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Abstract
In this paper, we resort to the TensorFlow framework to investigate the benefits of applying data vectorization and fitness 
caching methods to domain evaluation in Genetic Programming. For this purpose, an independent engine was developed, 
TensorGP, along with a testing suite to extract comparative timing results across different architectures and amongst both 
iterative and vectorized approaches. Our performance benchmarks further analyze the benefits of employing vectorization 
techniques and throughput-oriented hardware in several GP scenarios consisting of varying tree sizes and domain resolutions. 
In specific, it is shown that by applying the TensorFlow eager execution model to the evolutionary process, speedup gains 
of up to two orders of magnitude can be achieved on a parallel approach running on a GPU when compared to a standard 
iterative approach for a typical symbolic regression problem. Lastly, we also demonstrate the performance benefits of explicit 
operator definition when compared to operator composition in TensorGP.

Keywords  Genetic programming · Parallel computing · TensorFlow · GPU computing

Introduction

Genetic Programming (GP), which targets the evolution of 
computer programs, requires large amounts of computational 
resources since all individuals in the population need to be 
executed and tested against the objective. As a result, fitness 
evaluation is generally regarded as the most computationally 
costly operation in GP for most practical applications [15]. 
Despite this, GP is beyond doubt a powerful evolutionary 
technique, capable of tackling every problem solvable by 
a computer program without the need for domain-specific 

knowledge [26]. Furthermore, although computationally 
intensive by nature, GP is also “embarrassingly parallel” [3].

Previous works on accelerating fitness evaluation in GP 
mainly focus on two techniques: the caching of intermedi-
ate fitness results and the vectorization of the evaluation 
domain. The first method aims to save the results of code 
execution from parts of a program to avoid re-executing this 
code when evaluating other individuals. On the other hand, 
the second method evaluates the full array of fitness cases 
simultaneously by performing a tensor operation for each 
function within an individual.

The last decade saw the exponential growth of computing 
power proposed by Gordon Moore back in 1965 [24] start 
to break down. As we start meeting the limits of physics, a 
paradigm shift towards multi-core computing and paralleli-
zation becomes inevitable. Namely, with the rise of parallel 
computing, devices such as the Graphics Processing Units 
(GPUs) have become ever more readily available [4]. Ten-
sor operations are highly optimized on GPUs as they are 
necessary for the various stages of the graphical rendering 
pipeline. Therefore, it makes sense to couple the data vec-
torization approach with such architectures.

In this work, we resort to the TensorFlow platform to 
investigate the benefits of applying the above-mentioned 
approaches to the fitness evaluation phase in GP and compar-
ing performance results across different types of processors. 
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With this purpose, a novel and independent GP engine was 
developed: TensorGP. Other engines such as KarooGP [28] 
already take advantage of TensorFlow’s capabilities to speed 
program execution. However, our engine exploits new Ten-
sorFlow execution models, which are shown to benefit the 
evolutionary process. Moreover, we intend on extending the 
application of TensorGP outside the realm of classical sym-
bolic regression and classification problems by providing 
support for different types of functions, including image-
specific operators.

The remainder of this paper is organized as follows. 
"Related Work" provides a compilation of related work. " 
TensorGP" presents the framework. "Benchmark Experi-
mentation" lays the experimental setup and analyses bench-
marking results. Finally, "Conclusions and Future Work" 
draws final conclusions and points towards future work.

Related Work

Because GP individuals usually share highly fit code with 
the rest of the population and not only within themselves 
[17], techniques to efficiently save and reuse the evaluation 
of such code have been of particular interest to research 
around GP. In specific, Handley [16] first implemented a 
method of fitness caching by saving the computed value by 
each subtree for each fitness case. Furthermore, Handley 
represented the population of parsed trees as a Directed Acy-
clic Graph (DAG) rather than a collection of separate trees, 
consequently saving memory by not duplicating structurally 
identical subtrees.

However, because system memory is finite, the caching of 
intermediate results must obey certain memory constraints. 
In this regard, Keijzer [18] proposed two cache update and 
flush methods to deal with fixed size subtree caching: a 
first method using a postfix traversal of the tree to scan for 
nodes to be added to or deleted from the cache and a second 
method that implemented a variant of the DAG approach. 
Even if we rule out the amount of memory used, hit rates 
and search times are still a grave concern. Wong and Zhang 
[30] developed a caching mechanism based on hash tables 
to estimate algebraic equivalence between subtrees, which 
proved efficient in reducing the time taken to search for 
standard code by reducing the number of node evaluations. 
Besides, caching methods are instrumental in scenarios with 
larger evaluation domains, and code re-execution is more 
time-consuming. As an example, Machado and Cardoso [20] 
applied caching to the evolution of large-sized images (up 
to 512 by 512 pixels) in the NEvAr evolutionary art tool.

Another common way to accelerate GP is to take advan-
tage of its potential for parallelization. Various works have 
explored the application of parallel hardware such as Central 
Processing Units (CPUs) with Single Instruction Multiple 

Data (SIMD) capabilities [7, 12, 23], GPU-based archi-
tectures [5, 8, 9, 11] and even Field Programmable Gate 
Arrays (FPGAs) [19] to fitness evaluation within the scope 
of GP. However, arguably the most promising speedups 
still come from GPUs as they are the most widely available 
throughput-oriented architectures. Namely, Cano et al. [9] 
verified speedups of up to 820 fold for specific classification 
problems versus a standard iterative approach by massively 
parallelizing the evaluation of individuals using the NVIDIA 
Compute Unified Device Architecture (CUDA) program-
ming model.

One common way to abstract this parallelization process 
is to vectorize the set of operations performed over the fit-
ness domain, effectively reducing the running time of a pro-
gram to the number of nodes it contains [18]. Some inter-
preted languages such as Matlab, Python and Perl already 
support vectorized operations to reduce computational 
efforts. In particular, TensorFlow [1] is a numerical compu-
tation library written in Python that provides an abstraction 
layer to the integration of this vectorization process across 
different hardware. Staats et al. [28] demonstrated the ben-
efits of using TensorFlow to vectorized GP fitness data in 
both CPU and GPU architectures, achieving performance 
increases of up to 875 fold for specific classification prob-
lems. The engine that the authors developed, KarooGP, is 
still used to tackle many symbolic regression and classifi-
cation problems [10, 14, 21]. However, KarooGP does not 
take advantage of recent additions to TensorFlow execution 
models.

