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Abstract
Graph matching is a comparison process of two objects represented as graphs through finding a correspondence between 
vertices and edges. This process allows defining a similarity degree (or dissimilarity) between the graphs. Generally, graph 
matching is used for extracting, finding and retrieving any information or sub-information that can be represented by graphs. 
In this paper, a new consistency rule is proposed to tackle with various problems of graph matching. After, using the proposed 
rule as a necessary and sufficient condition for the graph isomorphism, we generalize it for subgraph isomorphism, homo-
morphism and for an example of inexact graph matching. To determine whether there is a matching or not, a backtracking 
algorithm called CRGI2 is presented who checks the consistency rule by exploring the overall search space. The tree-search 
is consolidated with a tree pruning technique that eliminates the unfruitful branches as early as possible. Experimental 
results show that our algorithm is efficient and applicable for a real case application in the information retrieval field. On the 
efficiency side, due to the ability of the proposed rule to eliminate as early as possible the incorrect solutions, our algorithm 
outperforms the existing algorithms in the literature. For the application side, the algorithm has been successfully tested for 
querying a real dataset that contains a large set of e-mail messages.
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Introduction

Graphs are one of the most general forms of data representa-
tion. They are able to represent structural relations that could 
exist between different parts of an object. This crucial ben-
efit led to the growing use of graphs in many fields including 
image processing, information retrieval, bioinformatics and 
networking. The benefit is not only in the graph itself for 
data representation, but in performing other operations based 
on graphs like graph matching problem. The graph matching 
is the process of comparing two graphs that aims to define 
a similarity degree between the graphs. Two main catego-
ries of algorithms can be distinguished. The first includes 
exact matching algorithms that require a strict correspond-
ence among two graphs or at least among their subgraphs. 
The second category contains inexact matching algorithms 
where a matching can occur even if both compared graphs 

are structurally different. In its form, the most rigorous, the 
exact graph matching is known as graph isomorphism in 
which a one-to-one correspondence must be found between 
each vertex of the first graph and each vertex of the second 
graph, such that the edge connections are respected. Other 
forms of the exact graph matching are the subgraph isomor-
phism, the most common subgraph of two graphs and the 
homomorphism. In the case of the subgraph isomorphism 
problem, the goal is to know if there is an isomorphism 
between the first graph and a subgraph of the second graph.

In practical applications, the inexact graph matching 
problem has been intensively treated in the literature [1–4]. 
Most of the existing methods formulate the graph match-
ing as an optimization problem. A cost function must find a 
correspondence of vertex-to-vertex and edge-to-edge, such 
that the cost is minimized to enhance the similarity between 
graphs.

It is well known that the problem of subgraph isomor-
phism is NP-complete. However, up to now, it is unknown 
whether the graph isomorphism is an NP-complete problem 
or a polynomial problem [5–7]. Polynomial isomorphism 
algorithms have been developed for particular kinds of 
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graphs (trees, planar graphs, bounded valence graphs) but 
no polynomial algorithms are known for the general case.

Whatever the matching problem is exact or not, the goal 
is to find the correspondence (or the permutation) to define 
the similarity. Generally, the problem is tackled in literature 
using permutation theory. To find the optimal permutation 
(or subpermutation) of the matching, there are several tech-
niques of exploration, the most studied are: exhaustive tree-
searching, continuous optimization and heuristics. Usually, 
in such context, the goal is to determine the solution as early 
as possible, in particular when the search space grows. In 
real applications, like information retrieval using big data, 
it will be interesting to have new developments on the graph 
matching problem to accelerate exploration with efficient 
results.

Paper contribution

Algorithms based on spectral methods use the famous equal-
ity M� = PtMP , where M and M′ represent the adjacency 
matrices of the two graphs. Whereas P is the unknown per-
mutation that we have to define. The equation shows that 
graphs of M and M′ are isomorphic, if there is at least a 
permutation matrix P that could solve M� = PtMP.

Using this equation, Ullmann [8] has illustrated that is 
possible to show that two graphs are isomorphic if there is 
some permutation p such that: for each element mi,j of the 
matrix M, if mi,j = 1 , there is a corresponding element in M′ 
where m�

p(i),p(j)
= 1.

In this paper, we give a simple general equality (called 
consistency rule) using matrix elements of the graphs. For 
two isomorphic graphs, we prove for all elements, 
[mi,j] = [m�

p(i),p(j)
] which is more general than the rule of Ull-

mann. The new proposed consistency rule is a necessary and 
sufficient condition for graph isomorphism, in contrast to 
Ullmann’s rule which is only a necessary condition. We 
show also that the proposed rule could be used for various 
problems in graph matching using any other square matrix 
representation like Laplacian matrix and distance matrix.

The rest of the paper is organized as follows. Previ-
ous works in relation to this paper are discussed in Sec-
tion “Related Work”. In Section “Definitions”, basic defi-
nitions and some theoretical aspects are given. The main 
idea of the proposed consistency rule for the graph iso-
morphism problem is presented in Section “Consistency 
Rule for Graph Isomorphism Problem”. An algorithm of 
graph isomorphism based on tree-search exploration with 
backtracking and branch pruning techniques is introduced 
in Section “Algorithm CRGI2 for Graph Isomorphism”. In 
Sections Subgraph Isomorphism and Homomorphism, An 
Inexact Matching for Attributed Graphs and  Tree Match-
ing for XML Retrieval, the proposed consistency rule is 

generalized for subgraph isomorphism, homomorphism, 
inexact graph matching and has been suited for the problem 
of XML retrieval. Experimental tests are carried out, in Sec-
tion “Experimental Results”, to show the performance and 
the applicability of CRGI2. Final notes and conclusions are 
given in Section “Conclusion”.

Related Work

Graph isomorphism algorithms use mainly two approaches: 
the direct approach and the indirect approach. In the direct 
approach, the algorithms try to find an isomorphism between 
the two input graphs directly with a backtracking algorithm 
using feasibility rules to prune the tree-search. Ullmann’s 
algorithm, Schmidt and Druffel’s algorithm (called SD), 
VF, VF2, and CRGI represent a collection of this approach 
[7–10]. Note that most of isomorphism algorithms of this 
approach are used too for subgraph isomorphism like Ull-
mann, VF, and VF2.

