
Vol.:(0123456789)

SN Computer Science (2022) 3:78
https://doi.org/10.1007/s42979-021-00960-7

SN Computer Science

ORIGINAL RESEARCH

GPU‑CUDA Implementation of the Third Order Gaussian Recursive
Filter

Pasquale De Luca1,2 · Ardelio Galletti2 · Livia Marcellino2

Received: 3 December 2020 / Accepted: 6 September 2021 / Published online: 19 November 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Gaussian convolution operation is a fundamental procedure in several data analysis tasks and scientific fields. For example,
Gaussian convolution is a central step in data assimilation and machine learning and it is also frequently used in image
and signal processing. Gaussian recursive filters are a class of methods designed to approximate Gaussian convolutions in
a fast way. In De Luca et al. (2019 15th international conference on signal-image technology and internet-based systems
(SITIS), pp 941–648, 2019), we presented a parallel implementation of the K-iterated first-order Gaussian recursive filter.
This algorithm has been proved to be very efficient and accurate. Here, we provide a new GPU-parallel implementation
which is based on the third order recursive filter. This filter guarantees larger accuracy and a lower computational cost with
respect to the first-order one. To manage an efficient memory strategy access, and to achieve better performance results, our
algorithm exploits the CUDA capabilities available on the GPU environment. Results in terms of performance and accuracy
are provided in tests and experiments.

Keywords Gaussian convolution · Recursive filter · GPU · CUDA

Introduction

It is well-known that convolution operations plays a sig-
nificant role in the computational process of most big-data
analysis problems [13]. In particular, the Gaussian convo-
lution, that is the application of the Gaussian filter, can be
considered needful for many procedures, for this reason it
represents a pre-processing that rarely can be avoided. Some
application fields are, for example, in Data Assimilation

and Machine Learning, for solving three-dimensional vari-
ational analysis schemes [5] and in advanced image and sig-
nal processing [1, 10]. Significant efforts have been made
to speedup the operation of Gaussian filter, since for large
datasets it requires a considerable computation complexity.
In fact, whatever the field of application, such a basic pre-
processing operation involves for large input sizes [7, 8, 11,
12] too many operations and memory accesses. This is unac-
ceptable, for a basic step of data analysis software [15, 17,
19]. Indeed, faster methods, parallel approaches and High
Performance Computing (HPC) architectures, as multicore
or Graphics Processing Units (GPUs), are strongly helpful
for this kind of problem and many parallel implementations
have been presented to this purpose (see survey in [2, 3, 6]).

More in details, if we denote by s(0) an input signal, that
is a complex valued function:

the discrete Gaussian convolution s(g) of s(0) has entries
defined as:

(1)s(0) =
{
s
(0)

j

}
j∈�

, with s
(0)

j
∈ �,

(2)s
(g)

j
=
(
g ∗ s(0)

)
j
=
∑
t∈�

gj−ts
(0)
t , ∀ j ∈ �,

This article is part of the topical collection “Advances on Signal
Image Technology and Internet-based Systems” guest edited by
Albert Dipanda, Luigi Gallo and Kokou Yetongnon.

 * Ardelio Galletti
 ardelio.galletti@uniparthenope.it

 Pasquale De Luca
 deluca@ieee.org

 Livia Marcellino
 livia.marcellino@uniparthenope.it

1 Department of Computer Science, University of Salerno, via
Giovanni Paolo II, Fisciano, Italy

2 Department of Science and Technology, University of Naples
“Parthenope”, Centro Direzionale C4, Naples, Italy

http://orcid.org/0000-0002-5208-6219
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00960-7&domain=pdf

 SN Computer Science (2022) 3:7878 Page 2 of 11

SN Computer Science

where

and g represents the Gaussian kernel with zero mean and
standard deviation 𝜎 > 0 . The recursive filters (RFs) have
widely used as computational tool to provide an efficient and
fast approximation of Gaussian convolution. The basic idea
of RFs consists in defining recursive formulas involving sub-
sequent entries of the output in a recursive way. This results
in a series of linear equations to be solved to obtain the
required approximation of the convolution output. A general
description of RFs is the following. Given an input signal as
in (1), a K-iterated n-order Gaussian RF filter computes the
output s(K) , i.e. the K-iterate approximation of s(g) , whose
entries solve the infinite sequences of equations:

K represents the number of filter iterations, while k denotes
the filter iteration counter. Different RFs have been proposed
in literature, by setting the smoothing coefficients �t and �
(see [4] and references therein). In particular, starting from
their formulation by [18, 20], RFs have been exploited for
solving three-dimensional variational analysis schemes [5],
as well as, in signal processing. The order of the filter char-
acterises the accuracy that is offered in approximating the
convolution. The repeated application of a n-order filter,
that is the application of a K-iterated filter, can improve that
accuracy. However, when these filters are applied to signals
with support in a finite domain, they continue to generate
distortions and artifacts, mostly localised at the boundaries
of the output. This issue is addressed, partially, by introduc-
ing the so-called boundary conditions [18] and a suitable
extending-resizing strategy.

In [9], we presented an accelerated implementation,
on GPU environment, of the K-iterated first-order Gauss-
ian RF for 1D signals. The implementation is performed
together with a suitable memory strategy which involves
the strong usage GPU memory. More specifically, to
reduce the memory access time, the redundant operations
have been addressed in GPU L2 cache memory. This
implementation has been proved to be very efficient and
quite accurate, depending on the number of filter itera-
tions K. Greater efficiency, given the same accuracy level,
can be reached by increasing the order of the basic RF.
To this aim, in this work, we use the third order Gaussian

(3)gt ≡ g(t) =
1

�
√
2�

exp

�
−

t2

2�2

�
,

(4)p
(k)

j
= �s

(k−1)

j
+

n∑
t=1

�tp
(k)

j−t
, ∀ j ∈ �,

(5)s
(k)

j
= �p

(k)

j
+

n∑
t=1

�ts
(k)

j+t
, ∀ j ∈ �.

RF. The choice to involve this filter is strongly based on
the will to achieve a faster and more accurate Gaussian
convolution approximation. In particular, we first give a
description about the third order Gaussian RF, then, in
addiction, we propose an accelerated implementation of it
in a GPU environment to retrieve good results in a lower
time. Despite the high numerical stability of the method,
for large input, a huge execution time is required. For
this issue, here it is proposed a related GPU implementa-
tion based on the Compute Unified Device Architecture
(CUDA) framework combined with an ad-hoc memory
strategy [16]. More in details, the memory strategy forces
the storing into local CUDA threads block’s register so
that the memory access time is reduced. Experimental
results confirm our contribution.

The rest of paper is organised as follows: “Mathematical
details” gives preliminaries about recursive filters to approx-
imate the discrete Gaussian convolution, with more details
and features about the third order one. Moreover, the issues
related to the boundary conditions are described. “GPU-
parallel software for the third order RF” exhibits a detailed
description of our GPU implementation, highlighting both
the domain decomposition and memory management strat-
egy. In “Experimental results”, tests and experiments allow
us to give interesting considerations about the reliability
of our contribution and the related performance analysis.
Finally, in “Conclusions” the conclusions are drawn.

Mathematical Details

This section deals with the description of the third order
Gaussian recursive filter. Mathematical details about the
derivation of the boundary conditions are shown. In par-
ticular, the comparison with the first-order filter, in terms of
impulse response, proves the larger accuracy provided by
the third order one.

From now on, we just consider K = 1 in Eqs. (4) and (5),
that is we use the third order filter with a single iteration.
Then, by considering the lighter notation:

The general form of such a filter becomes:

The equations in (6) are suitably referred to as the advanc-
ing filters while Eq. (7) are called backing filters. This is

s ≡ s(K) = s(1), p ≡ p(K) = p(1).

(6)pj = �s
(0)

j
+ �1pj−1 + �2pj−2 + �3pj−3, ∀ j ∈ �,

(7)sj = �pj + �1sj+1 + �2sj+2 + �3sj+3, ∀ j ∈ �.

SN Computer Science (2022) 3:78 Page 3 of 11 78

SN Computer Science

because, when implementing a Gaussian RF as an algorithm,
to a finite size input signal s(0) , the index j must increase in
(4) and decrease in (5).