TensorGP

TensorGP takes the classical approach of most other GP 
applications and expands on it by using TensorFlow to vec-
torize operations, consequently speeding up the domain 
evaluation process through the use of parallel hardware. 
Moreover, TensorFlow allows for the caching of intermedi-
ate fitness results, which accelerates the evolutionary process 
by avoiding the re-execution of highly fit code. TensorGP is 
implemented in Python 3.7 using the TensorFlow 2.1 frame-
work and is publicly available on GitHub.1

In this section, we describe the implementation details of 
the incorporated GP features and the efforts of integrating 
some of these features with the TensorFlow platform.

1  TensorGP repository available at https://​github.​com/​Award​OfSky/​
Tenso​rGP.

https://github.com/AwardOfSky/TensorGP
https://github.com/AwardOfSky/TensorGP
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Genotype to Phenotype

As the name implies, TensorGP works with tensors. In 
essence, a tensor is a generalization of scalars (that have no 
indices), vectors (that have precisely one index), and matri-
ces (that have precisely two indices) to an arbitrary number 
of indices [27]. We start by describing the process of execut-
ing an individual in TensorGP. Figure 1 demonstrates our 
engine’s translation pipeline from genotype to phenotype.

In its simplest form, each individual in GP can be repre-
sented as a mathematical expression. TensorGP follows a 
tree-based approach, internally representing individuals as 
a tree graph. It implies a first translation phase from string 
to tree representation, which is only performed at the begin-
ning of the evolutionary process if the initial population is 
not randomly generated.

TensorFlow can either execute in an eager or graph-ori-
ented mode. When it comes to graph execution, TensorFlow 
internally converts the tree structure into a graph before cal-
culating any values. It allows the approach to cache potential 
intermediate results from subtrees, effectively generalizing 
our tree graph structure to a DAG. On the other hand, the 
eager execution model allows for the immediate execution of 
vectorized operations, eliminating the overhead of explicitly 
generating the intermediate DAG of operations.

Even though graph-oriented execution enables many 
memory and speed optimizations, there are heavy perfor-
mance costs associated with graph building. TensorFlow 
eager execution mode aims to eliminate such overheads 
without sacrificing the benefits furnished by graphs [2]. 
Because the individuals we are evolving are constantly 
changing from generation to generation, we would think that 
eager mode would be a good fit for tensor execution. For this 
reason, in "Benchmark Experimentation", we include some 
performance comparisons between both these TensorFlow 
execution modes.

Finally, the last translation phase goes through the entire 
genotype data to produce a phenotype, the target of fitness 
assessment. Because the domain of fitness data points to be 
evaluated is fixed for all operations, the vectorization of this 
data is made trivial using a tensor representation. Generally 
speaking, our phenotype is a tensor, which can be visually 
represented as an image for a problem with three dimen-
sions, as seen in the last stage of Fig. 1. In this example, 

the first two dimensions correspond to the width and height 
of the image, while the third dimension encodes informa-
tion regarding the RGB color channels. The resulting tensor 
phenotype is obtained by chaining operators, variables and 
constants that make part of the individual. These variables 
and constants are also tensors, which occupy a range of 
[−1, 1] for the example given. With the aid of TensorFlow 
primitives, we can apply an operation to all domain points at 
the same time while seamlessly distributing computational 
efforts amongst available hardware.

Primitive Set

To provide a general-purpose GP tool and ease evolution 
towards more complex solutions, the primitive set imple-
mented goes beyond the scope of simple mathematical and 
logic operators. This way, we attempt to provide sufficiency 
through redundancy of operators for as many problems as 
possible. Some image specific operators are also included 
to facilitate the application of TensorGP to image evolu-
tion domains (such as evolutionary art). One of such opera-
tors, and perhaps the most intriguing, is the warp. We will 
detail this operator in specific in "Explicit definition versus 
composition", where we compare several implementation 
approaches for this operator.

Operators must also be defined for all possible domain 
values, which means implementing protection mechanisms 
for certain cases. Table 1 enumerates the different types of 
operators and respective special cases. All operators are 
applied to tensors and integrated into TensorGP through the 
composition of existing TensorFlow functions. While the 
main math and logic operators can be implemented with a 
simple call to the corresponding TensorFlow function, more 
complex operators may imply chaining multiple functions. 
For instance, while TensorFlow possesses many operators to 
cater to our vectorization needs, it lacks a warp-like opera-
tor. Therefore, to implement it, we need to express the whole 
transformation process as a composition of existing Tensor-
Flow functions.

Besides the specified protective mechanism, there are 
essential implementation details for some operators. For 
example, when calculating trigonometric operators, the input 
argument is first multiplied by � . The reasoning behind this 
is that most problem domains are not defined in the [ −� , � ] 

Fig. 1   Genotype to phenotype 
translation phases in TensorGP
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Table 1   Description of 
implemented TensorGP 
operators

a Input argument in radians
b These are mostly support operators
c Transformation to integer is needed
d More details in " Explicit definition versus composition"

Type Subtype Operator
(engine abbreviation)

Arity Functionality

Mathematical Arithmetic Addition (add) 2 x + y

Subtraction (sub) 2 x − y

Multiplication (mult) 2 x × y

Division (div) 2 x/y
0 if denominator is 0

Trigonometrica Sine (sin) 1 cos(x�)

Cosine (cos) 1 sin(x�)

Tangent (tan) 1 tan(x�)

Others Exponentional (exp) 1 ex

Logarithm (log) 1 log x

− 1 if x < 0

Exponentiation 2 xy

(pow) 0 if x and y equal 0
Minimum (min) 2 min(x, y)
Maximum (max) 2 max(x, y)
Average (mdist) 2 (x + y)∕2

Negative (neg) 1 -x
Square Root 2

√
x

(sqrt) 0 if x < 0

Sign (sign) 1 − 1 if x < 0

0 if x equals 0
1 if x > 0

Absolute value 1 −x if x < 0

(abs) x if x ≥ 0

Constrain (clip)b 3 Ensure y ≤ x ≤ z

or max(min(z, x), y)
Modulo (mod) 2 x mod y

Remainder of division
Fractional partb 1 x − ⌊∗⌋x
(frac)

