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Abstract
Analysis of neuronal activities is essential in studying nervous system mechanisms. True interpretation of such mechanisms 
relies on detecting and sorting neuronal activities, which appear as action potentials or spikes in the recorded neural data. 
So far, several algorithms have been developed for spike sorting. In this paper, spike sorting was addressed using entropy 
measures. A method based on a modified version of approximate entropy was proposed for feature extraction, which cap-
tured the local variations in spike waveforms as well as global variation to create the feature space. Results showed that 
the entropy-based feature extraction method created more distinguishing features, which reduces spike sorting errors. The 
proposed method was capable of separate different spikes in small-scale structures, where the technique such as principal 
component analysis fails.

Keywords Neural data processing · Spike sorting · Entropy measures · Approximate entropy

Introduction

Neuronal activities in the nervous system control human 
behavior and functions. Neurons communicate by producing 
electrical signals called action potential (AP) or spike. To 
study the neuronal activities, it is necessary to record their 
produced electrical signals using inserted microelectrodes 
to the extracellular space [1]. Since the microelectrode tip 
is surrounded by several neurons, it records the activity of 
more than one neuron. For allocating each detected spike 
to its corresponding neuron, the spike sorting procedure is 
necessary.

The shape of action potential for each neuron is deter-
mined by biophysical properties of the neuron and its dis-
tance to the microelectrode tip. The shape of the action 
potential can be considered as a fingerprint for the cell; 
therefore, it is usually used to distinguish neighbor neu-
rons [2]. So far, several spike sorting algorithms have been 
proposed. A wavelet-based spike classifier was introduced 
in [3] according to the time–frequency wavelet spectrum 

analysis. The main idea of that method was based on the 
selection of the limited numbers of wavelet coefficients that 
distinguish waveforms. For such purpose, the wavelet coef-
ficients with bimodal or multimodal distribution among all 
action potentials were selected manually [3]. Although the 
wavelet-based methods are potent in spike sorting proce-
dures, such methods are susceptible to the selection of basis 
function. In fact, selection of the wavelet basis function is 
an important issue in the wavelet domain and needs a priori 
knowledge about spike shapes which are not accessible in 
the real experiments. Clustering with mixtures of multivari-
ate t-distributions using log-likelihood maximization and 
expectation–maximization algorithm for parameter esti-
mation was proposed in [4]. Compared with the traditional 
Gaussian model, this t-distribution mixture model decreased 
the effect of outlier spike waveforms in the clustering pro-
cedure [4]. The main weakness of methods based on neu-
ral networks is their necessity for learning procedure that 
needs a priori knowledge about the data, which usually is 
not accessible in the neural data processing. A combina-
tion of statistical analysis and neural networks is another 
widely used approach for sorting purposes [5]. Furthermore, 
self-organizing map (SOM) accompanied by independent 
component analysis (ICA) was another method that was pro-
posed for clustering purposes [6].

Authors in [7] used the related trajectories of spike wave-
forms in the phase space as a tool for spike sorting. Mean 
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of trajectories in the phase space were used for template 
construction, and the minimal distance criterion was utilized 
for spike classification. The selection of distance measure 
was important in this method and affected the results. In 
other studies, entropy measure was used for spike sorting 
in a way that the entropy cost function was used for optimal 
wavelet basis function selection and for selecting the limited 
number of wavelet coefficients [8, 9]. Pavlov et al. proposed 
a method of representative waveforms (rw) based on the 
averaging spikes related to points around PCA cloud cent-
ers. The wavelet coefficients in some decomposition levels 
were selected, which maximize the distance between rws in 
wavelet space [10]. In other words, for each spike, the coef-
ficients related to some selected scale and translation levels 
were selected as spike features. To take into account the 
shape of the action potential, each coefficient was selected 
in one-half of the spike duration [10]. In another wavelet-
based method, the authors used those discrete wavelet coef-
ficients that their distribution among all spikes had a more 
significant deviation from a normal distribution. For meas-
uring multimodality, the Kolmogorov–Smirnov test based 
on cumulative distribution function (CDF) was used [11]. 
Four-level decomposition was carried out and two wavelet 
coefficients in which their distribution among all spikes had 
a maximum distance from normality were chosen as new 
features for each spike [11]. For each dataset, the wavelet 
basis function that was more correlated with spike templates 
was used as basis function to get a sparser wavelet space. 
Autoregressive modeling of action potentials is another way 
for spike sorting [12]. Furthermore, the power spectrum den-
sity function of biological data might contain useful infor-
mation for activity discrimination [13].

