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Abstract
Behavior trees are a control architecture that has gained recent attention in AI and robotics. Previous research on the use of 
behavior trees in swarm robotics has shown the necessity for the behaviors to have proper return values, instead of running 
indefinitely. This work extends our previous work in which we defined AutoMoDe-Cedrata, an automatic modular design 
that makes use of modules that have been explicitly defined for behavior trees. While the search space is sufficiently large to 
include well-performing solutions, Cedrata had problems discovering communication-based strategies. In this work, we 
extend Cedrata by introducing Cedrata-GP and Cedrata-GE which are based on genetic programming and gram-
matical evolution, respectively. We test these design methods on two missions and compare the performance of the automatic 
design methods against the performance of solutions created by human designers. The results show that the structure of 
Cedrata allows for well-performing solutions that are reliably found by human designers. However, the automatic design 
methods fail to discover the same communication strategies as the human designers.

Keywords Swarm robotics · Design by optimization · AutoMoDe · Genetic programming · Grammatical evolution

Introduction

Swarm robotics is a research area that combines robotics 
and swarm intelligence, and that is recognized as a promis-
ing approach for controlling large groups of robots [1–11]. 
Robot swarms are self-organizing decentralized systems, 
consisting of relatively simple robots that cooperate to 
achieve a goal that would not be achievable for each individ-
ual robot alone. The collective behavior of the robot swarm 
emerges from the interactions between the robots themselves 
and between the robots and the environment [12]. One chal-
lenge of swarm robotics is the difficulty of designing control 
software for the individual robots, so that the desired collec-
tive behavior emerges [13].

One approach to the design of control software for robot 
swarms is manual design, in which a human designer cre-
ates the control software. However, only few and limited 
principled approaches to manual design exist [14–22] and 
no general methodology has yet been proposed. As a result, 
most manual design approaches rely on trial and error, a 
time-consuming, costly, and often error-prone strategy [23, 
24].

Other approaches rely on the use of an optimization algo-
rithm and can be broadly categorized into two categories: 
semi-automatic design and fully automatic design (although 
hybrid approaches exist) [10]. In semi-automatic design, a 
human designer uses an optimization algorithm as a tool 
to design the control software. The designer specifies the 
problem and defines the parameters of the optimization algo-
rithm. They observe the optimization process and adjust the 
problem specification or the parameters of the optimization 
algorithm until the result is satisfactory. While the semi-
automatic approach alleviates some drawbacks of manual 
design, the involvement of a human designer still entails 
similar challenges: as long as no general principled approach 
exists, much of the performance depends on the experience 
and domain knowledge of the human designer.
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In contrast, in fully automatic design, the role of the 
human designer is reduced to the problem specification. 
After receiving the problem specification, the fully auto-
matic design process searches for a satisfactory solution 
without any further human intervention [10]. This lack of 
human intervention also implies that no mission-specific 
domain knowledge can be incorporated into the design pro-
cess. Indeed, any fully automatic design method needs to 
be able to address not only a single mission, but a class of 
missions [13].

Fully automatic design often produces the control soft-
ware off-line, i.e., the software is designed using simulations 
and only the final resulting control software is uploaded 
onto the real robots for evaluation. While this approach 
offers many advantages, like speeding up the design pro-
cess through faster-than-real-time simulations and paral-
lelization of simulation processes and no need for hardware 
availability for the design process, it suffers from one major 
drawback, the reality gap. The reality gap is the inherent dif-
ference between the simulation and the real environment and 
often manifests itself in the form of a performance drop [25]. 
Not all methods are affected equally by the reality gap [25].

Francesca et al. proposed to look at the reality gap prob-
lem akin to the bias-variance trade-off [26]. They hypoth-
esized that design methods with a very large and fine-
grained action space (“low bias”) are more prone to overfit 
the simulation context (“high variance”). By restricting the 
space of possible behaviors (“introducing bias”), it should 
be possible to produce software that is more robust to the 
reality gap. Based on this hypothesis, they proposed Auto-
MoDe, a class of automatic modular design methods. In 
automatic modular design, a set of pre-defined modules is 
assembled and fine-tuned into more complex control soft-
ware by an optimization algorithm. The first method of this 
class is Vanilla, an automatic modular design approach 
that crosses the reality gap satisfactorily [26]. Chocolate 
extends Vanilla by using Iterated F-race [27] as the opti-
mization algorithm to assemble a finite-state machine with 
up to four states and sixteen transitions from a set of six 
behavioral modules (mapped to the states of the finite-state 
machine) and six conditions (mapped to the transitions of 
the finite-state machine) [28]. Other AutoMoDe methods 
vary or extend the capabilities of Chocolate. Gianduja 
[29], TuttiFrutti [30], or Arlequin [31] introduce 
new software modules, that extend the capabilities of the 
robotic platform, e.g., by enabling direct communication, 
color detection or the use of artificial pheromones. Waffle 
[32] allows the design process not only to control aspects of 
the control software but also of the hardware capabilities of 
the robot. IcePop [33] investigates the use of local search-
based optimization algorithms. Maple [34] and Cedrata 
[35] are design methods that use behavior trees [36] as the 
target architecture.