Nauty algorithm [11] is the main algorithm of the indirect 
approach in which canonical labeling of each graph must be 
calculated. Two graphs can be checked for isomorphism by 
simply verifying the equality of the adjacency matrices of 
their canonical forms. An interesting algorithm that com-
bines between Nauty and VF2 is presented in [5]. Other 
existing techniques, such as non-deterministic ones (stochas-
tic), are so powerful to reduce the complexity from expo-
nential to polynomial, but they are not guaranteed to find an 
exact and optimal solution.

For the inexact graph matching problem, the most known 
paradigms are a graph edit distance [12–14], b graph kernels 
and embedding [15–18], c spectral algorithms [3, 4, 19, 20] 
and d algorithms based on deep learning [21, 22]. The reader 
can refer to the surveys [23–26] for more details on graph 
matching algorithms classification.

Graph edit distance (GED), represents the main way for 
the inexact graph matching process. Most of the algorithms, 
in this case, uses a function cost that quantifies the errors 
between the two graphs. Graph edit distance, which is recog-
nized as one of the most flexible and universal error-tolerant 
matching paradigms, is based on computing the cost of the 
needed operations (vertex insertion, vertex deletion, etc.) 
to transform one graph to obtain the second graph. At a 
lower cost (the number of operations is reduced), there will 
be more similarity between graphs. The survey [27] gives 
more details of algorithms based on the edit distance para-
digm. Note that in [1], the most common subgraph problem 
has been proved that it is a special case of graph edit dis-
tance computation. This later shows a form of combination 
between exact and inexact graph matching.

Spectral matching methods are based on the fact that the 
eigenvalues of a matrix remain unchanged whatever the rows 
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and columns are permuted. The general idea is based on 
using matrices of the corresponding graphs. The eigenvalues 
and the eigenvectors of the adjacency or Laplacian matrix 
of a graph are invariant with respect to vertex permutation. 
Hence, if two graphs are isomorphic, their structural matri-
ces will have the same eigendecomposition. By represent-
ing the underlying graphs by means of the eigendecomposi-
tion of their structural matrix, the matching process of the 
graphs can be conducted on some features derived from their 
eigendecomposition.

Definitions

Definition 1 A graph G = (V ,E) consists of a finite non-
empty set V = {0, 1, ..., n − 1} of n vertices and a set of edges 
E ⊆ V × V .

Definition 2 Let G = (V ,E) . The adjacency matrix of G is 
n × n matrix M defined as follows:

Definition 3 Let G = (V ,E) . The distance matrix D = [dij] 
is n × n matrix in which the element dij represents the length 
of the short path between the vertices i and j. If i = j , then 
dij = 0 . If no path exists between the two vertices, the length 
is defined to be infinite.

Definition 4 A permutation p on a set V is a bijection 
p ∶ V → V  . If V = {0, 1, ..., n − 1} , a permutation of V is 
called a permutation on n vertices.

Example of a permutation:

 which means p(0) = 4, p(1) = 3, p(2) = 6, ..., p(6) = 2.

Definition 5 A subpermutation p on a set V is an injection 
p ∶ S → V  , where S ⊂ V .

Example of a subpermutation on 4 vertices, where V = 
{0,1,...,6}:

Definition 6 Let G = (V ,E) and G� = (V ,E�) be two graphs. 
G and G′ are called isomorphic if there exists a permutation 
p ∶ V → V such that: (i, j) ∈ E if and only if (p(i), p(j)) ∈ E�.

M = [mij]

{
mij = 1 if (i, j) ∈ E

mij = 0 otherwise

p =

(
0 1 2 3 4 5 6

4 3 6 0 5 1 2

)

p =

(
0 2 3 5

4 6 0 1

)

Definition 7 Given two graphs G = (V ,E) and G� = (V �,E�) , 
where V ⊂ V ′ . There is a subgraph isomorphism from G to 
G′ if there exists a subpermutation p ∶ V → V � such that: 
(i, j) ∈ E if and only if (p(i), p(j)) ∈ E� ∩ (S × S) , where 
S ⊂ E′ and |S| = |E|.

Definition 8 Let G = (V ,E) and G� = (V ,E�) be two 
graphs. There is a graph homomorphism from G to 
G′ , if there exists a permutation p ∶ V → V  such that: 
(i, j) ∈ E ⇒ (p(i), p(j)) ∈ E�.

Definition 9 Let p be a permutation on n vertices. The per-
mutation matrix P is an n × n matrix defined as follows:

For example, the permutation matrix P of the permuta-
tion p shown in Definition 4 is:

 Actually, the permutation matrix is obtained from the iden-
tity matrix by permuting the columns (i.e. switching some 
of the columns).

Definition 10 A graph invariant is a function f applied on 
isomorphic graphs such that, if G and G′ are isomorphic, 
then f (G) = f (G�) (the converse is not necessarily true: 
f (G) = f (G�) does not mean G and G′ are isomorphic). 
Therefore, an invariant imposes a necessary condition for 
isomorphism.

Simple graph invariants are the number of vertices and 
the number of edges of a graph. Other graph invariants 
are the determinant, the characteristic equation of its adja-
cency matrix, and the set of its roots (the spectrum of the 
graph).

The vertex invariant is another invariant which is 
extended to graph invariant. Node invariant is a function f 
on a node, such that if there is an isomorphism p between G 
and G′ , for each v ∈ G , then f (v) = f (p(v)).

Proposition 1 Let M and M′ be the adjacency matrices of G 
and G′ , respectively. The graphs G and G′ are isomorphic 
if and only if there exists a permutation matrix P such that:

P = [pij]

{
pij = 1 if p(j) = i

pij = 0 if not

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1)M� = PtMP
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Proof Given isomorphic graphs, the isomorphism gives a 
permutation of the vertices, which leads to a permutation 
matrix. Similarly, the permutation matrix gives an isomor-
phism. As for the equality, it is explained by an example in 
Section “Example of Isomorphic Graphs”.

Consistency Rule for Graph Isomorphism 
Problem

Equation M� = PtMP has been widely used in the literature 
to solve the problem of graph isomorphism [4, 6, 8]. It is 
clear that M and M′ are given matrices of the graphs G and 
G′ while P is the unknown permutation must be determined. 
If Eq. (1) has no solution, i.e. P does not exist, no isomor-
phism could exist.

Until now, there is no way to solve (1) in polynomial 
time. To determine P (or in-existence of P), an exhaustive 
search must be executed in the area of all possible permuta-
tions (Brute Force search). Ullmann’s algorithm [8] gives an 
example of this process.

The disadvantage of this method is the high complexity 
given in O(n!). To reduce the computing complexity, Eq. 
(1) will be reformulated. It will be interesting to give an 
example to understand the behavior of (1).

