
Vol.:(0123456789)

SN Computer Science (2022) 3:147 
https://doi.org/10.1007/s42979-022-01030-2

SN Computer Science

ORIGINAL RESEARCH

Implementation of Genetic Algorithm for Path Estimation in Self 
Driving Car

Jatin Luthra1 · Abhishek Sharma1   · Shubham Kaushik1

Received: 25 August 2021 / Accepted: 7 January 2022 / Published online: 31 January 2022 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
With the recent advancement in artificial intelligence, autonomous vehicles have been a significant area of reach. Companies 
like Tesla and Waymo by Google are leading examples in this area. This paper focuses on path allocation and trajectory 
mapping research by creating the 3D environment and implementing a genetic algorithm. The work presented in this paper 
has three significant contributions: the first step is to develop a simulation of a real-world environment for self-driving cars 
using the Unity3D Engine, a real-time creation tool. The second step is to implement genetic algorithms to perform training 
related to path allocation and obstacle avoidance. In the last step, performance analysis for the algorithm in the simulation 
environment is described, and the benefits are explored later in this work. The novelty in the approach lies in checkpoints and 
crash penalties as fitness functions. Moreover, it includes two separate training, one for consistency and one for efficiency. 
The model was trained for 330 generations with 75 agents of genetic algorithm in both modes of training. The study presented 
in this work helps to decide the optimal path in the most diminutive time frame for self-driving cars.

Keywords  Autonomous vehicles · Neural networks · Genetic algorithms · Simulations

Introduction

Autonomous vehicles are capable of interpreting data from 
the environment through the sensor interface in the vehicle. 
It takes decisions without requiring human intervention as 
ECU (Electronic Control Unit) with algorithms works in 
real-time for path allocation and trajectory estimation. Since 
the boost in AI (after the rise in data and computational 
efficiency) and the development of few major algorithms 
with concrete research [1–3], this topic has become one of 
the most significant applications of AI to be followed by 
many researchers [4–7]. Companies like Tesla and Waymo 
have already done quite a good amount of research in this 
area, but still, it is far from perfect. The issues related to 

incompetency, infrastructure, and driving scenarios are 
the primary area of contributions done by many research-
ers [8–11]. Apart from that, human safety is a significant 
concern that is related to driver-less cars application devel-
opment. Perfection should be accurate because human life 
should not be dealt with chances. Even after so much pro-
gress, it also gives the reason that consumer-ready driver-
less cars are far from reach in daily lives. Also, since there 
are many unpredictable situations, human intelligence and 
awareness can easily manage compared to machine-based 
intelligence. Accidents happen daily due to careless and dis-
tracted drivers, which calls for such technology to prevent 
it. Many researchers and organizations are trying to collect 
daily data to add more and more parameters and complex 
scenarios for models to train on to reach the global optimal 
solution. Once they are ready, these cars can be made avail-
able to the consumers and general public.