In the present work, an offline spike sorting methodology 
was proposed. For feature extraction purposes, a method 
based on approximate entropy (ApEn) was proposed. To 
correctly estimate the entropy for smooth and very short 
length waveforms like APs, the main ApEn algorithm pro-
posed by Pincus [14] was modified slightly. The ApEn-based 
proposed method used the local variation of spike shapes 
as well as global variations. The results showed that ApEn 
based feature extraction obtained better performance than 
PCA and wavelet-based methods for spike sorting.

Material and Methods

Data Recording Procedure

A single tungsten microelectrode with impedance about 
1MΩ was used to record neuronal activity from a cock-
roach restrained firmly on a plastic disk. This plastic disk 
was located in a faraday cage to reduce the effects of electro-
magnetic interference. After an initial amplification using a 

preamplifier, analog neural data were amplified by the main 
amplifier with a gain of 2000 and band-pass filtered in the 
range of 0.3–3 kHz. The analog data were digitized using a 
National Instrument ADC card (30 K samples/s). All pro-
cedures, including data acquisition and analyses, were con-
trolled by a user-written program in the Labview environ-
ment (Version 8.6, National Instruments, USA). Recorded 
data were up-sampled (up-sampling factor = 2) to increase 
the number of data points and reduce the alignment error 
[15]. Using an automatic amplitude thresholding strategy, 
spikes were extracted. The labeling process for extracted 
spikes was performed by three experts. In the first stage, 
two experts (1 neurologist and 1 neuroscientist) labeled the 
extracted spikes; however, to resolve any conflicts the third 
person (a neuroscientist) finalized the labeling procedure. 
There was 93% agreement between the first two experts.

Feature Extraction Procedure

Feature Extraction Method

In this paper, the modified ApEn-based method was pro-
posed for feature extraction. Since neurons produce spikes 
with stereotyped shape, the spike waveform is considered 
a useful tool to discriminate spikes [2, 16, 17]. ApEn is a 
measure of complexity or uncertainty in a time series [14]. 
The most important features of ApEn are resistance to short 
transient interferences, robustness against noise and con-
sistency with short length data. These features make ApEn 
an interesting tool for spike processing because spikes are 
very short-length data that usually are affected by short and 
strong transient noises induced by electronic devices. In 
this paper, ApEn was used as a measure of variability in 
spike time-series which was affected by spike shape. More 
fluctuations in the spike waveform increased the value of 
ApEn. A fast algorithm for ApEn calculation was proposed 
in [14] that used the variation between segmented patches 
of a time-series. In this paper, that algorithm was revised to 
be consistent with a very short-length time series like spikes.

The proposed ApEn-based algorithm for feature extrac-
tion is displayed in Fig. 1 and was implemented as follows:

1. Suppose N-sample spike. Select ith L-sample (L ≤ N) 
segment of spike by starting point i and jth seg-
ment with the same length and starting point j where 
j = {1,…, N − L + 1}. Compare the two segments as step 
2 explains.

2. The absolute point-wise difference between ith segment 
and jth segment of a spike is computed. The absolute 
differences obtain the elements of vector D, the abbre-
viation for difference vector.
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3. A new vector called T is created from D based on (1) as 
follows:

where in (1), (k = 1,…, L) and r is a predefined positive 
threshold for decreasing the noise effect in the calcula-
tion of ApEn. Greater r causes the noise-induced vari-
ations between segments to be neglected. Such thresh-
olding enables ApEn to be robust against noise. T is an 
abbreviation for the thresholded vector. As suggested by 

(1)T(k) =

{

D(k),D(k) > r

0,D(k) ≤ r
,

Pincus [14], r can be taken as (0.1, 0.25) ×  SDX where 
 SDX is the standard deviation of the original spike wave-
form (X).