Logic Conditional Condition (if) 3 If x then y else z
Bitwisec OR (or) 2 Logic value of x ∨ y

For all bits
Exclusive OR (xor) 2 Logic value of x⊕ y

For all bits
AND (and) 2 Logic value of x ∧ y

For all bits
Image Transform Warp (warp) n Transform data

Given tensor input d

Step Normal (step) 1 − 1 if x < 0

1 if x >= 0

Smooth (sstep) 1 x2(3 − 2x)

Perlin Smooth (sstepp) 1 x3(x(6x − 15) + 10)

Color Distance (len) 2
√
x2 + y2

Linear Interpolation (lerp) 3 x + (y − x) × frac(z)
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range but are otherwise normalized to either [0, 1] or [− 1, 
1]. As a matter of fact, [− 1, 1] this is the standard domain 
range used in TensorGP. This makes it so that the argument 
to the trigonometric operators is in the [ −� , � ] range, which 
covers the whole output domain for these operators.

Features

TensorGP was implemented with ease of use in mind. To 
demonstrate some of its functionality, the following para-
graphs describe the main features of the presented engine.

When a GP run is initiated on TensorGP, a folder is cre-
ated in the local file system with the aim of logging evolu-
tion data. In each generation, the engine keeps track of depth 
and fitness values for all individuals. When the run is over, a 
visualization for individuals’ depth and fitness values across 
generations is automatically generated along with a CSV file 
with experimental data.

Besides, TensorGP keeps an updated state with all the 
important parameters and evolution data. With each new 
generation, the engine updates this file with information 
regarding evolution status. When it is time to resume the 
experiment, the engine loads the corresponding configura-
tions from the file of that experiment, gathering the latest 
generational data.

Although the default engine behaviour is to generate the 
initial population according to a given (or otherwise random) 
seed, the user can choose to specify an initial custom popula-
tion by passing a text file containing string-based programs 
to the engine.

Currently, two stop criteria are implemented: the genera-
tion limit (which the engine defaults to) and acceptable error. 
In the acceptable error method, the experiment ends if the 
best-fitted individual achieves a fitness value specified by the 
user. The conditional check for this value is made differently 
depending on whether we are dealing with a minimization or 
maximization problem, which leads to the next main feature.

It is possible to define custom operators for the engine. 
The only requirement for the implementation of any operator 
is that it must returns a tensor generated with TensorFlow 
and have dims = [] as one of the input arguments (in case the 
tensor dimensions are needed). Along with the implementa-
tion, the user is required to register the operator by adding 
an entry to the function set with the corresponding operator 
name and arity.

Benchmark Experimentation

This section describes the experimentation performed to 
investigate how TensorGP fares against other standard GP 
approaches in several scenarios. To achieve this goal, we 
perform the first batch of tests to benchmark TensorGP in a 

typical GP scenario where we define a domain of a constant 
range and fixed resolution (i.e. granularity) to test different 
depths within that domain. With the insights from the previ-
ous tests, we then perform two separate experiments meant 
to unveil the benefits of using different hardware to evalu-
ate a fixed population of individuals and evolve that same 
initial population. Finally, we finish this section with the 
benchmark of several approaches to implementing a specific 
operator used by TensorGP as a proof of concept for possible 
future optimizations.

Experimental Setup

All experiments considered concern the symbolic regression 
problem of approximating the polynomial function defined 
by:

This function is also known as Pagie Polynomial and is 
commonly used in GP benchmarks due to its reputation for 
being challenging [25]. Because the domain of this problem 
is two-dimensional, we represent it using a rank two tensor. 
To ease the comparison across different domain resolutions 
in our experimentation, we let these tensors be square, with 
each side corresponding to another test case. The smallest 
test case considered evaluates over a 64 by 64 grid of fitness 
cases, thus involving 4096 evaluations. In each subsequent 
test case, the length of the grid doubles, effectively quadru-
pling the number of points to evaluate. This grid of values 
keeps increasing until the most extensive test case, where the 
tensor side is 4096 (over 16 million fitness cases). Overall, 
the range of the evaluation domain ranges from 64 by 64 to 
4096 by 4096 point tensors, with every experiment consid-
ering a subset of these test cases, according to the objective 
of the comparison. Furthermore, all experiments minimize 
the Root Mean Squared Error (RMSE) metric as a fitness 
evaluation function.

Throughout the experimentation, a total of six approaches 
were considered. Four of these approaches concern Ten-
sorGP implementations, testing both graph and eager execu-
tion modes when running in the GPU versus CPU. The other 
two approaches implement serial GP evaluation methods: 
one resorting to the DEAP framework and another one using 
a modified version of the engine that evaluates individuals 
with the eval Python function instead of TensorFlow. DEAP 
is a commonly used EC framework written in Python and 
offers a powerful and straightforward interface for experi-
mentation [13]. We have chosen to include comparisons to 
this framework because it represents the standard for itera-
tive domain evaluation in research and literature around 
GP. Moreover, DEAP is easy to install and allows for the 

(1)f (x, y) =
1

1 + x−4
+

1

1 + y−4
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prototyping of controlled environments within a few lines of 
code. Furthermore, we also include our own serial baseline. 
The purpose is to compare achievable timings for an itera-
tive approach that does not use third-party software. We do 
this by passing the expression of an individual to the Python 
eval method to run it. To eliminate the overhead of pars-
ing code, eval is called only once by plugging in a lambda 
defined expression of the individual. For future reference, 
this approach will be referred to as EVAL.

Unless expressed otherwise, the software and process-
ing hardware used for the execution of these experiments is 
defined in Table 2.

Because some of the experimental results presented 
hereafter encompass a wide range of values covering mul-
tiple orders of magnitude, our best bet for graphical repre-
sentation in those scenarios is to use a logarithmic scale 
as it would be otherwise impossible to distinguish between 
timings.

Depth Experimentation

An important difference between academic exercises and 
real-world problems is that the latter are generally higher in 
complexity. When it comes to GP, this inherent complexity 
often translates to bigger and deeper individuals. It is there-
fore desirable to be able to evaluate larger individuals in a 
feasible amount of time.