Related Work

In the work presented by A simplified dynamic model with 
driver’s NMS characteristic for human-vehicle shared con-
trol of autonomous vehicle [12], Adaptive Genetic Algo-
rithm (AGA) has been used to identify the parameters for 
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the Human-Vehicle Shared Control (HVSC) dynamic model 
for a 2-DOF vehicle model. Deep Learning-Based Resource 
Allocation Scheme For Vehicle to Everything Communica-
tion [13] proposes a deep learning genetic algorithm model 
with the added benefit of reducing dimensions providing 
20% better throughput than a vanilla genetic algorithm. 
Research on AV-FUZZER: Finding Safety Violations in 
Autonomous Driving Systems [14] shows a great way to 
convert a locally optimal solution to a globally optimal one 
through fuzzing. This helps in finding the best or safe solu-
tion for the evolving traffic. In a communication scheme for 
delay sensitive perception tasks of autonomous vehicles 
[15], a genetic algorithm is implemented to minimize the 
processing delay of sensory data converging to less than 60 
ms for a multi-autonomous vehicle. In work presented by 
Diagnosis of Sensor Faults in Hypersonic Vehicles Using 
Wavelet Packet Translation Based Support Vector Regres-
sive Classifier [16], Fault pattern recognition is done using 
Support Vector Regression (SVR). Again to optimise it, 
genetic algorithms are used. Research on Robustness and 
performance of Deep Reinforcement Learning [17] shows 
the use of Deep Reinforcement Learning Network for the 
self-driving car application. However, to increase the accu-
racy, they use a genetic algorithm for optimisation. Analy-
sis of MPC path-planner for autonomous driving solved by 
genetic algorithm technique [18] shows that they propose 
a trajectory planner for which genetic algorithms achieve 
the solution. In Driving Cars by Means of Genetic Algo-
rithms [19], Genetic algorithms are used to train the cars, 
and the performance is also compared to other simulator 
bots. However, it took almost a thousand generations to get 
an optimal result on a circular track. In contrast, it took only 
three hundred generations to do so for a typical road system 
in this work. In a work presented by Comparative Study of 
NeuroEvolution Algorithms in Reinforcement Learning for 
Self-Driving Cars [20], the aim is to use neuroevolution with 
reinforcement learning to keep the cars in the middle lane 
for as long as possible. The cars presented in this work auto-
matically change the routes for the quickest turns possible, 
either left or right, due to the one-way roads. Research pre-
sented in Self-Driving Cars Using Genetic Algorithm [21], 
A work very similar to the work presented in this manuscript 
is done but in a 2D simulation environment rather than the 
3D environment in this work. A comparison of genetic algo-
rithm and reinforcement learning for autonomous driving 
[22] compares two different algorithms for such simulation 
environments. It is concluded that genetic algorithms did 
outperform reinforcement learning, but the latter was more 
stable and safe in terms of real-world driving. Similar work 
is done in Application of Neuroevolution in Autonomous 
Cars [23]. A comparison is also made across the various 
combinations of genetic algorithm parameters such as cross-
over rate, mutation rate, and population. This, in turn, led 

to a different number of generations to achieve an optimal 
result which in one case was as low as 12 generations. A 
summary is also provided in Table 1

The novelty in this work as compared to all the works 
presented above is not just in using genetic algorithms but 
also the correct fitness function of checkpoints and penalty 
on collision to provide an incentive to take optimal turns as 
discussed in further sections. Also, to ensure both consist-
ency and efficiency, another fitness function was introduced 
to improve the time taken by the agents to reach a certain 
checkpoint.

Method Overview

A vehicle that hasn’t analysed all the scenarios is imperfect 
and, hence, unfit to drive on roads. Simulations can do this 
analysis. Simulation is a virtual world where virtual models 
can traverse infinitely. Due to this, it is the perfect way to 
train driverless cars. According to Waymo, they run 20 mil-
lion miles each day in simulation. The simulation not only 
involves straight roads but turns, pedestrian crossings, traffic 
lights, etc.

Through the simulation, the intention is to build a sim-
pler model of straightforward interpretation and computa-
tion. This can be done by generating own virtual terrain of 
straight and turn roads. The Unity3D [24] game engine is 
incorporated to visualise and check how the application per-
forms on various test cases. Unity allows to assimilate real-
world physics and use an almost accurate representation of 
real cars in a designed model. With the implementation of 
openly available assets for roads, side rails, grassy terrain, 
and most importantly, the model of car from the Unity Asset 
Store [25] (UAS), this visualisation will be more accessible, 
and the prime focus will be on application development.

The development process includes multiple steps such as 
terrain formation, the evolution of agents, gene crossover, 
etc., as depicted in Fig. 1 which explains the overall meth-
odology adopted in this work. The motive here is to get a 
general overview of the procedure to get through the work-
ing functionality of the model. In the beginning, a virtual 
terrain is generated with roads and grass. In the background, 
five thousand terrains are generated, and the best is selected 
according to the maximum distance covered. Since all these 
calculations are done mathematically (coordinates to place 
roads and tiles), the terrain is visually rendered after the 
choice is made. In the next step, seventy-five cars are gen-
erated with a set maximum lifetime of 15 s which will be 
changed later according to progress. Then the agents start 
evaluating the sensor values and calculate the action (throt-
tle and steer’s magnitude and direction) with a randomly 
generated neural network. After all the cars are destroyed, 
either due to the collision with side rails or their maximum 
lifetime, the genetic algorithm prepares new set of seventy 
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Fig. 1   Overall FlowChart
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five cars for the next generation and this is repeated until 
stopped. Each of the steps are discussed in more detail in the 
subsequent sections. Finally, there are two separate training 
modes with separate fitness functions applied to them. The 
first training mode proves that the solution is consistent and 
the second training mode proves that the solution is efficient.

