
Vol.:(0123456789)

SN Computer Science (2022) 3:136
https://doi.org/10.1007/s42979-021-00988-9

SN Computer Science

ORIGINAL RESEARCH

AutoMoDe‑Cedrata: Automatic Design of Behavior Trees
for Controlling a Swarm of Robots with Communication Capabilities

Jonas Kuckling1 · Vincent van Pelt1 · Mauro Birattari1

Received: 23 July 2021 / Accepted: 5 December 2021 / Published online: 20 January 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Behavior trees are a control architecture that has gained recent attention in AI and robotics. Previous research on the use of
behavior trees in swarm robotics has shown the necessity for the behaviors to have proper return values, instead of running
indefinitely. This work extends our previous work in which we defined AutoMoDe-Cedrata, an automatic modular design
that makes use of modules that have been explicitly defined for behavior trees. While the search space is sufficiently large to
include well-performing solutions, Cedrata had problems discovering communication-based strategies. In this work, we
extend Cedrata by introducing Cedrata-GP and Cedrata-GE which are based on genetic programming and gram-
matical evolution, respectively. We test these design methods on two missions and compare the performance of the automatic
design methods against the performance of solutions created by human designers. The results show that the structure of
Cedrata allows for well-performing solutions that are reliably found by human designers. However, the automatic design
methods fail to discover the same communication strategies as the human designers.

Keywords Swarm robotics · Design by optimization · AutoMoDe · Genetic programming · Grammatical evolution

Introduction

Swarm robotics is a research area that combines robotics
and swarm intelligence, and that is recognized as a promis-
ing approach for controlling large groups of robots [1–11].
Robot swarms are self-organizing decentralized systems,
consisting of relatively simple robots that cooperate to
achieve a goal that would not be achievable for each individ-
ual robot alone. The collective behavior of the robot swarm
emerges from the interactions between the robots themselves
and between the robots and the environment [12]. One chal-
lenge of swarm robotics is the difficulty of designing control
software for the individual robots, so that the desired collec-
tive behavior emerges [13].

One approach to the design of control software for robot
swarms is manual design, in which a human designer cre-
ates the control software. However, only few and limited
principled approaches to manual design exist [14–22] and
no general methodology has yet been proposed. As a result,
most manual design approaches rely on trial and error, a
time-consuming, costly, and often error-prone strategy [23,
24].

Other approaches rely on the use of an optimization algo-
rithm and can be broadly categorized into two categories:
semi-automatic design and fully automatic design (although
hybrid approaches exist) [10]. In semi-automatic design, a
human designer uses an optimization algorithm as a tool
to design the control software. The designer specifies the
problem and defines the parameters of the optimization algo-
rithm. They observe the optimization process and adjust the
problem specification or the parameters of the optimization
algorithm until the result is satisfactory. While the semi-
automatic approach alleviates some drawbacks of manual
design, the involvement of a human designer still entails
similar challenges: as long as no general principled approach
exists, much of the performance depends on the experience
and domain knowledge of the human designer.

This article is part of the topical collection “Applications of
bioinspired computing (to real world problems)” guest edited by
Aniko Ekart, Pedro Castillo and Juanlu Jiménez-Laredo”.

 * Jonas Kuckling
 jonas.kuckling@ulb.be

 Mauro Birattari
 mbiro@ulb.ac.be

1 IRIDIA, Université libre de Bruxelles, Brussels, Belgium

http://orcid.org/0000-0003-2391-2275
http://orcid.org/0000-0002-2880-6650
http://orcid.org/0000-0003-3309-2194
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00988-9&domain=pdf

 SN Computer Science (2022) 3:136136 Page 2 of 13

SN Computer Science

In contrast, in fully automatic design, the role of the
human designer is reduced to the problem specification.
After receiving the problem specification, the fully auto-
matic design process searches for a satisfactory solution
without any further human intervention [10]. This lack of
human intervention also implies that no mission-specific
domain knowledge can be incorporated into the design pro-
cess. Indeed, any fully automatic design method needs to
be able to address not only a single mission, but a class of
missions [13].

Fully automatic design often produces the control soft-
ware off-line, i.e., the software is designed using simulations
and only the final resulting control software is uploaded
onto the real robots for evaluation. While this approach
offers many advantages, like speeding up the design pro-
cess through faster-than-real-time simulations and paral-
lelization of simulation processes and no need for hardware
availability for the design process, it suffers from one major
drawback, the reality gap. The reality gap is the inherent dif-
ference between the simulation and the real environment and
often manifests itself in the form of a performance drop [25].
Not all methods are affected equally by the reality gap [25].

Francesca et al. proposed to look at the reality gap prob-
lem akin to the bias-variance trade-off [26]. They hypoth-
esized that design methods with a very large and fine-
grained action space (“low bias”) are more prone to overfit
the simulation context (“high variance”). By restricting the
space of possible behaviors (“introducing bias”), it should
be possible to produce software that is more robust to the
reality gap. Based on this hypothesis, they proposed Auto-
MoDe, a class of automatic modular design methods. In
automatic modular design, a set of pre-defined modules is
assembled and fine-tuned into more complex control soft-
ware by an optimization algorithm. The first method of this
class is Vanilla, an automatic modular design approach
that crosses the reality gap satisfactorily [26]. Chocolate
extends Vanilla by using Iterated F-race [27] as the opti-
mization algorithm to assemble a finite-state machine with
up to four states and sixteen transitions from a set of six
behavioral modules (mapped to the states of the finite-state
machine) and six conditions (mapped to the transitions of
the finite-state machine) [28]. Other AutoMoDe methods
vary or extend the capabilities of Chocolate. Gianduja
[29], TuttiFrutti [30], or Arlequin [31] introduce
new software modules, that extend the capabilities of the
robotic platform, e.g., by enabling direct communication,
color detection or the use of artificial pheromones. Waffle
[32] allows the design process not only to control aspects of
the control software but also of the hardware capabilities of
the robot. IcePop [33] investigates the use of local search-
based optimization algorithms. Maple [34] and Cedrata
[35] are design methods that use behavior trees [36] as the
target architecture.

The work presented in this paper extends [35], which
introduced Cedrata. Our previous work showed that the
modules and architecture of Cedrata allowed for well-per-
forming solutions, but the optimization algorithm (Iterated
F-race) had problems finding these solutions. In this work,
we investigate additionally the use of two other optimization
algorithms, namely genetic programming [37] and gram-
matical evolution [38]. In Table 1 we list the abbreviations
used in this paper.

Related Work

Behavior trees are a control architecture that originates from
video games [39], but which since has found applications in
fields such as artificial intelligence or robotics [40]. In this
work, we follow the behavior tree definition of Marzinotto
et al. [36].

In this framework, behavior trees are a control architec-
ture whose structure can be described as a directed acyclic
graph and that operate on a tick that is created with a fixed
frequency ftick by an implicitly defined root node. Every time
a tick is generated, it traverses the tree, activating the nodes
that it visits. The inner nodes of the tree are called control-
flow nodes and control the way that the tick takes through
the tree. The leaf nodes can be either an action node that
executes a single time step of a behavior or a condition node
that checks a condition of the environment.