The work presented in this paper extends [35], which 
introduced Cedrata. Our previous work showed that the 
modules and architecture of Cedrata allowed for well-per-
forming solutions, but the optimization algorithm (Iterated 
F-race) had problems finding these solutions. In this work, 
we investigate additionally the use of two other optimization 
algorithms, namely genetic programming [37] and gram-
matical evolution [38]. In Table 1 we list the abbreviations 
used in this paper.

Related Work

Behavior trees are a control architecture that originates from 
video games [39], but which since has found applications in 
fields such as artificial intelligence or robotics [40]. In this 
work, we follow the behavior tree definition of Marzinotto 
et al. [36].

In this framework, behavior trees are a control architec-
ture whose structure can be described as a directed acyclic 
graph and that operate on a tick that is created with a fixed 
frequency ftick by an implicitly defined root node. Every time 
a tick is generated, it traverses the tree, activating the nodes 
that it visits. The inner nodes of the tree are called control-
flow nodes and control the way that the tick takes through 
the tree. The leaf nodes can be either an action node that 
executes a single time step of a behavior or a condition node 
that checks a condition of the environment.

Table 1  Abbreviations and symbols used in this paper

Abbreviation Meaning

? Selector node
→ Sequence node
?∗ Selector* node
→

∗ Sequence* node
GP Genetic programming
GE Grammatical evolution
Exp Exploration behavior
Stop Stop behavior
Group Grouping behavior
Isol Isolation behavior
Meet Meeting behavior
Ack Acknowledgement behavior
ESig Emit Signal behavior
Bflr Black Floor condition
Gflr Grey Floor condition
Wflr White Floor condition
Ngb Neighborhood Count condition
INgb Inverted Neighborhood Count condition
FP Fixed Probability condition
RSig Receiving Signal condition
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After activating, each node in a behavior tree returns the 
tick to its parent along with one of three possible return 
values (success, failure, running) that determine the further 
way that the tick takes through the tree. Condition nodes can 
return success or failure, depending on whether their associ-
ated condition is met. Action nodes usually return running, 
success or failure, if the action takes longer than one time 
step or if the robot is in a state that can be classified as suc-
cess or failure with regard to the associated action or behav-
ior. The control-flow nodes receive the return value of one of 
their children nodes and determine if they either pass the tick 
to another child or to its parent, together with a return value. 
In this work, we consider the following control-flow nodes: 
selector (?), sequence ( → ), selector* ( ?∗ ), sequence* ( →∗ ). 
For a detailed and formal definition of all nodes, see [36].

Ligot et al. [34] have proposed Maple, an automatic 
modular design method that assembles modules into a 
restricted behavior tree architecture. Maple utilizes the 
same modules as Chocolate [28]. As these modules have 
originally been conceived for finite-state machine, they do 
not offer any states that could be characterized as success or 
failure and can therefore only return running. The authors 
propose a very restricted architecture that can successfully 
incorporate these modules. Results showed that Maple 
could produce solutions that performed adequately, but that 
the architecture limited the space of possible solutions and 
that some well-performing solutions found by Chocolate 
could not be represented within the restricted architecture 
of Maple. This work highlighted the need for modules that 
have proper return values. Communication-based behaviors 
have been used in many works in swarm robotics, for exam-
ple [41–47]. With Gianduja, Hasselmann et al. [29] were 
able to show that an automatic design process can automati-
cally assign a semantic to messages that do not have mean-
ing a priori.

Other works that have applied behavior trees to swarm 
robots include the works by Jones et al. [48, 49]. In Ref. [48], 
Jones et al. evolved behavior trees for a swarm of kilobots. 

In that work, the authors defined only atomic actions that 
are executed for a single tick and then always return suc-
cess. This necessitates the inclusion of a repeat node that 
can repeatedly tick its children, allowing these actions to 
be executed more than once consecutively. In another work, 
Jones et al. evolved behavior trees onboard of a swarm of 
Xpucks [49]. The actions in these behavior trees are also 
atomic, as they perform a singular write to the blackboard. 
For the onboard evolution, however, each robot performs a 
design process using genetic programming to create behav-
ior trees. At regular intervals, the best performing behavior 
tree is selected as the current control software for the robot. 
Another approach to the design of control software in the 
context of swarm robotics was proposed by Neupane and 
Goodrich [50]. They used distributed grammatical evolution 
to design behavior trees for a swarm of simulated robots.