Environment Preparation

This section explains the procedure of terrain generation, 
including the coordinates calculation, tile-based approach, 
car models, and visually rendering the complete simulation 
environment.

Procedural Terrain Generation

Random terrain is needed to evaluate agents’ performance 
better; otherwise, it might just be overfitting and remem-
bering when to turn right exclusive to the map. Since roads 
are generally straight and wavy patterns are rare, it is not 
preferred to use things like Perlin Noise for terrain genera-
tion. So instead of that, the tile-based approach is preferred.

In the tile-based approach, tiles are placed on the ter-
rain according to few conditions, further explained. The first 
logical thing to do is design an empty tile. This tile will be a 
cuboid of 60×60×0.5 size since tiles need not be thick as the 
under terrain portion won’t be visible. The area was decided 
based on the turn road length, which will be discussed later. 
Then a grass material was imposed on this blank Tile to form 
the “Empty Tile,” as shown in Fig. 2a.

For roads, two 3d shapes were taken, and road-like mate-
rial was imposed on them; the tile-based approach helps take 
advantage of such models. These models are a straight road 
and a road curved towards the right. These were imposed on 
separate“ Empty Tiles” and scaled to a perfect fit forming 
the“ Straight Tile” (ST), and the “Turn Tile” (TT) depicted 
by Fig. 2b, c respectively. Only three of these tiles are 
required because all the directions can be formed by rotating 
the TT around the y-axis. We’ll label the directions as two 
parts which would be from where to where we’re going. So a 
regular TT, as mentioned above, will be NE because, before 
the turn, The travelling direction would be north and then 
east. If seen from the other side, The same Tile could also 
be labelled WS as coming from west to south. Hence each 
rotation of TT encompasses two diagonal directions making 
8 of them possible. The ST will only have a single direction 
N, S, E or W. Then, some rules can be set up regarding the 
options of tiles available which can be connected to a tile. 
For example, an NE tile can be connected to tiles such as 
W, WN, WS since it’s impossible to connect a tile to an EN 
tile that will not be connected. Instead of hard-coding such 
rules in the code, they are generalised.

At this point, the issue of overlaps and possible tile place-
ments in the same position needs to be addressed. The latter 
can be solved by keeping a record of all the positions previ-
ous tiles are placed. However, the former is tricky and can be 
avoided by tightening the rules, but overlaps are inevitable. 
So this issue is solved by creating some terrains without 
actually placing the tiles and choosing the best terrain, fol-
lowed by actual tile placement.

The best terrain is decided by the number of overlaps 
and the total straight line distance from start to end. Since 
all the terrains are just numbers at first, it doesn’t affect the 
performance, and the whole process, including tile place-
ment, doesn’t even take a second. The number of terrains to 
be generated is controlled by a parameter set by default to 
5000. Moreover, the benchmark was done in less than a sec-
ond. After these, the empty positions on the terrain are filled 
with empty tiles completing the terrain generation process. 
It was decided to keep it a significant area for future work to 
be extensible as much as possible.

In total, twenty road tiles are used. One last parameter for 
generation is “Straight Road Percentage” (SRP), the overall 
percentage of roads that need to be straight. This parameter 
can help control turns in the road system, and by default, 
40% straight roads are set. A top-view or birds-eye view 
was captured for demonstration, as shown in Fig. 3. The sub 
Fig. 3a, b show some of the sample-generated terrains at the 
default settings. Sub Fig. 3c, d show the generated terrains 
with 10% straight roads and 35 total roads, respectively. It 
can be observed that by decreasing the SRP, almost every 
other road results in a turn. Also, by increasing the total 
roads, more area of the empty terrain is covered. These are 
a few of the infinite possible terrains on tuning the settings, 
and each of them shown above is the maximum distance 
possible with the defined settings.