Table 1 Abbreviations and symbols used in this paper

Abbreviation Meaning

? Selector node
→ Sequence node
?∗ Selector* node
→

∗ Sequence* node
GP Genetic programming
GE Grammatical evolution
Exp Exploration behavior
Stop Stop behavior
Group Grouping behavior
Isol Isolation behavior
Meet Meeting behavior
Ack Acknowledgement behavior
ESig Emit Signal behavior
Bflr Black Floor condition
Gflr Grey Floor condition
Wflr White Floor condition
Ngb Neighborhood Count condition
INgb Inverted Neighborhood Count condition
FP Fixed Probability condition
RSig Receiving Signal condition

SN Computer Science (2022) 3:136 Page 3 of 13 136

SN Computer Science

After activating, each node in a behavior tree returns the
tick to its parent along with one of three possible return
values (success, failure, running) that determine the further
way that the tick takes through the tree. Condition nodes can
return success or failure, depending on whether their associ-
ated condition is met. Action nodes usually return running,
success or failure, if the action takes longer than one time
step or if the robot is in a state that can be classified as suc-
cess or failure with regard to the associated action or behav-
ior. The control-flow nodes receive the return value of one of
their children nodes and determine if they either pass the tick
to another child or to its parent, together with a return value.
In this work, we consider the following control-flow nodes:
selector (?), sequence (→), selector* (?∗), sequence* (→∗).
For a detailed and formal definition of all nodes, see [36].

Ligot et al. [34] have proposed Maple, an automatic
modular design method that assembles modules into a
restricted behavior tree architecture. Maple utilizes the
same modules as Chocolate [28]. As these modules have
originally been conceived for finite-state machine, they do
not offer any states that could be characterized as success or
failure and can therefore only return running. The authors
propose a very restricted architecture that can successfully
incorporate these modules. Results showed that Maple
could produce solutions that performed adequately, but that
the architecture limited the space of possible solutions and
that some well-performing solutions found by Chocolate
could not be represented within the restricted architecture
of Maple. This work highlighted the need for modules that
have proper return values. Communication-based behaviors
have been used in many works in swarm robotics, for exam-
ple [41–47]. With Gianduja, Hasselmann et al. [29] were
able to show that an automatic design process can automati-
cally assign a semantic to messages that do not have mean-
ing a priori.

Other works that have applied behavior trees to swarm
robots include the works by Jones et al. [48, 49]. In Ref. [48],
Jones et al. evolved behavior trees for a swarm of kilobots.

In that work, the authors defined only atomic actions that
are executed for a single tick and then always return suc-
cess. This necessitates the inclusion of a repeat node that
can repeatedly tick its children, allowing these actions to
be executed more than once consecutively. In another work,
Jones et al. evolved behavior trees onboard of a swarm of
Xpucks [49]. The actions in these behavior trees are also
atomic, as they perform a singular write to the blackboard.
For the onboard evolution, however, each robot performs a
design process using genetic programming to create behav-
ior trees. At regular intervals, the best performing behavior
tree is selected as the current control software for the robot.
Another approach to the design of control software in the
context of swarm robotics was proposed by Neupane and
Goodrich [50]. They used distributed grammatical evolution
to design behavior trees for a swarm of simulated robots.

GESwarm is another design approach that uses gram-
matical evolution [51]. In that work, the authors proposed an
automatic design method that can design a foraging behav-
ior for a swarm of footbot robots. The control software is
represented as a set of policies that map conditions and the
current behavior to actions of the robot. The behaviors that
the robot can select exhibit similar properties as the behav-
iors of Chocolate, namely that they are simple and can
run potentially endlessly, without any implicit success or
failure states.

AutoMoDe‑Cedrata

Originally, we presented Cedrata in Ref. [35]. For the
convenience of the reader, we describe again the method
here.

Reference Model

The reference model RM2.2, on which Cedrata is based,
is shown in Table 2 [52]. The robot is equipped with eight
proximity sensors, three ground sensors and one range-and-
bearing board for sensing and two sets of actuators: the
range-and-bearing board to send messages and two wheels
with differential drive. The reference model formalizes the
way that the control software has access to these sensors and
actuators. The proximity sensors can detect obstacles up to
30cm away, the ground sensors can sense the floor color on
a grey scale and the range-and-bearing board can transmit
messages up to 50cm . The control software can set the speed
of the two wheels of the robot independently. It also always
sends a signal value s, that can be equal to 0, which is a spe-
cial value that means no signal and that is sent by default,
or an integer in {1, ..., 6} . Similar to Ref. [29], signal values
do not have a particular semantic, instead, it is the role of

Table 2 The E-puck reference model RM2.2 used in Cedrata [52]

Control cycle period: 100ms

Sensors Variables

Proximity prox ∈ [1, 8] , ∠q ∈ [0, 2�]

Ground gnd ∈ {0, 0.5, 1}

Range-and-bearing n ∈ ℕ , r ∈ [0.5, 20] , ∠b ∈ [0, 2�]

ns , rs , ∠bs , for s ∈ {1, ..., 6}

 Actuators Variables

Signal broadcast s ∈ {0, 1, ..., 6}

Wheels vl, vr ∈ [−v, v] , with v = 0.16m∕s

 SN Computer Science (2022) 3:136136 Page 4 of 13

SN Computer Science

the design process to assign semantics to the signals. For the
sensors, the reference model provides an aggregated vector
(in the form of magnitude and direction) over all proximity
readings and a single aggregated ground reading. The refer-
ence model also provides access to the number of neighbor-
ing robots n and a vector to their center of mass. Similarly,
it provides the number of messaging robots and a vector to
the center of mass of the messaging robots, for each sig-
nal s ∈ S . The control cycle period is 100ms , that is, every
100ms the sensors are updated and the control software is
invoked, generating a new tick in the behavior tree.

Modules

Based on the reference model RM2.2, we defined fourteen
modules—seven behavior modules and seven condition
modules (see Table 3). In the following descriptions of the
signal-based conditions and behaviors, the set of signals
{1, ..., 6} will be denoted S. Some modules can use a spe-
cial value any that is activated if any of the signals in S is
received. The set S∗ = S ∪ {any} will denote the sets used
by these modules. The design process is free to choose sev-
eral instances of the same module in an instance of control
software and can tune the parameters independently for each
instance of a module.

Behaviors are associated to action nodes and allow the
robot to interact with the environment. The action nodes
can return success or failure if the behavior ends in a state
that it considers being a success or a failure. Otherwise, they
return running. The behavior modules are defined as follows:

Exploration The robot performs a random walk. It
moves straight until it perceives an obstacle in front of
itself. Then the robot turns on the spot for a random
number of time steps in {0, ..., �} , where � ∈ {1, ..., 100}
is a tunable parameter. This behavior always returns run-
ning.

Stop The robot stays still. This behavior always returns
running.

Grouping The robot tries to get closer to its neigh-
bors by moving towards the geometric center of its
neighbors. If the number of neighbors becomes greater
than Nmax , the behavior returns success, where Nmax is a
tunable parameter. If the number of neighbors becomes
smaller than Nmin , the behavior returns failure, where
Nmin is a tunable parameter. Otherwise, it returns run-
ning. The speed of convergence is controlled by the tun-
able parameter � ∈ [1, 5] . The robot moves in the direc-
tion w = w� − kw0 , where w′ is the target component
and kw0 is the obstacle avoidance component. If robots
are perceived, then w� = wr&b = (� ⋅ r,∠b) , otherwise
w� = (1,∠0) . kw0 is the obstacle avoidance component,
with k being a constant fixed to 5 and w0 defined as
w0 = (prox,∠q).