GESwarm is another design approach that uses gram-
matical evolution [51]. In that work, the authors proposed an 
automatic design method that can design a foraging behav-
ior for a swarm of footbot robots. The control software is 
represented as a set of policies that map conditions and the 
current behavior to actions of the robot. The behaviors that 
the robot can select exhibit similar properties as the behav-
iors of Chocolate, namely that they are simple and can 
run potentially endlessly, without any implicit success or 
failure states.

AutoMoDe‑Cedrata

Originally, we presented Cedrata in Ref. [35]. For the 
convenience of the reader, we describe again the method 
here.

Reference Model

The reference model RM2.2, on which Cedrata is based, 
is shown in Table 2 [52]. The robot is equipped with eight 
proximity sensors, three ground sensors and one range-and-
bearing board for sensing and two sets of actuators: the 
range-and-bearing board to send messages and two wheels 
with differential drive. The reference model formalizes the 
way that the control software has access to these sensors and 
actuators. The proximity sensors can detect obstacles up to 
30cm away, the ground sensors can sense the floor color on 
a grey scale and the range-and-bearing board can transmit 
messages up to 50cm . The control software can set the speed 
of the two wheels of the robot independently. It also always 
sends a signal value s, that can be equal to 0, which is a spe-
cial value that means no signal and that is sent by default, 
or an integer in {1, ..., 6} . Similar to Ref. [29], signal values 
do not have a particular semantic, instead, it is the role of 

Table 2  The E-puck reference model RM2.2 used in Cedrata [52]

Control cycle period: 100ms

Sensors Variables

Proximity prox ∈ [1, 8] , ∠q ∈ [0, 2�]

Ground gnd ∈ {0, 0.5, 1}

Range-and-bearing n ∈ ℕ , r ∈ [0.5, 20] , ∠b ∈ [0, 2�]

ns , rs , ∠bs , for s ∈ {1, ..., 6}

 Actuators Variables

Signal broadcast s ∈ {0, 1, ..., 6}

Wheels vl, vr ∈ [−v, v] , with v = 0.16m∕s
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the design process to assign semantics to the signals. For the 
sensors, the reference model provides an aggregated vector 
(in the form of magnitude and direction) over all proximity 
readings and a single aggregated ground reading. The refer-
ence model also provides access to the number of neighbor-
ing robots n and a vector to their center of mass. Similarly, 
it provides the number of messaging robots and a vector to 
the center of mass of the messaging robots, for each sig-
nal s ∈ S . The control cycle period is 100ms , that is, every 
100ms the sensors are updated and the control software is 
invoked, generating a new tick in the behavior tree.

Modules

Based on the reference model RM2.2, we defined fourteen 
modules—seven behavior modules and seven condition 
modules (see Table 3). In the following descriptions of the 
signal-based conditions and behaviors, the set of signals 
{1, ..., 6} will be denoted S. Some modules can use a spe-
cial value any that is activated if any of the signals in S is 
received. The set S∗ = S ∪ {any} will denote the sets used 
by these modules. The design process is free to choose sev-
eral instances of the same module in an instance of control 
software and can tune the parameters independently for each 
instance of a module.

Behaviors are associated to action nodes and allow the 
robot to interact with the environment. The action nodes 
can return success or failure if the behavior ends in a state 
that it considers being a success or a failure. Otherwise, they 
return running. The behavior modules are defined as follows: 

Exploration The robot performs a random walk. It 
moves straight until it perceives an obstacle in front of 
itself. Then the robot turns on the spot for a random 
number of time steps in {0, ..., �} , where � ∈ {1, ..., 100} 
is a tunable parameter. This behavior always returns run-
ning.

Stop The robot stays still. This behavior always returns 
running.

Grouping The robot tries to get closer to its neigh-
bors by moving towards the geometric center of its 
neighbors. If the number of neighbors becomes greater 
than Nmax , the behavior returns success, where Nmax is a 
tunable parameter. If the number of neighbors becomes 
smaller than Nmin , the behavior returns failure, where 
Nmin is a tunable parameter. Otherwise, it returns run-
ning. The speed of convergence is controlled by the tun-
able parameter � ∈ [1, 5] . The robot moves in the direc-
tion w = w� − kw0 , where w′ is the target component 
and kw0 is the obstacle avoidance component. If robots 
are perceived, then w� = wr&b = (� ⋅ r,∠b) , otherwise 
w� = (1,∠0) . kw0 is the obstacle avoidance component, 
with k being a constant fixed to 5 and w0 defined as 
w0 = (prox,∠q).