4. If all T elements are non-zero, the mean value of vector 
T is considered in the (i,j)th entry of a matrix called C; 
otherwise, the standard deviation of values is considered 
(see Fig. 1). Note that the mean value shows the average 
dissimilarity between two patches of a spike. Also, as 
the threshold r is usually a small value, in the case of 
existence of zero elements in the vector T, the standard 
deviation will be a small value and hence indicates that 

Fig. 1  Block diagram of the 
ApEn-based feature extraction 
method. Based on the proposed 
method the variation between 
different segments of each 
spike was returned in a matrix 
called C. when such a matrix 
was created for all spikes, two 
matrix elements were selected 
where the distribution of entries 
among all matrices was more 
deviated from a normal distribu-
tion. In this regard, (m, n) and 
(m′, n′) elements among all 
matrices had multi-modal dis-
tribution (indicated by arrows) 
while (m*, n*) had mono-modal 
distribution. This indicated the 
entries had no ability to distin-
guish spikes originated from 
different neurons. The selected 
features for each spike were 
multiplied by the calculated 
ApEn of that spike to create the 
final feature
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there is no significant variation between ith and jth seg-
ments. In this regard, each entry of C matrix shows the 
level of variation between two segments of a spike. C 
is a symmetric matrix with zero main diagonal which 
is produced for each spike. As extracellular recorded 
signals are inevitably corrupted by noise and far-field 
action potentials which induce relatively small varia-
tions in the spike waveform, considering mean value 
reduces the effect of such small variations in entropy 
calculation.

5. Averaging ith row of C, which gives ci exhibits the 
relative variation of ith segment of spike relative to 
whole spike duration. More variation of a segment 
leads to greater value for ci. For example, if time-series 
is a sequence of equable values, the relative variation 
between segments is zero which leads to zero value for 
ci. For each spike the level of variation is computed 
based on (2) as follows:

  It should be noted that in the original ApEn algo-
rithm proposed by Pincus [14], if all elements of T(k) be 
greater than r then C entry is replaced by 1; otherwise, 
entry is replaced by 0 and this creates a binary matrix. 
In this way, the ci is the total number of signal patches 
that are close to one intended patch, but in the modified 
ApEn algorithm, ci is an estimation of the variation of 
each segment in the time-series. For a short length and 
smooth waveform like a spike, this calculates the vari-
ation of waveform more precisely. If the length of seg-
ments, L, which is called the dimension of calculation, 
is increased to L + 1, and the above steps are repeated, 
another measure is obtained ( �L+1 ) which shows the 
level of variation between signal segments with length 
of L + 1.

6. Finally, ApEn is calculated as follows (3):

  Note that for complex signals, which contain a higher 
level of variation, changing the dimension causes the 
value of � to be changed dramatically. In comparison, 
for the lower level of variations, this change is negligible 
and consequently, ApEn tends to zero.

  As ApEn is a global measure of time series varia-
tion, it is probable that two different waveforms with 
different local variations have an equal value of ApEn. 
For differentiating spikes with differences in small-scale 
structures, some C matrix entries with local discrimina-
tion capability are considered in feature extraction, as is 
explained in step 7.

(2)∅L =
1

N − L + 1

N−L+1
∑

i=1

Ci.

(3)ApEn = ln�
L
∕�

L+1

7. In the above steps, for each spike, a distinct C matrix 
is produced. Distribution of (m,n) entries among all C 
matrices are calculated using histogram-based probabil-
ity density function (pdf) estimation and finally a lim-
ited numbers of entries which their estimated cumula-
tive distribution function (F(x)) are more deviated from 
Gaussian distribution with the same mean and variance 
(G(x)) are selected. Deviation from normality is quanti-
fied by max|F(x) − G(x)| [11]. In Fig. 1 the distribution 
of entries in three locations among all C matrices are 
displayed. If there are different spike templates in the 
dataset, most-discriminative entries among all C matri-
ces are those that their distribution is multimodal. In 
this regard, in Fig. 1 the distribution of entries in (m*, 
n*) location among all matrices is mono-modal and, 
therefore, corresponding entries cannot discriminate 
different spikes. However, the distribution of entries in 
(m, n) location is multimodal. This indicates stronger 
discrimination.