Car

The car model consists of the body mesh, wheels, and phys-
ics-related settings like suspension, torque, throttle, steer-
ing angle, etc. The car model is an asset named Arcade Car 
Physics [26] imported from the UAS, depicted in Fig. 4. 
The asset was chosen to focus more on the path estima-
tion rather than fine-tuning the physics parameters of cars 
which would be just reinventing the wheel. The model is 
a “Low Poly” design which means it has fewer details and 
looks very rough. This model, however, is best for our use 
case since such methods give a better computational per-
formance. Optimised performance for each car means we 
can have more cars in our genetic algorithm, bringing faster 
and accurate improvements. The vehicles can also be called 
“agents” since multiple cars will be spawned independently 
of each other. The complete set of agents in each genera-
tion is known as population. Independence means that the 



SN Computer Science (2022) 3:147	 Page 5 of 15  147

SN Computer Science

vehicles won’t interact like inter-car collisions, but each of 
them will interact with the environment perfectly.

Neural Networks

The car model requires only two floating-point inputs, 
throttle and steering. The range of these inputs is [−1.0, 1.0] 
where the +∕ − ve sign is used for direction. A positive throt-
tle means forward movement, and a positive steer means 
towards the right. The negative sign is opposite, i.e., and 
negative throttle means reverse direction and negative steer 

means towards left. The magnitude of these values decides 
the intensity of throttle and steering. Since these inputs have 
to be calculated in each pass/frame of physics rendering, 
neural networks will be used. The neural network will act as 
the agent’s brain since, at each frame, the values of throttle 
and steer will be calculated based on inputs such as dis-
tance sensor values and current speed, which will also be 
discussed in detail in the following subsection.

Fig. 2   Road tile set with checkpoints
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Architecture

There is no image or sequence processing involved, so 
straightforward and shallow neural networks are possible. 
Again, a significant advantage would be the performance, 
which is inversely proportional to the density of such net-
works. Since the processing scripts are written in the C# 
programming language, a compatible neural network library 
is required. There are many such libraries available, but there 
are few problems in using these libraries. Training data is 
needed to train the neural network, which means the correct 
output for a given set of inputs must be present so that the 
weights of individual neurons can be adjusted. However, a 

Fig. 3   Sample generated terrains

Fig. 4   Car Model



SN Computer Science (2022) 3:147	 Page 7 of 15  147

SN Computer Science

genetic algorithm is being used to make adjustments that 
rely on separate metrics known as fitness scores. Also, it is 
essential to save and reload the best neural network among 
all the cars for each agent, which must be done efficiently. 
These problems can be addressed by creating a custom 
implementation of a neural network. The only library used 
here would be the matrices library to perform matrix opera-
tions efficiently as performance matters a lot. This becomes 
necessary when there would be many agents trying to run 
their neural network at each frame which would be a lot of 
calculations per second.

The most important part here would be the structure of 
the neural network. It comprises six input neurons, five of 
which are sensor values. Each agent is equipped with five 
distance sensors starting from right to left with a 45-degree 
angle between them. The purpose of these sensors is to give 
the agent a sense of the environment. Red rays were drawn 
for all the sensors to visualise properly for debugging pur-
poses, which can be observed in Fig. 6. The maximum range 
of these sensors was clamped to induce the sense of perspec-
tive and horizon. The sixth input is the agent’s speed so that 
it can adjust its acceleration and steering accordingly. These 
values are collected for each agent at each frame and fed into 
the six neurons of the input layer.

Only one hidden layer was selected, with only five neu-
rons because, as discussed earlier, It is necessary to keep 
it as simple as possible for better performance. If there is 
any problem, the architecture can always be modified. And 
finally, the output layer has only two neurons, the first one 
for the throttle and the second one for the steering, each with 
the sigmoid activation function since the desired values are 
from – 1 to 1 centred around 0 depicting the acceleration and 
reverse in the first case and the steering direction in the sec-
ond. For each layer, the weights are multiplied with the node 
values and biases are added at each layer. Since each layer 
has multiple nodes, matrix multiplication is applied instead 
of nominal multiplication. In the final layer, the output is a 
real number according to the activation function applied. 
Since the sigmoid activation is applied here, the values can 
only be from – 1 to 1. In the case of throttle, maximum 
throttle is applied in the forward direction when the output 
is 1 and maximum throttle is applied in the reverse direction 
when the output is – 1. The intermediate values are mapped 
to varying throttle power since the value of 0 means no or 
zero power. Thus, values from 0 to 1 imply varying throttle 
power from minimum to maximum in the forward direction 
and values from 0 to – 1 imply varying throttle power from 
minimum to maximum in the reverse direction. Similar is 
the case with steering. The values are mapped in a similar 
fashion where -1 means left direction and 1 means right 
direction. The architecture is also visualised in Fig. 5 

The weights and biases of all the neurons are initialised 
randomly so that each agent has a different perception of 

the inputs. Hence, each agent has a unique set of actions. 
However, there is no backward propagation involved to 
tune these weights and biases. Instead, we’ll benefit from 
the solid concept of evolution through genetic algorithms 
or neuro-evolution, which will be explained more in the fol-
lowing significant section (see Fig. 6).