This experiment aims to benchmark several GP 
approaches to determine which are more suited for evaluat-
ing increasingly larger individuals. Specifically, we compare 
all the considered approaches, each of which saw the evolu-
tion of 50 generations from fixed populations of increasing 
depth.

Having a tree graph representation as a reference, the size 
of an individual corresponds to the number of nodes of the 
individual. In contrast, the depth corresponds to the maxi-
mum distance in edges from the tree’s root to any possible 
leaf node. As a disclaimer, it is worth noting that the only 
restriction imposed on the size of trees was the actual depth. 
TensorGP implements the Ramped Half-and-Half (RHH) 
method regarding the population, instead of generating half 
of one tree with the Grow method and the other half with 
Full. This way, TensorGP effectively divides the population 

into blocks of different depths, splitting the number of trees 
in each block to use either the Full or Grow methods. All 
individuals in the initial populations are generated with this 
type of RHH, and the depth values for a given population 
range from 4 to 26 with intervals of 2. Because we are gen-
erating the populations with the RHH method, the size of the 
trees in the initial population of depth 4, for instance, are in 
order of 10 s. However, this size significantly increases for 
trees on the populations of the last depths tested, with some 
Full trees having between 10,000 and 100,000 nodes.

All initial populations were generated in TensorGP and 
executed as-is on other approaches. Besides, it is worth 
emphasizing that all approaches started the evolutionary 
process from the same set of initial populations. In addition 
to this, individuals in populations of higher depths are exten-
sions of the corresponding individuals in the populations 
with lower depths, meaning that they have the shallower 
nodes in common. This was done to prevent a deeper tree 
from having fewer nodes, which can happen otherwise, no 
matter the tree generation method used. Also, added to the 
RHH method, the fact that we are using a function set with 
multiple arities means that the increase in tree size is not 
exponential across subsequent depths.

In this manner, we start our experimentation by fixing the 
domain resolution of the considered problem with the 128 by 
128 test case. In their efforts to standardize benchmarks in 
GP, McDermott et al. [22] point out a list of several GP sce-
narios considering different problems (including the Pagie 
Polynomial) and respective evaluation domains to use, the 
most stressing of which contains 10,000 fitness cases. We 
chose a domain resolution of 128 by 128 simply because it 
is the first test case with over 10,000 data points amongst the 
set of test cases that we considered.

In Fig. 2 we see the results from an average of 30 runs 
with the described experimental setup. Figure 2a shows the 
average execution time in seconds across different depths for 
all approaches, while 2b shows the same execution results 
but concerning evaluation speed, in the format of Genetic 
Programming operations per second (GPOps/s). Table 3 and 
4 show the values represent in the referred figures. As a side 
note, the values corresponding to the last tested depths for 
the iterative frameworks (DEAP and EVAL) were excluded 
as they did not need to meet the average time threshold of 
30 min per experimental run. To avoid confusion, we should 
also first clarify that we are considering calculating any ele-
ment of our function set as a single operation, even if said 
operation is expressed as the composition of functions or 
other primitives (as is the case for image-type operators). In 
essence, this means that the number of GP of an individual 
is equal to the number of non-terminal nodes of its corre-
sponding tree graph.

A quick look at Fig. 2b demonstrates that the evalua-
tion speed of all approaches stays relatively constant across 

Table 2   Default hardware and software specifications

Component Specification

CPU Intel Core i7–5930K (@3.7 GHz)
GPU NVIDIA GTX TITAN X (12 GB)
RAM 2 × 16 GB @2.133 Mhz
Operative system Ubuntu 16.04.5 LTS
Execution environment Command line
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depths, meaning that these approaches manage to scale well 
across trees of different depths, and therefore different sizes. 
As observed from Fig. 2a, regarding the iterative approaches, 
DEAP proves to be about 2 times slower to execute the same 
setup. Nevertheless, we must remember that DEAP is a dif-
ferent framework that employs its own recombination and 
selection operators, and thus some degree of evolution bias 
towards trees of different sizes can be expected.

Additionally, as expected, the approaches that perform 
iterative domain evaluation are much slower than TensorGP 
running in either eager or graph execution modes, confirm-
ing that vectorization is indeed beneficial for the problem 
considered. Indeed, across all depths tested by both frame-
works, TensorGP running on CPU in eager mode achieved 
an average of 253.4 Million GPOps/s, which turns out to 
be 123 times faster than DEAP, reaching on average 2.06 
Million GPOps/s.

However, what is perhaps surprising is that TensorGP is 
not much faster on GPU than on CPU. The opposite is true 
for this experiment. We verify that for the eager execution 
mode, the GPU is 4.4% slower on average across all tested 
depths, while for graph execution, this percentage slightly 
raises to 4.9%. As we will verify in the subsequent experi-
ments, this lack of performance on the GPU is due to the 
memory bottleneck of copying data from the CPU to the 
GPU and vice-versa. To further investigate the advantages 
of using the GPU, in the following subsection, we will study 
the impact of evaluating domains with a different number of 
fitness cases by changing the domain granularity instead of 
the depths of individuals.

Another exciting aspect of analyzing is the evolution of 
the computation speed through generations. In Fig. 3 it is 
shown the average and standard deviation values for the 
domain evaluation speed verified across generations for the 

experimental run of depth 18 in both EVAL (Fig. 3) and on 
TensorGP running on GPU (Fig. 3b).

One of the most glaring aspects of these figures is the 
high values for the standard deviation. This should, how-
ever, not come as a surprise because, within the same depth 
test, each initial population is generated using a different 
random seed, which in turn promotes different evolutionary 
paths that result in a notable variation of GPOps/s performed 
throughout an entire run.

Moreover, as demonstrated in both scenarios, there is an 
increase in evaluation speed with an increase in the number 
of generations evaluated. This behaviour is to be expected 
for the vectorized approaches because the caching of fitness 
results that TensorGP performs, avoids the re-execution of 
some tensor operations, theoretically reducing the calcula-
tion of such operations to a simple table lookup that can be 
completed in O(1) time complexity, instead of the standard 
O(n) time (n being the number of fitness cases of the evalu-
ation domain). However, we see that EVAL also verifies an 
increase in computation speed when comparing the first and 
last generations of less than two times (Fig. 3a). In turn, the 
speed increase between the first and last generations for the 
TensorGP GPU approach is almost 3 times (Fig. 3b).