8. For constructing a 2D feature space, two entries, as 
explained in step 7, are selected for each spike and mul-
tiplied by ApEn of that spike. Such multiplication cre-
ates two features for each spike (see Fig. 1). Note that 
both selected C(m, n)s and ApEn are dependent on spike 
shape which the former considers the local variability 
and the latter considers the global variability of spike. 
The global and local variations of spike shape can be 
used for discriminating spikes that originated from dif-
ferent neurons.

Selection of Parameter L for Feature Extraction

The most important parameter for the proposed ApEn-
based feature extraction method is dimension L. ApEn is 
proportional to the ratio of close signal segments which 
remain close by increasing L. For time-series which con-
tains high level of variations, as proposed in [14], it is 
better to choose L to be 2 or 3 to capture newly presented 
patterns of variation; however, for highly smooth and short 
length data like spikes, it is better to assign a larger value 
for L. It should be noted that the patterns of spikes gener-
ally consist of a rising segment which finally reaches the 
spike dominant peak and a segment followed by the peak. 
The main variation in such a waveform is around the peak 
location. To capture such variations during increasing L 
to L + 1 in ApEn calculation, it is proposed to set L as the 
spike peak duration. Due to the special morphology of a 
spike which consists of four phases (falling, rising, hyper-
polarization and resting state), the spike peak duration can 
be considered as one-quarter of spike duration. Since the 
refractory period of APs is rarely greater than 1 ms [18], 
spike length can be calculated based on the sampling rate 
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of analog-to-digital conversion. For our datasets (dataset 1 
and dataset 2) which were used for comparison purposes, 
this value on average was 16 samples. Such selection was 
evaluated in “Sensitivity of the proposed method to L and 
threshold applied to Pearson’s correlation”.

Sorting Procedure

Mapping each spike into a 2D feature space explained in 
“Feature extraction method”, creates some clouds in the fea-
ture space. The optimal situation is that each cluster belongs 
to a distinct neuron. These clouds can be overlapped or well 
separated. The powerful features are those that produce well-
separated and more compact clouds in the feature space. Aver-
aging spikes related to points in the small neighborhood of each 
cluster center created a template for that cluster as a represent-
ative waveform. The centers were found manually. It should 
be noted that the feature space was constructed for building 
representative templates. In this paper, Pearson’s correlation 
as a simple distance metric was used to classify spikes. The 
correlation coefficient defined by (4) was calculated between 
each spike and all constructed templates. In statistics, Pearson’s 
product–moment correlation coefficient is a measure of the 
correlation (linear dependence) between two waveforms like 
X and Y, giving a value between − 1 and + 1. It is widely used 
in the sciences as a measure of the strength of linear depend-
ence between waveforms [19]. Suppose X as spike and Y as the 
representative template of one cluster, with average of signal 
samples X and Y , respectively, and the standard deviation of 
their samples, SX and SY, respectively. Pearson’s correlation 
between spike and each template is computed by (4) as follows:

where N is the number of spike samples or representative 
template samples.

Finally, the spike was allocated to a cluster, which was 
more correlated to its corresponding representative template. 
Due to the false alarm error that usually occurs in the major-
ity of spike detection algorithms, a predefined threshold was 
applied on the correlation coefficient to remove non-spike 

(4)r =

N
∑

i=1

(Xi − X)(Yi − Y)∕(n − 1)SXSY ,

events, which had a low correlation with constructed repre-
sentative templates.

The block diagram of the proposed method is depicted 
in Fig. 1.

Spike Sorting Performance Evaluation

In this paper, the performance of the sorting procedure was 
quantified by the percentage of misclassified spikes and the 
percentage of unclassified spikes for each algorithm. For 
performance evaluation, also these two types of errors were 
combined to obtain a unique error-index [7] (Eq. 5) as follows:

where in (5), M is the number of clusters. This error-index 
returns the aggregation of errors in all classes. Unclassified 
spikes were referred to spikes which their normalized cor-
relation with all constructed templates was smaller than a 
pre-defined threshold and hence not assigned to any clusters. 
The misclassified error referred to spikes which belong to 
one neuron but are allocated to another one.