Isolation The robot tries to move away from its neighbors by
moving in the opposite direction of the geometric center
of its neighbors. If the number of neighbors becomes
smaller than Nmin , the behavior returns success, where
Nmin is a tunable parameter. If the number of neighbors
becomes greater than Nmax , the behavior returns fail-
ure, where Nmax is a tunable parameter. Otherwise, it
returns running. The speed of divergence is controlled
by the tunable parameter � ∈ [1, 5] . The Isolation behav-
ior uses the same embedded collision avoidance as in
Grouping, but with w′ defined as: w� = −wr&b if robots
are perceived, where wr&b is defined as in the Grouping
behavior. Otherwise w� = (1,∠0).

Meeting The robot listens for a signal s ∈ S∗ emitted by other
robots and moves towards the geometrical centre of the
emitters. The behavior returns success if the distance
between the robot and the geometrical centre is smaller
than a distance dmin , where dmin is a tunable parameter.
The behavior returns failure if the robot does not per-
ceive any robot sending the expected signal. Otherwise,
the behavior returns running. The Meeting behavior uses
the same embedded collision avoidance as in Grouping,
but with w′ defined as: w� = wr&b = (� ⋅ rs,∠bs) if robots
emitting s are perceived. Otherwise w� = (1,∠0).

Acknowledgement The robot sends a signal s ∈ S
and waits for an answer in the form of the same signal,
where s is a tunable parameter. The behavior returns
success if the signal is received or running if not. After
tmax ticks, the behavior returns failure if the signal is

Table 3 Behavior and condition modules and their parameters used in
Cedrata

Behavior Short Parameters

Exploration Exp �

Stop Stop
Grouping Group Nmax , Nmin , �
Isolation Isol Nmax , Nmin , �
Meeting Meet s, dmin
Acknowledgement Ack s, tmax
Emit Signal ESig s

 Condition Short Parameters

Black Floor Bflr �

Grey Floor Gflr �

White Floor Wflr �

Neighborhood Count Ngb � , �
Inverted Neighbor-

hood Count
INgb � , �

Fixed probability FP �

Receiving signal RSig s

SN Computer Science (2022) 3:136 Page 5 of 13 136

SN Computer Science

still not received, where tmax is a tunable parameter. This
behavior also sets the velocity of both wheels to zero.

Emit Signal The robot sets its emitted signal to s ∈ S
for the current tick, where s is a tunable parameter. This
behavior always returns success. This behavior also sets
the wheel velocity to zero.

Conditions are associated to condition nodes and check an
aspect of the environment. The condition nodes return suc-
cess, when their condition is met, or failure, otherwise. The
condition modules are defined as follows:

Black Floor When all ground sensors detect a black
floor, the condition returns success with probability � ,
where � is a tunable parameter.

Grey Floor When all ground sensors detect a grey
floor, the condition returns success with probability � ,
where � is a tunable parameter.

White Floor When all ground sensors detect a white
floor, the transition is enabled with probability � , where
� is a tunable parameter.

Neighborhood Count Returns success with probability
z(n) =

1

1+e�(�−n)
 where n is the number of robots in the

neighborhood, � ∈ [0, 20] and � ∈ {0, 1, ..., 10} are tun-
able parameters.

Inverted Neighborhood Count Same as Neighborhood
Count but with probability 1 − z(n).

Fixed Probability Returns success with probability � , where
� is a tunable parameter.

Receiving Signal Returns success if the robot has perceived
a neighbor sending s ∈ S∗ in the last 10 ticks, where s is
a tunable parameter.

Architecture

In Cedrata, the optimization process can create a tree
that has a maximum of three levels and a maximum of
three children per node. The top-level node must be a con-
trol-flow node. Nodes of the second level can be control-
flow nodes, action nodes or condition nodes. If it is an
action node or a condition node, then the node can have no
children itself. Not all branches are forced to have the same
depth: the top-level node could have some children that are
control-flow nodes and some that are action or condition
nodes. Nodes on the third level can only be action nodes or
condition nodes. The structure of such trees is depicted in
Fig. 1. The optimization process can choose any control-
flow node type to be either a sequence, sequence*, selector
or selector* node. For a formal definition of these nodes,
see Marzinotto et al. [36]. Prior research has shown that
high complexity in automatic design methods can increase

the difficulties in crossing the reality gap [11, 26, 28]. To
match the complexity of other AutoMoDe methods [53],
the tree may have at most four action nodes and four condi-
tion nodes. The constraints on the depth and on the num-
ber of children implicitly impose that the tree contains no
more than four control nodes.

Optimization Algorithm

The optimization algorithm of Cedrata is Iterated F-race
[27]. Iterated F-race works over several iterations, each remi-
niscent of a race [54]. In each iteration, Iterated F-race sam-
ples a set of candidate solutions. The first iteration samples
randomly from all possible candidate solutions, subsequent
iterations sample around the survivors of the preceding one.
In the context of Cedrata, these candidate solutions are
representations of behavior trees according to the constraints
described in the previous sections. These candidate solutions
are evaluated incrementally over an increasing number of
instances. In the case of Cedrata, each instance is equiva-
lent to different (random) starting positions and orientations
of the robots in the mission. However, all candidate solutions
that are evaluated on the same instance will be provided with
the same starting positions and orientations. If at one point
a candidate solution is statistically worse than another one
(determined by a Friedman test), it is discarded. By discard-
ing inferior solutions, Iterated F-race frees up the design
budget for more promising solutions. The iteration ends if
either the allocated budget for this iteration is exhausted or
all but a fixed number of candidate solutions are discarded.
The following iteration then samples its set of candidate
solutions around the elites of the previous iteration and
continues the race until the remaining budget is too small to
conduct another iteration.
Cedrata-GP and Cedrata-GE use the same ref-

erence model, modules and architecture as Cedrata.
They differ only in the optimization algorithm employed.
Cedrata-GP uses genetic programming [37] as the

Fig. 1 The possible behavior tree structure for Cedrata. In
Cedrata, the top-level node can be any control-flow node. Under-
neath it the tree can have between one and three nodes, chosen among
control-flow nodes, action nodes and condition nodes. If a control-
flow node is chosen, then it can have between one and three children,
which are either action nodes or condition nodes

 SN Computer Science (2022) 3:136136 Page 6 of 13

SN Computer Science

optimization algorithm. The parameters of this design
method are those used in the work of Jones et al. [48] and
summarized in Table 4. We use the genetic programming
implementation of the DEAP library [55]. Cedrata-GE
uses grammatical evolution [38] as the optimization algo-
rithm. The parameters of this design method are those used
in the work of Neupane and Goodrich [50] and summarized
in Table 4. We use the grammatical evolution implementa-
tion of PonyGE2 [56].

Design Process

In the context of fully automatic design [10, 13], the design
process generates control software without any human inter-
vention (besides the mission specification). Once the mis-
sion and the experimental protocol are specified, the design
process generates the control software for the robots using
simulations to determine the performance of candidate solu-
tions. The design process is free to choose the structure, the
modules and the parameters of the modules within the con-
straints described in sections “Modules” and “Architecture”.

One parameter of the experimental protocol is the design
budget. The design budget poses an upper limit on the num-
ber of simulations that the design process can run before
the final instance of control software is returned. It serves
a similar role as limiting the computation time available to
the design process, while being independent of the compu-
tational hardware.

Experimental Setup

In this work, we test Cedrata and related design methods
on a set of two missions. The experimental setup is equiva-
lent to the one described in Ref. [35], but we describe it
again for the convenience of the reader. All code and data is
available from the supplementary material [57].

Missions

We consider two missions: Marker aggregation and Stop.
These missions must be performed in a dodecagonal arena
(see Fig. 2) and last 250s.