In a general setting, the smoothing coefficients �1 , �2 , �3
and � depend on � , the order n and the number of iterations
K. In this case, their value is only a function � . To fix them,
following the approach described in [20], let us first intro-
duce a value q, related to � through the rules:

Then, by setting the value

the third order smoothing coefficients are set as:

When applying this filter, a good accuracy in approximat-
ing Gaussian convolution is guaranteed as it is shown in the
experiments section. However, as already discussed in [4],
this usually generates, in the algorithmic setting, distortions

(8)

q =

⎧⎪⎨⎪⎩

0.98711 𝜎 − 0.96330 for 𝜎 > 2.5

3.97156 − 4.14554
√
1 − 0.26891𝜎 for 0.5 ≤ 𝜎 ≤ 2.5

𝜎 for 𝜎 < 0.5

� = 3.738128 + 5.788982 q + 3.382472 q2 + q3,

(9)

�1 = (5.788982 q + 6.764946 q2 + 3 q3)∕�

�2 = (−3.382472 q2 − 3 q3)∕�

�3 = q3∕�

� = 1 − (�1 + �2 + �3).

localised into the right boundary output entries. An example
of this phenomenon, which is usually known as edge effect,
it is shown in Fig. 1 where the output of the third order
Gaussian filter (red marker), and the actual Gaussian con-
volution of the input signal (black solid line), are compared.

The edge effect can be attributed to the fact that
to use the filter as algorithm, the right off-grid points
N + 1,N + 2,N + 3 are set to 0, while this property in almost
never true for the convolution output s(g) . To fix this draw-
back, a kind of modification of (6) and (7) for the more
general case (n-order filters), which introduces the so-called
boundary conditions or end conditions, has been proposed
by Triggs and Sdika [18]. This approach is here described
for the third order RF case.

Let us introduce the following 3 × 3 matrices:

and, for all t ∈ � , the column arrays:

(10)A =

⎛⎜⎜⎝

�1 �2 �3
1 0 0

0 1 0

⎞⎟⎟⎠
, C =

⎛⎜⎜⎝

� 0 0

0 0 0

0 0 0

⎞⎟⎟⎠
,

(11)

�t =
(
pt, pt−1, pt−2

)T
,

�t =
(
st, st+1, st+2

)T
,

�
(0)
t =

(
s
(0)
t , s

(0)

t+1
, s

(0)

t+2

)T
.

Fig. 1 Edge effect: third order
RF (red line) and boundary con-
dition correction (blue line)

0 5 10 15 20 25 30
4

5

6

7

8

9

10

11

12

13

14

Gaussian convolution
third order RF
third order RF + BC

 SN Computer Science (2022) 3:7878 Page 4 of 11

SN Computer Science

For t = N , Eq. (17) takes the scalar form:

and it represents a way for priming the backing filter. In
other words, the above described approach behaves as a sort
of turning condition which takes in account all neglected
equations when implementing the method in a finite setting.
So, the matrix M, which only depends on � , has to be pre-
computed once in advance. This can be done, for example,
by taking as an approximation of M, the partial sum:

where A0 = C and Al = AAl−1 A (for l ≥ 1), provided that
the norm of Al is negligible. With this modification the third
order Gaussian recursive filter can be implemented in the
following Algorithm 1 where, to prime the advancing filter,
we assign zero left end conditions, that is we assume to have
s0
0
= s0

−1
= s0

−2
= 0 .

(17)�t = M�t, with M
def
=

∞∑
l=0

AlCAl.

(18)
sN = M1,1pN +M1,2pN−1 +M1,3pN−2
sN+1 = M2,1pN +M2,2pN−1 +M2,3pN−2
sN+2 = M3,1pN +M3,2pN−1 +M3,3pN−2

,

(19)Mk =

k∑
l=0

Al,

With this notation, forward and backward filters in (6) and
(7) can be rewritten in matrix form as:

Then, using repeatedly (12) in itself, and (13) in itself, we
derive respectively:

If we assume the entries s(0)
j

 of the input signal are zero for
j ≠ 1, 2,… ,N , the Eq. (14), for k > 0 and t ≥ N , becomes:

Finally, by assuming the output s is bounded, substituting
(16) in (15), and taking the limit for l → ∞ , we get:

(12)�t+1 = C�
(0)

t+1
+ A�t,

(13)�t = C�
(0)
t + A�t+1.

