
Vol.:(0123456789)

SN Computer Science (2022) 3:113
https://doi.org/10.1007/s42979-021-01001-z

SN Computer Science

ORIGINAL RESEARCH

Some Consistency Rules for Graph Matching

Badreddine Benreguia1 · Hamouma Moumen1

Received: 11 February 2021 / Accepted: 17 December 2021 / Published online: 29 December 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Graph matching is a comparison process of two objects represented as graphs through finding a correspondence between
vertices and edges. This process allows defining a similarity degree (or dissimilarity) between the graphs. Generally, graph
matching is used for extracting, finding and retrieving any information or sub-information that can be represented by graphs.
In this paper, a new consistency rule is proposed to tackle with various problems of graph matching. After, using the proposed
rule as a necessary and sufficient condition for the graph isomorphism, we generalize it for subgraph isomorphism, homo-
morphism and for an example of inexact graph matching. To determine whether there is a matching or not, a backtracking
algorithm called CRGI2 is presented who checks the consistency rule by exploring the overall search space. The tree-search
is consolidated with a tree pruning technique that eliminates the unfruitful branches as early as possible. Experimental
results show that our algorithm is efficient and applicable for a real case application in the information retrieval field. On the
efficiency side, due to the ability of the proposed rule to eliminate as early as possible the incorrect solutions, our algorithm
outperforms the existing algorithms in the literature. For the application side, the algorithm has been successfully tested for
querying a real dataset that contains a large set of e-mail messages.

Keywords Graph matching · Isomorphism · Consistency rule · Information retrieval · Tree-search

Introduction

Graphs are one of the most general forms of data representa-
tion. They are able to represent structural relations that could
exist between different parts of an object. This crucial ben-
efit led to the growing use of graphs in many fields including
image processing, information retrieval, bioinformatics and
networking. The benefit is not only in the graph itself for
data representation, but in performing other operations based
on graphs like graph matching problem. The graph matching
is the process of comparing two graphs that aims to define
a similarity degree between the graphs. Two main catego-
ries of algorithms can be distinguished. The first includes
exact matching algorithms that require a strict correspond-
ence among two graphs or at least among their subgraphs.
The second category contains inexact matching algorithms
where a matching can occur even if both compared graphs

are structurally different. In its form, the most rigorous, the
exact graph matching is known as graph isomorphism in
which a one-to-one correspondence must be found between
each vertex of the first graph and each vertex of the second
graph, such that the edge connections are respected. Other
forms of the exact graph matching are the subgraph isomor-
phism, the most common subgraph of two graphs and the
homomorphism. In the case of the subgraph isomorphism
problem, the goal is to know if there is an isomorphism
between the first graph and a subgraph of the second graph.

In practical applications, the inexact graph matching
problem has been intensively treated in the literature [1–4].
Most of the existing methods formulate the graph match-
ing as an optimization problem. A cost function must find a
correspondence of vertex-to-vertex and edge-to-edge, such
that the cost is minimized to enhance the similarity between
graphs.

It is well known that the problem of subgraph isomor-
phism is NP-complete. However, up to now, it is unknown
whether the graph isomorphism is an NP-complete problem
or a polynomial problem [5–7]. Polynomial isomorphism
algorithms have been developed for particular kinds of

 * Hamouma Moumen
 hamouma.moumen@univ-batna2.dz

 Badreddine Benreguia
 badreddine.benreguia@univ-batna2.dz

1 University of Batna 2, 05000 Batna, Algeria

http://orcid.org/0000-0002-1986-7590
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-01001-z&domain=pdf

 SN Computer Science (2022) 3:113113 Page 2 of 16

SN Computer Science

graphs (trees, planar graphs, bounded valence graphs) but
no polynomial algorithms are known for the general case.

Whatever the matching problem is exact or not, the goal
is to find the correspondence (or the permutation) to define
the similarity. Generally, the problem is tackled in literature
using permutation theory. To find the optimal permutation
(or subpermutation) of the matching, there are several tech-
niques of exploration, the most studied are: exhaustive tree-
searching, continuous optimization and heuristics. Usually,
in such context, the goal is to determine the solution as early
as possible, in particular when the search space grows. In
real applications, like information retrieval using big data,
it will be interesting to have new developments on the graph
matching problem to accelerate exploration with efficient
results.

Paper contribution

Algorithms based on spectral methods use the famous equal-
ity M� = PtMP , where M and M′ represent the adjacency
matrices of the two graphs. Whereas P is the unknown per-
mutation that we have to define. The equation shows that
graphs of M and M′ are isomorphic, if there is at least a
permutation matrix P that could solve M� = PtMP.

Using this equation, Ullmann [8] has illustrated that is
possible to show that two graphs are isomorphic if there is
some permutation p such that: for each element mi,j of the
matrix M, if mi,j = 1 , there is a corresponding element in M′
where m�

p(i),p(j)
= 1.

In this paper, we give a simple general equality (called
consistency rule) using matrix elements of the graphs. For
two isomorphic graphs, we prove for all elements,
[mi,j] = [m�

p(i),p(j)
] which is more general than the rule of Ull-

mann. The new proposed consistency rule is a necessary and
sufficient condition for graph isomorphism, in contrast to
Ullmann’s rule which is only a necessary condition. We
show also that the proposed rule could be used for various
problems in graph matching using any other square matrix
representation like Laplacian matrix and distance matrix.

The rest of the paper is organized as follows. Previ-
ous works in relation to this paper are discussed in Sec-
tion “Related Work”. In Section “Definitions”, basic defi-
nitions and some theoretical aspects are given. The main
idea of the proposed consistency rule for the graph iso-
morphism problem is presented in Section “Consistency
Rule for Graph Isomorphism Problem”. An algorithm of
graph isomorphism based on tree-search exploration with
backtracking and branch pruning techniques is introduced
in Section “Algorithm CRGI2 for Graph Isomorphism”. In
Sections Subgraph Isomorphism and Homomorphism, An
Inexact Matching for Attributed Graphs and Tree Match-
ing for XML Retrieval, the proposed consistency rule is

generalized for subgraph isomorphism, homomorphism,
inexact graph matching and has been suited for the problem
of XML retrieval. Experimental tests are carried out, in Sec-
tion “Experimental Results”, to show the performance and
the applicability of CRGI2. Final notes and conclusions are
given in Section “Conclusion”.

Related Work

Graph isomorphism algorithms use mainly two approaches:
the direct approach and the indirect approach. In the direct
approach, the algorithms try to find an isomorphism between
the two input graphs directly with a backtracking algorithm
using feasibility rules to prune the tree-search. Ullmann’s
algorithm, Schmidt and Druffel’s algorithm (called SD),
VF, VF2, and CRGI represent a collection of this approach
[7–10]. Note that most of isomorphism algorithms of this
approach are used too for subgraph isomorphism like Ull-
mann, VF, and VF2.

Nauty algorithm [11] is the main algorithm of the indirect
approach in which canonical labeling of each graph must be
calculated. Two graphs can be checked for isomorphism by
simply verifying the equality of the adjacency matrices of
their canonical forms. An interesting algorithm that com-
bines between Nauty and VF2 is presented in [5]. Other
existing techniques, such as non-deterministic ones (stochas-
tic), are so powerful to reduce the complexity from expo-
nential to polynomial, but they are not guaranteed to find an
exact and optimal solution.