In the field of neural spike sorting, there are two common 
sets of spike datasets. The spikes in a dataset can have differ-
ent morphology or can be different in small-scale structures. 
In this paper, two different spike datasets were used for com-
parison. Dataset 1 consisted of two templates, which were 
different in small-scale structures and dataset 2 consisted of 
three spike templates which were different in shape. Such 
datasets were extracted from the real recorded data. Tem-
plates were displayed in Fig. 2.

(5)

error index =
√

√

√

√

M
∑

i=1

(unclassif ied error(%))
2
+

M
∑

i=1

(misclassif ied error(%))
2
,

Fig. 2  Spike templates for a 
dataset 1 which were different 
in small-scale structures and b 
templates for dataset 2 which 
were different in shapes. Two 
datasets were extracted from 
real recorded neural data
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Results and Discussion

Apen‑Based Feature Extraction Performance

The proposed ApEn-based method for feature extraction was 
compared with other methods, including PCA, the combina-
tion of PCA and wavelet which was named wavelet shape 
accounting classifier (WSAC) [10] and the combination 
of wavelet-based method and Kolmogorov–Smirnov (KS) 
which here was called WKS [11]. In the proposed ApEn-
based algorithm, parameter r was set to 0.25SDSD where 
 SDSD was the standard deviation of spike samples and L was 
selected as one-quarter of spike length.

After mapping each spike dataset (dataset 1 and dataset 2) 
to the feature space by each method, the centers of clouds in 
the feature space were found manually. By averaging spikes 
related to points in the small neighborhood of the cloud cent-
ers, templates for the sorting procedure were created. Each 
template was considered as the cluster marker. For sorting, 
Pearson’s correlation was applied as the distance metric 
where the correlation between each spike and constructed 
templates was computed. Finally, the spike was allocated 
to the cluster which was more correlated with its marker 
(template). Due to the inevitable false alarm errors in most 
spike detection algorithms, it was possible to find waveforms 
in dataset that were not spike events but detected falsely. 
For eliminating such events in the sorting step, a predefined 

threshold was applied to Pearson’s correlation coefficient, 
where if the correlation of spike with all templates was 
lower than the threshold, that spike was considered as the 
non-spike event and not assigned to classes. In this paper, 
the threshold was considered to be 0.5 for all methods (see 
supporting material, appendix B for the reason of selecting 
threshold level of 0.5).

Figure 3 shows the mapping of dataset 1 to the feature 
space using different methods. Clearly, PCA failed to sepa-
rate spikes with differences in small-scale structures. This 
is the major weakness of PCA in spike sorting. For solving 
such difficulties, authors in [10] proposed WSAC method 
even though visually it seemed inappropriate for dataset 1. 
It could be seen from Fig. 3 that WKS obtained the well-
separated clusters as ApEn-based method.

Table 1 shows that although WKS visually obtained clus-
ters with greater distance than the ApEn-based method, it 

Fig. 3  Dataset 1 (different in 
small-scale structures) was 
mapped into the feature space 
by other methods. The methods 
were ApEn-based method 
(Entropy), Principal Component 
Analysis (PCA), wavelet shape 
accounting classifier (WSAC) 
[10] and WKS (combination 
of wavelet and Kolmogorov–
Smirnov criterion) [11]

Table 1  Comparison between ApEn-based method and other method-
ologies for clustering of spikes different in small-scale structures

Method Unclassified error (%) Misclassi-
fied error 
(%)

ApEn 2.6 2.2
WKS 3.1 2.5
PCA 3.6 7.6
WSAC 5.6 10.9
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returned more misclassified and unclassified spikes. The 
reason was that in WKS each spike was transformed into 
the wavelet space and each coefficient represented some 
energy content of that spike. Any unwanted fluctuation in 
the spike waveform changed the energy distribution. This 
could move the related points in the feature space from one 
cluster to another. This is the case for especially datasets 1, 
in which there were differences in small-scale structures, and 
in this manner, the clustering error increased. In the case of 
the ApEn-based method, parameter r in ApEn calculation 
reduced the effect of such unwanted fluctuations.