Example of Isomorphic Graphs

Let G = (V ,E) and G� = (V ,E�) be the isomorphic graphs 
shown in Fig. 1.

The corresponding adjacency matrices of G and G′ are, 
respectively:

 The permutation matrix (which is known) is:

 Using (1), the first matrix multiplication PtM is:

 Using (1), the second matrix multiplication M′′P i.e. PtMP 
is:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 1 0

1 0 1 0 0 0 0

1 1 0 0 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

M� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 1 0 0 0

0 0 1 1 1 0 0

0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 1 0

1 0 1 0 0 0 0

1 1 0 0 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 0 1 0 0 0

1 1 0 0 0 0 1

0 1 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= M��

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 0 1 0 0 0

1 1 0 0 0 0 1

0 1 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1  Example of two isomorphic graphs with the corresponding 
permutation
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 A depth observation of the above matrix multiplications 
allows concluding that:

• The multiplication M�� = PtM allows to each row i of M 
changing its position i into the new position p(i) in M′′ . 
Thus, 

 where, Rp is a position transformation function that 
transforms each row i to p(i) i.e. 

 If we select any row from M, for example row 3 will be 
appeared at the position 0 in M′′.

• The second multiplication M� = M��P allows to each col-
umn j of M′′ changing its position j into the new position 
p(j) in M′ . Thus, 

 where, Cp is a position transformation function that 
transforms each column j to p(j) i.e. 

 If we select any column from M′′ , for example column 
5 will be appeared at the position 1 in M′.

In general, the position transformations (3) and (5) are still 
correct even for adjacency matrices of attributed graphs 
defined above. The fact that the permutation matrix is got-
ten from the identity matrix by permuting the columns 
(or rows), will lead to conserve the values of the cases but 
changing their positions.

By replacing (2) in (4):

Therefore, M′ is obtained by a transformation of rows posi-
tions under p in first step, and in second step, a transforma-
tion of columns positions under the same permutation p.1

Now, we apply transformations Rp and Cp on [mi,j] sequen-
tially. Using (3) and (5), we get:

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 1 0 0 0

0 0 1 1 1 0 0

0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= M�

(2)M�� = PtM = Rp(M),

(3)
[
mi,j

]
⟶Rp

[
m��

p(i),j

]
.

(4)M� = M��P = Cp

(
M��

)
,

(5)
[
m��

i,j

]
⟶Cp

[
m�

i,p(j)

]
.

(6)M� = Cp

(
Rp(M)

)
.

 As mentioned, Rp and Cp are functions for changing posi-
tions that preserve values, in other words, Rp and Cp do not 
influence the cases contents after position transformation, 
this means from (7) that for each case mi,j of M there exists 
a corresponding case in M′′ and another in M′ such that:

 If we select any case mi,j from M, for example m2,1 will 
be appeared at the position (6,  1) in M′′ , and then at 
the position (6,  3) in M′ with value preservation, i.e. 
m2,1 = m��

6,1
= m�

6,3
= 1.

To obtain M′ from M, each case of M is a subject of dou-
ble position transformation (changing the row i and then 
changing the column j), this position transformation must 
be done under a given permutation p.

From above, we have this proposition which is valid also 
for attributed graphs:

Proposition 2 Let M = [mi,j] and M� = [m�
i,j
] be the adja-

cency matrices of G and G′ (both are simple or both are 
attributed), respectively. The graphs G and G′ are isomor-
phic if and only if there exists a permutation p ∶ V → V such 
that:

Besides the adjacency matrix, Proposition (1) may be 
extended to other graph representations like Laplacian 
matrix, distance matrix and even for matrices of attributed 
graphs. Thus, from the previous explained notion of cases 
transformation, we have theses propositions too:

Proposition 3 Let X and X′ be square matrices2 of G and G′ , 
respectively. The graphs G and G′ are isomorphic if and only 
if there exists a permutation matrix P such that:

The later equation has been used in literature with only 
adjacency matrix [4, 6, 8]. However, if we consider using 
another representation like the distance matrix for the previ-
ous graphs of Fig. 1.

(7)
[
mi,j

]
⟶Rp

[
m��

p(i),j

]
⟶Cp

[
m�

p(i),p(j)

]
.

(8)mi,j = m��
p(i),j

= m�
p(i),p(j)

.

(9)∀i, j mi,j = m�
p(i),p(j)

.

(10)X� = PtXP

1 Observe that M� = Rp(Cp(M)) is also true.

2 Several square matrices that contain informations about the struc-
ture of the graph can be formed. In this case, rows and columns are 
indexed by the vertices of the graph. Some of the most commonly 
studied square matrices for representing graphs are the adjacency 
matrix, the distance matrix and the Laplacian matrix.
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 Using (10) such that X is the distance matrix D, we have 
PtDP =

Proposition 4 Let X = [xi,j] and X� = [x�
i,j
] be square matri-

ces of G = (V ,E) and G� = (V ,E�) , respectively. The graphs 
G and G′ are isomorphic if and only if there exists a permu-
tation p ∶ V → V  such that:

This proposition is a consistency rule that can be used 
also for matching weighted graphs in which the contents 

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 1 4 3 2

4 0 6 5 3 2 1

3 1 0 4 2 1 2

1 2 1 0 3 2 3

1 1 3 2 0 2 1

2 2 4 3 1 0 2

3 3 5 4 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

D� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 2 3 2 1 3 1

3 0 2 2 2 1 4

4 1 0 3 3 2 5

5 2 1 0 4 3 6

1 3 2 1 0 4 2

2 2 1 1 1 0 3

4 1 2 1 3 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 1 4 3 2

4 0 6 5 3 2 1

3 1 0 4 2 1 2

1 2 1 0 3 2 3

1 1 3 2 0 2 1

2 2 4 3 1 0 2

3 3 5 4 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 0 3 2 3

2 2 4 3 1 0 2

3 3 5 4 2 1 0

4 0 6 5 3 2 1

0 1 2 1 4 3 2

1 1 3 2 0 2 1

3 1 0 4 2 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 2 3 2 1 3 1

3 0 2 2 2 1 4

4 1 0 3 3 2 5

5 2 1 0 4 3 6

1 3 2 1 0 4 2

2 2 1 1 1 0 3

4 1 2 1 3 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= D�

(11)∀i, j xi,j = x�
p(i),p(j)

.

of the adjacency matrices are real. In this case, the rule 
will be formulated as |xi,j − x�

p(i),p(j)
| ≤ � , where � is a 

threshold that can define the quality of graph matching. It 
is clear that the problem turns back to graph isomorphism 
when � = 0.