(14)�t+k =

k−1∑
l=0

AlC�
(0)

t+k−l
+ Ak�t,

(15)�t =

k−1∑
l=0

AlC�
(0)

t+l
+ Ak�t+k.

(16)�t+k = Ak�t.

SN Computer Science (2022) 3:78 Page 5 of 11 78

SN Computer Science

Let us observe in Fig. 1 how the boundary conditions
improve the accuracy on the right boundary (blue dia-
mond marker). In general, a way for establishing the
accuracy provided by a Gaussian RF is to compare its
impulse response to the Gaussian function. The
impulse response represents the output of the filter
when it is applied to the unit-sample � =

{
�j
}
j∈�

 ,
where:

Figure 2 (left hand-side) compares the impulse responses
of third order Gaussian RF and of the first-order one with
three different iteration values (K = 1, 5, 10) . We can
observe how the impulse response of the third order is
closer to the ideal Gaussian response (� = 5) with respect
to all first-order curves. In other words, the accuracy pro-
vided by this filter is larger than the one obtained by the
first-order RF for all K values. This assertion is confirmed
looking at a more precise measure of the error which is
highlighted in Fig. 2 on the right: here the component-
wise error is plotted and the red curve, related to the third
order RF, is mostly below the blue curve related to the first-
order RF. We remark that taking a larger K can improve the
accuracy of the first-order filter to the point of to overcome
the accuracy offered by the third order one. However this
choice would imply a very large cost in terms of com-
putational load. A deeper comparison is treated in Sect.
“Experimental results”.

(20)�j =

{
1 if j = 0,

0 otherwise .

GPU‑Parallel Software for the Third Order RF

Despite the high numerical stability of the described method,
for large input, a huge execution time is required for comput-
ing the third order RF. For this issue, we propose a GPU-
CUDA implementation of Algorithm 1 described in the pre-
vious section, based on ad-hoc memory access and a suitable
domain decomposition approach. More in details, our parallel
strategy exploits an efficient memory strategy access, forc-
ing the storing of data into the local CUDA threads block’s
register. Moreover, to obtain a reliable and performing com-
putation, the algorithm is organised as follows.

In the first phase, step 1, we use a domain decomposi-
tion approach: this consists in splitting the input signal s(0) into
t local blocks s(0),m

�
 (� = 0,… , � − 1), one for each thread.

Therefore, the input signal, of size N, is distributed at each
thread j, using the standard balanced approach, so that the
local input size for each thread is d =

⌊
N

�

⌋
 . However, to avoid

a distortion effect, similar to the one discussed in [9], that is
a large perturbation on the blocks boundary entries due to the
application of the third order RF to each block, an overlapping
procedure is also introduced. That is, each block s(0),m

�
 includes

further 2m entries of the input signal, by creating overlapping
areas shared by all couples of subsequent blocks. The whole
procedure can be seen as a domain decomposition with over-
lapping strategy and m denotes the overlapping size.

In this way, each thread � loads in its own local memory
the block s(0),m

�
 , whose size is d + 2m or d + 1 + 2m (depend-

ing on �) . More precisely, by using the remainder

-20 -15 -10 -5 0 5 10 15 20

0

0.05

0.1

0.15 Gaussian filter
first-order RF, K = 1
first-order RF, K = 5
first-order RF, K = 10
third order RF

-20 -15 -10 -5 0 5 10 15 20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

first-order RF error, K = 1
third order RF error

Fig. 2 Left: impulse response comparison. Right: component-wise errors

 SN Computer Science (2022) 3:7878 Page 6 of 11

SN Computer Science

r = mod(N, �) , the entries of the j-th local block are formally
defined as:

where the input signal entries are set to zero, when not avail-
able (s(0)

i
= 0 for i ≤ 0 and i > N) . Therefore, considering

the overlapping entries, the local size becomes nloc + 2m
(nloc = d or nloc = d + 1).