For dataset 2 where there were 1580 spikes of three 
different spike templates, the percentage of unclassified 
and misclassified spikes using different feature extraction 
algorithms followed by Pearson’s correlation is reported in 
Table 2. Unlike dataset 1, for dataset 2 it was no longer easy 
to evaluate the performance of methods based on reported 
unclassified and misclassified percentages because even 
though ApEn had lower misclassified errors but it was 
faced with higher unclassified error than PCA. Therefore, 
another criterion which was a combination of misclassified 
and unclassified errors was used for comparison purposes, 
which was called error-index (Eq. 5).

Table 2 showed the lower unclassified percentage for PCA 
because in PCA, due to mean-centering, the spike-related 

points in the feature space were closer to the cluster cent-
ers. This caused more reliable representative templates that 
obtained a lower number of unclassified spikes. Table 2 
showed that the ApEn-based algorithm for feature extraction 
obtained the lower number of misclassified spikes in com-
parison with PCA and WKS because instead of using some 
limited number of wavelet coefficients (in WKS) or a limited 
number of scores (in PCA), global and local variations of 
spikes were used for feature extraction. Also, due to param-
eter r in ApEn calculation, denoising was carried out which 
made ApEn-based feature extraction robust against corre-
lated or uncorrelated noises. Figure 4 indicated the sorting 
results for dataset 2 where empty circles showed unclassi-
fied spikes. Due to the large error for WSAC method (SEE 
Table 2), this method was excluded for further analyses.

Furthermore, the sensitivity of ApEn-based feature 
extraction to noise was accessed. For this aim, another 
spike dataset from [11] was used which contained 1000 
spikes of two different templates. Figure 5 shows the result 
of the clustering for ApEn-based, PCA and WKS feature 
extraction methods. In each implementation, Gaussian 
noise with different strength and variance was added to 
dataset; then features were extracted and representative 
waveforms were constructed by averaging related spikes 
around cluster centers, and finally, the classification was 
carried out by allocating each spike to the more simi-
lar representative template. Gaussian noise was added 
because it is usually presented in neural data due to the 
noise induced by electronic devices or thermal perturba-
tion. The first column in Fig. 5 was related to noisy tem-
plates; other columns were related to clustering results for 
WKS, PCA and ApEn, respectively. Note that the noisy 
templates were chosen from the dataset directly and dif-
fered from representative waveforms. The rows from top to 
down were related to different noise strengths. For WKS, 
symlet 6 mother wavelet was chosen because it was more 

Table 2  Comparison between feature extraction methods for sorting 
dataset 2 with different Spike templates

Method Unclassified 
error (%)

Misclassified 
error (%)

Error index (%)

ApEn 2.1 0.9 2.284
PCA 1.4 1.9 2.36
WKS 4.5 3.9 5.954
WSAC 7 4.5 8.32

Fig. 4  Sorting result for dataset 2 which consisted of three different spike templates. Empty circles indicate unclassified spikes. The methods 
were ApEn-based (Entropy), Principal Component Analysis (PCA), and WKS (combination of wavelet and Kolmogorov–Smirnov criterion)
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similar to the waveforms of the selected dataset. Results in 
Fig. 5 showed that WKS had the lowest robustness against 
noise as the number of misclassified spikes increased by 
adding stronger noise which were 5, 27 and 202 spikes, 
respectively. The location of the cloud centers in WKS fea-
ture space changed as noise was added because the wavelet 
coefficients were affected by noise strength. These results 
showed that PCA had the highest robustness against noise 
and the number of misclassified spikes by increasing noise 
strength was 0, 0 and 1, respectively. The number of mis-
classified spikes in ApEn-based feature extraction was 1, 
6 and 23 as noise strength was increased. In this regard, 
ApEn-based feature extraction made clustering more 

robust against noise than WKS, but PCA outperformed 
ApEn-based method. The reason was that such uncorre-
lated noise was projected on components other than first 
two components, where these components were not used in 
PCA-based feature extraction and only the first two princi-
pal components were considered in this paper. In the case 
of ApEn-based feature, extraction parameter r in ApEn 
calculation caused noise effect to be reduced; therefore, 
its robustness was higher than WKS method. Since the 
added noise was uncorrelated, noise reduced the similarity 
between constructed templates and spikes which increased 
the number of unclassified spikes.