In the mission Marker aggregation (see Fig. 2a), the
robots must aggregate within the dotted area. The area
itself is not perceivable by the robots. Instead, a black spot
is placed in the middle of the aggregation area that can serve
as a marker. The objective function for this mission is the
cumulative time that the robots spend within the aggregation
area: FMA =

∑2500

i=0
Ni
A
 , where Ni

A
 is the number of robots

in the aggregation area at time step i. The higher the score
of the objective function, the better the robots perform the
mission.

In the mission Stop (see Fig. 2b), the robots must find a
white spot and then stop as soon as possible. A robot is
considered moving, if it has travelled more than 5 mm in the
last time step. The objective function for this mission is
reduced for each robot that is not moving at any given time step
before the white spot has been found and for each robot that is
moving after the white spot has been found and additionally
for the time that the swarm needed to discover the white spot:
FStop = 100000 −

�

t̄N +
∑t̄

t=1

∑N

i=1
Īi(t) +

∑2500

t̄

∑N

i=1
Ii(t)

�

 ,

Table 4 Parameters for genetic
programming and grammatical
evolution

Parameters for genetic programming are those used in the work of Jones et al. [48] and parameters for
grammatical evolution are those used in the work of Neupane and Goodrich [50]

Parameter Genetic programming Grammatical evolution

Initialization Half-and-half Uniform_tree
Selection strategy Tournament selection Truncation
Tournament size 3 –
Selection proportion – 50%
Crossover One-point crossover One-point crossover
Population size 25 100
Number of elites 3 1
Crossover probability 0.8 0.9
Uniform mutation probability 0.05 –
Shrink mutation probability 0.1 –
Node replacement mutation probability 0.5 –
Ephemeral mutation probability 0.5 –
Flip per codon mutation probability – 0.01
Codon size – 1000

SN Computer Science (2022) 3:136 Page 7 of 13 136

SN Computer Science

where t̄ is the time step during which the white spot was
discovered, Ii(t) is an indicator that a robot i has moved in
time step t and Īi(t) is an indicator that a robot i has not
moved in time step t. The higher the score of the objective
function, the better the robots perform the mission.

Design Methods

We consider Cedrata, as described in section “Auto-
MoDe-Cedrata”. As Cedrata had problems in produc-
ing communication-based strategies for the mission con-
sidered, we performed experiments with additional design
methods: Cedrata-GP and Cedrata-GE. We also per-
formed several manual designs. For the manual designs, we
asked human designers—with prior experience in swarm
robotics, but not with behavior trees—to design control soft-
ware within the same constraints as Cedrata, that is, with
the same modules and architecture. The human designers
had access to the AutoMoDe Editor [58], a tool that allows
the designers to visualize and manipulate the behavior trees
and to launch simulations of the designed behavior tree. The
human designers received feedback about their designed
behavior tree through the objective function and a visual
representation of the arena and the behavior of the swarm.

Lastly, we include a reference design as an additional
point of reference for the reader. These reference designs are
not part of the experimental protocol and have been designed
by us. They are not optimized and do not aim to be the best
performing solutions for each mission, but simply to provide
a sensible solution. These designs serve to highlight par-
ticular strategies that we expected to be discovered in each
mission. They were not known to the human designers prior
to their manual designs.

Reference Designs

The reference design for the mission Marker aggregation
is shown in Fig. 3a. In this design, robots explore the arena

until they find the marker. Then, using the signal framework,
they will attract their neighbors to the aggregation area. At
any given time step, the tick traverses the three subtrees from
left to right. The left subtree handles the case where the
robot is on the marker. If the condition Black Floor evalu-
ates true, then the tick is passed on to the action node, which
invokes the Emit Signal behavior. Since Emit Signal always
returns success and the action node is the last child of the
sequence node, this subtree then returns success as well.
This will cause the selector node to also return success. If
the condition Black Floor is not met, then the tick is passed
into the middle subtree, which handles the case where the
robot is on the grey floor and perceives at least one signaling
neighbor. Here, if the condition Grey Floor is met, the robot
executes on time step of the Meeting behavior. If Meeting
returns success or running, then the tick will leave the tree.
If either Meeting or Grey Floor return failure, then the tick
is passed to the last subtree. This subtree only consists of an
action node with the Exploration behavior.

The reference design for the mission Stop is shown in
Fig. 3b. In this design, robots will send and forward sig-
nals to their neighbors to transmit the information that the
white spot has been discovered. If a robot receives a signal,
it stops; if it does not receive any signal, it explores the arena
to find the white spot. At any given time step, the tick trav-
erses the three subtrees from left to right. The left subtree
handles the case in which the robot is on the white spot.
While the condition White Floor evaluates true, the robot
executes the behavior Emit Signal to signal the other robots
the discovery of the spot. If the condition White Floor was
not met, then the tick is passed to the middle subtree that for-
wards received signals. If the condition Receiving Signal is
met, then the tick will be passed to the Emit Signal behavior
that emits the same signal as is checked for in the Receiving
Signal condition. If the Receiving Signal condition is not
met, then the tick is passed to the right subtree, which con-
sists only of an action node with the Exploration behavior.

Fig. 2 Layouts of the arena for the missions considered

Fig. 3 The reference designs for the two missions. The conditions
and actions names have been abbreviated in the following way: Exp:
Exploration; Meet: Meeting; ESig: Emit Signal; Bflr: Black Floor;
Gflr: Grey Floor; Wflr: White Floor; RSig: Receiving Signal

 SN Computer Science (2022) 3:136136 Page 8 of 13

SN Computer Science

Protocol

For each mission, Cedrata is executed with different
budgets: 20,000, 50,000, 100,000 and 200,000 simulation
runs. The budget specifies the number of simulations that
the design process is allowed to perform before it returns the
best control software produced. Additionally, Cedrata-GP
and Cedrata-GE are tested on a budget of 200,000 simu-
lation runs. For each combination of method, mission and
budget, 10 independent runs of the methods are performed,
leading to 10 instances of control software. The manual
designs are done by four human designers per mission, with
a maximum design duration of 4 h.

Simulations are performed in a realistic and physics-
based simulation environment, based on the ARGoS simula-
tor [59]. The simulated robots have a real world counter-part,
and the simulator has been used in the past with this robotic
platform and comparisons between simulated performance
and real-world performance have been made. In accordance
with the consensus in the literature, a realistic noise model
is applied to the simulation (see Table 5). The generated
instances of control software of all designs methods are
assessed in pseudo-reality to investigate the impact of the
reality gap. Ligot and Birattari [25] have shown that the
effect of the reality gap can be mimicked in simulation-only
environments by testing the control software with a different
noise model than it was originally designed for.

Results

In this section, we describe the results obtained by the exper-
imental setup described in section “Experimental Setup”.
In the supplementary material [57], we also include an
extended study, where we include another method that is
based on another reference model which provides us with
some additional insights tangential to the work presented
here.

Figure 4 shows the results for the missions Stop and
Marker aggregation. Results are shown for both the per-
formance in simulation and pseudo-reality. Each box in the
box plot represents the performances of the final instances
of control software generated by the independent runs of the
design methods.