For the inexact graph matching problem, the most known
paradigms are a graph edit distance [12–14], b graph kernels
and embedding [15–18], c spectral algorithms [3, 4, 19, 20]
and d algorithms based on deep learning [21, 22]. The reader
can refer to the surveys [23–26] for more details on graph
matching algorithms classification.

Graph edit distance (GED), represents the main way for
the inexact graph matching process. Most of the algorithms,
in this case, uses a function cost that quantifies the errors
between the two graphs. Graph edit distance, which is recog-
nized as one of the most flexible and universal error-tolerant
matching paradigms, is based on computing the cost of the
needed operations (vertex insertion, vertex deletion, etc.)
to transform one graph to obtain the second graph. At a
lower cost (the number of operations is reduced), there will
be more similarity between graphs. The survey [27] gives
more details of algorithms based on the edit distance para-
digm. Note that in [1], the most common subgraph problem
has been proved that it is a special case of graph edit dis-
tance computation. This later shows a form of combination
between exact and inexact graph matching.

Spectral matching methods are based on the fact that the
eigenvalues of a matrix remain unchanged whatever the rows

SN Computer Science (2022) 3:113 Page 3 of 16 113

SN Computer Science

and columns are permuted. The general idea is based on
using matrices of the corresponding graphs. The eigenvalues
and the eigenvectors of the adjacency or Laplacian matrix
of a graph are invariant with respect to vertex permutation.
Hence, if two graphs are isomorphic, their structural matri-
ces will have the same eigendecomposition. By represent-
ing the underlying graphs by means of the eigendecomposi-
tion of their structural matrix, the matching process of the
graphs can be conducted on some features derived from their
eigendecomposition.

Definitions

Definition 1 A graph G = (V ,E) consists of a finite non-
empty set V = {0, 1, ..., n − 1} of n vertices and a set of edges
E ⊆ V × V .

Definition 2 Let G = (V ,E) . The adjacency matrix of G is
n × n matrix M defined as follows:

Definition 3 Let G = (V ,E) . The distance matrix D = [dij]
is n × n matrix in which the element dij represents the length
of the short path between the vertices i and j. If i = j , then
dij = 0 . If no path exists between the two vertices, the length
is defined to be infinite.

Definition 4 A permutation p on a set V is a bijection
p ∶ V → V . If V = {0, 1, ..., n − 1} , a permutation of V is
called a permutation on n vertices.

Example of a permutation:

 which means p(0) = 4, p(1) = 3, p(2) = 6, ..., p(6) = 2.

Definition 5 A subpermutation p on a set V is an injection
p ∶ S → V , where S ⊂ V .

Example of a subpermutation on 4 vertices, where V =
{0,1,...,6}:

Definition 6 Let G = (V ,E) and G� = (V ,E�) be two graphs.
G and G′ are called isomorphic if there exists a permutation
p ∶ V → V such that: (i, j) ∈ E if and only if (p(i), p(j)) ∈ E�.

M = [mij]

{
mij = 1 if (i, j) ∈ E

mij = 0 otherwise

p =

(
0 1 2 3 4 5 6

4 3 6 0 5 1 2

)

p =

(
0 2 3 5

4 6 0 1

)

Definition 7 Given two graphs G = (V ,E) and G� = (V �,E�) ,
where V ⊂ V ′ . There is a subgraph isomorphism from G to
G′ if there exists a subpermutation p ∶ V → V � such that:
(i, j) ∈ E if and only if (p(i), p(j)) ∈ E� ∩ (S × S) , where
S ⊂ E′ and |S| = |E|.

Definition 8 Let G = (V ,E) and G� = (V ,E�) be two
graphs. There is a graph homomorphism from G to
G′ , if there exists a permutation p ∶ V → V such that:
(i, j) ∈ E ⇒ (p(i), p(j)) ∈ E�.

Definition 9 Let p be a permutation on n vertices. The per-
mutation matrix P is an n × n matrix defined as follows:

For example, the permutation matrix P of the permuta-
tion p shown in Definition 4 is:

 Actually, the permutation matrix is obtained from the iden-
tity matrix by permuting the columns (i.e. switching some
of the columns).

Definition 10 A graph invariant is a function f applied on
isomorphic graphs such that, if G and G′ are isomorphic,
then f (G) = f (G�) (the converse is not necessarily true:
f (G) = f (G�) does not mean G and G′ are isomorphic).
Therefore, an invariant imposes a necessary condition for
isomorphism.

Simple graph invariants are the number of vertices and
the number of edges of a graph. Other graph invariants
are the determinant, the characteristic equation of its adja-
cency matrix, and the set of its roots (the spectrum of the
graph).

The vertex invariant is another invariant which is
extended to graph invariant. Node invariant is a function f
on a node, such that if there is an isomorphism p between G
and G′ , for each v ∈ G , then f (v) = f (p(v)).

Proposition 1 Let M and M′ be the adjacency matrices of G
and G′ , respectively. The graphs G and G′ are isomorphic
if and only if there exists a permutation matrix P such that:

P = [pij]

{
pij = 1 if p(j) = i

pij = 0 if not

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1)M� = PtMP

 SN Computer Science (2022) 3:113113 Page 4 of 16

SN Computer Science

Proof Given isomorphic graphs, the isomorphism gives a
permutation of the vertices, which leads to a permutation
matrix. Similarly, the permutation matrix gives an isomor-
phism. As for the equality, it is explained by an example in
Section “Example of Isomorphic Graphs”.

Consistency Rule for Graph Isomorphism
Problem

Equation M� = PtMP has been widely used in the literature
to solve the problem of graph isomorphism [4, 6, 8]. It is
clear that M and M′ are given matrices of the graphs G and
G′ while P is the unknown permutation must be determined.
If Eq. (1) has no solution, i.e. P does not exist, no isomor-
phism could exist.

Until now, there is no way to solve (1) in polynomial
time. To determine P (or in-existence of P), an exhaustive
search must be executed in the area of all possible permuta-
tions (Brute Force search). Ullmann’s algorithm [8] gives an
example of this process.

The disadvantage of this method is the high complexity
given in O(n!). To reduce the computing complexity, Eq.
(1) will be reformulated. It will be interesting to give an
example to understand the behavior of (1).

Example of Isomorphic Graphs

Let G = (V ,E) and G� = (V ,E�) be the isomorphic graphs
shown in Fig. 1.

The corresponding adjacency matrices of G and G′ are,
respectively:

 The permutation matrix (which is known) is:

 Using (1), the first matrix multiplication PtM is:

 Using (1), the second matrix multiplication M′′P i.e. PtMP
is:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 1 0

1 0 1 0 0 0 0

1 1 0 0 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

M� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 1 0 0 0

0 0 1 1 1 0 0

0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 1 0

1 0 1 0 0 0 0

1 1 0 0 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 0 1 0 0 0

1 1 0 0 0 0 1

0 1 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= M��

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 0 1 0 0 0

1 1 0 0 0 0 1

0 1 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1 Example of two isomorphic graphs with the corresponding
permutation

SN Computer Science (2022) 3:113 Page 5 of 16 113

SN Computer Science

 A depth observation of the above matrix multiplications
allows concluding that:

• The multiplication M�� = PtM allows to each row i of M
changing its position i into the new position p(i) in M′′ .
Thus,

 where, Rp is a position transformation function that
transforms each row i to p(i) i.e.

 If we select any row from M, for example row 3 will be
appeared at the position 0 in M′′.

• The second multiplication M� = M��P allows to each col-
umn j of M′′ changing its position j into the new position
p(j) in M′ . Thus,

 where, Cp is a position transformation function that
transforms each column j to p(j) i.e.