This later proposition will be used as consistency rule 
(necessary and sufficient condition) for testing graph iso-
morphism in the proposed algorithm. It will be generalized, 
after, for other problems of graph matching. Therefore, its 
interest is that allows an early elimination of invalid permu-
tations. When there exists at least one case (i, j) such that 
xi,j ≠ x�

p(i),p(j)
 , this means that the permutation p could not be 

an isomorphism, and any other permutation p′ must be 
tested. If all permutations do not satisfy (11), no isomor-
phism can exist.

Previously, we assumed working with directed graphs. In 
fact, rules 9 and 11 can also be applied to prove the graph 
isomorphism on this type of graphs:

• Undircted graphs A graph is undirected if edges have no 
direction. If there is an edge from i to j in an undirected 
graph, then there is also an edge from j to i. Adjacency 
matrix X of undirected graph is always symmetric where 
xi,j = xj,i . Therefore, it is sufficient to prove the graph 
isomorphism by using only the upper triangular part 
of the adjacency matrix where j ≥ i (or only the lower 
triangular part where i ≥ j ). Thus, undirected graphs G 
and G′ (represented by symmetric matrices X and X′ ) 
are isomorphic if and only if there exists a permutation 
p ∶ V → V  such that: 

• Graphs with loops A loop (or self-edge) is an edge (i, i) 
from a vertex i to itself. Loops correspond to a diagonal 
entry in the adjacency matrix M of the graph. If there is a 
loop (i, i), then mi,i = 1 , otherwise mi,i = 0 . Observe that 
consistency rules 9 and 11 remain true for both cases (1) 
i = j (loops) or even (2) i ≠ j.

• Multigraphs In some cases, there can be more than one 
edge between the same pair of vertices. Those edges are 
known as multi-edges. A graph with multi-edges is called 
a multigraph. A multi-edge is represented by setting the 
corresponding matrix element mi,j equal to the multiplic-
ity of the edge. For example, if there 3 edges between 
vertices i and j, then mi,j = 3 . Obviously, using adjacency 
matrices by representing edge multiplicity, rules 9 and 11 
remain true.

Note that a graph that has neither self-edges (loops) nor 
multi-edges is called a simple graph. In the remainder of 
this paper, we assume working with simple graphs, unless 
the opposite is indicated.

(12)∀i, j ∶ j ≥ i xi,j = x�
p(i),p(j)

.
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For the subgraph isomorphism problem, we introduce the 
following proposition:

Proposition 5 Let X = [xi,j] and X� = [x�
i,j
] be square matrix 

representations of G = (V ,E) and G� = (V �,E�) , respectively, 
where |V| < |V ′| . There exists a subgraph isomorphism from 
G to G′ if and only if there exists a subpermutation 
p ∶ V → V � such that:

It is clear that in the subgraph isomorphism problem there 
is a graph smaller than the other. In this case, we are interest-
ing to find for each case of the smaller matrix an associated 
case of the wider matrix.

Algorithm CRGI2 for Graph Isomorphism

Suppose we choose a square matrix as graph representa-
tion like adjacency matrix or distance matrix or Laplacian 
matrix. A description of CRGI23 algorithm is written as 
shown in Fig. 2.

Perhaps, the most natural way to tackle the graph isomor-
phism problem is using direct backtracking. After partition-
ing vertices using a selected invariant to reduce the search 
space, the algorithm must explore the possible permutations 

(13)∀i, j ∈ V xi,j = x�
p(i),p(j)

.

of vertices. If a branch (i.e. a permutation) does not reach a 
valid solution according to (11), the algorithm backtracks to 
check another permutation.

The exploration is expressed in the algorithm by the 
iteration Select a novel branch (p(0), ..., p(n − 1)) without 
presenting details of the implementation. However, before 
exploring the tree-search, vertices partitions are computed 
first to check their compatibility. If partitions are not com-
patible, the graphs cannot be isomorphic. Otherwise, the 
algorithm computes the reduced search space derived from 
the partitions to find a prospective isomorphism.

The Initial Search Space

In fact, it is hard to explore the whole search space to find the 
isomorphism permutation. CRGI2 uses directly a reduceable 
search space deducted from vertices partitions. In this sec-
tion, the theoretical search space is discussed to show how 
it can be reduced by vertices invariant.

The possible correspondences for each vertex i, are:

– The first vertex 0 of G can be associated to any vertex of 
G′ , thus: p(0) ∈ {0, 1, 2, ..., n − 1} = S0

– Once the vertex p(0) of G′ has been allocated to the vertex 
0 of G, the second vertex 1 of G can be associated to any 
vertex of G′ except p(0), thus: p(1) ∈ S0 − {p(0)} = S1

– Once p(0), ..., p(i − 1) of G′ have been allocated to vertices 
0, ..., i − 1 of G, respectively. Possible correspondences of 
the vertex i are: p(i) ∈ S0 − {p(0), ..., p(i − 1)} = Si

– Once p(0), ..., p(n − 2) have been allocated, the 
possible correspondences of the vertex n − 1 are: 
p(n − 1) ∈ S0 − {p(0), ..., p(n − 2)} = Sn−1

A n  i s o m o r p h i s m  i s  a  p e r m u t a t i o n 
p = (p(0), ..., p(n − 1)) ∈ S0 × S1 × ... × Sn−1 t h a t  s a t -
isfies (11). Obviously, the size of the search space 
S0 × S1 × ... × Sn−1 is n!. Therefore, the complexity is O(n!)

Reducing the Search Space by Vertex Invariant

Computing the partitions of vertices using a vertex invariant 
is an important step that allows reducing the search space. 
Vertex invariants like degree, vector of distances (the num-
ber of vertices reachable at each distance) or others can 
be selected for vertices partition. Using the out-degree as 
invariant in our example, the possible correspondences of 
vertex 0 are {0, 4, 6} . Thus, vertices partition using out-
degree gives:

Partition of vertices in G is {{1, 5, 6}, {0, 2, 3}, {4}}
Partition of vertices in G′ is {{1, 2, 3}, {0, 4, 6}, {5}} 

which means that the elements of the first subset {1, 5, 6} of 
G can be associated solely to the elements of the first subset 

Fig. 2  Algorithm for graph isomorphism—CRGI2

3 To denote: Consistency Rule for Graph Isomorphism. We call 
CRGI2 to indicate the updated version of CRGI.
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{1, 2, 3} of G′ and so on for the rest subsets. In this case, we 
know a sub-solution i.e. 4 is associated to 5.