Figure 4a shows the development of the performance
of Cedrata in the mission Marker aggregation. There
is a clear trend of increasing performance with increasing
budget. A detailed investigation of the generated control
software reveals that Cedrata develops two general solu-
tion strategies: one strategy is based on the communication
framework, while the other is not. In the communication-less
strategy (for an example, see Fig. 5a), the robots explore
the arena until they discover the black spot, at which point

they usually stop. In the communication-based strategy (see
Fig. 5b), however, the robots make use of the communica-
tion behaviors to quickly aggregate within the target area.
The communication-based designs are similar in that regard
to the reference design. The performance of Cedrata for
each budget then seems to primarily depend on the ratio of
the two strategies. Indeed, for design budgets of 20,000 and
50,000 simulation runs, Cedrata only produces control
software that uses the communication-less strategy. For a
budget of 100,000 simulation runs, Cedrata produces
a single solution that follows the communication-based
strategy and for a budget of 200,000 simulation runs, four
designs make use of that strategy. It appears that the ratio
of communication-less to communication-based strategies
depends on the available budget. Indeed, as the commu-
nication-based strategy requires at least two modules to
interact correctly, Iterated F-race is more likely to discover
such a combination the more often it samples new solutions,
which depends on the number of iterations and therefore the
budget.

In Fig. 4b, we can see the comparison of performances
across all considered design methods. All manual design-
ers found solutions that make use of communication. Their
control software performs similar well as the communica-
tion-based behavior trees generated by Cedrata and better
than the reference design, which was not meant to be the
best performing solution, but just to highlight the general
strategy. The human designers were therefore not only able
to discover the strategy but also to find a reasonable tuning
for the parameter.
Cedrata-GP and Cedrata-GE both fail to generate

any solution making use of the communication modules,
even for a budget of 200,000 simulation runs. Interestingly,
both design methods generate solutions that, under the right
circumstances, perform nearly as good as the best instances
of control software generated by Cedrata. However, this
appears to be mostly due to the initial starting position favor-
ing quick aggregation within the target zone and in total
both Cedrata-GP and Cedrata-GE perform worse than
Cedrata.

Table 5 Design and pseudo-reality noise models

Sensor/actuator Design model Pseudo-
reality
model

Proximity 0.05 0.05
Light 0.05 0.90
Ground 0.05 0.05
Range-and-bearing 0.85 0.90
Wheels 0.05 0.15

SN Computer Science (2022) 3:136 Page 9 of 13 136

SN Computer Science

Figure 4c shows the development of performance over
budget for Cedrata in the mission Stop. Unlike in the
mission Marker aggregation, there is no improvement
for increasing budgets. Instead, the performance remains
relatively stable. Investigation of the generated behavior
trees reveals that Cedrata fails to make use of the com-
munication modules for this mission. All generated behav-
ior trees employ a strategy, where the robots are using the

Isolation behavior (for an example, see Fig. 5c). As a result,
the swarm expands and, with high probability, a robot passes
over the white spot. At the end of the expansion phase, the
robots slow down and move relatively little, often falling
below the threshold of 5 mm per time step. Some behavior
trees also include an Exploration module for cases when no
neighbors are detected.

Fig. 4 Results for the mission
Marker aggregation (top) and
Stop (bottom). The left plots
show the development of the
performance over increasing
budget for Cedrata. The right
plots show the comparison of all
design methods under consid-
eration for a budget of 200,000
simulation runs. The thin plots
present the results in simulation,
the thick plots the results in
pseudo-reality

Fig. 5 Typical behavior trees
generated by Cedrata

 SN Computer Science (2022) 3:136136 Page 10 of 13

SN Computer Science

Figure 4d displays a comparison of the performances of
all design methods in the mission Stop. The manual designs,
just like the reference design, make use of the communi-
cation framework and show the best performance. Both
Cedrata-GP and Cedrata-GE find solutions that fol-
low the same Isolation-based strategy as Cedrata and
achieve similar performances. For all design methods, there
are some runs where the performance is relatively close to
0. Often, in these runs, the control software fails to find the
white spot.

We made some observations that hold for all considered
missions: The first observation is that all design methods
show a relatively small pseudo-reality gap. That is, they
experience only a small drop in performance when assess-
ing the control software in pseudo-reality. We believe that
this is a first indicator that Cedrata and the design meth-
ods based on it might transfer well into reality as well. A
second observation is that all behavior trees generated by
Cedrata, Cedrata-GP and Cedrata-GE contain
many modules that will never be ticked by the behavior tree.
We believe this to be because of the reduced restrictions in
the architecture, which allow modules to be easily placed
in the tree in a way that ensures they will never receive a
tick. The design process has no explicit way of distinguish-
ing necessary and superfluous modules and all techniques
that aim at generating new behavior trees (random sampling
around elites, cross-overs, mutations) are therefore highly
likely to transfer some of the superfluous modules into the
newly generated behavior tree. This poses a challenge to
the automatic design process. Namely, that the design pro-
cess will spend some resources on tuning these superflu-
ous modules, which have no influence on the behavior of
the swarm, thus effectively wasting a part of the allocated
budget. Lastly, we observed that the automatic design pro-
cess had difficulties generating communication-based behav-
iors. In both missions, Marker aggregation and Stop, the
human designers found well performing solutions that made
use of the communication framework. Only in the mission
Marker aggregation was Cedrata able to generate at
least a few solutions following a similar strategy. Our initial
hypothesis was that this might have been caused by some
properties of the underlying optimization algorithm, Iterated
F-race. We have therefore replaced Iterated F-race with two
different optimization algorithms, whose parametrization we
have taken from other works in the swarm robotics litera-
ture. Unfortunately, both Cedrata-GP and Cedrata-GE
appeared to have even greater difficulties generating com-
munication-based behaviors than Cedrata. We believe that
this could be due to the fact that communication requires two
corresponding modules, a sender and a receiver, while all
other strategies can rely on a single module.

Conclusion

In this work, we have extended AutoMoDe-Cedrata, by
implementing two variants Cedrata-GP and Cedrata-
GE, based on genetic programming and grammatical evo-
lution. We have investigated the performance of these
automatic design methods over a set of two missions and
compared them to solutions found by human designers, fol-
lowing the same constraints. The results generated by the
human designers show that the modules and constraints of
Cedrata are sensible, as the human designers were able
to design control software that performed satisfactorily.
Furthermore, as the human designers had no prior experi-
ence with behavior trees, this seems to be an indicator that
behavior trees are an intuitive control architecture to design
for. The automatic design method Cedrata, on the other
hand, was not able to generate communication-based behav-
iors. We hypothesized that this might have been due to some
property of the optimization algorithm Iterated F-race, and
therefore we created Cedrata-GP and Cedrata-GE,
two variants of Cedrata that are based on genetic pro-
gramming and grammatical evolution, respectively. Neither
of these two variants was able to generate communication-
based strategies either.

For future work, we would like to investigate in more
detail how an automatic design process can discover
meaningful communication-based strategies and why the
approach taken in this work failed. The results of this work
indicate that simply tuning the parameters of an optimiza-
tion algorithm would probably not be enough. Nevertheless
it would be interesting to investigate the effects of differ-
ent parameters on the performance of generated solutions,
especially with respect to the exploration-exploitation trade-
off. Another issue for investigation could be the mapping of
behavior trees into representations that can be manipulated
by the genetic programming and grammatical evolution
implementations. One possible approach to create commu-
nication-based behaviors could be to create an interleaved
optimization process. Starting from a minimal communi-
cating solution, we alternate between fixing the sending or
the receiving part of the behavior tree and optimizing the
remaining part of the tree. Another approach to solve this
problem could be cooperative co-evolution. We could pos-
sibly create two distinct populations that are given a sending
or receiving module, respectively. This ensures the existence
of communication from the starting population. Subsequent
generations could then refine the communication protocol
and integrate it with the other modules. Additionally, the
results presented here showed that Cedrata and its vari-
ants were able to perform satisfactorily also in pseudo-real-
ity. While this is an indicator that the design approaches

SN Computer Science (2022) 3:136 Page 11 of 13 136

SN Computer Science

might cross the reality gap well, we would like to confirm
this hypothesis by performing real robot experiments.