Because EVAL corresponds to our iterative baseline 
that is also executed on TensorGP, but without the aid of 
TensorFlow, we can conclude that the reason for the speed 
increase is not due to different engine implementations. 
In fact, upon analyzing the resulting nodes from individu-
als of the last generations, we verify a tendency towards 
more simplistic mathematical operations when compared 
to individuals in the first generations. This is most likely 
because the problem we are trying to approximate is itself a 
polynomial, composed of simple mathematical operations, 
which naturally guides the evolutionary process to prefer 

Fig. 2   Average execution timings and GPOp/s results in for all approaches for the evolution of initial populations generated with the RHH 
method for depths ranging from 4 to 26. Results not shown in the graph were removed for not meeting the defined time threshold
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these kinds of operators. Individuals in the initial popula-
tions are generated by randomly drawing primitives from 
our primitive set, which includes more complex operators 
that are implemented as a composition of existing functions 
and python primitives. This way, on average, a GP opera-
tion takes longer to execute in the first generations due to 
operators’ higher complexity, leading to decreased compu-
tation speeds. In addition to the fitness caching performed, 
TensorGP on GPU also benefits from the same perks of the 
evolutionary process, making the GPOps/s increase more 
pronounced as we verify by the curve in Fig. 3b.

Results from the experimentation made so far seem 
to make a case for using vectorized approaches in GP. In 
addition to this, all approaches tested seem to maintain a 

relatively constant evaluation seed across individuals of dif-
ferent sizes.

CPU Versus GPU Comparison

Even though the experimentation made on the previous sub-
section confirmed the benefits of vectorized approaches, it 
proved unsuccessful in identifying a meaningful perfor-
mance different between a traditional CPU and GPU archi-
tecture. We hypothesize that this is due to the relatively 
reduce domain resolution used. Hence, this section will see 
the execution of two experiments to test the evaluation of 
an increasing number of fitness cases, first in an isolated 
environment, and then within an evolutionary context.

Fig. 3   Evolution of average (bold line) and standard deviation (filled area) GPOp/s results across generations for the TensorGP eager (GPU) and 
EVAL approaches, left and right respectively

Table 3   Average timing values 
(in seconds) for different 
approaches across domain 
resolutions

DNF stands for “Did Not Finish”. Best values marked with “*”

Depths TF GPU TF CPU TF GPU TF CPU EVAL DEAP
EAGER EAGER GRAPH GRAPH

4 4.123* 4.957 117.297 108.420 156.688 69.554
6 5.083* 5.393 94.091 113.262 225.898 108.538
8 6.614* 7.351 110.086 117.744 264.352 128.510
10 7.242* 7.275 139.658 137.172 344.930 170.810
12 7.647* 9.222 175.486 159.076 443.584 226.658
14 7.775* 9.695 133.507 150.175 579.887 272.102
16 10.597 9.035* 127.474 152.320 759.211 332.497
18 10.932* 13.437 193.084 174.939 1265.037 606.335
20 25.897 24.390* 225.438 270.015 DNF 1305.290
22 31.844 30.113* 317.491 372.832 DNF DNF
24 59.375 56.992* 702.615 651.214 DNF DNF
26 70.728 69.122* 636.802 751.350 DNF DNF
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All experiments in this subsection consider the same 
array of 6 test cases, evaluating a two-dimensional domain 
that exponentially increases in the number of fitness cases. 
The subset of test cases considered in this experiment ranges 
from the smallest 64 by 64 test cases to a domain resolu-
tion of 2,048 by 2,048 (over 4 million fitness cases). As a 
disclaimer, all results are taken from an average of 5 runs. 
Larger domain resolutions were not tested mainly due to 
Video RAM (VRAM) limitations of the GPU used during 
the experiments. Moreover, the same set of populations 
were used for all test cases, where each population contains 
50 individuals generated with the Ramped-Half-and-Half 
method and 12 for maximum allowed depth. While the first 
experiment only saw the execution of the population as men-
tioned above batch for all the considered approaches, in the 

evolutionary run, we let the individuals evolve for 50 gen-
erations, only leaving out the graph execution approaches 
of TensorGP.

The first experiment compares average execution times 
amongst all considered approaches. Figure 4 shows the 
average time taken for the evaluation of populations across 
all test cases. We can conclude that both EVAL and DEAP 
results are similar, following a linear increase in evaluation 
time with an increase in evaluation points.

Because there is no domain vectorization, the direct rela-
tion between elements and time that it took comes as no 
surprise. It is worth noting that because of time constraints, 
results corresponding to the dashed lines in the two largest 
tensors sizes were not run but instead predicted by following 
the linear behaviour from previous values.

Table 4   Average GP operations 
per second (in millions) for 
different approaches across 
domain resolutions

DNF stands for “Did Not Finish”. Best values marked with “*”

Depths TF GPU TF CPU TF GPU TF CPU EVAL DEAP
EAGER EAGER GRAPH GRAPH

4 302.943* 300.488 3.920 4.337 1.901 2.999
6 272.372* 269.817 7.167 6.059 2.075 3.658
8 237.534 242.412* 6.221 5.914 2.133 3.335
10 246.315* 236.062 6.135 6.336 2.081 2.745
12 249.359* 234.687 6.065 6.778 2.113 3.075
14 267.657* 237.207 7.350 6.625 2.041 2.769
16 240.695 265.189* 7.499 6.361 2.204 3.268
18 272.307* 268.539 5.876 6.570 2.232 3.613
20 257.728* 253.984 7.798 6.584 DNF 2.829
22 247.020 250.450* 7.704 6.625 DNF DNF
24 302.417* 252.052 5.991 6.430 DNF DNF
26 276.937* 253.435 7.083 6.024 DNF DNF

Fig. 4   Time (in seconds) com-
parison of different approaches 
for raw tree evaluation across 
domain resolutions
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Analyzing TensorFlow’s eager execution mode, we see 
that even though the CPU is faster for the smallest test case, 
this trend fades rapidly for larger problems domains. In fact, 
for 16,384 elements ( 1282 ), the GPU is already marginally 
faster than the CPU. This margin widens with an increase in 
the tensor side, resulting in GPU evaluation over a 4 million 
point domain ( 20482 ) being almost 8 times faster as seen in 
Table 5. As a reminder, with TensorFlow, we are already 
providing operator vectorization; hence the eight-fold 
increase is merely a product of running the same approach 
on dedicated hardware.