Vertices partition allows to construct the search space 
S0 × S1 × ... × Sn−1 which is more reduced than initially. 
Thus, S0 = {0, 4, 6}

S1 = {1, 2, 3}

S2 = {0, 4, 6} − {p(0)}

S3 = {0, 4, 6} − {p(0), p(2)}

S4 = {5}

S5 = {1, 2, 3} − {p(1)}

S6 = {1, 2, 3} − {p(1), p(5)}

The tree-search in Fig. 3 shows all the explored branches 
using the reduced search space until an isomorphism is 
found.

More Reduction During Tree Exploration

The last step performed by CRGI2 is the exploration of the 
tree-search. To enhance the efficiency of the algorithm, 
CRGI2 is able to prune the tree-search during the explora-
tion. At each depth l of the tree, unsuccessful branches are 
discarded as soon as possible. The consistency rule (11) is 
checked at least for the subpermutation (p(0), ..., p(l − 1)) . If 
there is a prospective case xi,j such that x�

p(i),p(j)
≠ xi,j , an early 

pruning of unnecessary branch will be done as shown in 

Fig. 4. If the rule is still valid at least for the subpermutation, 
the exploration continues for more depth. Otherwise, the 
exploration backtracks to test another solution. The maximal 
depth l can be reached is n which means a space complexity 
O(n).

For example, as shown in Fig. 4, at depth 2, the subper-
mutation (p(0) = 4, p(1) = 3) is acceptable by the consist-
ency rule d�

p(i),p(j)
= di,j for each case (i, j) such that 0 ≤ i ≤ 1 

and 0 ≤ j ≤ 1 (we use in this case distance matrix for graph 
representation), as follows:

 However, when the algorithm goes in depth 3 by adding the 
new correspondence p(2) = 0 obtaining the subpermutation 
(p(0) = 4, p(1) = 3, p(2) = 0) , the consistency rule will be 
violated by d2,0 ≠ d′

0,4
 as follows:

 At this level when (11) is violated, the algorithm backtracks 
by excluding p(2) = 0 and goes another time in depth by 
adding the new correspondence p(2) = 6 which gives the 
subpermutation (p(0) = 4, p(1) = 3, p(2) = 6) where (11) is 
respected as follows:

 Note that cases which have been tested in previous depths 
(1 and 2) will not be tested again at the depth 3. Only cases 
di,j of i = 2 or j = 2 must be seen whether they have a cor-
responding cases in D′ under the considered subpermutation. 
As can be seen in Fig. 4 the in-depth exploration continues 
until the whole permutation satisfying (11) is detected.

In fact, in previous study, we supposed working with the 
ordered elements of the permutation p(0),  p(1),  ...,  p(n − 1) 
to be associated to the first,  second,  third, 4th, ...,  nth depth, 

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 � � � � �
4 0 � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

���⃗Rp
���⃗Cp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � �
� � � � � � �
� � � � � � �
� � � 0 4 � �
� � � 1 0 � �
� � � � � � �
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 � � � � �
4 0 � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

���⃗Rp
���⃗Cp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � �
� � � � � � �
� � � � � � �
� � � 0 4 � �
� � � 1 0 � �
� � � � � � �
� � � � � � �

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 � � � � �
4 0 � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

���⃗Rp
���⃗Cp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � �
� � � � � � �
� � � � � � �
� � � 0 4 � �
� � � 1 0 � �
� � � � � � �
� � � � � � �

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3  Tree-search exploration without branch pruning

Fig. 4  Tree-search exploration with branch pruning
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respectively. This is not necessary, because it is possible to 
associate to the first depth any element p(r) of p, and to the 
second depth another element p(s) such that r ≠ s.

In our algorithm, we propose this ordered ele-
ments of  p   :    p(k1), p(k2), ..., p(kn) such that 
|Sk1 | ≤ |Sk2 | ≤ ... ≤ |Skn |, ki ∈ V  . Thus, to the first,  second,  
third,  4th, ..., nth depth, are associated the elements p(k1), 
p(k2), ...,  p(kn) , respectively. In this way, it will be possible 
to figure out the most common subgraph even for graphs 
having different sizes.

Subgraph Isomorphism and Homomorphism

Subgraph isomorphism may be handled by CRGI2, after 
updating it, following the exact nature of the problem. 
For example, vertices partition must be tackled otherwise 
because the invariant notion will disappear in this case.

When two graphs of the same size are not isomorphic, 
the most common subgraph can be determined by CRGI2 
which is defined by the subpermutation of the greater depth 
reached during the tree-search exploration.

For graphs G = (V ,E) and G� = (V �,E�) having different 
sizes n and n′ , respectively ,where n < n′ , obviously they 
cannot be isomorphic. To detect whether there exists a sub-
graph isomorphism from G to G′ , we search a subpermuta-
tion which associates for each vertex of V, a vertex from 
a subset S of V ′ preserving the property of the adjacency, 
i.e. (i, j) ∈ E ⇔ (p(i), p(j)) ∈ E� ∩ (S × S) . Therefore, it is 
sufficient to find for each case of the smaller matrix a cor-
responding case in the greater matrix by the subpermutation 
that satisfies (12). Thus, if the right subpermutation is found, 
the remainder cases of the greater matrix are not interesting 
in the subgraph isomorphism. As for the above-described 
process of exploration, and without changing anything in 
backtracking or tree pruning, it will be used to detect the 
subpermutation i.e. the correspondences from V to V ′.

Actually, these are the main features that distinguish the 
subgraph isomorphism algorithm from the above described 
algorithm of graph isomorphism:

• The initial search space has a size of n�!

(n�−n)!
 . Suppose n is 

the size of the small graph G while the greater graph G′ 
has n′ vertices. In the first time, a vertex of G can be 
associated to any vertex among the n′ vertices of G′ . The 
second vertex of G, can be associated to (n� − 1) vertices, 
and so on, until the last vertex of G that can be associated 
to (n� − n + 1) . Thus, the search space has a size of 
n� × (n� − 1) × ... × (n� − n + 1) i.e. n�!

(n�−n)!
.

• No partition process does exists. In this case, the vertices 
of the two graphs have not the same properties like the 
invariant for graph isomorphism. However, it is possible 

to reduce the search space. A vertex of the small graph 
could be associated to vertices of the same or greater 
degree in the wider graph.

