of the Flask application required a
production level server at the end of its development. As
a result, the Gunicorn server [23], a Python Web Server
Gateway Interface (WSGI), was used. Furthermore, for
portability between platforms, the Gunicorn and Flask
applications were containerised using Docker technology.
However, to provide accessibility during the development
phase, the Nginx web server was used, and it was built into Fig. 2 Pipeline architecture

 SN Computer Science (2022) 3:145145 Page 8 of 12

SN Computer Science

a single container. Following that, the Nginx container and
the container containing the Gunicorn and Flask applica-
tion were combined into a single docker file. Consequently,
this system can be executed in any environment using
Docker technology. Finally, the docker file containing both
containers was executed on a Linux server.

Real‑Time Feature Extraction

Network Configuration

The initial stage of implementing real-time feature extrac-
tion is the network configuration. A Linux workstation with
two network interfaces was installed between the gateway
router and the LAN inline to the data connection to sniff the
inbound and outbound data packets. Furthermore, by using
the Linux machine configurations the two network interfaces
were bridged virtually, then it will capture inbound and out-
bound data packets that flow via the Linux workstation uti-
lising the packet sniffing mechanism developed in the C++
programming language.

Feature Extraction

The Packet Sniffing method was utilized for feature extrac-
tion, and it is a low-resource consuming application that
can be deployed on any machine on a network, which con-
sists of two or more network interfaces. C++ programming
language was used to code the packet capturing system
using the LIBPCAP package. Moreover, LIBPCAP is a
library that provides a high-level API for capturing network
traffic. Then the C++ application captures the packet as a
string buffer. In addition, the packet analysis function was
developed to process packets with some protocols such as
ICMP, TCP, and UDP.

Cost Analysis

The performance of DL algorithms improves as the
amount of data increases. However, as the amount of data
increases, the performance of most conventional ML meth-
ods decreases. When employing DL, the advantage of per-
formance improvement can be used for complex problems.
However, it requires a very large volume of data (> 100,000)

to outperform many ML algorithms. Furthermore, the pro-
posed DL approach necessitates a significant amount of pro-
cessing power when compared to other conventional ML
algorithms, and the training time is significantly longer. The
hardware and software utilized for training the ML algo-
rithms are depicted in the below table (Table 6).

Based on the specifications mentioned above, the pro-
posed DNN consumed approximately 30 min to complete
the training process. In addition, the hyperparameter tuning
process of the proposed DNN was time-consuming due to
the larger number of hyperparameters associated with DNN.

Simulations Results

The DNN model’s performance was evaluated using the
accuracy, loss, precision, recall, f1-score, and confusion
matrix (CM) together with the curves illustrated below. The
below Figs. 3, 4, 5 and 6 were obtained using the Tensor-
Board, the TensorFlow visualization toolkit to demonstrate
the behaviour of the accuracy, loss, precision, and recall of

Table 6 Hardware specifications and utilized libraries

CPU Intel(R) Xeon(R) CPU @ 2.30 GHz

Memory 12.00 GB
Platform Google Colab
Libraries Pandas, TensorFlow, Keras, Scikit
Language Python

Fig. 3 Accuracy curves of training and validation set

Fig. 4 Loss curves of training and validation set

SN Computer Science (2022) 3:145 Page 9 of 12 145

SN Computer Science

the training and cross-validation sets with the number of
epochs (Fig. 7).

Precision, recall, and F1-score depends on the number
of predicted true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN). These performance

indicators are particularly effective when analysing the per-
formance when the class distribution is skewed.

• TP: predicts 1 and the actual class is 1.
• FP: predicts 1 and the actual class is 0.
• TN: predicts 0 and the actual class is 0.
• FN: predicts 0 and the actual class is 1.

The above figure illustrates the confusion matrix obtained
using the test dataset of the NSL-KDD. The Eqs. 4–7 below
shows the equations of the accuracy, precision, recall and
F1-score.

Precisions determines the number of positive predic-
tions that are truly positive. Moreover, recall calculates the
proportion of positive predictions created employing the
positive instances in the dataset. The F1-score is derived
by computing the weighted average between precision and
recall, and it may be used to seek a balance between preci-
sion and recall [24]. The performance of the model is excep-
tional when the F1-score is greater. Tables 7 and 8 shows the
training and test results for accuracy, precision, recall, and
f1-score obtained using the NSL-KDD test dataset.

According to the accuracy, loss, precision, and recall
graphs in Figs. 3, 4, 5 and 6, the trained DNN model does
not overfit or underfit since both curves in each graph have
shown almost similar values without any considerable

(4)Accuracy =
TP+TN

total samples
,

(5)Precision (P) =
TP

TP+FP
,

(6)Recall (R) =
TP

TP+FN
,

(7)F1 - score = 2 ×
P×R

P+R
.