Fig. 5  Robustness of spike sorting to noise. The dataset consisted of 
two template waveforms. Different levels of uncorrelated noise were 
added to the dataset and clustering was performed for ApEn-based, 
PCA and WKS methods. The first column was related to the noisy 

waveform templates with different strengths of noise from top to 
down. Other columns were related to the clustering of spikes by vari-
ous methods
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A Note on ApEn‑Based Feature Extraction

As mentioned in the material and methods, for each spike 
the extracted features were obtained by multiplication of 
two selected elements of C matrix and the corresponding 
ApEn of that spike. The question is that if multiplying the 
ApEn (as a measure of overall variability of spike wave-
form) has a considerable effect on the discriminative power 
of extracted features? To address this question, different 
spike datasets with the templates that are depicted in Fig. 2 
were mapped into the feature space with and without con-
sidering multiplication of ApEn in the feature generation 
step; then the inter-cluster and intra-cluster distances [20] 
were calculated. The inter-cluster distance was computed 
based on the distance between cluster centers which were 
selected manually. Higher inter-cluster distance indicates 
that the clusters were more separated. The intra-cluster dis-
tance was computed as the average distances between cluster 
members and the corresponding cluster's center which was a 
measure of cluster compactness. Smaller average intra-clus-
ter distance is related to the more compact clusters. In this 
regard, Davies–Bouldin index (DB) [20] was used to assess 
the quality of the clustering algorithm which is defined as 
(6) follows:

where M is the number of clusters, Oi is the centroid of 
cluster i and d(Oi,Oj) is the distance between centroids Oi 
Ci and Oj Cj . Also �i is the average distance of all elements 
in the cluster i to centroid Oi . In comparison between two 
algorithms that produce clusters, the one with the smallest 
DB index is more favorable. The DB index was calculated 
for both datasets 1 and 2. It is also calculated for conditions 
of including or excluding the multiplication of ApEn. The 
results were reported in Table 3. These results showed that 
by considering ApEn of each spike in the feature generation 
procedure, the value of DB index was found lower than the 
case of neglecting ApEn in feature generation. Such a result 
was expected because considering the ApEn of each spike as 
a measure of global spike variation in the feature generation 
accompanied by local variation in the spike waveform made 
generated features more sensitive to the spike shape which 
was a specific characteristic of each neuron.

(6)DB =
1

n

M
∑

i=1

maxi≠j

(

�i + �j

d(Oi,Oj)

)

,

Sensitivity of the Proposed Method to L 
and Threshold Applied to Pearson’s Correlation

To capture the level of variation in each spike waveform, 
L-sample segments of each spike were compared with each 
other. Here, the sensitivity of the sorting procedure to dif-
ferent L values was tested for datasets 1 and 2. The sen-
sitivity was defined as TP/(TP + FN), where TP was true 
positive(true classified) and FN (false negative). In order 
to evaluate the sensitivity of the algorithm to L and find 
its optimal value, bootstrap selection procedure was used 
and one-quarter of spikes in each dataset were selected for 
the test. The results for both datasets are depicted in Fig. 6, 
where the sensitivity of spike sorting to different values of L 
for both datasets is shown. For dataset 1, when L was large, 
as templates were similar and the average value of differ-
ences between spike segments were replaced in entries of 
C matrix, the detail differences were eliminated by averag-
ing and, therefore, the entries of the same elements in C 
matrices were very close and this increased FN. When L 
was near to the duration that the main difference between 
templates that occurred (L between 7 and 18), the most sen-
sitivity (the least FN) was achieved because in this case, the 
difference between selected entries among all C matrices 
increased which resulted in more separated clusters in the 
feature space. For dataset 2, where spike templates were dif-
ferent, the sensitivity had lower dependence on L because of 
the larger differences between different spikes. In this case, 
higher sensitivity was achieved when L was chosen near the 
spike peak duration.