Isolation The robot tries to move away from its neighbors by 
moving in the opposite direction of the geometric center 
of its neighbors. If the number of neighbors becomes 
smaller than Nmin , the behavior returns success, where 
Nmin is a tunable parameter. If the number of neighbors 
becomes greater than Nmax , the behavior returns fail-
ure, where Nmax is a tunable parameter. Otherwise, it 
returns running. The speed of divergence is controlled 
by the tunable parameter � ∈ [1, 5] . The Isolation behav-
ior uses the same embedded collision avoidance as in 
Grouping, but with w′ defined as: w� = −wr&b if robots 
are perceived, where wr&b is defined as in the Grouping 
behavior. Otherwise w� = (1,∠0).

Meeting The robot listens for a signal s ∈ S∗ emitted by other 
robots and moves towards the geometrical centre of the 
emitters. The behavior returns success if the distance 
between the robot and the geometrical centre is smaller 
than a distance dmin , where dmin is a tunable parameter. 
The behavior returns failure if the robot does not per-
ceive any robot sending the expected signal. Otherwise, 
the behavior returns running. The Meeting behavior uses 
the same embedded collision avoidance as in Grouping, 
but with w′ defined as: w� = wr&b = (� ⋅ rs,∠bs) if robots 
emitting s are perceived. Otherwise w� = (1,∠0).

Acknowledgement The robot sends a signal s ∈ S 
and waits for an answer in the form of the same signal, 
where s is a tunable parameter. The behavior returns 
success if the signal is received or running if not. After 
tmax ticks, the behavior returns failure if the signal is 

Table 3  Behavior and condition modules and their parameters used in 
Cedrata 

Behavior Short Parameters

Exploration Exp �

Stop Stop
Grouping Group Nmax , Nmin , �
Isolation Isol Nmax , Nmin , �
Meeting Meet s, dmin
Acknowledgement Ack s, tmax
Emit Signal ESig s

 Condition Short Parameters

Black Floor Bflr �

Grey Floor Gflr �

White Floor Wflr �

Neighborhood Count Ngb � , �
Inverted Neighbor-

hood Count
INgb � , �

Fixed probability FP �

Receiving signal RSig s
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still not received, where tmax is a tunable parameter. This 
behavior also sets the velocity of both wheels to zero.

Emit Signal The robot sets its emitted signal to s ∈ S 
for the current tick, where s is a tunable parameter. This 
behavior always returns success. This behavior also sets 
the wheel velocity to zero.

Conditions are associated to condition nodes and check an 
aspect of the environment. The condition nodes return suc-
cess, when their condition is met, or failure, otherwise. The 
condition modules are defined as follows: 

Black Floor When all ground sensors detect a black 
floor, the condition returns success with probability � , 
where � is a tunable parameter.

Grey Floor When all ground sensors detect a grey 
floor, the condition returns success with probability � , 
where � is a tunable parameter.

White Floor When all ground sensors detect a white 
floor, the transition is enabled with probability � , where 
� is a tunable parameter.

Neighborhood Count Returns success with probability 
z(n) =

1

1+e�(�−n)
 where n is the number of robots in the 

neighborhood, � ∈ [0, 20] and � ∈ {0, 1, ..., 10} are tun-
able parameters.

Inverted Neighborhood Count Same as Neighborhood 
Count but with probability 1 − z(n).

Fixed Probability Returns success with probability � , where 
� is a tunable parameter.

Receiving Signal Returns success if the robot has perceived 
a neighbor sending s ∈ S∗ in the last 10 ticks, where s is 
a tunable parameter.

Architecture

In Cedrata, the optimization process can create a tree 
that has a maximum of three levels and a maximum of 
three children per node. The top-level node must be a con-
trol-flow node. Nodes of the second level can be control-
flow nodes, action nodes or condition nodes. If it is an 
action node or a condition node, then the node can have no 
children itself. Not all branches are forced to have the same 
depth: the top-level node could have some children that are 
control-flow nodes and some that are action or condition 
nodes. Nodes on the third level can only be action nodes or 
condition nodes. The structure of such trees is depicted in 
Fig. 1. The optimization process can choose any control-
flow node type to be either a sequence, sequence*, selector 
or selector* node. For a formal definition of these nodes, 
see Marzinotto et al. [36]. Prior research has shown that 
high complexity in automatic design methods can increase 

the difficulties in crossing the reality gap [11, 26, 28]. To 
match the complexity of other AutoMoDe methods [53], 
the tree may have at most four action nodes and four condi-
tion nodes. The constraints on the depth and on the num-
ber of children implicitly impose that the tree contains no 
more than four control nodes.