Fig. 5 Precision curves of training and validation set

Fig. 6 Recall curves of training and validation set

Fig. 7 Normalized confusion matrix of testing dataset

Table 7 Training set
performance results

Training set results

Accuracy 0.9948
Precision 0.9952
Recall 0.9934
F1-score 0.9942

Table 8 Testing set
performance results

Test set results

Accuracy 0.8187
Precision 0.9645
Recall 0.7071
F1-score 0.8159

 SN Computer Science (2022) 3:145145 Page 10 of 12

SN Computer Science

differences. In addition, the normalized confusion matrix
obtained using the test dataset has shown satisfactory results
by achieving higher values for TPs and TNs. Finally, the
accuracy, precision, recall, and f1-score calculated using
the Eqs. 4–7 have revealed that the trained DNN performs
optimally for unseen data by getting higher performance
results as shown in Table 8. Consequently, the trained DNN
is optimal for a RT-IDS.

Performance Comparison

Table 9 shows a comparison of the proposed DNN model
performance with different ML classifiers for binary clas-
sification, which were trained using 28 features of the NSL-
KDD dataset.

The below graph illustrates the performance of different
ML classifiers for easy understanding.

According to Table 9 and Fig. 8, the proposed DNN has
shown promising results by outperforming all the other algo-
rithms in terms of accuracy, precision, recall, and f1-score.
Other algorithms have shown poor recall values, which
leads to an increment in the number of false alarms. Since
the f1-score is the weighted average between precision and
recall, it was considered the dominant performance metric
during evaluation. The f1-score of the DNN is significantly

higher compared to others. Consequently, DNN is the opti-
mum algorithm for the RT-IDS.

Furthermore, the proposed RT-IDS has several advan-
tages. By implementing the RT-IDS near the gateway
router, network protection for the entire organization can be
gained, and by deploying it on a single host, personal net-
work protection can be obtained. Moreover, since the trained
DNN, along with the ML pipeline installed in the backend,
is containerized using Docker technology, the deployment
of the proposed is easier.

Future Works

Several constraints were encountered during the implemen-
tation of the RT-IDS. One of the most major constraints has
been the unavailability of a rich dataset that contains mod-
ern intrusion types and portrays current network traffic pat-
terns. Furthermore, a lack of information about the methods
employed for deriving features during the development of
the NSL-KDD dataset has restricted the number of features
that can be extracted from the network traffic. In addition,
there are two disadvantages in the proposed system. Firstly,
training the DNN using the NSL-KDD dataset, which con-
tains outdated intrusion types and network traffic patterns,
has hampered the deployment of RT-IDS as a contempo-
rary real-world application. Moreover, testing result for the
recall is lower compared to precision since the number of
normal class records is greater than intrusions. As a result,
the proposed system exhibits some bias towards normal data
and has a modest tendency to generate false alarms. Conse-
quently, the future scope of the project is aimed at develop-
ing a dataset that represents current network traffic patterns
together with employing the anomaly detection technique
to identify intrusions and integrating it with an automated
system to block intrusions.

Conclusion

This research presents a descriptive technical information
about RT-IDS based on DNN ML algorithm. It can capture
real-time network traffic and identify destructive intrusions
and it is hosted in a web server to provide accessibility for
personal and corporate sector networks to employ it to their
networks via a RESTful API. Since the real-time feature
extraction module is containerized, it is effortless to inte-
grate into any system. The proposed system's usability and
efficacy have been boosted by its ease of implementation
and remote accessibility. The proposed system is extremely
advantageous for instantly detecting intrusions by analysing
inbound and outbound network traffic. This system outputs
descriptive information regarding intrusion data packets,

Table 9 Performance comparison using test set accuracy, precision,
recall and f1-score

Algorithm Accuracy Precision Recall F1-score

KNN 0.7908 0.9584 0.6136 0.7481
SVM 0.7397 0.9643 0.5568 0.7059
OCSVM 0.7959 0.9600 0.5429 0.6935
K-Means 0.7328 0.9576 0.5369 0.6880
Proposed DNN 0.8187 0.9645 0.7071 0.8159