Implementation

Many neural network implementations are available in 
the form of C# libraries, but they were neglected. That is 
because complete control over neural networks, which means 
how the weights are updated and saved, can only be achieved 
by creating a custom implementation. Since neural networks 
use matrix multiplications, it was futile to reiterate that in 
the form of arrays. But instead of its matrix implementa-
tion, the Math.Net Numerics [27] library was lucrative. The 
matrix implementation should be efficient as multiple neural 

x1Distance Sensor #1

x2Distance Sensor #2

x3Distance Sensor #3

x4Distance Sensor #4

x5Distance Sensor #5

x6Current Speed

h1

h2

h3

h4

h5

o1 Throttle

o2 Steer

Hidden
layer

Input
layer

Output
layer

Fig. 5   Neural Network Architecture

Fig. 6   Car with active sensors
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networks run and process inputs at each frame. Since it is a 
game in the broader picture, any decrease in FPS or “Frames 
Per Second” is unfavourable since it would introduce stut-
ters and potential inconsistencies. Due to this, each agent 
might not be able to collect the inputs at each frame which 
is a problem for both generational improvement and repro-
ducibility. Creating own Neural Network implementation 
has many benefits. It helped integrate the genetic algorithm 
and the reproducibility factor much more quickly, which is 
discussed further.

Genetic Algorithm

Generations

Each agent is spawned with a maximum lifetime it can be 
alive. This is because if an agent decides to do nothing at 
all and just stay in a fixed position, we’ll see a stalemate. 
So with max lifetime, either the agent dies after crashing or 
after a specified time.

This fixed time is set to a short time, like 15 s at the start, 
so each generation is guaranteed to take a maximum pos-
sible time of 15 s. But there is one problem. The procedural 
track generated is too long and has many turns. So 15 s is not 
feasible. Instead, another parameter is introduced known as 
“Generation Improvement” (GI). Another thing to keep in 
mind is that if the agents have learned best to drive in that 15 
s, the max fitness of generations will remain the same, i.e., a 
straight line in the graph. With this parameter, it is possible 
to set the number of generations after which if the max fit-
ness is constant, the max lifetime is increased by 5 s. If the 
GI is set to fifteen, then if the max fitness remains constant 
for fifteen generations, the max lifetime will increase to 20 
s. This ensures that the agents have mastered the timing for 
each max lifetime and have given their best. It also adds the 
element of progressive or iterative nature to the algorithm.

Methodology

Gene Pool Formation

A gene pool is a set of all the agents’ neural networks. Each 
agent is added to the set fitness number of times. What fit-
ness is and how it is decided will be discussed after the 
explanation of steps. This means if there are two agents with 
the fitness score of two and eight each, agent one will be 
added to the pool two times and agent two will be added 
to the pool eight times. This is because, during the selec-
tion process, the agent with more fitness should have more 
chance of being selected as a parent to pass the genes to the 
next generation.

Population Upkeep

A controllable parameter is used to decide how many fittest 
genes will proceed unchanged to the next generation. The 
best of a generation becomes a reference population, guaran-
teeing that the best fitness will never decrease. The offspring 
gets the best genes possible.

Selection & Crossover

Then random genes are selected from the gene pool two at 
a time as parents for remaining agents one by one. Then in 
the crossover process, there’s a 50% chance that weights and 
biases are chosen from either of the parents. This ensures 
that the offspring is a combination of the weights and biases 
of the parents.