Optimization Algorithm

The optimization algorithm of Cedrata is Iterated F-race 
[27]. Iterated F-race works over several iterations, each remi-
niscent of a race [54]. In each iteration, Iterated F-race sam-
ples a set of candidate solutions. The first iteration samples 
randomly from all possible candidate solutions, subsequent 
iterations sample around the survivors of the preceding one. 
In the context of Cedrata, these candidate solutions are 
representations of behavior trees according to the constraints 
described in the previous sections. These candidate solutions 
are evaluated incrementally over an increasing number of 
instances. In the case of Cedrata, each instance is equiva-
lent to different (random) starting positions and orientations 
of the robots in the mission. However, all candidate solutions 
that are evaluated on the same instance will be provided with 
the same starting positions and orientations. If at one point 
a candidate solution is statistically worse than another one 
(determined by a Friedman test), it is discarded. By discard-
ing inferior solutions, Iterated F-race frees up the design 
budget for more promising solutions. The iteration ends if 
either the allocated budget for this iteration is exhausted or 
all but a fixed number of candidate solutions are discarded. 
The following iteration then samples its set of candidate 
solutions around the elites of the previous iteration and 
continues the race until the remaining budget is too small to 
conduct another iteration.
Cedrata-GP and Cedrata-GE use the same ref-

erence model, modules and architecture as Cedrata. 
They differ only in the optimization algorithm employed. 
Cedrata-GP uses genetic programming [37] as the 

Fig. 1  The possible behavior tree structure for Cedrata. In 
Cedrata, the top-level node can be any control-flow node. Under-
neath it the tree can have between one and three nodes, chosen among 
control-flow nodes, action nodes and condition nodes. If a control-
flow node is chosen, then it can have between one and three children, 
which are either action nodes or condition nodes
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optimization algorithm. The parameters of this design 
method are those used in the work of Jones et al. [48] and 
summarized in Table 4. We use the genetic programming 
implementation of the DEAP library [55]. Cedrata-GE 
uses grammatical evolution [38] as the optimization algo-
rithm. The parameters of this design method are those used 
in the work of Neupane and Goodrich [50] and summarized 
in Table 4. We use the grammatical evolution implementa-
tion of PonyGE2 [56].

Design Process

In the context of fully automatic design [10, 13], the design 
process generates control software without any human inter-
vention (besides the mission specification). Once the mis-
sion and the experimental protocol are specified, the design 
process generates the control software for the robots using 
simulations to determine the performance of candidate solu-
tions. The design process is free to choose the structure, the 
modules and the parameters of the modules within the con-
straints described in sections “Modules” and “Architecture”.

One parameter of the experimental protocol is the design 
budget. The design budget poses an upper limit on the num-
ber of simulations that the design process can run before 
the final instance of control software is returned. It serves 
a similar role as limiting the computation time available to 
the design process, while being independent of the compu-
tational hardware.

Experimental Setup

In this work, we test Cedrata and related design methods 
on a set of two missions. The experimental setup is equiva-
lent to the one described in Ref. [35], but we describe it 
again for the convenience of the reader. All code and data is 
available from the supplementary material [57].

Missions

We consider two missions: Marker aggregation and Stop. 
These missions must be performed in a dodecagonal arena 
(see Fig. 2) and last 250s.

In the mission Marker aggregation (see Fig. 2a), the 
robots must aggregate within the dotted area. The area 
itself is not perceivable by the robots. Instead, a black spot 
is placed in the middle of the aggregation area that can serve 
as a marker. The objective function for this mission is the 
cumulative time that the robots spend within the aggregation 
area: FMA =

∑2500

i=0
Ni
A
 , where Ni

A
 is the number of robots 

in the aggregation area at time step i. The higher the score 
of the objective function, the better the robots perform the 
mission.

In the mission Stop (see Fig. 2b), the robots must find a 
white spot and then stop as soon as possible. A robot is 
considered moving, if it has travelled more than 5 mm in the 
last time step. The objective function for this mission is 
reduced for each robot that is not moving at any given time step 
before the white spot has been found and for each robot that is 
moving after the white spot has been found and additionally 
for the time that the swarm needed to discover the white spot: 
FStop = 100000 −

�

t̄N +
∑t̄

t=1

∑N

i=1
Īi(t) +

∑2500

t̄

∑N

i=1
Ii(t)

�

 , 

Table 4  Parameters for genetic 
programming and grammatical 
evolution

Parameters for genetic programming are those used in the work of Jones et  al. [48] and parameters for 
grammatical evolution are those used in the work of Neupane and Goodrich [50]

Parameter Genetic programming Grammatical evolution

Initialization Half-and-half Uniform_tree
Selection strategy Tournament selection Truncation
Tournament size 3 –
Selection proportion – 50%
Crossover One-point crossover One-point crossover
Population size 25 100
Number of elites 3 1
Crossover probability 0.8 0.9
Uniform mutation probability 0.05 –
Shrink mutation probability 0.1 –
Node replacement mutation probability 0.5 –
Ephemeral mutation probability 0.5 –
Flip per codon mutation probability – 0.01
Codon size – 1000
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where t̄ is the time step during which the white spot was 
discovered, Ii(t) is an indicator that a robot i has moved in 
time step t and Īi(t) is an indicator that a robot i has not 
moved in time step t. The higher the score of the objective 
function, the better the robots perform the mission.