Moreover, we can also confirm the hypothesis that the 
evolutionary process in GP benefits from eager execution. 
We observed that the slowest eager execution approach is 
about 10 times faster than the fastest graph execution one 
for the two smaller domain resolutions. This trend continues 
for larger domains, but the gap shortens to about 8 times 
(favouring eager execution).

Nevertheless, results gathered for graph execution show 
rather unexpected behaviour. As suggested by the previously 
analysed results, it would be safe to assume that the CPU 
would be faster for small domains, with the GPU taking 
over for larger ones. In reality, the opposite is happening: 
the GPU is faster for domains up to 65,536 ( 2562 ), from 
which point the CPU takes over. The answer to this strange 
behaviour may lie in the graph implementation used. Fit-
ting every individual of a population in one session graph 
proved to take too much memory for larger domains, making 
these approaches even slower both in GPU and CPU. This 
need for memory is especially taxing for the GPU VRAM 
(which is only 3 GB compared to the available 16 GB for 
system memory) that did not even finish some test cases 
while including the entire population in a single graph.

For this reason, and to be consistent with all domain reso-
lutions, we decided to test these graph execution approaches 

by opening a session graph for each instead of evaluating 
the entire population in a single graph. Still, we can safely 
conclude that both graph execution approaches are slower 
than their eager equivalents. The bold red line, in Fig. 4, is 
intended as a visualization aid that represents a 50 times per-
formance threshold over our fastest approach (TensorFlow 
eager on GPU) for approaches above the line.

For the evolutionary experiment, however, only four of 
the considered approaches were used: the iterative ones 
(DEAP and EVAL) and the ones that concern TensorFlow 
execution in eager mode (both CPU and GPU). Graph execu-
tion was omitted as it was demonstrated to be systematically 
slower than their eager equivalents.

Figure 5 shows the total run time for all considered 
approaches. Here, the red line shows a threshold for 
approaches 100 times slower than TensorGP running in 
GPU. The most noticeable aspect of these results is that they 
appear to be less linear compared to those regarding raw tree 
evaluation. This happens because, even though we are using 
a fixed population batch for each test case, evolution might 
be guided towards different depths for different initial popu-
lations. Suppose the best-fitted individual happens to have 
a lower depth value. In that case, the rest of the population 
will eventually lean towards that trend, lowering the over-
all average population depth and thus rendering the tensor 
evaluation phase less computationally expensive. The oppo-
site happens if the best-fitted individual is deeper, resulting 
in more computing time. This explains the relatively higher 
standard deviations presented in Table 6 and the non-linear 
behaviour across problem resolutions (e.g. the test case for 
size 65,536 ( 2562 ) runs faster than the two smaller domains 
for TensorFlow running on GPU).

Still, regarding TensorFlow results, from the two first test 
cases, we can not identify a clear preference towards CPU 
or GPU.

Table 5   Average (bold) and 
standard deviation (non-bold) 
of timing values, in seconds, 
across domain resolutions for 
the tree evaluation experiment

DNF stands for “Did Not Finish”. Best values marked with “*”

EVAL DEAP TF graph
(GPU)

TF graph
(CPU)

TF eager
(GPU)

TF eager
(CPU)

��
� 8.35 8.05 23.14 39.81 3.82 3.04*

(4096) ±0.22 ±0.20 ±0.56 ±0.84 ±0.22 ±0.08

���
� 33.13 31.78 25.89 42.00 3.54* 4.07

(16,384) ±0.82 ±0.89 ±0.50 ±1.07 ±0.13 ±0.11

���
� 132.28 126.93 32.97 60.22 3.53* 10.90

(65,536) ±3.36 ±3.50 ±0.77 ±1.66 ±0.13 ±0.11

���
� 531.15 522.53 128.75 109.53 3.83* 11.37

(262,144) ±12.76 ±13.97 ±2.79 ±2.92 ±0.19 ±0.92

�, ���� DNF DNF 446.90 252.23 5.92* 26.23
(1,048,576) – – ±8.94 ±21.27 ±0.23 ±1.06

�, ���� DNF DNF 879.74 775.54 14.20* 107.42
(4,194,304) – – ±31.78 ±58.38 ±0.37 ±4.74
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The GPU memory transfer overhead is on par with the 
lack of CPU parallelization power for these domain resolu-
tions. Nonetheless, for test cases larger than 65,536 ( 2562 ), 
a clear preference towards GPU starts to be evident, with an 
average speedup of over 21 times for a problem with 4 over 
million points ( 20482).

Perhaps the most unexpected results are the test cases 
for the DEAP framework, which are consistently slower 
than the EVAL baseline. In tree evaluation, we saw that 
domain calculation is slightly faster in DEAP than in our 
baseline. However, DEAP uses dynamic population sizes 
during evolution which might slow down the run. It is also 

worth mentioning that only the basic genetic operators and 
algorithms were used for DEAP. More extensive experimen-
tation with the evolutionary capabilities would most likely 
reveal a more optimal set of genetic operators and param-
eters that could prove faster than EVAL. Even so, that is not 
the aim of this work, and so we shall compare TensorFlow 
timings against our baseline, which follows the same itera-
tive principle.

In turn, EVAL proves to be slower than any of the Ten-
sorFlow approaches for all considered test cases, with an 
average verified speedup of almost 600 times over GPU_TF_
EAGER for the 5122 test case (262,144 points).

We can take the red line in Fig. 5 line as a visualization 
aid for approaches two orders of magnitude slower. For both 
iterative methods, tests cases corresponding to larger prob-
lem sizes were not completed as they proved to be too time-
consuming. Besides, based on previous results, performance 
margins would only maintain an increasing tendency.

The results shown for the GPU in TensorFlow are fast, 
maybe even too fast. Indeed, with the evolutionary pro-
cess thrown in the mix, it would be safe to assume that the 
speed up between iterative and vectorized approaches would 
shorten, even if marginally, as the genetic operators are run 
exclusively on the CPU. However, This seems not to be the 
case.