Mutation

Finally, keeping aside the population upkeep, each weight 
and bias of each gene is subjected to a mutation. This muta-
tion is decided by the mutation rate parameter, which is 5% 
in this case. The mutation rate should not be too low such 
that the population converges to a local optimum solution. 
On the other hand, a very high mutation rate can help search 
for more optimal techniques but prevents converging. As 
mentioned in Optimum population size and mutation rate 
for a simple real genetic algorithm that optimizes array fac-
tors [28], 5–20% mutation rate is best with the population 
size 16. Since the chosen population size, in this case, is 75, 
which is five-fold than the recommended, the lowest recom-
mended mutation rate is best. In this situation, a decimal 
value in the range [– 1.0, 1.0] is added to the weight or bias. 
This ensures that there will be a specific change from gen-
eration to generation, which might even unlock a globally 
optimal solution.

The methodology is summarised and depicted in Fig. 7

Fitness Functions

The fitness score is a representation of the performance of 
an agent. It is a cumulative score where the higher scores 
depict the closeness to an optimal solution. Since the whole 
genetic algorithm depends on fitness scores, Choosing the 
correct fitness function of agents is crucial. The fitness 
function calculates the fitness score according to various 
weighted parameters. Four different fitness functions were 
tested, and the differences between them were noted. How 
the learning process differentiates is described in subsequent 
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subsections. Also, it is essential to note that we’ll only list 

the parameters, and the final fitness function will be a linear 
combination of these parameters. This means f (A) = ax + by 
where x, y are the parameters regarding the agent’s state 
and a,b are the floating-point coefficients demonstrating the 
linear combination.

Displacement

In this, only the displacement of an agent from the initial 
position was made viable for the agent’s fitness. The problem 
with this is that in the cases of turns, the change in displace-
ment is minimal, and the agent directly hitting the side rails 
and taking a slight bend and then hitting the side rail had 
almost the same fitness and hence the chance in the gene 
pool. Thus, some incentive should be given to the agents to 
make even the most minor turns as the straight drive wasn’t 
the issue from Generation 0.

Checkpoints

Invisible checkpoints were laid down on the roads, which 
had a default score of 1. This meant that as the agent crosses 
the checkpoint, the score will be added for that agent. In case 
of turns, the checkpoints could be set near the turns to be a 
roller coaster or a parabola of discrete scores ranging from 
1 to 10 to 1. This way, the slightest turns had a significant 
influence on the fitness of any agent, making it evident that 
such turns are essential. The main problem with the above 
functions was the problem of the straight head-on collision. 
Most of the agents were just going for the fastest speed and 
were making a head-on collision with the front side rail. So 
even if the checkpoints incentive was able to teach the agents 
that it is better to turn. On average, most of the agents were 
not following that, and hence the average fitness was very 
low. This issue of speeding was solved with the following 
functions.

Checkpoints + Average Speed

If the speed also counts in fitness, agents could become bet-
ter at controlling it instead of just racing for the first to crash. 
This fitness function is great because just before the front 
side rail, the cars learned to slow down very much, and this 
way, they were also better at taking turns because, at high 
speeds, the turn is difficult and discouraged. Another prob-
lem came up, which was an issue related to the stalemate. 
Also, to avoid a collision, the cars slowed down, but also, 
most of them just stopped or went into reverse gear. Even if 
the turns were better now, the learning curve was slow, and 
average fitness was still not good enough. This led to the 
following fitness function.

Fig. 7   Genetic Algorithm Methodology
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Checkpoints – Crash

Rather than average speed, a high penalty was given if an 
agent crashed inside rails. This prevented the agents from 
taking the speed down to zero, and they took better turns by 
slowing down. This also solved the problem of stalemate, 
and the average fitness kept on growing along with the best 
fitness of a generation. Most agents made good turns leaving 
only a handful behind, making it the best and hence the final 
fitness function for first training mode.

Checkpoints – Crash + 5000/Time

Once it was made sure that the agent can consistently learn 
and produce results, it was necessary to optimise them even 
more. To do so, another factor was added to the fitness func-
tion which is the inverse of time taken to reach a checkpoint 
in the middle of the track. This ensures that the agents which 
take less time will have more fitness and is a suitable fitness 
for the second training mode.

QoL Features

Quality of Life (QoL) features make it easy to track the 
performance and debug software. Implementation of such 
features usually increases workflow productivity, and a few 
of them were also added in this work, which is described in 
the following subsections.