Design Methods

We consider Cedrata, as described in section “Auto-
MoDe-Cedrata”. As Cedrata had problems in produc-
ing communication-based strategies for the mission con-
sidered, we performed experiments with additional design 
methods: Cedrata-GP and Cedrata-GE. We also per-
formed several manual designs. For the manual designs, we 
asked human designers—with prior experience in swarm 
robotics, but not with behavior trees—to design control soft-
ware within the same constraints as Cedrata, that is, with 
the same modules and architecture. The human designers 
had access to the AutoMoDe Editor [58], a tool that allows 
the designers to visualize and manipulate the behavior trees 
and to launch simulations of the designed behavior tree. The 
human designers received feedback about their designed 
behavior tree through the objective function and a visual 
representation of the arena and the behavior of the swarm.

Lastly, we include a reference design as an additional 
point of reference for the reader. These reference designs are 
not part of the experimental protocol and have been designed 
by us. They are not optimized and do not aim to be the best 
performing solutions for each mission, but simply to provide 
a sensible solution. These designs serve to highlight par-
ticular strategies that we expected to be discovered in each 
mission. They were not known to the human designers prior 
to their manual designs.

Reference Designs

The reference design for the mission Marker aggregation 
is shown in Fig. 3a. In this design, robots explore the arena 

until they find the marker. Then, using the signal framework, 
they will attract their neighbors to the aggregation area. At 
any given time step, the tick traverses the three subtrees from 
left to right. The left subtree handles the case where the 
robot is on the marker. If the condition Black Floor evalu-
ates true, then the tick is passed on to the action node, which 
invokes the Emit Signal behavior. Since Emit Signal always 
returns success and the action node is the last child of the 
sequence node, this subtree then returns success as well. 
This will cause the selector node to also return success. If 
the condition Black Floor is not met, then the tick is passed 
into the middle subtree, which handles the case where the 
robot is on the grey floor and perceives at least one signaling 
neighbor. Here, if the condition Grey Floor is met, the robot 
executes on time step of the Meeting behavior. If Meeting 
returns success or running, then the tick will leave the tree. 
If either Meeting or Grey Floor return failure, then the tick 
is passed to the last subtree. This subtree only consists of an 
action node with the Exploration behavior.

The reference design for the mission Stop is shown in 
Fig. 3b. In this design, robots will send and forward sig-
nals to their neighbors to transmit the information that the 
white spot has been discovered. If a robot receives a signal, 
it stops; if it does not receive any signal, it explores the arena 
to find the white spot. At any given time step, the tick trav-
erses the three subtrees from left to right. The left subtree 
handles the case in which the robot is on the white spot. 
While the condition White Floor evaluates true, the robot 
executes the behavior Emit Signal to signal the other robots 
the discovery of the spot. If the condition White Floor was 
not met, then the tick is passed to the middle subtree that for-
wards received signals. If the condition Receiving Signal is 
met, then the tick will be passed to the Emit Signal behavior 
that emits the same signal as is checked for in the Receiving 
Signal condition. If the Receiving Signal condition is not 
met, then the tick is passed to the right subtree, which con-
sists only of an action node with the Exploration behavior.

Fig. 2  Layouts of the arena for the missions considered

Fig. 3  The reference designs for the two missions. The conditions 
and actions names have been abbreviated in the following way: Exp: 
Exploration; Meet: Meeting; ESig: Emit Signal; Bflr: Black Floor; 
Gflr: Grey Floor; Wflr: White Floor; RSig: Receiving Signal
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Protocol

For each mission, Cedrata is executed with different 
budgets: 20,000, 50,000, 100,000 and 200,000 simulation 
runs. The budget specifies the number of simulations that 
the design process is allowed to perform before it returns the 
best control software produced. Additionally, Cedrata-GP 
and Cedrata-GE are tested on a budget of 200,000 simu-
lation runs. For each combination of method, mission and 
budget, 10 independent runs of the methods are performed, 
leading to 10 instances of control software. The manual 
designs are done by four human designers per mission, with 
a maximum design duration of 4 h.