 If we select any column from M′′ , for example column
5 will be appeared at the position 1 in M′.

In general, the position transformations (3) and (5) are still
correct even for adjacency matrices of attributed graphs
defined above. The fact that the permutation matrix is got-
ten from the identity matrix by permuting the columns
(or rows), will lead to conserve the values of the cases but
changing their positions.

By replacing (2) in (4):

Therefore, M′ is obtained by a transformation of rows posi-
tions under p in first step, and in second step, a transforma-
tion of columns positions under the same permutation p.1

Now, we apply transformations Rp and Cp on [mi,j] sequen-
tially. Using (3) and (5), we get:

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 1 0 0 0

0 0 1 1 1 0 0

0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= M�

(2)M�� = PtM = Rp(M),

(3)
[
mi,j

]
⟶Rp

[
m��

p(i),j

]
.

(4)M� = M��P = Cp

(
M��

)
,

(5)
[
m��

i,j

]
⟶Cp

[
m�

i,p(j)

]
.

(6)M� = Cp

(
Rp(M)

)
.

 As mentioned, Rp and Cp are functions for changing posi-
tions that preserve values, in other words, Rp and Cp do not
influence the cases contents after position transformation,
this means from (7) that for each case mi,j of M there exists
a corresponding case in M′′ and another in M′ such that:

 If we select any case mi,j from M, for example m2,1 will
be appeared at the position (6, 1) in M′′ , and then at
the position (6, 3) in M′ with value preservation, i.e.
m2,1 = m��

6,1
= m�

6,3
= 1.

To obtain M′ from M, each case of M is a subject of dou-
ble position transformation (changing the row i and then
changing the column j), this position transformation must
be done under a given permutation p.

From above, we have this proposition which is valid also
for attributed graphs:

Proposition 2 Let M = [mi,j] and M� = [m�
i,j
] be the adja-

cency matrices of G and G′ (both are simple or both are
attributed), respectively. The graphs G and G′ are isomor-
phic if and only if there exists a permutation p ∶ V → V such
that:

Besides the adjacency matrix, Proposition (1) may be
extended to other graph representations like Laplacian
matrix, distance matrix and even for matrices of attributed
graphs. Thus, from the previous explained notion of cases
transformation, we have theses propositions too:

Proposition 3 Let X and X′ be square matrices2 of G and G′ ,
respectively. The graphs G and G′ are isomorphic if and only
if there exists a permutation matrix P such that:

The later equation has been used in literature with only
adjacency matrix [4, 6, 8]. However, if we consider using
another representation like the distance matrix for the previ-
ous graphs of Fig. 1.

(7)
[
mi,j

]
⟶Rp

[
m��

p(i),j

]
⟶Cp

[
m�

p(i),p(j)

]
.

(8)mi,j = m��
p(i),j

= m�
p(i),p(j)

.

(9)∀i, j mi,j = m�
p(i),p(j)

.

(10)X� = PtXP

1 Observe that M� = Rp(Cp(M)) is also true.

2 Several square matrices that contain informations about the struc-
ture of the graph can be formed. In this case, rows and columns are
indexed by the vertices of the graph. Some of the most commonly
studied square matrices for representing graphs are the adjacency
matrix, the distance matrix and the Laplacian matrix.

 SN Computer Science (2022) 3:113113 Page 6 of 16

SN Computer Science

 Using (10) such that X is the distance matrix D, we have
PtDP =

Proposition 4 Let X = [xi,j] and X� = [x�
i,j
] be square matri-

ces of G = (V ,E) and G� = (V ,E�) , respectively. The graphs
G and G′ are isomorphic if and only if there exists a permu-
tation p ∶ V → V such that:

This proposition is a consistency rule that can be used
also for matching weighted graphs in which the contents

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 1 4 3 2

4 0 6 5 3 2 1

3 1 0 4 2 1 2

1 2 1 0 3 2 3

1 1 3 2 0 2 1

2 2 4 3 1 0 2

3 3 5 4 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

D� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 2 3 2 1 3 1

3 0 2 2 2 1 4

4 1 0 3 3 2 5

5 2 1 0 4 3 6

1 3 2 1 0 4 2

2 2 1 1 1 0 3

4 1 2 1 3 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 1 4 3 2

4 0 6 5 3 2 1

3 1 0 4 2 1 2

1 2 1 0 3 2 3

1 1 3 2 0 2 1

2 2 4 3 1 0 2

3 3 5 4 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 0 3 2 3

2 2 4 3 1 0 2

3 3 5 4 2 1 0

4 0 6 5 3 2 1

0 1 2 1 4 3 2

1 1 3 2 0 2 1

3 1 0 4 2 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 2 3 2 1 3 1

3 0 2 2 2 1 4

4 1 0 3 3 2 5

5 2 1 0 4 3 6

1 3 2 1 0 4 2

2 2 1 1 1 0 3

4 1 2 1 3 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= D�

(11)∀i, j xi,j = x�
p(i),p(j)

.

of the adjacency matrices are real. In this case, the rule
will be formulated as |xi,j − x�

p(i),p(j)
| ≤ � , where � is a

threshold that can define the quality of graph matching. It
is clear that the problem turns back to graph isomorphism
when � = 0.

This later proposition will be used as consistency rule
(necessary and sufficient condition) for testing graph iso-
morphism in the proposed algorithm. It will be generalized,
after, for other problems of graph matching. Therefore, its
interest is that allows an early elimination of invalid permu-
tations. When there exists at least one case (i, j) such that
xi,j ≠ x�

p(i),p(j)
 , this means that the permutation p could not be

an isomorphism, and any other permutation p′ must be
tested. If all permutations do not satisfy (11), no isomor-
phism can exist.

Previously, we assumed working with directed graphs. In
fact, rules 9 and 11 can also be applied to prove the graph
isomorphism on this type of graphs:

• Undircted graphs A graph is undirected if edges have no
direction. If there is an edge from i to j in an undirected
graph, then there is also an edge from j to i. Adjacency
matrix X of undirected graph is always symmetric where
xi,j = xj,i . Therefore, it is sufficient to prove the graph
isomorphism by using only the upper triangular part
of the adjacency matrix where j ≥ i (or only the lower
triangular part where i ≥ j). Thus, undirected graphs G
and G′ (represented by symmetric matrices X and X′)
are isomorphic if and only if there exists a permutation
p ∶ V → V such that:

• Graphs with loops A loop (or self-edge) is an edge (i, i)
from a vertex i to itself. Loops correspond to a diagonal
entry in the adjacency matrix M of the graph. If there is a
loop (i, i), then mi,i = 1 , otherwise mi,i = 0 . Observe that
consistency rules 9 and 11 remain true for both cases (1)
i = j (loops) or even (2) i ≠ j.

• Multigraphs In some cases, there can be more than one
edge between the same pair of vertices. Those edges are
known as multi-edges. A graph with multi-edges is called
a multigraph. A multi-edge is represented by setting the
corresponding matrix element mi,j equal to the multiplic-
ity of the edge. For example, if there 3 edges between
vertices i and j, then mi,j = 3 . Obviously, using adjacency
matrices by representing edge multiplicity, rules 9 and 11
remain true.

Note that a graph that has neither self-edges (loops) nor
multi-edges is called a simple graph. In the remainder of
this paper, we assume working with simple graphs, unless
the opposite is indicated.

(12)∀i, j ∶ j ≥ i xi,j = x�
p(i),p(j)

.