Acknowledgements The authors would like to thank João Correia,
David Garzón Ramos, Miquel Kegeleirs, Fernando Mendiburu, and
Federico Pagnozzi for their participation in the experiments. The pro-
ject has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
programme (DEMIURGE Project, grant agreement No 681872); from
Belgium’s Wallonia-Brussels Federation through the ARC Advanced
Project GbO–Guaranteed by Optimization; and from the Belgian Fonds
de la Recherche Scientifique–FNRS via the crédit d’équippement
SwarmSim. JK and MB acknowledge support from the Belgian Fonds
de la Recherche Scientifique–FNRS.

Author contributions The experiments were designed and performed
by JK and VP. The paper was drafted by JK and edited by MB; all
authors read and commented the final version. The research was
directed by MB.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Rubenstein M, Cornejo A, Nagpal R. Programmable self-assem-
bly in a thousand-robot swarm. Science. 2014;345(6198):795–9.
https:// doi. org/ 10. 1126/ scien ce. 12542 95.

 2. Werfel J, Petersen K, Nagpal R. Designing collective behav-
ior in a termite-inspired robot construction team. Science.
2014;343(6172):754–8. https:// doi. org/ 10. 1126/ scien ce. 12458 42.

 3. Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L, Full
R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson
BJ, Scassellati B, Taddeo M, Taylor R, Veloso M, Wang ZL,
Wood R. The grand challenges of science robotics. Sci Robot.
2018;3(14):eaar7650. https:// doi. org/ 10. 1126/ sciro botics. aar76 50.

 4. Garattoni L, Birattari M. Autonomous task sequencing in a robot
swarm. Sci Robot. 2018;3(20):eaat0430. https:// doi. org/ 10. 1126/
sciro botics. aat04 30.

 5. Slavkov I, Carrillo-Zapata D, Carranza N, Diego X, Jansson F,
Kaandorp J, Hauert S, Sharpe J. Morphogenesis in robot swarms.
Sci Robot. 2018;3(25):eaau9178. https:// doi. org/ 10. 1126/ sciro bot-
ics. aau91 78.

 6. Yu J, Wang B, Du X, Wang Q, Zhang L. Ultra-extensible ribbon-
like magnetic microswarm. Nat Commun. 2018;9(1):3260. https://
doi. org/ 10. 1038/ s41467- 018- 05749-6.

 7. Li S, Batra R, Brown D, Chang HD, Ranganathan N, Hoberman C,
Rus D, Lipson H. Particle robotics based on statistical mechanics
of loosely coupled components. Nature. 2019;567(7748):361–5.
https:// doi. org/ 10. 1038/ s41586- 019- 1022-9.

 8. Xie H, Sun M, Fan X, Lin Z, Chen W, Wang L, Dong L, He
Q. Reconfigurable magnetic microrobot swarm: multimode
transformation, locomotion, and manipulation. Sci Robot.
2019;4(28):eaav8006. https:// doi. org/ 10. 1126/ sciro botics. aav80
06.

 9. Dorigo M, Theraulaz G, Trianni V. Reflections on the future of
swarm robotics. Sci Robot. 2020;5:eabe4385. https:// doi. org/ 10.
1126/ sciro botics. abe43 85.

 10. Birattari M, Ligot A, Hasselmann K. Disentangling automatic
and semi-automatic approaches to the optimization-based

design of control software for robot swarms. Nat Mach Intell.
2020;2(9):494–9. https:// doi. org/ 10. 1038/ s42256- 020- 0215-0.

 11. Hasselmann K, Ligot A, Ruddick J, Birattari M. Empirical
assessment and comparison of neuro-evolutionary methods for
the automatic off-line design of robot swarms. Nat Commun.
2021;12:4345. https:// doi. org/ 10. 1038/ s41467- 021- 24642-3.

 12. Dorigo M, Birattari M, Brambilla M. Swarm robotics. Scholarpe-
dia. 2014;9(1):1463. https:// doi. org/ 10. 4249/ schol arped ia. 1463.

 13. Birattari M, Ligot A, Bozhinoski D, Brambilla M, Francesca
G, Garattoni L, Garzón Ramos D, Hasselmann K, Kegeleirs M,
Kuckling J, Pagnozzi F, Roli A, Salman M, Stützle T. Automatic
off-line design of robot swarms: a manifesto. Front Robot AI.
2019;6:59. https:// doi. org/ 10. 3389/ frobt. 2019. 00059.

 14. Hamann H, Wörn H. A framework of space-time continuous
models for algorithm design in swarm robotics. Swarm Intell.
2008;2(2–4):209–39. https:// doi. org/ 10. 1007/ s11721- 008- 0015-3.

 15. Kazadi S. Model independence in swarm robotics. Int J Intell
Comput Cybern. 2009;2(4):672–94. https:// doi. org/ 10. 1108/
17563 78091 10058 36.

 16. Berman S, Kumar V, Nagpal R. Design of control policies for
spatially inhomogeneous robot swarms with application to com-
mercial pollination. In: 2011 IEEE international conference on
robotics and automation (ICRA). Piscataway: IEEE; 2011. pp.
378–385. https:// doi. org/ 10. 1109/ ICRA. 2011. 59804 40

 17. Beal J, Dulman S, Usbeck K, Viroli M, Correll N. Organizing the
aggregate: languages for spatial computing. In: Marjan M, editor.
Formal and practical aspects of domain-specific languages: recent
developments. Hershey: IGI Global; 2012. pp. 436–501. https://
doi. org/ 10. 4018/ 978-1- 4666- 2092-6. ch016

 18. Brambilla M, Brutschy A, Dorigo M, Birattari M. Property-driven
design for swarm robotics: a design method based on prescriptive
modeling and model checking. ACM Trans Auton Adapt Syst.
2014;9(4):17:1-17:28. https:// doi. org/ 10. 1145/ 27003 18.

 19. Reina A, Valentini G, Fernández-Oto C, Dorigo M, Trianni V. A
design pattern for decentralised decision making. PLOS ONE.
2015;10(10): e0140950. https:// doi. org/ 10. 1371/ journ al. pone.
01409 50.

 20. Lopes YK, Trenkwalder SM, Leal AB, Dodd TJ, Groß R. Super-
visory control theory applied to swarm robotics. Swarm Intell.
2016;10(1):65–97. https:// doi. org/ 10. 1007/ s11721- 016- 0119-0.

 21. Pinciroli C, Beltrame G. Buzz: a programming language for robot
swarms. IEEE Softw. 2016;33(4):97–100. https:// doi. org/ 10. 1109/
MS. 2016. 95.

 22. Hamann H. Swarm robotics: a formal approach. Cham, Switzer-
land: Springer; 2018. https:// doi. org/ 10. 1007/ 978-3- 319- 74528-2.

 23. Brambilla M, Ferrante E, Birattari M, Dorigo M. Swarm robotics:
a review from the swarm engineering perspective. Swarm Intell.
2013;7(1):1–41. https:// doi. org/ 10. 1007/ s11721- 012- 0075-2.