0.
79

08

0.
73

97

0.
79

59

0.
73

28

0.
81

87

0.
95

84

0.
96

43

0.
96

0.
95

76

0.
96

45

0.
61

36

0.
55

68

0.
54

29

0.
53

69 0.
70

71

0.
74

81

0.
70

59

0.
69

35

0.
68

8

0.
81

59

KNN SVM OCSVM K-MEANS PROPOSED
DNN

Accuracy Precision Recall F1-score

Fig. 8 Performance comparison graph of ML algorithms

SN Computer Science (2022) 3:145 Page 11 of 12 145

SN Computer Science

easing network administrators' decision-making for appro-
priate measures. Furthermore, because sufficient API docu-
mentation is available, even users with limited programming
skills can utilize the proposed system. The construction of
the DNN, which is trained using the NSL-KDD dataset is
systematically discussed together with the technical imple-
mentation and the simulation results on both training and
testing aspects. Moreover, the techniques and procedures
employed for real-time feature extraction from the inbound
and outbound network traffic are clearly mentioned. In addi-
tion, how the ML prediction pipeline is hosted in a web
server is descriptively discussed in this paper. The observed
results of the DNN training and testing have showed excep-
tional training results and satisfactory results in the testing
stage with a precision of 96%. Finally, our research work has
contributed by presenting a fully functional RT-IDS which
can be practically implemented as an extra layer of the net-
work protection.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest. Some of the datasets used and the code generated during the
current study are available from the corresponding author on reason-
able request.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Tavallaee M, Bagheri E, Lu W, Ghorbani AA. A detailed analysis
of the KDD CUP 99 data set. In: Proceedings of the 2009 IEEE
symposium on computational intelligence in security and defense
applications (CISDA), Ottawa, ON, Canada, July 2009. https://
doi. org/ 10. 1109/ CISDA. 2009. 53565 28.

 2. Nour M, Jill S. UNSW-NB15: a comprehensive data set for net-
work intrusion detection systems (UNSW-NB15 network data
set). In: Proceedings of the military communications and infor-
mation systems conference, Australia, November 2015. https://
doi. org/ 10. 1109/ MilCIS. 2015. 73489 42.

 3. Thirimanne S, Jayawardana L, Liyanaarachchi P, Yasakethu L.
Comparativqe algorithm analysis for machine learning based
intrusion detection system. In: Proceedings of the 10th interna-
tional conference on information and automation for sustainability
(ICIAfS), Negombo, Sri Lanka, August 2021. https:// doi. org/ 10.
1109/ ICIAf S52090. 2021. 96058 14.

 4. Rajesh T, Deepa P. A survey of intrusion detection models based
on NSL-KDD data set. In: Proceedings of the 5th HCT infor-
mation technology trends (ITT), Dubai, United Arab Emirates,
November 2018. https:// doi. org/ 10. 1109/ CTIT. 2018. 86494 98.

 5. Hayoung O, Kijoon C. Real-time intrusion detection system based
on self-organized maps and feature correlations. In: Proceedings
of the 3rd international conference on convergence and hybrid
information technology, Korea (South), November 2008. https://
doi. org/ 10. 1109/ ICCIT. 2008. 362.

 6. Komviriyavut T, Sangkatsanee P, Wattanapongsa-korn N, Charn-
sripinyo C. Network intrusion detection and classification with
Decision Tree and rule based approaches. In: Proceedings of the
9th international symposium on communications and informa-
tion technology, Korea, September 2009. https:// doi. org/ 10. 1109/
ISCIT. 2009. 53410 05.

 7. Sangkatsanee P, Wattanapongsakorn N, Charnsripinyo C.
Practical real-time intrusion detection using machine learning
approaches. Comput Commun. 2011;34(18):2227–35. https://
doi. org/ 10. 1016/j. comcom. 2011. 07. 001.

 8. Hui W, Zijian C, Bo H. A network intrusion detection system
based on convolutional neural network. J Intell Fuzzy Syst.
2020;38:7623–37. https:// doi. org/ 10. 3233/ JIFS- 179833.

 9. Zhang C, Chen Y, Meng Y, Ruan F, Chen R, Li Y, Yang Y. A
novel framework design of network intrusion detection based on
machine learning techniques. Secur Commun Netw. 2021. https://
doi. org/ 10. 1155/ 2021/ 66106 75.

 10. Qureshi AS, Khan A, Shamim N, Durad MH. Intrusion detection
using deep sparse auto-encoder and self-taught learning. Neural
Comput Appl. 2020. https:// doi. org/ 10. 1007/ s00521- 019- 04152-6.

 11. Kabir MR, Onik AR, Samad T. A network intrusion detection
framework based on bayesian network using wrapper approach.
Int J Comput Appl. 2017. https:// doi. org/ 10. 5120/ ijca2 01791 3992.

 12. Jukic S, Saracevic M, Subasi A, Kevric J. Comparison of
ensemble machine learning methods for automated classifica-
tion of focal and non-focal epileptic EEG signals. Mathematics.
2020;8(9):1481. https:// doi. org/ 10. 3390/ math8 091481.