SN Computer Science (2022) 3:113 Page 7 of 16 113

SN Computer Science

For the subgraph isomorphism problem, we introduce the
following proposition:

Proposition 5 Let X = [xi,j] and X� = [x�
i,j
] be square matrix

representations of G = (V ,E) and G� = (V �,E�) , respectively,
where |V| < |V ′| . There exists a subgraph isomorphism from
G to G′ if and only if there exists a subpermutation
p ∶ V → V � such that:

It is clear that in the subgraph isomorphism problem there
is a graph smaller than the other. In this case, we are interest-
ing to find for each case of the smaller matrix an associated
case of the wider matrix.

Algorithm CRGI2 for Graph Isomorphism

Suppose we choose a square matrix as graph representa-
tion like adjacency matrix or distance matrix or Laplacian
matrix. A description of CRGI23 algorithm is written as
shown in Fig. 2.

Perhaps, the most natural way to tackle the graph isomor-
phism problem is using direct backtracking. After partition-
ing vertices using a selected invariant to reduce the search
space, the algorithm must explore the possible permutations

(13)∀i, j ∈ V xi,j = x�
p(i),p(j)

.

of vertices. If a branch (i.e. a permutation) does not reach a
valid solution according to (11), the algorithm backtracks to
check another permutation.

The exploration is expressed in the algorithm by the
iteration Select a novel branch (p(0), ..., p(n − 1)) without
presenting details of the implementation. However, before
exploring the tree-search, vertices partitions are computed
first to check their compatibility. If partitions are not com-
patible, the graphs cannot be isomorphic. Otherwise, the
algorithm computes the reduced search space derived from
the partitions to find a prospective isomorphism.

The Initial Search Space

In fact, it is hard to explore the whole search space to find the
isomorphism permutation. CRGI2 uses directly a reduceable
search space deducted from vertices partitions. In this sec-
tion, the theoretical search space is discussed to show how
it can be reduced by vertices invariant.

The possible correspondences for each vertex i, are:

– The first vertex 0 of G can be associated to any vertex of
G′ , thus: p(0) ∈ {0, 1, 2, ..., n − 1} = S0

– Once the vertex p(0) of G′ has been allocated to the vertex
0 of G, the second vertex 1 of G can be associated to any
vertex of G′ except p(0), thus: p(1) ∈ S0 − {p(0)} = S1

– Once p(0), ..., p(i − 1) of G′ have been allocated to vertices
0, ..., i − 1 of G, respectively. Possible correspondences of
the vertex i are: p(i) ∈ S0 − {p(0), ..., p(i − 1)} = Si

– Once p(0), ..., p(n − 2) have been allocated, the
possible correspondences of the vertex n − 1 are:
p(n − 1) ∈ S0 − {p(0), ..., p(n − 2)} = Sn−1

A n i s o m o r p h i s m i s a p e r m u t a t i o n
p = (p(0), ..., p(n − 1)) ∈ S0 × S1 × ... × Sn−1 t h a t s a t -
isfies (11). Obviously, the size of the search space
S0 × S1 × ... × Sn−1 is n!. Therefore, the complexity is O(n!)

Reducing the Search Space by Vertex Invariant

Computing the partitions of vertices using a vertex invariant
is an important step that allows reducing the search space.
Vertex invariants like degree, vector of distances (the num-
ber of vertices reachable at each distance) or others can
be selected for vertices partition. Using the out-degree as
invariant in our example, the possible correspondences of
vertex 0 are {0, 4, 6} . Thus, vertices partition using out-
degree gives:

Partition of vertices in G is {{1, 5, 6}, {0, 2, 3}, {4}}
Partition of vertices in G′ is {{1, 2, 3}, {0, 4, 6}, {5}}

which means that the elements of the first subset {1, 5, 6} of
G can be associated solely to the elements of the first subset

Fig. 2 Algorithm for graph isomorphism—CRGI2

3 To denote: Consistency Rule for Graph Isomorphism. We call
CRGI2 to indicate the updated version of CRGI.

 SN Computer Science (2022) 3:113113 Page 8 of 16

SN Computer Science

{1, 2, 3} of G′ and so on for the rest subsets. In this case, we
know a sub-solution i.e. 4 is associated to 5.

Vertices partition allows to construct the search space
S0 × S1 × ... × Sn−1 which is more reduced than initially.
Thus, S0 = {0, 4, 6}

S1 = {1, 2, 3}

S2 = {0, 4, 6} − {p(0)}

S3 = {0, 4, 6} − {p(0), p(2)}

S4 = {5}

S5 = {1, 2, 3} − {p(1)}

S6 = {1, 2, 3} − {p(1), p(5)}

The tree-search in Fig. 3 shows all the explored branches
using the reduced search space until an isomorphism is
found.

More Reduction During Tree Exploration

The last step performed by CRGI2 is the exploration of the
tree-search. To enhance the efficiency of the algorithm,
CRGI2 is able to prune the tree-search during the explora-
tion. At each depth l of the tree, unsuccessful branches are
discarded as soon as possible. The consistency rule (11) is
checked at least for the subpermutation (p(0), ..., p(l − 1)) . If
there is a prospective case xi,j such that x�

p(i),p(j)
≠ xi,j , an early

pruning of unnecessary branch will be done as shown in

Fig. 4. If the rule is still valid at least for the subpermutation,
the exploration continues for more depth. Otherwise, the
exploration backtracks to test another solution. The maximal
depth l can be reached is n which means a space complexity
O(n).

For example, as shown in Fig. 4, at depth 2, the subper-
mutation (p(0) = 4, p(1) = 3) is acceptable by the consist-
ency rule d�

p(i),p(j)
= di,j for each case (i, j) such that 0 ≤ i ≤ 1

and 0 ≤ j ≤ 1 (we use in this case distance matrix for graph
representation), as follows:

 However, when the algorithm goes in depth 3 by adding the
new correspondence p(2) = 0 obtaining the subpermutation
(p(0) = 4, p(1) = 3, p(2) = 0) , the consistency rule will be
violated by d2,0 ≠ d′

0,4
 as follows:

 At this level when (11) is violated, the algorithm backtracks
by excluding p(2) = 0 and goes another time in depth by
adding the new correspondence p(2) = 6 which gives the
subpermutation (p(0) = 4, p(1) = 3, p(2) = 6) where (11) is
respected as follows:

 Note that cases which have been tested in previous depths
(1 and 2) will not be tested again at the depth 3. Only cases
di,j of i = 2 or j = 2 must be seen whether they have a cor-
responding cases in D′ under the considered subpermutation.
As can be seen in Fig. 4 the in-depth exploration continues
until the whole permutation satisfying (11) is detected.

In fact, in previous study, we supposed working with the
ordered elements of the permutation p(0), p(1), ..., p(n − 1)
to be associated to the first, second, third, 4th, ..., nth depth,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 � � � � �
4 0 � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

���⃗Rp
���⃗Cp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � �
� � � � � � �
� � � � � � �
� � � 0 4 � �
� � � 1 0 � �
� � � � � � �
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 � � � � �
4 0 � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

���⃗Rp
���⃗Cp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � �
� � � � � � �
� � � � � � �
� � � 0 4 � �
� � � 1 0 � �
� � � � � � �
� � � � � � �

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 � � � � �
4 0 � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

���⃗Rp
���⃗Cp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � �
� � � � � � �
� � � � � � �
� � � 0 4 � �
� � � 1 0 � �
� � � � � � �
� � � � � � �

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3 Tree-search exploration without branch pruning

Fig. 4 Tree-search exploration with branch pruning

SN Computer Science (2022) 3:113 Page 9 of 16 113

SN Computer Science

respectively. This is not necessary, because it is possible to
associate to the first depth any element p(r) of p, and to the
second depth another element p(s) such that r ≠ s.