• Proposition (12) is used as consistency rule.
• A branch of the tree is  a subpermutation 

p = (p(0), ..., p(n − 1)) which leads to a depth of n in the 
tree that represents the space complexity too. As for the 
exploration process still unchangeable.

However, some algorithms deal with subgraph isomor-
phism taking into consideration the homomorphism. In 
this case, preserving the adjacency must not be in the two 
directions, but it is sufficient to be in only one direction, 
i.e. (i, j) ∈ E ⇒ (p(i), p(j)) ∈ E� ∩ (S × S) as shown in Fig. 5 
where edge (5, 4) of G′ has not a corresponding edge in G 
i.e. m′

5,4
≠ m4,0 . Therefore, the consistency rule is changed 

in this last case as used in [8] with adjacency matrices as 
follows:

 which means if vertices i and j are linked by an edge in G, 
so their corresponding vertices p(i) and p(j) must be also 
linked. In fact, (13) represents the consistency rule for the 
homomorphism generally. Consequently, using (13) instead 
of (11) or (12) in CRGI2, homomorphism may be treated.

The below adjacency matrices M and M′ represent G and 
G′ , respectively, given in Fig. 5

 Apparently, the tree exploration can find for the sub-
graph isomorphism shown in Fig.  5 by the following 
subpermutation:

(14)∀i, j (mi,j = 1) ⇒ (m�
p(i),p(j)

= 1)

M =

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎠

,M� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 1 0 0 1 0

0 0 1 1 � 0 0

0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 5  Example of subgraph isomorphism
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 Applying the cases transformation on M by Rp and Cp , the 
obtained matrix Cp(Rp(M)) compared with M′ shows that 
(13) is well satisfied. For each case of Cp(Rp(M)) containing 
’1’, the same case in M′ contains ’1’ too.

An Inexact Matching for Attributed Graphs

Let G and G′ be two graphs shown in Fig. 6 in which edges 
are attributed by real values. In this case, where matrix ele-
ments are real values, it is not demanded to respect the exact 
rule xi,j = x�

p(i),p(j)
 , but it is sufficient to minimize the differ-

ence |xi,j − x�
p(i),p(j)

| to find the optimal permutation of the 
matching. Several ways can be proposed to minimize 
|xi,j − x�

p(i),p(j)
| following the context of use. For example, for 

image recognition, it may be introduce some error-tolerant 
method to tackle the image deformation that appears in 
matrix representing an image.

The following matrices M and M′ are representing graphs 
G and G′ given in Fig. 6.

 In our case, instead using (11) it will be possible to use the 
consistency rule:

p =

(
0 1 2 3 4

4 2 3 6 5

)

M =

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎠

���⃗Rp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � �
� � � � � � �
0 0 1 0 0 � �
0 0 0 1 0 � �
0 1 0 0 1 � �
0 1 1 0 0 � �
0 0 0 0 1 � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

���⃗Cp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � �
� � � � � � �
� � 0 1 0 0 0

� � 0 0 0 0 1

� � 1 0 0 1 0

� � 1 1 � 0 0

� � 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

M =

⎛
⎜⎜⎜⎜⎜⎝

0 0 45 0 0

0 0 0 0 47

0 18 0 0 33

0 0 28 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,M� =

⎛
⎜⎜⎜⎜⎜⎝

0 0 45 0 0

16 0 34 0 0

0 0 0 0 0

0 28 0 0 0

0 43 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

where � is error-tolerance threshold of the matching. Obvi-
ously, whenever � is close to zero, the graphs are more 
matched. Notice that to determine the optimal permutation 
of the matching, the process of exploration in the tree-search 
still unchangeable. Making � = 2(4%) , it can be seen through 
Fig. 6 that the permutation

 gives the following cases transformation:

 which satisfies |mi,j − m�
p(i),p(j)

| ≤ 2 , for all cases.

Tree Matching for XML Retrieval

One of the most studied problems in the information 
retrieval field is the querying XML documents [28]. In 
this case, XML documents are considered having a tree 
structure4 and the query is a subtree like is shown in Fig. 7. 
As it is known, trees are a special kind of graphs such that 
there is no cycles. The aim is to find whether a subtree 
(query) is included in one of the collection of trees (XML 
documents). It is clear that there is some form of matching 
between T and T ′′ , whereas T ′ is not relevant to the others. 
In this case, some constraints are posed (i) for vertices, 
each vertex of the query must appear in the XML Docu-
ment (ii) as for edges, each related vertices in the query 

(15)∀i, j |xi,j − x�
p(i),p(j)

| ≤ �,

p =

(
0 1 2 3 4

4 0 1 3 2

)
,

M =

⎛
⎜⎜⎜⎜⎜⎝

0 0 45 0 0

0 0 0 0 47

0 18 0 0 33

0 0 28 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

���⃗Rp

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 47

0 18 0 0 33

0 0 0 0 0

0 0 28 0 0

0 0 45 0 0

⎞
⎟⎟⎟⎟⎟⎠

���⃗Cp

⎛
⎜⎜⎜⎜⎜⎝

0 0 47 0 0

18 0 33 0 0

0 0 0 0 0

0 28 0 0 0

0 45 0 0 0

⎞⎟⎟⎟⎟⎟⎠

Fig. 6  Consistency rule for inexact graph matching Fig. 7  Trees for an XML query (T) and two XML documents (T’) 
(T”)

4 It is worth to make difference between tree as graph and tree as a 
search method.
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(arc: parent-child) can be matched by a pair of vertices 
linked by a path (ancestor-descendant), for example edge 
(Paper, Year) of the query could be associated with the 
path (Paper, ..., Year) in T ′′.

Obviously, the adjacency matrix cannot be used here, 
however, the distance matrix is able to deal with such kind 
of matching. When a query contains two vertices: par-
ent–child i.e. (di,j = 1) , it is sufficient to find corresponding 
vertices (ancestor-descendant) where (d�

p(i),p(j)
≥ 1) . There-

fore, we say:

If we use the following distance matrices as representa-
tions of (T) and (T ��):

 D’=

From diagonal cases of the matrices, the search space is 
reduced which leads to the subpermutation:

 that can give a possible matching if the constraints are not 
violated. The matrix Cp(Rp(D)) below shows that (15) is well 
respected.

 As it was seen above, it will be possible to adapt CRGI2 for 
querying XML documents using its backtracking exploration 
to find the subpermutation of the matching integrating, of 
course, the consistency rule expressed in (15).