(21)

(
s
(0),m

�

)
i
=

{
s
(0)

�d+�+i−m+1
, i = 0,… , d + 2m if � < r,

s
(0)

�d+r+i−m+1
, i = 0,… , d + 2m − 1 otherwise,

The next phase, step 2, performs the third order
Gaussian RF. In this step the output blocks, denoted by sm

�
 ,

are computed locally, for each thread applying Algo-
rithm 1 to s(0),m

�
.

Finally, in the last phase, step 3, the local results are
collected by loading them into a global output signal. To
do this, a resizing operation is performed before: that is
the first and last m entries of sm

�
 are removed to obtain the

local outputs s� . Algorithm 2 shows the procedure in detail.

Since the Algorithm 2 is implemented in the GPU-CUDA
environment, this entails, first of all, that the input data are
transferred from host to the device global memory and, after the
computation, a new transfer of data from the device to host is

required. But, despite the unavoidable transfer times, the overall
algorithm can be executed by all threads in a fully-parallel way
and this makes the execution really performing. In Algorithm 3,
a more detailed version of the procedure is shown.

SN Computer Science (2022) 3:78 Page 7 of 11 78

SN Computer Science

keyword, combined with this special array definition, forces
the Parallel Thread Execution (PTX) to store the data into
the local register of each block. Lines 6–11 of Algorithm 3
perform the parallel work on the GPU device and, in par-
ticular, at line 9 the call of third order RF kernel on the local
x_local[index] input signal is carried out. Here, each
thread, according to SIMT [14] paradigm, applies the filter
by guaranteeing the total independent work and keeping in
sure the memory transactions. While, line 11 is related to
gathering of the local results of each thread in the global
output. The copy operation, of data from local register to
the global memory, is obtained by erasing the 2m over-
lapped values and according to avoid memory contention.
Since each thread writes only the n_loc central elements
of own local result the procedure is memory-safe. In next
section, experimental results will prove the accuracy of the
third order RF and the efficiency of the proposed parallel
implementation.

Experimental Results

In this section, we propose several tests and experiments
to prove the reliability and the main features of our imple-
mentation. In particular, the experiments are carried out in
the following high-performance computer with technical
specifications:

– 2 CPU Intel Xeon with 6 cores, E5-2609v3, 1.9 Ghz,
32 GB of RAM, 4 channels 51 Gb/s memory bandwidth

Table 1 Euclidean norm relative error E3,�,N

� N

100 316 1000 3162 10000

1.5 0.0259 0.0212 0.0198 0.0197 0.0199
2.5 0.0122 0.0101 0.0096 0.0100 0.0099
5 0.0066 0.0048 0.0047 0.0047 0.0045
10 0.0060 0.0032 0.0031 0.0026 0.0022
20 0.0077 0.0030 0.0020 0.0013 0.0011

102 103 104
0

0.05

0.1

0.15

0.2

0.25

0.3

 = 1.5
 = 2.5
 = 5
 = 10
 = 20

102 103 104
0

0.005

0.01

0.015

0.02

0.025

 = 1.5
 = 2.5
 = 5
 = 10
 = 20

Fig. 3 Maximum (left) and mean (right) relative point-wise errors

The parallel algorithm uses a suitable memory alloca-
tion for each thread to manage the synchronous operations.
In fact, after the input signal vector of data is loaded in the
global device memory, local stacks are set (see lines 1–5)
for each thread by considering the padding pieces related
to the overlapping value m. Each thread performs a pre-
liminary check of the local chunk by means of the local
index chunk_idx. Therefore, following the overlapping
procedure, if the left and the right sides of the input data
are provided, these values are added, otherwise m values,
set to zero, are inserted on the off-grid positions. In prac-
tice, a forced usage of local register for each CUDA block is
performed, by setting the CUDA kernel by means of the __
launch_bounds__ keyword, which indicates how many
registers the compiler could use, for the __global__
function. This trick was used because a good choice of the
number of used registers guarantees an atomic access of
each thread, per block, to its own register. Moreover, to
ensure a coalescing memory access and a minimization of
memory transaction, a local array is defined and stored into
the local register. The use of the __launch_bounds__

 SN Computer Science (2022) 3:7878 Page 8 of 11

SN Computer Science

– 2 NVIDIA GeForce GTX TITAN X, 3072 CUDA cores,
1 Ghz clock for core, 12 GB DDR5, 336 Gb/s as band-
width.