Speedups are higher when compared to tree evaluation 
experiments. Previous results with 512 tensor side (262,144) 
for TensorFlow GPU against EVAL regarding raw tree eval-
uation show a speedup of almost 140 times, which is a far 
cry from those mentioned above 600 times confirmed with 
evolution. This can be explained by the caching of interme-
diate results that TensorFlow performs, leading to a pro-
nounced decrease in evaluation time after the first few initial 

Fig. 5   Time (in seconds) com-
parison of different approaches 
for a full evolutionary run 
across domain resolutions

Table 6   Average (bold) and standard deviation (non-bold) timing val-
ues, in seconds, across domain resolutions for the evolutionary exper-
iment

DNF stands for “Did Not Finish”. Best values marked with “*”

EVAL DEAP TF eager
(CPU)

TF eager
(GPU)

��
� 196.87 397.82 21.86 17.77*

(4,096) ±96.26 ±339.50 ±13.44 ±8.29

���
� 795.36 2546.83 15.76* 21.19

(16,384) 381.71 2127.38 7.85 11.99
���

� 3274.13 7783.76 45.64 13.77*
(65,536) ±2482.256 ±5824.78 ±20.79 ±7.39

���
� 11052.16 DNF 104.96 18.49*

(262,144) ±3887.54 – ±30.21 ±8.75

�, ���� DNF DNF 434.37 21.21*
(1,048,576) – – ±160.05 ±9.98

�, ���� DNF DNF 1353.67 64.54*
(4,194,304) – – ±679.56 ±32.51
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generations, as observed in Fig. 6. This reduction in execu-
tion time reveals similar behaviour to the increase in execu-
tion speed already verified for the TensorGP GPU approach, 
demonstrated in "Depth Experimentation". These results fur-
ther make a case for expression-based evolution with Ten-
sorFlow in eager mode. Finally, to demonstrate TensorGP’s 
capability for the evolution of large domains, in Fig. 7 we 
showcase fitness progression across generations for the test 
case with over 4 million points ( 20482).

In this manner, we further confirmed the usefulness of 
vectorization approaches while also showcasing the benefits 
of using throughput-oriented architecture, such as the GPU, 
to evaluate domains with higher resolutions.

Fig. 6   Average evaluation time 
(in seconds) across generations 
for the 64 tensor side test case 
(4096 points) with the GPU_
TF_EAGER approach regarding 
the evolutionary experiment. 
Painted regions above and 
below represent one standard 
deviation from the average

Fig. 7   Average and minimum 
error values for the GPU_TF_
EAGER approach regarding the 
20482 test case for the evolu-
tionary experiment. Painted 
regions above and below 
represent one standard deviation 
from the average
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Explicit Definition Versus Composition

The performance numbers measured so far are promising for 
TensorGP. However, there are still some performance barri-
ers in the current implementation of our engine.

As mentioned in "Primitive Set", TensorGP operators are 
defined as a function composition of existing TensorFlow 
primitives, meaning that each operator can perform mul-
tiple TensorFlow calls and even some computations from 
the native language used (Python in our case). This com-
position of operators automatically causes some overhead, 
which could be avoided with a direct definition of all primi-
tives in our function set. Thus, this subsection serves as a 
proof of concept for the following steps to take in improving 
the performance of TensorGP. In specific, we compare sev-
eral explicit and composite implementation approaches for 
the warp operator described in "Explicit Definition Versus 
Composition".

The warp operator is defined as a transformation that 
maps every element of a tensor to a different coordinate. 
There are two main arguments to this operator for a tensor 
with rank n: the tensor with the elements to transform and 

an array of n tensors of rank n, each with the new coordinate 
position for that dimension. The bi-dimensional version of 
this operator is often used to distort shapes in an image. The 
functionality of our warp is the same as implemented in 
the scikit-image image processing Python framework [29]. 
When it comes to performance, because we must perform a 
gather from the input for every element of the result tensor, 
the warp has demonstrated high parallelism potential.

To better understand the performance implications and 
verify the potential for parallelism of the warp operator, 

Fig. 8 compares six different approaches. The objective is 
to check how a TensorFlow implementation fares against 
more low-level implementations that explicitly define the 
operator and some other iterative baselines. All approaches 
were tested using rank 3 tensors with dimensions [x, x, 4], 
x varying from 64 to 4096. Results are computed from an 
average of 30 runs. As a side note, the setup described in this 
subsection was executed on a different machine, the specifi-
cations of which are described in Table 7.

The objective of this experiment is not to compare the 
speed of different programming languages. This, coupled 
with the fact that TensorFlow allows for creating custom 
operators using C++ for the CPU code and Compute Uni-
fied Device Architecture (CUDA) for the GPU, leads us 
to implement the different approaches in these languages 
to get a better idea of the performance of an internal Ten-
sorFlow integration. Two approaches are GPU based: 
one uses TensorFlow composition (TF GPU) while the 
other implements explicit parallelization with an inde-
pendent CUDA kernel (GPU CUDA). For the CPU, we 
implemented the traditional iterative approach (CPU), a 

Table 7   Hardware and software specifications for the warp operator 
experiment

Component Specification

CPU Intel®Core™i7–6700 (3.40 GHz)
GPU NVIDIA GeForce GTX 1060 3 GB
RAM 2 × 8 GB @2666 MHz
Operative System Ubuntu 16.04
Execution Environment Command Prompt

Fig. 8   Execution timings in milliseconds (left) and operations per second (right) for several implementations of the warp operator across 
domains of increasing resolution
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Single Instruction Multiple Data (SIMD) version using the 
Advanced Vector Extensions (AVX) instruction set (CPU 
AVX2), another SIMD version with multithreading added 
(CPU AVX2 mt) and finally, the TensorFlow approach 
(TF CPU). Specifically, the SIMD instruction set used 
was AVX2 (also known as “Haswell New Instructions”). 
Moreover, all TensorFlow approaches were executed in 
eager mode.