Simulations are performed in a realistic and physics-
based simulation environment, based on the ARGoS simula-
tor [59]. The simulated robots have a real world counter-part, 
and the simulator has been used in the past with this robotic 
platform and comparisons between simulated performance 
and real-world performance have been made. In accordance 
with the consensus in the literature, a realistic noise model 
is applied to the simulation (see Table 5). The generated 
instances of control software of all designs methods are 
assessed in pseudo-reality to investigate the impact of the 
reality gap. Ligot and Birattari [25] have shown that the 
effect of the reality gap can be mimicked in simulation-only 
environments by testing the control software with a different 
noise model than it was originally designed for.

Results

In this section, we describe the results obtained by the exper-
imental setup described in section “Experimental Setup”. 
In the supplementary material [57], we also include an 
extended study, where we include another method that is 
based on another reference model which provides us with 
some additional insights tangential to the work presented 
here. 

Figure 4 shows the results for the missions Stop and 
Marker aggregation. Results are shown for both the per-
formance in simulation and pseudo-reality. Each box in the 
box plot represents the performances of the final instances 
of control software generated by the independent runs of the 
design methods.

Figure 4a shows the development of the performance 
of Cedrata in the mission Marker aggregation. There 
is a clear trend of increasing performance with increasing 
budget. A detailed investigation of the generated control 
software reveals that Cedrata develops two general solu-
tion strategies: one strategy is based on the communication 
framework, while the other is not. In the communication-less 
strategy (for an example, see Fig. 5a), the robots explore 
the arena until they discover the black spot, at which point 

they usually stop. In the communication-based strategy (see 
Fig. 5b), however, the robots make use of the communica-
tion behaviors to quickly aggregate within the target area. 
The communication-based designs are similar in that regard 
to the reference design. The performance of Cedrata for 
each budget then seems to primarily depend on the ratio of 
the two strategies. Indeed, for design budgets of 20,000 and 
50,000 simulation runs, Cedrata only produces control 
software that uses the communication-less strategy. For a 
budget of 100,000 simulation runs, Cedrata produces 
a single solution that follows the communication-based 
strategy and for a budget of 200,000 simulation runs, four 
designs make use of that strategy. It appears that the ratio 
of communication-less to communication-based strategies 
depends on the available budget. Indeed, as the commu-
nication-based strategy requires at least two modules to 
interact correctly, Iterated F-race is more likely to discover 
such a combination the more often it samples new solutions, 
which depends on the number of iterations and therefore the 
budget.

In Fig. 4b, we can see the comparison of performances 
across all considered design methods. All manual design-
ers found solutions that make use of communication. Their 
control software performs similar well as the communica-
tion-based behavior trees generated by Cedrata and better 
than the reference design, which was not meant to be the 
best performing solution, but just to highlight the general 
strategy. The human designers were therefore not only able 
to discover the strategy but also to find a reasonable tuning 
for the parameter.
Cedrata-GP and Cedrata-GE both fail to generate 

any solution making use of the communication modules, 
even for a budget of 200,000 simulation runs. Interestingly, 
both design methods generate solutions that, under the right 
circumstances, perform nearly as good as the best instances 
of control software generated by Cedrata. However, this 
appears to be mostly due to the initial starting position favor-
ing quick aggregation within the target zone and in total 
both Cedrata-GP and Cedrata-GE perform worse than 
Cedrata.

Table 5  Design and pseudo-reality noise models

Sensor/actuator Design model Pseudo-
reality 
model

Proximity 0.05 0.05
Light 0.05 0.90
Ground 0.05 0.05
Range-and-bearing 0.85 0.90
Wheels 0.05 0.15
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Figure 4c shows the development of performance over 
budget for Cedrata in the mission Stop. Unlike in the 
mission Marker aggregation, there is no improvement 
for increasing budgets. Instead, the performance remains 
relatively stable. Investigation of the generated behavior 
trees reveals that Cedrata fails to make use of the com-
munication modules for this mission. All generated behav-
ior trees employ a strategy, where the robots are using the 

Isolation behavior (for an example, see Fig. 5c). As a result, 
the swarm expands and, with high probability, a robot passes 
over the white spot. At the end of the expansion phase, the 
robots slow down and move relatively little, often falling 
below the threshold of 5 mm per time step. Some behavior 
trees also include an Exploration module for cases when no 
neighbors are detected.

Fig. 4  Results for the mission 
Marker aggregation (top) and 
Stop (bottom). The left plots 
show the development of the 
performance over increasing 
budget for Cedrata. The right 
plots show the comparison of all 
design methods under consid-
eration for a budget of 200,000 
simulation runs. The thin plots 
present the results in simulation, 
the thick plots the results in 
pseudo-reality

Fig. 5  Typical behavior trees 
generated by Cedrata 
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Figure 4d displays a comparison of the performances of 
all design methods in the mission Stop. The manual designs, 
just like the reference design, make use of the communi-
cation framework and show the best performance. Both 
Cedrata-GP and Cedrata-GE find solutions that fol-
low the same Isolation-based strategy as Cedrata and 
achieve similar performances. For all design methods, there 
are some runs where the performance is relatively close to 
0. Often, in these runs, the control software fails to find the 
white spot.