In our algorithm, we propose this ordered ele-
ments of p : p(k1), p(k2), ..., p(kn) such that
|Sk1 | ≤ |Sk2 | ≤ ... ≤ |Skn |, ki ∈ V . Thus, to the first, second,
third, 4th, ..., nth depth, are associated the elements p(k1),
p(k2), ..., p(kn) , respectively. In this way, it will be possible
to figure out the most common subgraph even for graphs
having different sizes.

Subgraph Isomorphism and Homomorphism

Subgraph isomorphism may be handled by CRGI2, after
updating it, following the exact nature of the problem.
For example, vertices partition must be tackled otherwise
because the invariant notion will disappear in this case.

When two graphs of the same size are not isomorphic,
the most common subgraph can be determined by CRGI2
which is defined by the subpermutation of the greater depth
reached during the tree-search exploration.

For graphs G = (V ,E) and G� = (V �,E�) having different
sizes n and n′ , respectively ,where n < n′ , obviously they
cannot be isomorphic. To detect whether there exists a sub-
graph isomorphism from G to G′ , we search a subpermuta-
tion which associates for each vertex of V, a vertex from
a subset S of V ′ preserving the property of the adjacency,
i.e. (i, j) ∈ E ⇔ (p(i), p(j)) ∈ E� ∩ (S × S) . Therefore, it is
sufficient to find for each case of the smaller matrix a cor-
responding case in the greater matrix by the subpermutation
that satisfies (12). Thus, if the right subpermutation is found,
the remainder cases of the greater matrix are not interesting
in the subgraph isomorphism. As for the above-described
process of exploration, and without changing anything in
backtracking or tree pruning, it will be used to detect the
subpermutation i.e. the correspondences from V to V ′.

Actually, these are the main features that distinguish the
subgraph isomorphism algorithm from the above described
algorithm of graph isomorphism:

• The initial search space has a size of n�!

(n�−n)!
 . Suppose n is

the size of the small graph G while the greater graph G′
has n′ vertices. In the first time, a vertex of G can be
associated to any vertex among the n′ vertices of G′ . The
second vertex of G, can be associated to (n� − 1) vertices,
and so on, until the last vertex of G that can be associated
to (n� − n + 1) . Thus, the search space has a size of
n� × (n� − 1) × ... × (n� − n + 1) i.e. n�!

(n�−n)!
.

• No partition process does exists. In this case, the vertices
of the two graphs have not the same properties like the
invariant for graph isomorphism. However, it is possible

to reduce the search space. A vertex of the small graph
could be associated to vertices of the same or greater
degree in the wider graph.

• Proposition (12) is used as consistency rule.
• A branch of the tree is a subpermutation

p = (p(0), ..., p(n − 1)) which leads to a depth of n in the
tree that represents the space complexity too. As for the
exploration process still unchangeable.

However, some algorithms deal with subgraph isomor-
phism taking into consideration the homomorphism. In
this case, preserving the adjacency must not be in the two
directions, but it is sufficient to be in only one direction,
i.e. (i, j) ∈ E ⇒ (p(i), p(j)) ∈ E� ∩ (S × S) as shown in Fig. 5
where edge (5, 4) of G′ has not a corresponding edge in G
i.e. m′

5,4
≠ m4,0 . Therefore, the consistency rule is changed

in this last case as used in [8] with adjacency matrices as
follows:

 which means if vertices i and j are linked by an edge in G,
so their corresponding vertices p(i) and p(j) must be also
linked. In fact, (13) represents the consistency rule for the
homomorphism generally. Consequently, using (13) instead
of (11) or (12) in CRGI2, homomorphism may be treated.

The below adjacency matrices M and M′ represent G and
G′ , respectively, given in Fig. 5

 Apparently, the tree exploration can find for the sub-
graph isomorphism shown in Fig. 5 by the following
subpermutation:

(14)∀i, j (mi,j = 1) ⇒ (m�
p(i),p(j)

= 1)

M =

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎠

,M� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 1 0 0 1 0

0 0 1 1 � 0 0

0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 5 Example of subgraph isomorphism

 SN Computer Science (2022) 3:113113 Page 10 of 16

SN Computer Science

 Applying the cases transformation on M by Rp and Cp , the
obtained matrix Cp(Rp(M)) compared with M′ shows that
(13) is well satisfied. For each case of Cp(Rp(M)) containing
’1’, the same case in M′ contains ’1’ too.

An Inexact Matching for Attributed Graphs

Let G and G′ be two graphs shown in Fig. 6 in which edges
are attributed by real values. In this case, where matrix ele-
ments are real values, it is not demanded to respect the exact
rule xi,j = x�

p(i),p(j)
 , but it is sufficient to minimize the differ-

ence |xi,j − x�
p(i),p(j)

| to find the optimal permutation of the
matching. Several ways can be proposed to minimize
|xi,j − x�

p(i),p(j)
| following the context of use. For example, for

image recognition, it may be introduce some error-tolerant
method to tackle the image deformation that appears in
matrix representing an image.

The following matrices M and M′ are representing graphs
G and G′ given in Fig. 6.

 In our case, instead using (11) it will be possible to use the
consistency rule:

p =

(
0 1 2 3 4

4 2 3 6 5

)

M =

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎠

���⃗Rp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � �
� � � � � � �
0 0 1 0 0 � �
0 0 0 1 0 � �
0 1 0 0 1 � �
0 1 1 0 0 � �
0 0 0 0 1 � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

���⃗Cp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � �
� � � � � � �
� � 0 1 0 0 0

� � 0 0 0 0 1

� � 1 0 0 1 0

� � 1 1 � 0 0

� � 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

M =

⎛
⎜⎜⎜⎜⎜⎝

0 0 45 0 0

0 0 0 0 47

0 18 0 0 33

0 0 28 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,M� =

⎛
⎜⎜⎜⎜⎜⎝

0 0 45 0 0

16 0 34 0 0

0 0 0 0 0

0 28 0 0 0

0 43 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

where � is error-tolerance threshold of the matching. Obvi-
ously, whenever � is close to zero, the graphs are more
matched. Notice that to determine the optimal permutation
of the matching, the process of exploration in the tree-search
still unchangeable. Making � = 2(4%) , it can be seen through
Fig. 6 that the permutation

 gives the following cases transformation:

 which satisfies |mi,j − m�
p(i),p(j)

| ≤ 2 , for all cases.