Reproducibility

The maximum fitness of the generation decides the best 
neural network of any generation. To be able to reproduce 
the results, a way to save the neural network was needed. 
As mentioned before, the custom implementation of neural 
networks is made of lists of matrices, each matrix can be 
converted into a float array, and the list can be converted 
into an array of float arrays. With this approach, the neural 
network could be converted, or a better term would be seri-
alised. For this, the Json.Net [29] library was used. After the 
conversions were done, it was possible to convert the neural 
network to a JSON file and save it locally. This way, when-
ever it is required to use one of the trained neural networks, 
it can always be done and compared with the neural network 
from other generations.

Replay System

It would be very tedious to stare at the screen for all the gen-
erations. It is still very much possible that some things are 
missed, something like the behaviour of an agent in a gen-
eration or the improvement from previous generations, etc. 
This problem was solved by implementing a replay system 

so that it is possible to jump back and view any generation’s 
progress. However, it would be computationally expensive 
to reload and rerun neural networks. Moreover, this might 
decrease the performance which is observed in replays, and 
inconsistencies may also rise. Since the Neural network 
keeps track of the weights and biases and the inputs and 
calculated output, a complete list of outputs that is already 
there can be used.

So a “StateData” object can hold the generation infor-
mation for terrain, the chart data, and an array of all the 
outputs for each generation. Since we’ll be tracking genera-
tional performance, The XCharts [30] library was used to 
save the input data as chart data. This way, it is a matter of 
just translating those outputs into acceleration and steering 
and helping in escaping the inconsistencies and performance 
degradation.

Speaking of performance, outputs of multiple agents for 
hundreds of generations can take a lot of space and time for 
saving and loading back. Due to these constraints, JSON 
serialisation became a burden because only a hundred gen-
erations with seventy-five agents took 2.5 GB space, which 
is inefficient. The MessagePack [31] library was used to 
solve this problem, serialising an object into binary data. 
Though this format isn’t directly readable by any text editor, 
It can save a lot of space and time while saving and loading. 
For six hundred generations and seventy-five agents in each 
generation, the final state file took less than 300MB space 
and was very efficient at the loading time.

Figure 8 depicts the comparisons for both MessagePack 
and JSON formats which includes Read Times (time to load 
the save data back into memory), Write Times (time to write 
the save data on disk), and File Sizes (total space took by 
the save data) for generations with gaps of 100. As shown in 
Fig. 8a, b displaying Read Times and Write Times, respec-
tively, growth in the time taken for reading and writing is 
linear in the case of MessagePack but exponential in the 
case of JSON. Also by observing Fig. 8c, it is noticed that 
the file size of MessagePack serialisation is less than half of 
JSON serialisation. These comparisons prove how efficient 
and beneficial it will be to use MessagePack instead of JSON 
serialisation.

Test System

The trained agents should work in different terrains, and to 
test that, a test system is required visually. However, this 
turned out to be very easy because of my initial system of 
using a Procedural Generator (PG) system that can spit out 
random terrains every time requested. Since the reproduc-
ibility factor was already added to the neural network library, 
saving and loading neural networks is already done. So the 
test system was just linking these two up to test the best 
trained neural network on random terrains.
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Results

Training Mode 1

In total, agents were trained for 330 generations, and the 
results are depicted in the graph below. This is because the 
agents were able to complete the whole track at around 286 
generations. Since they didn’t show any quicker speed in 
solving the tracks, it was best to stop at 330 generations. 
This is because, at the next generation, they would get just 
an increase in a max lifetime by 5 more seconds which was 
utterly unnecessary. The blue line below depicts the “Maxi-
mum Fitness” in each generation, whereas the green line 
shows each generation’s “average fitness”. For maximum 
fitness, it is observed that after constant straight lines, there 

is a sudden improvement sometimes. This results from the 
“Generation Improvement” parameter, which increases the 
“max lifetime” by 5 s after 15 generations of constant fitness. 
Also, the average fitness is not far behind, which generally 
shows how much better each agent did for a generation.

In Fig. 9, the blue line denotes “Max Fitness” among 
all the (75) agents (cars). On the other hand, the green line 
indicates the “Average Fitness” of the agents. The red line 
shows the best fit line on the scattered points of average fit-
ness to get an accumulated sense of an increase in it. This 
metric aggregates the entire performance of the agents on 
the terrain. This curve clearly shows that not only just one 
of the agents is doing well. Instead, in almost every genera-
tion, each agent is improving one way or the other. Thus, 

Fig. 8   Performance comparison of MessagePack and JSON
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it is necessary to consider both these curves when the per-
formance of the algorithms and the complete model itself 
is judged.