Furthermore, the sensitivity of the proposed method to 
the threshold applied to the Pearson’s correlation during 
sorting procedure is shown in Fig S2 (see supplementary 
material). For this analysis, receiver operating characteris-
tic curve (ROC) was used. The sensitivity of other method-
ologies that were used for comparison (i.e. PCA, WKS and 
WSAC) was also evaluated. In ROC analysis, true positive 

Table 3  The effect of considering ApEn in the feature selection. The 
numbers in this table were related to Davies–Bouldin index

Dataset Considering ApEn Without ApEn

Dataset 1 1.9315 2.2042
Dataset 2 3.1458 3.2442

Fig. 6  Sensitivity of the proposed method to parameter L 
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rate (TPR) vs. false positive rate (FPR) for different values 
of threshold levels applied to the Pearson's correlation lev-
els was calculated. With higher threshold levels, spike was 
allocated to the more similar pattern; therefore, true positive 
value will be enhanced while the number of falsely classi-
fied spikes (FP) was reduced. Since L is the most important 
parameter in the proposed methodology, to check if the sen-
sitivity analysis obtained a generalized result, another data-
set was used and the above-mentioned sensitivity analysis 
was performed again. The result for this analysis is shown 
in Fig S2 (see supplementary material).

Result for Another Real Recorded Data

In the previous sections, the ApEn-based sorting method 
was tested for real action potentials extracted from the 
cockroach recording and action potential from reference 
[11]. In this section, the proposed sorting algorithm was 
applied to another real spike dataset, which was recorded 
from a cockroach. Figure 7 depicts sorted spikes using 

ApEn feature extraction accompanied by Pearson’s corre-
lation where spikes were sorted into two distinct classes 
(A and B). The waveforms labeled by C in Fig. 7 were 
falsely detected spikes which had a low value of correla-
tion with constructed templates. The templates were con-
structed by averaging spikes related to points in the small 
neighborhood of cluster centers. The results of clustering 
for extracted spikes by different feature extraction meth-
ods were summarized in Table 4. As there was no a priori 
information about the number of clusters or spike tem-
plates, the real data and result of clustering were investi-
gated by some expert persons to quantify the performance 
of feature extraction methods. The experts found the 
presence of two different templates and approximately 
2200 spike waveforms in the recorded data. Experts 
consisted of three persons (2 neuroscientists and 1 neu-
rologist). Results in Table 4 were based on the average 
values reported by these experts. These results showed 
that ApEn feature extraction obtained a lower percent-
age of false-negative and false-positive errors for real 
data. This was because in real data recording, the activity 
of neurons in far-field and noise sources like electrode 
displacement or motions superimposed on the waveform 
of the spike of the intended neurons. This changed the 
waveform slightly which affected the energy distribution 
in wavelet coefficients or PC scores. Although, in ApEn 
method, r parameter made the calculation  insensitive to 
the noise which this decreased classification errors (see 
Table 4).  

Conclusion

In this paper, a method based on entropy measure was pro-
posed for offline spike sorting. For this purpose, the variation 
of action potential shape was considered and a method based 
on approximate entropy (ApEn) was proposed for measur-
ing the variability of spike waveforms. For addressing the 
variability in the smooth and short-length spike waveform, 
the ApEn proposed in [14] was modified to accommodate 
the spike event. Focusing on spike variations in ApEn-based 
feature extraction caused spikes with differences in small-
scale structures to be separated as well as spikes with dif-
ferent templates. The majority of feature extraction methods 
like PCA failed to separate spikes with detail differences. 
Against the wavelet-based method, the ApEn-based method 
was more robust against noise. Results showed that selected 
features based on ApEn, reduced the overall misclassified 
and unclassified spikes and consequently the overall clas-
sification error.

Fig. 7  Results of the proposed entropy-based detection and feature 
extraction algorithm for a real neural recording. A Spike train 1(1250 
spikes), B spike train 2 (984 spikes), C background noise as unclassi-
fied waveforms (52 waveforms) which had low correlation with repre-
sentative templates

Table 4  The result of clustering based on ApEn feature extraction 
and other methods for spikes detected from real neural data

Error Entropy PCA WKS WSAC

%FN 8.1 7.4 8.2 14.6
%FP 1.6 3.2 4.2 8.4
Sum of errors 9.7 10.6 12.4 23
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