Tree Matching for XML Retrieval

One of the most studied problems in the information
retrieval field is the querying XML documents [28]. In
this case, XML documents are considered having a tree
structure4 and the query is a subtree like is shown in Fig. 7.
As it is known, trees are a special kind of graphs such that
there is no cycles. The aim is to find whether a subtree
(query) is included in one of the collection of trees (XML
documents). It is clear that there is some form of matching
between T and T ′′ , whereas T ′ is not relevant to the others.
In this case, some constraints are posed (i) for vertices,
each vertex of the query must appear in the XML Docu-
ment (ii) as for edges, each related vertices in the query

(15)∀i, j |xi,j − x�
p(i),p(j)

| ≤ �,

p =

(
0 1 2 3 4

4 0 1 3 2

)
,

M =

⎛
⎜⎜⎜⎜⎜⎝

0 0 45 0 0

0 0 0 0 47

0 18 0 0 33

0 0 28 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

���⃗Rp

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 47

0 18 0 0 33

0 0 0 0 0

0 0 28 0 0

0 0 45 0 0

⎞
⎟⎟⎟⎟⎟⎠

���⃗Cp

⎛
⎜⎜⎜⎜⎜⎝

0 0 47 0 0

18 0 33 0 0

0 0 0 0 0

0 28 0 0 0

0 45 0 0 0

⎞⎟⎟⎟⎟⎟⎠

Fig. 6 Consistency rule for inexact graph matching Fig. 7 Trees for an XML query (T) and two XML documents (T’)
(T”)

4 It is worth to make difference between tree as graph and tree as a
search method.

SN Computer Science (2022) 3:113 Page 11 of 16 113

SN Computer Science

(arc: parent-child) can be matched by a pair of vertices
linked by a path (ancestor-descendant), for example edge
(Paper, Year) of the query could be associated with the
path (Paper, ..., Year) in T ′′.

Obviously, the adjacency matrix cannot be used here,
however, the distance matrix is able to deal with such kind
of matching. When a query contains two vertices: par-
ent–child i.e. (di,j = 1) , it is sufficient to find corresponding
vertices (ancestor-descendant) where (d�

p(i),p(j)
≥ 1) . There-

fore, we say:

If we use the following distance matrices as representa-
tions of (T) and (T ��):

 D’=

From diagonal cases of the matrices, the search space is
reduced which leads to the subpermutation:

 that can give a possible matching if the constraints are not
violated. The matrix Cp(Rp(D)) below shows that (15) is well
respected.

 As it was seen above, it will be possible to adapt CRGI2 for
querying XML documents using its backtracking exploration
to find the subpermutation of the matching integrating, of
course, the consistency rule expressed in (15).

(16)∀di,j ∈ D, (d�
p(i),p(j)

≥ di,j)

D =

⎛
⎜⎜⎜⎜⎜⎝

Paper 1 1 1 1

0 Title 0 0 0

0 0 Author 0 0

0 0 0 C.Name 0

0 0 0 0 Year

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Paper 1 1 1 2 2 2

0 Authors 0 0 1 0 0

0 0 Conf 0 0 1 1

0 0 0 Title 0 0 0

0 0 0 0 Author 0 0

0 0 0 0 0 C.Name 0

0 0 0 0 0 0 Year

⎞⎟⎟⎟⎟⎟⎟⎟⎠

p =

(
0 1 2 3 4

0 3 4 5 6

)

Cp(Rp(D)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Paper � � 1 1 1 1

� � � � � � �
� � � � � � �
0 � � Title 0 0 0

0 � � 0 Author 0 0

0 � � 0 0 C.Name 0

0 � � 0 0 0 Year

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Experimental Results

Experiments described in this section are conducted on
two data sets: a synthetic data set [29] and a real world
data set [30]. First, an evaluation of the performance is
realized through a benchmarking process to show the effi-
ciency of CRGI2 and other known algorithms for the graph
isomorphism problem. Second, the flexibility of CRGI2 is
illustrated for subgraph isomorphism and its applicability
to information retrieval tasks of relational data.

A Performance Comparison for Graph Isomorphism

In this section, CRGI2 is tested for graph isomorphism
and its performance is compared with other known algo-
rithms of exact matching, namely VF, VF2, SD and Ull
(Ullmann). Details on these kinds of algorithms can be
found in [7–9]. Algorithm CRGI2 has been executed in
two forms: in the first CRGI2(Adj), the graphs are rep-
resented by adjacency matrix using degree as invariant
vertices to determine partitions of vertices. The second
form of execution CRGI2(Dis) uses distance matrix as
graph representation and vector of distances as invariant
(for each node, the number of vertices reachable at each
distance is calculated).

For the remainder algorithms VF, VF2, SD, and Ull, we
have used the library VFLib2.0 [7, 32] that contains the
implementation of these algorithms. In this sense, CRGI2
was implemented in C++ like the other algorithms. All
the programs have been compiled with the same compiler.

The evaluation is carried out using a collection of iso-
morphic graphs that contains 9000 couples. A part of this
collection is containing in the database realized by [29]
while the rest of the collection has been generated by us
which represents trees and graphs having sizes greater than
1000 vertices. This collection is distributed on the follow-
ing kinds of graphs: randomly connected graphs (2200
couples), regular and irregular 2D meshes (2000 couples),
irregular bounded valence graphs (2000 couples) and ran-
dom trees (2800 couples). Each category includes couples
of isomorphic graphs of different sizes, ordered from doz-
ens of vertices to about a few thousands of vertices. Each
size and kind of graphs has 100 different couples except
graphs of thousands of vertices, where only 10 couples
that exist.

The performance is evaluated through a benchmarking
process in which each algorithm tries to detect the isomor-
phism permutation (with the necessary time) of each pair
among the 9000 existing couples. For each isomorphic cou-
ples (of the same kind and size), the average time of explor-
ing the tree-search to detect the permutation is calculated.

 SN Computer Science (2022) 3:113113 Page 12 of 16

SN Computer Science

Randomly Connected Graphs

Figure 8 shows, for each size of graphs, the average time
of exploring the tree-search to detect the isomorphism per-
mutations for the selected algorithms, using randomly con-
nected graphs for values of density � equal to 0.01 and 0.1
described in [29].

It can be seen that the two versions of CRGI2 and the
two VF perform always better than SD and Ull. After a size
of 2000, the SD algorithm requires an exponential time to
detect any isomorphism while the Ull algorithm cannot
deal with graphs of more than 1000 vertices. For CRGI2,
either using adjacency or distance matrices, the two versions
behave nearly in the same manner. CRGI2 is independent
from the density of the graph where about less than 6 sec-
onds are needed for discovering the isomorphism for graphs
of 10,000 vertices. Conversely, the two VF behaves in differ-
ent manners following the values of density.

2D Meshes

In this case, the behavior of the two version of CRGI2 is not
the same. CRGI2(Adj) gives the worst performance with
Ullmann’s algorithm as shown in Fig. 9. Either meshes are
regular or irregular having sizes greater than 100 vertices,
CRGI2(Adj) requires an exponential time to figure out the
isomorphism. Paradoxically, CRGI2(Dis) gives better results

than the other algorithms. This wide discard in behavior
shows clearly that choosing the parameters of CRGI2 has an
important factor to deal efficiently with graph isomorphism
problem.

Bounded Valence Graphs

The performance of the algorithms on bounded valence
graphs are shown in Fig. 10. In this case, the considered
values of the valence are 3 and 9 described in [29].

For valence equal to 3, graph isomorphism is hard to
be treated by most of algorithms except VF2 that is able
to find isomorphism for all graphs in less than 1 s. In this
case, VF and VF2 perform better than both CRGI2(Dis) and
CRGI2(Adj). The first is not able to find a solution when
the size grows up to 600 vertices while the second cannot
deal with graphs of more than 200 vertices. However for the
graphs of valence 9, the two execution of CRGI2 becomes
more efficient.

Random Trees

We attempt to test in this section trees as graphs to show
the flexibility of these algorithms against the various kinds
of graphs.

The random trees are generated as follows: each ver-
tex has a random number of children referred as nbr_child

Fig. 8 Performance on Ran-
domly Connected Graphs with
� = 0.01 and � = 0.1

Fig. 9 Performance on 2D
Meshes (Regular and Irregular
meshes)

SN Computer Science (2022) 3:113 Page 13 of 16 113

SN Computer Science

between 0 and � . In our case, � is fixed by two values 10
and 20.