It can also be observed from the graph that the “Max 
Fitness” curve is looking similar to a step function which 
means that for few generations, it remained constant, and 
then a significant boost is observed. After that, it again 
approaches a continual shape, and the pattern repeats itself. 
The reason for this is “Max LifeTime,” which would be the 
next point of inference.

Figure 10 is the analysis of maximum lifetimes, i.e., how 
many seconds the agents were allowed to be alive, as men-
tioned before. In Fig. 10a, It is visible that starting from 
15 s of time, it gradually increased to 65 s of time. This 

happens when no improvement for successive 15 generations 
is observed, suggesting that agents have found the optimum 
solution for current time constraints.

This graph can be plotted side-by-side with the Max Fit-
ness graph for better analysis, as shown in Fig. 10b. Since 
both have different scales, It is plotted on a Twin X-Axis 
graph such that there are 2 Y-Axes. On the left, there is 
“Fitness”, and on the right, there is “Lifetime” (in seconds). 
Both of these share the common X-Axis with the genera-
tions. It is observed that whenever the fitness graph became 
constant for 15 generations, Max Lifetime increased by 5 s, 
and the fitness also starts climbing.

This allowed the agents to learn progressively instead of 
directly starting from a higher lifetime period, increasing the 
training time and probably being less efficient.

Training Mode 2

In the case of the second training mode, the focus is to 
improve the efficiency of the path chosen by the agents. Due 
to this reason, a checkpoint in the middle of the track was 
chosen to act as a finishing line for agents. The last fitness 
function is used in this case in which the inverse factor of 
time taken to reach the checkpoint is introduced.

As it is shown in Fig. 11, after generation 250, negligible 
improvements were done to the maximum fitness function. 
The change in the graphs shown by Figs. 11 and 12 as com-
pared to the Figs. 9 and 10 is completely visible. This is due 
to the fact that there is a change in fitness function as well 
as the agents are destroyed on reaching the finish line for 
preparation of the next generation.

Fig. 9   Generation 330 progress chart for Training Mode 1

Fig. 10   Max life times analysis for Training Mode 1
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However, Fig. 13 clearly depicts the improvements in the 
path chosen by agents over the generations which caused the 
decrease in time. The graph only focusses on the genera-
tions from 245 to 330. In the beginning, we can see a drastic 
improvement and it continued on to the further generations. 
The finishing time got a little stable from generation 290 
onwards. Lack of improvement in the rest of the generations 
show that the most optimal path was chosen and when the 
same model is run for the complete track, it is able to reach 
the destination in the quickest possible way.

Future Work

The model presented in this work is still straightforward 
as compared to the more prominent companies. Genetic 
algorithms were used for the model’s unsupervised training 
instead of backpropagation to update the weights, which isn’t 
suited for such simulations and needs training data such as 
the BDD100K [32] and Level5 [33]. The reason was also 
discussed earlier that a simple model helps examine the 
fewer parameters of the model. This simple model, how-
ever, still traverses only on straight and turn roads. So for the 
future, more complexities like traffic signs, speed limits, and 
pedestrian crossings can be added. This way, the model will 
converge more towards the real-life scenario.

One more improvement can be made which is in the 
architecture. For this simple model, the neural network used 
was also simple. There is also the possibility that a different 

architecture converges to a more optimal solution. This can 
be solved by implementing the NEAT (NeuroEvolution of 
Augmenting Topologies) algorithm. An evolutionary algo-
rithm is used to modify the weights and biases and the neural 
network’s architecture, which could be more efficient.

Conclusion

This work aimed to simulate the real-world scenario of roads 
and cars and use neuro-evolution to train these cars for a 
driver-less approach. After comparing various parameters, 
the important ones are finalised through which the simple 

Fig. 11   Generation 330 Progress Chart for Training Mode 2

Fig. 12   Max life times analysis for Training Mode 2
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model was working perfectly in the simulated environment. 
This work can also be extended and improved on by the 
methods discussed in the previous section. This model was 
also tested with a stochastic approach of random terrains, 
and the trained model worked perfectly in each of them.
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