(16)∀di,j ∈ D, (d�
p(i),p(j)

≥ di,j)

D =

⎛
⎜⎜⎜⎜⎜⎝

Paper 1 1 1 1

0 Title 0 0 0

0 0 Author 0 0

0 0 0 C.Name 0

0 0 0 0 Year

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Paper 1 1 1 2 2 2

0 Authors 0 0 1 0 0

0 0 Conf 0 0 1 1

0 0 0 Title 0 0 0

0 0 0 0 Author 0 0

0 0 0 0 0 C.Name 0

0 0 0 0 0 0 Year

⎞⎟⎟⎟⎟⎟⎟⎟⎠

p =

(
0 1 2 3 4

0 3 4 5 6

)

Cp(Rp(D)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Paper � � 1 1 1 1

� � � � � � �
� � � � � � �
0 � � Title 0 0 0

0 � � 0 Author 0 0

0 � � 0 0 C.Name 0

0 � � 0 0 0 Year

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Experimental Results

Experiments described in this section are conducted on 
two data sets: a synthetic data set [29] and a real world 
data set [30]. First, an evaluation of the performance is 
realized through a benchmarking process to show the effi-
ciency of CRGI2 and other known algorithms for the graph 
isomorphism problem. Second, the flexibility of CRGI2 is 
illustrated for subgraph isomorphism and its applicability 
to information retrieval tasks of relational data.

A Performance Comparison for Graph Isomorphism

In this section, CRGI2 is tested for graph isomorphism 
and its performance is compared with other known algo-
rithms of exact matching, namely VF, VF2, SD and Ull 
(Ullmann). Details on these kinds of algorithms can be 
found in [7–9]. Algorithm CRGI2 has been executed in 
two forms: in the first CRGI2(Adj), the graphs are rep-
resented by adjacency matrix using degree as invariant 
vertices to determine partitions of vertices. The second 
form of execution CRGI2(Dis) uses distance matrix as 
graph representation and vector of distances as invariant 
(for each node, the number of vertices reachable at each 
distance is calculated).

For the remainder algorithms VF, VF2, SD, and Ull, we 
have used the library VFLib2.0 [7, 32] that contains the 
implementation of these algorithms. In this sense, CRGI2 
was implemented in C++ like the other algorithms. All 
the programs have been compiled with the same compiler.

The evaluation is carried out using a collection of iso-
morphic graphs that contains 9000 couples. A part of this 
collection is containing in the database realized by [29] 
while the rest of the collection has been generated by us 
which represents trees and graphs having sizes greater than 
1000 vertices. This collection is distributed on the follow-
ing kinds of graphs: randomly connected graphs (2200 
couples), regular and irregular 2D meshes (2000 couples), 
irregular bounded valence graphs (2000 couples) and ran-
dom trees (2800 couples). Each category includes couples 
of isomorphic graphs of different sizes, ordered from doz-
ens of vertices to about a few thousands of vertices. Each 
size and kind of graphs has 100 different couples except 
graphs of thousands of vertices, where only 10 couples 
that exist.

The performance is evaluated through a benchmarking 
process in which each algorithm tries to detect the isomor-
phism permutation (with the necessary time) of each pair 
among the 9000 existing couples. For each isomorphic cou-
ples (of the same kind and size), the average time of explor-
ing the tree-search to detect the permutation is calculated.
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Randomly Connected Graphs

Figure 8 shows, for each size of graphs, the average time 
of exploring the tree-search to detect the isomorphism per-
mutations for the selected algorithms, using randomly con-
nected graphs for values of density � equal to 0.01 and 0.1 
described in [29].

It can be seen that the two versions of CRGI2 and the 
two VF perform always better than SD and Ull. After a size 
of 2000, the SD algorithm requires an exponential time to 
detect any isomorphism while the Ull algorithm cannot 
deal with graphs of more than 1000 vertices. For CRGI2, 
either using adjacency or distance matrices, the two versions 
behave nearly in the same manner. CRGI2 is independent 
from the density of the graph where about less than 6 sec-
onds are needed for discovering the isomorphism for graphs 
of 10,000 vertices. Conversely, the two VF behaves in differ-
ent manners following the values of density.

2D Meshes

In this case, the behavior of the two version of CRGI2 is not 
the same. CRGI2(Adj) gives the worst performance with 
Ullmann’s algorithm as shown in Fig. 9. Either meshes are 
regular or irregular having sizes greater than 100 vertices, 
CRGI2(Adj) requires an exponential time to figure out the 
isomorphism. Paradoxically, CRGI2(Dis) gives better results 

than the other algorithms. This wide discard in behavior 
shows clearly that choosing the parameters of CRGI2 has an 
important factor to deal efficiently with graph isomorphism 
problem.

Bounded Valence Graphs

The performance of the algorithms on bounded valence 
graphs are shown in Fig. 10. In this case, the considered 
values of the valence are 3 and 9 described in [29].

For valence equal to 3, graph isomorphism is hard to 
be treated by most of algorithms except VF2 that is able 
to find isomorphism for all graphs in less than 1 s. In this 
case, VF and VF2 perform better than both CRGI2(Dis) and 
CRGI2(Adj). The first is not able to find a solution when 
the size grows up to 600 vertices while the second cannot 
deal with graphs of more than 200 vertices. However for the 
graphs of valence 9, the two execution of CRGI2 becomes 
more efficient.

Random Trees

We attempt to test in this section trees as graphs to show 
the flexibility of these algorithms against the various kinds 
of graphs.

The random trees are generated as follows: each ver-
tex has a random number of children referred as nbr_child 

Fig. 8  Performance on Ran-
domly Connected Graphs with 
� = 0.01 and � = 0.1

Fig. 9  Performance on 2D 
Meshes (Regular and Irregular 
meshes)
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between 0 and � . In our case, � is fixed by two values 10 
and 20.

Comparison process in Fig. 11 shows that CRGI2(Dis) 
performs better than any other algorithm. Tables 1 and 2 and 
show that only CRGI2(Dis) and SD are able to find solutions 
for all random trees. However, algorithms Ull, VF and VF2 
cannot detect isomorphism during one hour (represented by 
?) for some trees that have sizes not exceeding 100 vertices.