Comparison process in Fig. 11 shows that CRGI2(Dis)
performs better than any other algorithm. Tables 1 and 2 and
show that only CRGI2(Dis) and SD are able to find solutions
for all random trees. However, algorithms Ull, VF and VF2
cannot detect isomorphism during one hour (represented by
?) for some trees that have sizes not exceeding 100 vertices.

Enron Database

The Enron corpus contains a large set of e-mail messages
belonging to users of the Enron corporation [30, 31].
The underlying data is converted into one directed graph
by representing the senders and the receivers as vertices,
attributed with their corresponding e-mail address. Solely
e-mail addresses having @enron.com as suffix are taking

Fig. 10 Performance on
Bounded Valence Graphs

Fig. 11 Performance on Ran-
dom Trees

Table 1 Average time [in s] to
detect isomorphism of Random
Trees (� = 10)

Tree CRGI2 CRGI2 VF2 VF SD Ull
Size (Adj) (Dis)

20 0 0 0 0 0.001 0
40 0.0001 0.0001 0 0 0.005 0.004
60 0 0 0.0005 0.0005 0.004 ?
80 0.0002 0.0001 ? ? 0.009 ?
100 0.0002 0.0002 0.0015 0.002 0.019 ?
120 0.0001 0.0007 0.0015 0.0005 0.032 ?
140 0.0009 0.0006 0.0785 ? 0.075 ?
160 0.001 0.001 0.001 ? 0.078 ?
180 0.0014 0.0018 0.585 0.142 0.129 ?
200 0.0018 0.0018 ? ? 0.202 ?
400 22.232 0.0108 ? ? 1.049 ?
600 ? 0.0315 ? ? 3.691 ?
800 ? 0.0718 ? ? 7.1265 ?
1000 ? 0.1428 ? ? 12.699 ?

 SN Computer Science (2022) 3:113113 Page 14 of 16

SN Computer Science

into account. If there is at least a message from a vertex to
another, so an edge is used as a link. Only messages from
one to one are considered i.e. diffusion from one to many
is ignored. The complete data set gives a directed graph of
7592 vertices and 31,789 edges.

Therefore, it will be possible to test some queries on
the Enron graph. For example, the maximal clique in the
Enron graph is a complete subgraph of 7 vertices attributed
with {mary.cook, elizabeth.sager, peter.keohane, louise.
kitchen, marie.heard, tana.jones}@enron.com. This clique
is detected in 0.12 s using CRGI2 that checks first the sub-
graph isomorphism from a complete graph of n vertices to

the Enron graph without attributes. The maximum value of
n can be reached is 7, while the given subpermutation of the
subgraph isomorphism leads easily to the e-mail addresses
of each node.

In the same manner, Fig. 12 shows how GRGI2 can detect
directed paths not exceeding 80 vertices in the Enron graph.
For paths smaller than 60 vertices, a few seconds less than
10 are needed to find a path in the Enron graph. Unfortu-
nately, when the paths grow up to 70 vertices and greater,
the necessary time of exploration increases dramatically. For
example, a path of 75 vertices is discovered in 591.23 sec-
onds, while a path of 76 vertices cannot be discovered. Thus,

Table 2 Average time [in s] to
detect isomorphism of Random
Trees (� = 20)

Tree CRGI2 CRGI2 VF2 VF SD Ull
Size (Adj) (Dis)

20 0 0 0 0.0001 0.0003 0.0003
40 0.0002 0 0 0 0.0013 0.002
60 0 0.0001 0 0 0.0061 0.0091
80 0.0001 0.0001 ? ? 0.0107 ?
100 0.0004 0.0003 0.0001 0 0.0249 0.0685
120 0.0004 0.0004 0.0002 0.0006 0.0462 0.1388
140 0.0009 0.0007 0.0001 0.0003 0.0688 0.2419
160 0.0013 0.0013 0.0002 0.0005 0.0948 0.3758
180 0.002 0.0011 0.0003 0.0004 0.1503 0.6344
200 0.002 0.0012 ? ? 0.2008 ?
400 0.0142 0.0131 ? ? 0.8487 ?
600 0.0464 0.041 ? ? 4.657 ?
800 0.144 0.0974 ? ? 5.91 ?
1000 ? 0.182 ? ? 16.998 ?

Fig. 12 Time for discovering
directed paths in the Enron
graph

SN Computer Science (2022) 3:113 Page 15 of 16 113

SN Computer Science

we do not know if there is a path of 76 vertices, because the
algorithm is unable to give a response.

However, other queries on the Enron graph are so impor-
tant for information retrieval, for example in Fig. 13 two
queries are illustrated. The first query corresponds to the
question: which e-mail address X has received messages
from {robert.cotten and mark.mccoy}@enron.com and
then has sent messages to both {gary.anderson and kim-
berly.vaughn}@enron.com? For the second query, the cor-
responding question is: which e-mail address X has received
messages from Y and Z, where Y and Z have received also
messages from {david.delainey and john.lavorato}@enron.
com? (see Fig. 13)

By applying CRGI2 as a subgraph isomorphism algo-
rithm knowing that some vertices are attributed (an attrib-
uted vertex in the query must be associated to a vertex that
has the same attribute), CRGI2 has discover, in 2.21 s, only
one subgraph in the Enron graph which is isomorphic to the
first query where X = clem.cernosek@enron.com.

For the second query, CRGI2 has found seven possible
matchings during 70.67 s. The values of X, Y and Z, without
@enron.com, are as follows:

1. X = marchris.robinson, Y = steven.kean, Z = kay.mann
2. X = steve.montovano, Y = steven.kean, Z = kay.mann
3. X = janet.dietrich, Y = steven.kean, Z = kay.mann
4. X = brian.redmond, Y = steven.kean, Z = kay.mann
5. X = janette.elbertson, Y = richard.b.sanders, Z = kay.

mann
6. X = rob.walls, Y = steven.kean, Z = kay.mann
7. X = rob.walls, Y = richard.b.sanders, Z = kay.mann

Conclusion

The proposed algorithm deals with graphs without mak-
ing any particular assumptions on the structure of the used
graphs, in contrast to the other algorithms that require at
least connected graphs. Note also that, theoretically, there
is no condition on the upper bound for the number of ver-
tices (or the number of edges) in order to solve the isomor-
phism equation M� = PtMP . Unfortunately, since there is

no mathematical method to solve M� = PtMP except using
exhaustive search methods, it will be a difficult task (and
even not possible) to find an isomorphism for graphs having
high number of vertices. The upper bound will be certainly
depends on : (1) the power of calculus of the machine, (2)
the used algorithm itself, and (3) the type of graph. Our
experiments show the ability of solving isomorphism per-
mutation for random graphs of 10,000 vertices. However, for
other types of graphs, no result can be found for considerable
values of n < 1000 . Globally, no algorithm succeed to detect
the graph isomorphism in polynomial time. There is at least
one case where every algorithm fails due to the explosion
of calculations.

In general, although the proposed algorithm is based on
a simple consistency rule, it shows its efficiency and illus-
trates to be suitable for various matching problems. The sim-
plicity of the consistency rule itself leads to accelerating
calculations and to be applied for a collection of matching
problems.

Declarations

 Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Bunke H. On a relation between graph edit distance and maximum
common subgraph. Pattern Recognit Lett. 1997;18(8):689–94.