Figure 8a shows average timings across different tensor 
sizes. Regarding the CPU, we observe a big discrepancy 
between serial (CPU) and vectorized implementations (like 
AVX2), which only confirms how parallelism prone this 
operator is. Furthermore, almost every approach follows a 
linear time increase across the tensor side, apart from the 
TensorFlow approach on GPU (TF GPU), which exhibits 
some starting overhead along with performance penalties 
for larger domains (see Table 8).

In Fig. 8b we can more easily analyze the performance 
curve for this approach. Smaller domains display a lower 
operation per the second count caused by the initial over-
head. In the meantime, results for domains of higher resolu-
tion seem to indicate some performance degradation, likely 
due to GPU memory constraints. In reality, the last test case 
corresponding to the largest problem domain did not finish 
in TensorFlow GPU due to insufficient VRAM (therefore 
not being present in the figures and tables). This test case 
completes in a basic CUDA application seems to indicate 
that TensorFlow stills perform some level of cashing for 
intermediate operator composition results, which occupies 
more memory (even when executing in eager mode).

Additionally, still looking at Fig. 8b, we see that the two 
SIMD approaches using AVX2 scale slightly better for 
smaller domains, a tendency that is inverted in the Tensor-
Flow approach for CPU that achieves lower relative compu-
tation speed for tensors with size 256 when comparing with 
more significant test cases (see Table 9).

Overall, the most performant approach (CUDA) was 
around 300 times faster than the slowest (CPU, serialized), 
reaching almost 10,000 Million operations per second. The 
red line represents a threshold for approaches two orders of 
magnitude slower than CUDA in both figures. Apart from 
the traditional iterative CPU approach, only the TensorFlow 
CPU version did not meet this threshold. This is most likely 
because our specific TensorFlow build tested was not com-
piled to support SIMD instructions.

The implementation used in our GP engine was the 
second-fastest for the 1024 domain test case. Even when 
resorting to operator composition, this surprising perfor-
mance might be explained by the TensorFlow internal XLA 
integration. XLA stands for “Accelerated Linear Algebra” 
and allows us to internally compile a sequence of operators 
into a single GPU kernel call, substantially reducing related 
overheads. Analyzing XLA performance in TensorFlow is, 
however, not the aim of this experiment.

Even though these results seem impressive, the perfor-
mance differences shown are not indicative of real-world 
performance. Tree evaluation often chains dozens or even 
hundreds of different operators, leading to other problems in 
memory management between GPU and CPU, as we veri-
fied in previous experiments. Therefore, these performance 

Table 8   Average timing values 
(in milliseconds) for different 
warp implementations across 
tensor sizes

DNF stands for “Did Not Finish”. Best values marked with “*”

Resolution CUDA TF
(GPU)

TF
(CPU)

CPU
(AVX2 MT)

CPU
(AVX2)

(CPU)

2562 0.033* 1.077 15.631 0.173 0.278 19.486
5122 0.127* 1.037 49.856 0.870 1.252 75.467
10242 0.503* 2.625 199.636 3.549 5.454 295.192
20482 1.973* 16.171 808.798 14.652 20.115 1286.380
40962 7.919* DNF 3255.874 55.819 80.252 4843.459

Table 9   Average operations per 
second values (in millions) for 
different warp implementations 
across tensor sizes

DNF stands for “Did Not Finish. Best values marked with “*”

Resolution CUDA TF
(GPU)

TF
(CPU)

CPU
(AVX2 MT)

CPU
(AVX2)

(CPU)

2562 8058.283* 243.372 16.771 1515.178 942.761 13.453
5122 8270.179* 1011.006 21.032 1205.135 837.527 13.895
10242 8336.091* 1597.630 21.010 1181.827 768.962 14.209
20482 8503.404* 1037.515 20.743 1145.046 834.073 13.042
40962 8474.518* DNF 20.612 1202.258 836.231 13.856
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improvements of many orders of magnitude are not to be 
expected for full evolutionary runs.

Still, based on the results gathered, we believe that we can 
significantly increase TensorGPs’ performance by explicitly 
defining the operators of the function set. The explicit defini-
tion of operators can be done through the incorporation of 
C++ and CUDA code directly with the TensorFlow library. 
The major disadvantage of this method lies in the fact that 
TensorFlow must be recompiled for operators to be called 
internally, resulting in less flexibility for the end-user.

Conclusions and Future Work

In this work, we propose different approaches to ease the 
computational burden of GP by taking advantage of its high 
potential for parallelism. Namely, we investigate the advan-
tages of applying data vectorization to the fitness evalua-
tion phase using throughput-oriented architectures such as 
the GPU. To accomplish this, we employed the TensorFlow 
numerical computation library written in Python to develop 
a general-purpose GP engine capable of catering to our vec-
torization needs – TensorGP. Additionally, The impact of 
tree size and domain granularity in the performance of sev-
eral GP approaches was also analyzed. Lastly, we perform a 
series of comparisons to determine the benefits of explicitly 
defining GP operators versus expressing these as composi-
tions of existing primitives.

Our experimental results confirm the benefits of vectori-
zation in GP and further make the case for the use of GPUs 
for the domain evaluation phase. Specifically, we show that 
performance gains of up to 600 fold are attainable in Ten-
sorGP for the approximation of evaluation domains with 
high resolutions regarding the Pagie Polynomial function. 
Furthermore, we demonstrate the benefits of TensorFlow’s 
eager execution model over graph execution for the caching 
of fitness results throughout generations. Nevertheless, our 
test results for smaller domains seem to make still the case 
for more latency-oriented programming models such as the 
CPU. Therefore, modern-day GP appears to be best suited 
for heterogeneous computing frameworks like TensorFlow 
that are device-independent. As a last remark, we verify 
that operator composition is advantageous, with possible 
speedup increases of one order of magnitude for the explicit 
CUDA implementation versus the composite approach cur-
rently implemented in TensorGP.

Upon completion of this work, some possibilities are 
to be considered for future endeavours. Aside from the 
implementation efforts implicit in the last subsection of our 
experimentation, we believe that implementing a preproc-
essing phase to simplify the mathematical expressions of 
individuals could also significantly improve TensorGP’s 

performance. Moreover, with the incorporation of image-
specific operators in our engine, the exploration of evo-
lutionary art is an appealing work path. Finally, the time 
comparison study amongst different approaches could be 
extended by including other GP frameworks, possibly under 
less strict evolutionary setups.
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