We made some observations that hold for all considered 
missions: The first observation is that all design methods 
show a relatively small pseudo-reality gap. That is, they 
experience only a small drop in performance when assess-
ing the control software in pseudo-reality. We believe that 
this is a first indicator that Cedrata and the design meth-
ods based on it might transfer well into reality as well. A 
second observation is that all behavior trees generated by 
Cedrata, Cedrata-GP and Cedrata-GE contain 
many modules that will never be ticked by the behavior tree. 
We believe this to be because of the reduced restrictions in 
the architecture, which allow modules to be easily placed 
in the tree in a way that ensures they will never receive a 
tick. The design process has no explicit way of distinguish-
ing necessary and superfluous modules and all techniques 
that aim at generating new behavior trees (random sampling 
around elites, cross-overs, mutations) are therefore highly 
likely to transfer some of the superfluous modules into the 
newly generated behavior tree. This poses a challenge to 
the automatic design process. Namely, that the design pro-
cess will spend some resources on tuning these superflu-
ous modules, which have no influence on the behavior of 
the swarm, thus effectively wasting a part of the allocated 
budget. Lastly, we observed that the automatic design pro-
cess had difficulties generating communication-based behav-
iors. In both missions, Marker aggregation and Stop, the 
human designers found well performing solutions that made 
use of the communication framework. Only in the mission 
Marker aggregation was Cedrata able to generate at 
least a few solutions following a similar strategy. Our initial 
hypothesis was that this might have been caused by some 
properties of the underlying optimization algorithm, Iterated 
F-race. We have therefore replaced Iterated F-race with two 
different optimization algorithms, whose parametrization we 
have taken from other works in the swarm robotics litera-
ture. Unfortunately, both Cedrata-GP and Cedrata-GE 
appeared to have even greater difficulties generating com-
munication-based behaviors than Cedrata. We believe that 
this could be due to the fact that communication requires two 
corresponding modules, a sender and a receiver, while all 
other strategies can rely on a single module.

Conclusion

In this work, we have extended AutoMoDe-Cedrata, by 
implementing two variants Cedrata-GP and Cedrata-
GE, based on genetic programming and grammatical evo-
lution. We have investigated the performance of these 
automatic design methods over a set of two missions and 
compared them to solutions found by human designers, fol-
lowing the same constraints. The results generated by the 
human designers show that the modules and constraints of 
Cedrata are sensible, as the human designers were able 
to design control software that performed satisfactorily. 
Furthermore, as the human designers had no prior experi-
ence with behavior trees, this seems to be an indicator that 
behavior trees are an intuitive control architecture to design 
for. The automatic design method Cedrata, on the other 
hand, was not able to generate communication-based behav-
iors. We hypothesized that this might have been due to some 
property of the optimization algorithm Iterated F-race, and 
therefore we created Cedrata-GP and Cedrata-GE, 
two variants of Cedrata that are based on genetic pro-
gramming and grammatical evolution, respectively. Neither 
of these two variants was able to generate communication-
based strategies either.

For future work, we would like to investigate in more 
detail how an automatic design process can discover 
meaningful communication-based strategies and why the 
approach taken in this work failed. The results of this work 
indicate that simply tuning the parameters of an optimiza-
tion algorithm would probably not be enough. Nevertheless 
it would be interesting to investigate the effects of differ-
ent parameters on the performance of generated solutions, 
especially with respect to the exploration-exploitation trade-
off. Another issue for investigation could be the mapping of 
behavior trees into representations that can be manipulated 
by the genetic programming and grammatical evolution 
implementations. One possible approach to create commu-
nication-based behaviors could be to create an interleaved 
optimization process. Starting from a minimal communi-
cating solution, we alternate between fixing the sending or 
the receiving part of the behavior tree and optimizing the 
remaining part of the tree. Another approach to solve this 
problem could be cooperative co-evolution. We could pos-
sibly create two distinct populations that are given a sending 
or receiving module, respectively. This ensures the existence 
of communication from the starting population. Subsequent 
generations could then refine the communication protocol 
and integrate it with the other modules. Additionally, the 
results presented here showed that Cedrata and its vari-
ants were able to perform satisfactorily also in pseudo-real-
ity. While this is an indicator that the design approaches 
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might cross the reality gap well, we would like to confirm 
this hypothesis by performing real robot experiments.
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