Enron Database

The Enron corpus contains a large set of e-mail messages 
belonging to users of the Enron corporation [30, 31]. 
The underlying data is converted into one directed graph 
by representing the senders and the receivers as vertices, 
attributed with their corresponding e-mail address. Solely 
e-mail addresses having @enron.com as suffix are taking 

Fig. 10  Performance on 
Bounded Valence Graphs

Fig. 11  Performance on Ran-
dom Trees

Table 1  Average time [in s] to 
detect isomorphism of Random 
Trees ( � = 10)

Tree CRGI2 CRGI2 VF2 VF SD Ull
Size (Adj) (Dis)

20 0 0 0 0 0.001 0
40 0.0001 0.0001 0 0 0.005 0.004
60 0 0 0.0005 0.0005 0.004 ?
80 0.0002 0.0001 ? ? 0.009 ?
100 0.0002 0.0002 0.0015 0.002 0.019 ?
120 0.0001 0.0007 0.0015 0.0005 0.032 ?
140 0.0009 0.0006 0.0785 ? 0.075 ?
160 0.001 0.001 0.001 ? 0.078 ?
180 0.0014 0.0018 0.585 0.142 0.129 ?
200 0.0018 0.0018 ? ? 0.202 ?
400 22.232 0.0108 ? ? 1.049 ?
600 ? 0.0315 ? ? 3.691 ?
800 ? 0.0718 ? ? 7.1265 ?
1000 ? 0.1428 ? ? 12.699 ?
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into account. If there is at least a message from a vertex to 
another, so an edge is used as a link. Only messages from 
one to one are considered i.e. diffusion from one to many 
is ignored. The complete data set gives a directed graph of 
7592 vertices and 31,789 edges.

Therefore, it will be possible to test some queries on 
the Enron graph. For example, the maximal clique in the 
Enron graph is a complete subgraph of 7 vertices attributed 
with {mary.cook, elizabeth.sager, peter.keohane, louise.
kitchen, marie.heard, tana.jones}@enron.com. This clique 
is detected in 0.12 s using CRGI2 that checks first the sub-
graph isomorphism from a complete graph of n vertices to 

the Enron graph without attributes. The maximum value of 
n can be reached is 7, while the given subpermutation of the 
subgraph isomorphism leads easily to the e-mail addresses 
of each node.

In the same manner, Fig. 12 shows how GRGI2 can detect 
directed paths not exceeding 80 vertices in the Enron graph. 
For paths smaller than 60 vertices, a few seconds less than 
10 are needed to find a path in the Enron graph. Unfortu-
nately, when the paths grow up to 70 vertices and greater, 
the necessary time of exploration increases dramatically. For 
example, a path of 75 vertices is discovered in 591.23 sec-
onds, while a path of 76 vertices cannot be discovered. Thus, 

Table 2  Average time [in s] to 
detect isomorphism of Random 
Trees ( � = 20)

Tree CRGI2 CRGI2 VF2 VF SD Ull
Size (Adj) (Dis)

20 0 0 0 0.0001 0.0003 0.0003
40 0.0002 0 0 0 0.0013 0.002
60 0 0.0001 0 0 0.0061 0.0091
80 0.0001 0.0001 ? ? 0.0107 ?
100 0.0004 0.0003 0.0001 0 0.0249 0.0685
120 0.0004 0.0004 0.0002 0.0006 0.0462 0.1388
140 0.0009 0.0007 0.0001 0.0003 0.0688 0.2419
160 0.0013 0.0013 0.0002 0.0005 0.0948 0.3758
180 0.002 0.0011 0.0003 0.0004 0.1503 0.6344
200 0.002 0.0012 ? ? 0.2008 ?
400 0.0142 0.0131 ? ? 0.8487 ?
600 0.0464 0.041 ? ? 4.657 ?
800 0.144 0.0974 ? ? 5.91 ?
1000 ? 0.182 ? ? 16.998 ?

Fig. 12  Time for discovering 
directed paths in the Enron 
graph
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we do not know if there is a path of 76 vertices, because the 
algorithm is unable to give a response.

However, other queries on the Enron graph are so impor-
tant for information retrieval, for example in Fig. 13 two 
queries are illustrated. The first query corresponds to the 
question: which e-mail address X has received messages 
from {robert.cotten and mark.mccoy}@enron.com and 
then has sent messages to both {gary.anderson and kim-
berly.vaughn}@enron.com? For the second query, the cor-
responding question is: which e-mail address X has received 
messages from Y and Z, where Y and Z have received also 
messages from {david.delainey and john.lavorato}@enron.
com? (see Fig. 13)

By applying CRGI2 as a subgraph isomorphism algo-
rithm knowing that some vertices are attributed (an attrib-
uted vertex in the query must be associated to a vertex that 
has the same attribute), CRGI2 has discover, in 2.21 s, only 
one subgraph in the Enron graph which is isomorphic to the 
first query where X = clem.cernosek@enron.com.

For the second query, CRGI2 has found seven possible 
matchings during 70.67 s. The values of X, Y and Z, without 
@enron.com, are as follows: 

1. X = marchris.robinson, Y = steven.kean, Z = kay.mann
2. X = steve.montovano, Y = steven.kean, Z = kay.mann
3. X = janet.dietrich, Y = steven.kean, Z = kay.mann
4. X = brian.redmond, Y = steven.kean, Z = kay.mann
5. X = janette.elbertson, Y = richard.b.sanders, Z = kay.

mann
6. X = rob.walls, Y = steven.kean, Z = kay.mann
7. X = rob.walls, Y = richard.b.sanders, Z = kay.mann

Conclusion

The proposed algorithm deals with graphs without mak-
ing any particular assumptions on the structure of the used 
graphs, in contrast to the other algorithms that require at 
least connected graphs. Note also that, theoretically, there 
is no condition on the upper bound for the number of ver-
tices (or the number of edges) in order to solve the isomor-
phism equation M� = PtMP . Unfortunately, since there is 

no mathematical method to solve M� = PtMP except using 
exhaustive search methods, it will be a difficult task (and 
even not possible) to find an isomorphism for graphs having 
high number of vertices. The upper bound will be certainly 
depends on : (1) the power of calculus of the machine, (2) 
the used algorithm itself, and (3) the type of graph. Our 
experiments show the ability of solving isomorphism per-
mutation for random graphs of 10,000 vertices. However, for 
other types of graphs, no result can be found for considerable 
values of n < 1000 . Globally, no algorithm succeed to detect 
the graph isomorphism in polynomial time. There is at least 
one case where every algorithm fails due to the explosion 
of calculations.

In general, although the proposed algorithm is based on 
a simple consistency rule, it shows its efficiency and illus-
trates to be suitable for various matching problems. The sim-
plicity of the consistency rule itself leads to accelerating 
calculations and to be applied for a collection of matching 
problems.
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