 2. Fernández ML, Valiente G. A graph distance metric combining
maximum common subgraph and minimum common supergraph.
Pattern Recognit Lett. 2001;22(6–7):753–8.

 3. Qiu H, Hancock ER. Graph matching and clustering using spectral
partitions. Pattern Recognit. 2006;39(1):22–34.

 4. Umeyama S. An Eigen decomposition approach to weighted
graph matching problems. IEEE Trans Pattern Anal Mach Intell.
1988;10(5):695–703.

 5. Lopez-Presa JL, Fernandez Anta A. Fast algorithm for graph iso-
morphism testing. In: Proceedings of the 8th International Sym-
posium on experimental algorithms, Springer-Verlag, Dortmund,
Germany, June 4–6, 2009, p. 221–32.

 6. Messmer B, Bunke H. A decision tree approach to graph
and subgraph isomorphism detection. Pattern Recognit.
1999;32(12):1979–98.

 7. Cordella LP, Foggia P, Sansone C, Vento M. A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Trans Pattern
Anal Mach Intell. 2004;26(10):1367–72.

 8. Ullmann JR. An algorithm for subgraph isomorphism. J ACM.
1976;23(1):31–42.

 9. Schmidt DC, Druffel LE. A fast backtracking algorithm to test
directed graphs for isomorphism using distance matrices. J ACM.
1976;23(3):433–45.

 10. Benreguia B, Kheddouci H. A consistency rule for graph iso-
morphism problem. In: Proceedings of the 27th Annual ACM
Symposium on applied computing, ACM, 2012; p. 906–11.

 11. McKay B. Practical graph isomorphism. Congr Numer.
1981;30:45–87.

Fig. 13 Query graphs to the Enron database graph

 SN Computer Science (2022) 3:113113 Page 16 of 16

SN Computer Science

 12. Chan SC, Cheney J. Flexible Graph Matching and Graph Edit
Distance Using Answer Set Programming. In: International Sym-
posium on Practical Aspects of Declarative Languages PADL
2020, Lecture Notes in Computer Science, Springer, Cham,
2020;12007:20–36.

 13. Bougleux S, Gauzere B, Brun L. A Hungarian algorithm for
error-correcting graph matching. In: International Workshop
on graph-based representations in pattern recognition. GbRPR
2017. Lecture Notes in Computer Science, Springer, Cham,
2017;101310:118–127.

 14. Boria N, Blumenthal DB, Bougleux S, Brun L. Improved
local search for graph edit distance. Pattern Recognit Lett.
2020;129:19–25.

 15. Kataoka T, Shiotsuki E, Inokuchi A. Graph Classification with
Mapping Distance Graph Kernels. In: International Conference
on Pattern recognition applications and methods. ICPRAM
2017. Lecture Notes in Computer Science, Springer, Cham,
2017;10857:21–44.

 16. Kausar A, Enrico A, Diana S, Uttara T, Duy D, Mintao L, Meenus-
ree R, Jaroslaw H, Beau A, Joaquín G. GEFF: graph embedding
for functional fingerprinting, NeuroImage, 2020;10857:117181.

 17. Mukhopadhyay A, Kumar ACS, Bhandarkar SM. Joint geometric
graph embedding for partial shape matching in images. In: IEEE
Winter Conference on applications of computer vision (WACV),
Lake Placid, NY, USA, March 7–10, 2016, p. 1–9.

 18. Demirci MF, Kacka S. Object recognition by distortion-free graph
embedding and random forest. In: IEEE Tenth International Con-
ference on semantic computing (ICSC), Laguna Hills, California,
USA, 4–6 February 2016, p. 17–23.

 19. Zavlanos MM, Pappas GJ. A dynamical systems approach to
weighted graph matching. Automatica. 2008;44:2817–24.

 20. Kang U, Hebert M, Park CS. Fast and scalable approximate
spectral graph matching for correspondence problems. Inf Sci.
2013;220:306–18.

 21. Zanfir A, Sminchisescu C. Deep Learning of graph matching. In:
The IEEE Conference on computer vision and pattern recogni-
tion (CVPR), Salt Lake City, UT, USA, June 18–22, 2018, p.
2684–693.

 22. Guo M, Chou E, Huang D, Song S, Yeung S, Fei-Fei L. Neural
graph matching networks for fewshot 3D action recognition. In:
The European Conference on computer vision (ECCV), Munich,
Germany, September 8–14, 2018, p. 653–69.

 23. Riesen K, Jiang X, Bunke H. Exact and inexact graph matching:
methodology and applications, In: Aggarwal C., Wang H. (eds)
Managing and Mining Graph Data. Advances in Database Sys-
tems, Springer, Boston, MA, 2010;40:217–47.

 24. Yan J, Yin X, Lin W, Deng C, Zha H, Yang X. A short survey of
recent advances in graph matching. In: Proceedings of the 2016
ACM on International Conference on multimedia retrieval, ICMR
2016, New York, New York, USA, June 6–9, 2016, p. 167–74.

 25. Livi L, Rizzi A. The graph matching problem. Pattern Anal Appl.
2013;16:253–83.

 26. Conte D, Foggia P, Sansone C, Vento M. Thirty years of graph
matching in pattern recognition. Int J Pattern Recognit Artif Intell.
2004;18(03):265–98.

 27. Ferrer B, Bunke H. Graph edit distance-theory, algorithms, and
applications. Image Processing and Analysis with Graphs: Theory
and Practice (1st ed.). CRC Press - Taylor & Francis Group, Boca
Raton, FL, USA, 2012, p. 384–422.

 28. Jeong B, Lee D, Cho H, Lee J. A novel method for measuring
semantic similarity for xml schema matching. Expert Syst Appl.
2008;34(3):1651–8.

 29. Santo MD, Foggia P, Sansone C, Vento M. A large database of
graphs and its use for benchmarking graph isomorphism algo-
rithms. Pattern Recognit Lett. 2003;24(8):1067–79.

 30. Klimt B, Yang Y. Introducing the enron corpus,. In: First Confer-
ence on email and anti-spam (CEAS), Mountain View, California,
USA, July 30-31, 2004.

 31. Brugger A, Bunke H, Dickinson P, Riesen K. Generalized graph
matching for data mining and information retrieval. In: Proceed-
ings of the 8th Industrial Conference on advances in data mining:
medical applications, E-commerce, marketing, and theoretical
aspects. Springer-Verlag; 2008, p. 298–312.

 32. Foggia P, Sansone C, Vento M. A performance comparison of
five algorithms for graph isomorphism. In: Proceedings of the
3rd IAPR TC- 15 Workshop on Graph-based representations in
pattern recognition, Ischia, Italy, May 23–25, 2001, p. 188–199.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Some Consistency Rules for Graph Matching
	Abstract
	Introduction
	Paper contribution

	Related Work
	Definitions
	Consistency Rule for Graph Isomorphism Problem
	Example of Isomorphic Graphs

	Algorithm CRGI2 for Graph Isomorphism
	The Initial Search Space
	Reducing the Search Space by Vertex Invariant
	More Reduction During Tree Exploration

	Subgraph Isomorphism and Homomorphism
	An Inexact Matching for Attributed Graphs
	Tree Matching for XML Retrieval
	Experimental Results
	A Performance Comparison for Graph Isomorphism
	Randomly Connected Graphs
	2D Meshes
	Bounded Valence Graphs
	Random Trees

	Enron Database

	Conclusion
	References