 24. Francesca G, Birattari M. Automatic design of robot swarms:
achievements and challenges. Front Robot AI. 2016;3(29):1–9.
https:// doi. org/ 10. 3389/ frobt. 2016. 00029.

 25. Ligot A, Birattari M. Simulation-only experiments to mimic the
effects of the reality gap in the automatic design of robot swarms.
Swarm Intell. 2019. https:// doi. org/ 10. 1007/ s11721- 019- 00175-w.

 26. Francesca G, Brambilla M, Brutschy A, Trianni V, Birattari M.
AutoMoDe: a novel approach to the automatic design of con-
trol software for robot swarms. Swarm Intell. 2014;8(2):89–112.
https:// doi. org/ 10. 1007/ s11721- 014- 0092-4.

 27. López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Birattari M,
Stützle T. The irace package: iterated racing for automatic algo-
rithm configuration. Oper Res Perspect. 2016;3:43–58. https:// doi.
org/ 10. 1016/j. orp. 2016. 09. 002.

 28. Francesca G, Brambilla M, Brutschy A, Garattoni L, Miletitch R,
Podevijn G, Reina A, Soleymani T, Salvaro M, Pinciroli C, Mascia
F, Trianni V, Birattari M. AutoMoDe-Chocolate: automatic design

https://doi.org/10.1126/science.1254295
https://doi.org/10.1126/science.1245842
https://doi.org/10.1126/scirobotics.aar7650
https://doi.org/10.1126/scirobotics.aat0430
https://doi.org/10.1126/scirobotics.aat0430
https://doi.org/10.1126/scirobotics.aau9178
https://doi.org/10.1126/scirobotics.aau9178
https://doi.org/10.1038/s41467-018-05749-6
https://doi.org/10.1038/s41467-018-05749-6
https://doi.org/10.1038/s41586-019-1022-9
https://doi.org/10.1126/scirobotics.aav8006
https://doi.org/10.1126/scirobotics.aav8006
https://doi.org/10.1126/scirobotics.abe4385
https://doi.org/10.1126/scirobotics.abe4385
https://doi.org/10.1038/s42256-020-0215-0
https://doi.org/10.1038/s41467-021-24642-3
https://doi.org/10.4249/scholarpedia.1463
https://doi.org/10.3389/frobt.2019.00059
https://doi.org/10.1007/s11721-008-0015-3
https://doi.org/10.1108/17563780911005836
https://doi.org/10.1108/17563780911005836
https://doi.org/10.1109/ICRA.2011.5980440
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1145/2700318
https://doi.org/10.1371/journal.pone.0140950
https://doi.org/10.1371/journal.pone.0140950
https://doi.org/10.1007/s11721-016-0119-0
https://doi.org/10.1109/MS.2016.95
https://doi.org/10.1109/MS.2016.95
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.1007/s11721-019-00175-w
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002

 SN Computer Science (2022) 3:136136 Page 12 of 13

SN Computer Science

of control software for robot swarms. Swarm Intell. 2015;9(2–
3):125–52. https:// doi. org/ 10. 1007/ s11721- 015- 0107-9.

 29. Hasselmann K, Birattari M. Modular automatic design of col-
lective behaviors for robots endowed with local communication
capabilities. PeerJ Comput Sci. 2020. https:// doi. org/ 10. 7717/
peerj- cs. 291.

 30. Garzón Ramos D, Birattari M. Automatic design of collective
behaviors for robots that can display and perceive colors. Appl
Sci. 2020;10(13):4654. https:// doi. org/ 10. 3390/ app10 134654.

 31. Ligot A, Hasselmann K, Birattari M. AutoMoDe-Arlequin: neu-
ral networks as behavioral modules for the automatic design of
probabilistic finite state machines. In: Dorigo M, Stützle T, Blesa
MJ, Blum C, Hamann H, Heinrich MK, Strobel V, editors. Swarm
intelligence: 12th international conference, ANTS 2020, Lecture
Notes in Computer Science, vol. 12421. Cham: Springer; 2020.
pp. 109–122. https:// doi. org/ 10. 1007/ 978-3- 030- 60376-2_ 21

 32. Salman M, Ligot A, Birattari M. Concurrent design of control
software and configuration of hardware for robot swarms under
economic constraints. PeerJ Comput Sci. 2019;5:e221. https:// doi.
org/ 10. 7717/ peerj- cs. 221.

 33. Kuckling J, Ubeda Arriaza K, Birattari M. AutoMoDe-IcePop:
automatic modular design of control software for robot swarms
using simulated annealing. In: Bogaerts B, Bontempi G, Geurts
P, Harley N, Lebichot B, Lenaerts T, Louppe G, editors. Artificial
Intelligence and Machine Learning: BNAIC 2019, BENELEARN
2019, Communications in Computer and Information Science,
vol. 1196. Cham, Switzerland: Springer; 2020. p. 3–17.

 34. Ligot A, Kuckling J, Bozhinoski D, Birattari M. Automatic modu-
lar design of robot swarms using behavior trees as a control archi-
tecture. PeerJ Comput Sci. 2020;6:e314. https:// doi. org/ 10. 7717/
peerj- cs. 314.

 35. Kuckling J, van Pelt V, Birattari M. Automatic modular design
of behavior trees for robot swarms with communication capabili-
ties. In: Castillo PA, Jiménez Laredo JL, editors. Applications of
evolutionary computation: 24th international conference, EvoAp-
plications 2021, Lecture Notes in Computer Science, vol. 12694.
Cham: Springer; 2021. pp. 130–145.

 36. Marzinotto A, Colledanchise M, Smith C, Ögren P. Towards a
unified behavior trees framework for robot control. In: 2014 IEEE
international conference on robotics and automation (ICRA), Pis-
cataway: IEEE; 2014. pp. 5420–5427. https:// doi. org/ 10. 1109/
ICRA. 2014. 69076 56

 37. Koza JR. Genetic programming: on the programming of com-
puters by means of natural selection, first edn. MIT Press, Cam-
bridge, MA, USA. 1992. A Bradford Book

 38. O’Neill M, Ryan C. Grammatical evolution: evolutionary auto-
matic programming in an arbitrary language, 1st ed. Genetic pro-
gramming series. Boston: Springer; 2003. https:// doi. org/ 10. 1007/
978-1- 4615- 0447-4

 39. Isla D. Handling complexity in the Halo 2 AI. In: Game develop-
ers conference, GDC 2005, vol. 12. London: Game Developers
Conference (GDC). 2005.

 40. Colledanchise M, Ögren P. Behavior trees in robotics and AI: an
introduction, 1st ed. In: Chapman & Hall/CRC artificial intelli-
gence and robotics series. Boca Raton: CRC Press; 2018. https://
doi. org/ 10. 1201/ 97804 29489 105

 41. Nolfi S, Floreano D. Evolutionary robotics: the biology, intel-
ligence, and technology of self-organizing machines, 1st ed. A
Bradford Book. Cambridge: MIT Press. 2000.