 13. Tang H, Cao Z. Machine learning-based intrusion detection algo-
rithms. J Comput Inf Syst. 2009;5:1825–31.

 14. Poonam S, Akansha S. Era of deep neural networks: a review.
In: 8th international conference on computing, communication
and networking technologies, July 2017. https:// doi. org/ 10. 1109/
ICCCNT. 2017. 82039 38.

 15. Algorithmia. What an ML pipeline is and why it’s important.
2020. https:// algor ithmia. com/ blog/ ml- pipel ine. Accessed 7 June
2021.

 16. Ansari S, Rajeev S, Chandrashekar H. Packet sniffing: a brief
introduction. IEEE Potent. 2003;21(5):17–9. https:// doi. org/ 10.
1109/ MP. 2002. 11666 20.

 17. Scikit-Learn. Sklearn Preprocessing StandardScaler. https:// scikit-
learn. org/ stable/ modul es/ gener ated/ sklea rn. prepr ocess ing. Stand
ardSc aler. html. Accessed 19 July 2021.

 18. Brownlee J. A gentle introduction to the rectified linear unit
(ReLU), machine learning mastery. 2019. https:// machi nelea rning
maste ry. com/ recti fied- linear- activ ation- funct ion- for- deep- learn
ing- neural- netwo rks. Accessed 3 June 2021.

 19. Katanforoosh K, Kunin D. Initializing neural networks. deeplearn-
ing.ai. 2019. https:// www. deepl earni ng. ai/ ai- notes/ initi aliza tion/#
II. Accessed 5 June 2021.

 20. Keras. Layer activation functions. 2021. https:// keras. io/ api/ layers/
activ ation s/# relu- funct ion. Accessed 19 July 2021.

 21. Keras. Layer weight initializers. 2021. https:// keras. io/ api/ layers/
initi alize rs/. Accessed 19 July 2021.

 22. Hunt-Walker N. An introduction to the Flask Python web app
framework. Opensource. 2018. https:// opens ource. com/ artic le/
18/4/ flask. Accessed 18 July 2021.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/ICIAfS52090.2021.9605814
https://doi.org/10.1109/ICIAfS52090.2021.9605814
https://doi.org/10.1109/CTIT.2018.8649498
https://doi.org/10.1109/ICCIT.2008.362
https://doi.org/10.1109/ICCIT.2008.362
https://doi.org/10.1109/ISCIT.2009.5341005
https://doi.org/10.1109/ISCIT.2009.5341005
https://doi.org/10.1016/j.comcom.2011.07.001
https://doi.org/10.1016/j.comcom.2011.07.001
https://doi.org/10.3233/JIFS-179833
https://doi.org/10.1155/2021/6610675
https://doi.org/10.1155/2021/6610675
https://doi.org/10.1007/s00521-019-04152-6
https://doi.org/10.5120/ijca2017913992
https://doi.org/10.3390/math8091481
https://doi.org/10.1109/ICCCNT.2017.8203938
https://doi.org/10.1109/ICCCNT.2017.8203938
https://algorithmia.com/blog/ml-pipeline
https://doi.org/10.1109/MP.2002.1166620
https://doi.org/10.1109/MP.2002.1166620
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks
https://www.deeplearning.ai/ai-notes/initialization/#II
https://www.deeplearning.ai/ai-notes/initialization/#II
https://keras.io/api/layers/activations/#relu-function
https://keras.io/api/layers/activations/#relu-function
https://keras.io/api/layers/initializers/
https://keras.io/api/layers/initializers/
https://opensource.com/article/18/4/flask
https://opensource.com/article/18/4/flask

 SN Computer Science (2022) 3:145145 Page 12 of 12

SN Computer Science

 23. Gunicorn. Gunicorn—WSGI server. https:// docs. gunic orn. org/ en/
stable/. Accessed 27 July 2021.

 24. Yiqun Z, Pengcheng M, Qian G. Multiple classification models
based student's phobia prediction study. In: Proceedings of the
3rd IEEE international conference on robotic computing (IRC),
February 2019. https:// doi. org/ 10. 1109/ IRC. 2019. 00109.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://docs.gunicorn.org/en/stable/
https://docs.gunicorn.org/en/stable/
https://doi.org/10.1109/IRC.2019.00109

	Deep Neural Network Based Real-Time Intrusion Detection System
	Abstract
	Introduction
	Related Work
	Problem Statement
	Background
	NSL-KDD Dataset
	Deep Neural Network
	Machine Learning Pipeline
	Packet Sniffing

	System Model
	Methodology
	Data Pre-processing
	Deep Neural Network Implementation
	Machine Learning Pipeline Development
	API Development
	API Endpoint Development and Documentation
	ML Integration
	API Deployment

	Real-Time Feature Extraction
	Network Configuration
	Feature Extraction

	Cost Analysis

	Simulations Results
	Performance Comparison
	Future Works
	Conclusion
	References