 42. Trianni V, Labella Thomas H, Dorigo M. Evolution of direct
communication for a swarm-bot performing hole avoidance. In:
Dorigo M, Birattari M, Blum C, Gambardella LM, Mondada F,
Stützle T, editors. Ant colony optimization and swarm intelli-
gence: 4th international workshop, ANTS 2004, Lecture Notes
in Computer Science, vol. 3172. Berlin: Springer; 2004. pp. 130–
141. https:// doi. org/ 10. 1007/ 978-3- 540- 28646-2_ 12

 43. Jones C, Matarić MJ. Automatic synthesis of communication-
based coordinated multi-robot systems. In: 2004 IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS),
vol. 1. Piscataway: IEEE; 2004. pp. 381–387. https:// doi. org/ 10.
1109/ IROS. 2004. 13893 82

 44. Wischmann S, Pasemann F. The emergence of communication
by evolving dynamical systems. In: Nolfi S, Baldassarre G, Cala-
bretta R, Hallam J, Marocco D, Meyer JA, Miglino O, Parisi D,
editors. From animals to animats 9: 9th international conference
on simulation of adaptive behavior, SAB 2006, Lecture Notes in
Computer Science, vol. 4095. Berlin: Springer; 2006. pp. 777–
788. https:// doi. org/ 10. 1007/ 11840 541_ 64

 45. Marocco D, Nolfi S. Self-organization of communication in evolv-
ing robots. In: Rocha LM, Yaeger LS, Bedau MA, Floreano D,
Goldstone RL, Vespignani A, editors. Artificial life X: proceed-
ings of the tenth international conference on the simulation and
synthesis of living systems, complex adaptive systems. Cam-
bridge: MIT Press; 2006.

 46. Wischmann S, Floreano D, Keller L. Historical contingency
affects signaling strategies and competitive abilities in evolv-
ing populations of simulated robots. Proc Natl Acad Sci USA.
2012;109(3):864–8. https:// doi. org/ 10. 1073/ pnas. 11042 67109.

 47. Uno R, Marocco D, Nolfi S, Ikegami T. Emergence of protosen-
tences in artificial communicating systems. IEEE Trans Auton
Mental Dev. 2011;3(2):146–53. https:// doi. org/ 10. 1109/ TAMD.
2011. 21206 08.

 48. Jones S, Studley M, Hauert S, Winfield A. Evolving behaviour
trees for swarm robotics. In: Groß R, Kolling A, Berman S, Fraz-
zoli E, Martinoli A, Matsuno F, Gauci M, editors. Distributed
autonomous robotic systems: the 13th international symposium,
Springer Proceedings in Advanced Robotics, vol. 6. Cham;
Springer; 2018. pp. 487–501. https:// doi. org/ 10. 1007/ 978-3- 319-
73008-0_ 34

 49. Jones S, Winfield A, Hauert S, Studley M. Onboard evolu-
tion of understandable swarm behaviors. Adv Intell Syst.
2019;1(6):1900031. https:// doi. org/ 10. 1002/ aisy. 20190 0031.

 50. Neupane A, Goodrich M. Learning swarm behaviors using gram-
matical evolution and behavior trees. In: Kraus S, editor. Pro-
ceedings of the twenty-eighth international joint conference on
artificial intelligence, IJCAI-19. CA, USA; IJCAI Organization;
2019; pp. 513–520. https:// doi. org/ 10. 24963/ ijcai. 2019/ 73

 51. Ferrante E, Duéñez-Guzmán EA, Turgut AE, Wenseleers T.
GESwarm: grammatical evolution for the automatic synthesis
of collective behaviors in swarm robotics. In: Blum C, editor.
GECCO’13: proceedings of the 15th annual conference on genetic
and evolutionary computation. New York: ACM; 2013. pp. 17–24.
https:// doi. org/ 10. 1145/ 24633 72. 24633 85

 52. Hasselmann K, Ligot A, Francesca G, Garzón Ramos D, Salman
M, Kuckling J, Mendiburu FJ, Birattari M. Reference models for
AutoMoDe. Tech. Rep. TR/IRIDIA/2018-002, IRIDIA, Brussels.
2018.

 53. Kuckling J, Ligot A, Bozhinoski D, Birattari M. Search space
for AutoMoDe-Chocolate and AutoMoDe-Maple. Tech. Rep. TR/
IRIDIA/2018-012, IRIDIA, Brussels. 2018.

 54. Maron O, Moore AW. The Racing Algorithm: model selection for
lazy learners. Artif Intell Rev. 1997;11(1–5):193–225. https:// doi.
org/ 10. 1023/A: 10065 56606 079.

 55. Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagné C.
DEAP: evolutionary algorithms made easy. J Mach Learn Res.
2012;13:2171–5.

 56. Fenton M, McDermott J, Fagan D, Forstenlechner S, Hemberg
E, O’Neill M. PonyGE2: grammatical evolution in Python. arxiv:
1703. 08535. 2017.

 57. Kuckling J, van Pelt V, Birattari M. AutoMoDe-Cedrata: auto-
matic design of behavior trees for controlling a swarm of robots

https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.7717/peerj-cs.291
https://doi.org/10.7717/peerj-cs.291
https://doi.org/10.3390/app10134654
https://doi.org/10.1007/978-3-030-60376-2_21
https://doi.org/10.7717/peerj-cs.221
https://doi.org/10.7717/peerj-cs.221
https://doi.org/10.7717/peerj-cs.314
https://doi.org/10.7717/peerj-cs.314
https://doi.org/10.1109/ICRA.2014.6907656
https://doi.org/10.1109/ICRA.2014.6907656
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1201/9780429489105
https://doi.org/10.1201/9780429489105
https://doi.org/10.1007/978-3-540-28646-2_12
https://doi.org/10.1109/IROS.2004.1389382
https://doi.org/10.1109/IROS.2004.1389382
https://doi.org/10.1007/11840541_64
https://doi.org/10.1073/pnas.1104267109
https://doi.org/10.1109/TAMD.2011.2120608
https://doi.org/10.1109/TAMD.2011.2120608
https://doi.org/10.1007/978-3-319-73008-0_34
https://doi.org/10.1007/978-3-319-73008-0_34
https://doi.org/10.1002/aisy.201900031
https://doi.org/10.24963/ijcai.2019/73
https://doi.org/10.1145/2463372.2463385
https://doi.org/10.1023/A:1006556606079
https://doi.org/10.1023/A:1006556606079
http://arxiv.org/abs/1703.08535
http://arxiv.org/abs/1703.08535

SN Computer Science (2022) 3:136 Page 13 of 13 136

SN Computer Science

with communication capabilities: supplementary material. http://
iridia. ulb. ac. be/ supp/ Iridi aSupp 2021- 004/. 2021.

 58. Kuckling J, Hasselmann K, van Pelt V, Kiere C, Birattari M. Auto-
MoDe Editor: a visualization tool for AutoMoDe. Tech. Rep. TR/
IRIDIA/2021-009, IRIDIA, Brussels. 2021.

 59. Pinciroli C, Trianni V, O’Grady R, Pini G, Brutschy A, Brambilla
M, Mathews N, Ferrante E, Di Caro GA, Ducatelle F, Birattari
M, Gambardella LM, Dorigo M. ARGoS: a modular, parallel,

multi-engine simulator for multi-robot systems. Swarm Intell.
2012;6(4):271–95. https:// doi. org/ 10. 1007/ s11721- 012- 0072-5.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://iridia.ulb.ac.be/supp/IridiaSupp2021-004/
http://iridia.ulb.ac.be/supp/IridiaSupp2021-004/
https://doi.org/10.1007/s11721-012-0072-5

	AutoMoDe-Cedrata: Automatic Design of Behavior Trees for Controlling a Swarm of Robots with Communication Capabilities
	Abstract
	Introduction
	Related Work
	AutoMoDe-Cedrata
	Reference Model
	Modules
	Architecture
	Optimization Algorithm
	Design Process

	Experimental Setup
	Missions
	Design Methods
	Reference Designs
	Protocol

	Results
	Conclusion
	Acknowledgements
	References