To take full advantage of the massive parallelism of the
GPU environment, our implementation of Algorithm 3 is
designed for CUDA, the best recent framework for exploit-
ing all GPUs’ features. The implementation aims to obtain
a performance improvement by adopting specific memory
management techniques. More in details, the memory strat-
egy management provides to increase the size available of
local stack and heap memory for each thread and for each
threads’ block. Thanks to this enhancement, in a big data
context, the memory access time is reduced. To make effec-
tively fair computations, i.e. avoiding any memory conten-
tion, we use the CUDA routine cudaDeviceSetLimit,
by setting as:

– first parameter cudaLimitMallocHeapSize;
– second parameter cudaLimitStackSize;
– size, according to hardware architecture, the value

1024 × 1024 × 1024.

By exploiting this procedure and using the malloc sys-
tem-call, the dynamic allocation of the memory device is
possible.

The following tests, executed on the aforementioned
hardware, have been designed to prove the accuracy of the
Algorithm 3, its performance in terms of execution time,
and to compare it with a similar code which implements
the first-order Gaussian recursive filter [9]. All execution
times reported in the following tests are taken as averages
of 10 runs.

Third Order Performance

In this section we present the tests for the third order RF
GPU-parallel algorithm: the first test shows the accuracy
obtained; the second test analyses the execution times and

it establishes the impact of the GPU configuration; the third
test measures the performance in terms of floating point
operations.

Test 1. Accuracy. In this test we measure the truncation
error due to the application of the third order filter instead
of the Gaussian one. To do this, we use different values of
� and we increase the input size N. Input signals s0 are ran-
domly distributed, uniformly in the interval [0, 1], and the
error shown in Table 1 is the two-norm relative error:

where sg is the Gaussian convolution of s0 while s3 is the out-
put of the third order RF obtained by our parallel software.

Observe that, for all fixed value � , the error remains
almost constant as the size N increases. That is the method
is accurate (below 1%) for all tests executed. Moreover, for
all fixed size the error generally decreases as � grows. To
also include a point-wise analysis, we reported two images
(Fig. 3) related to the component-wise error behaviour. The
errors we consider are:

– the maximum relative point-wise error:

– the mean relative point-wise error:

Figure 3 shows that all components of the output have a
low relative error, for all sizes and � values (see Max_PE3,�,N
on the left). Of course, by comparing the two sub-figures,
we observe that the mean error level (right curves) is always
lower than the corresponding maximum value (left curves).
Finally, right sub-figure highlights that all error values are,
again, almost constant for all outcomes.

Test 2. Execution times acceleration and GPU con-
figuration. In this experiment we compare execution

(22)E3,�,N =
‖sg − s3‖2
‖sg‖2 ,

Max_PE3,�,N = max
i=1,…,N

|||||

(
sg
)
i
−
(
s3
)
i(

sg
)
i

|||||
;

Mean_PE3,�,N =
1

N

N∑
i=1

|||||

(
sg
)
i
−
(
s3
)
i(

sg
)
i

|||||
.

Table 2 Comparison of GPU (more configurations) and CPU execu-
tion times for different input sizes

N CPU GPU configuration (block × threads)

1 × 128 1 × 256 1 × 512 1 × 1024

1 × 104 115.61 0.067 0.039 0.029 0.031
5 × 104 123.77 0.175 0.084 0.069 0.140
1 × 105 504.17 0.892 0.231 0.187 0.489
5 × 105 1499.42 1.535 0.699 0.431 0.913
1 × 106 4090.68 3.951 1.602 1.100 2.350

Table 3 Gflops
comparison: CPU vs GPU
(block × thread s = 1 × 512)

Input size CPU GPU

1 × 104 2.49 200.3
5 × 104 5.65 411.7
1 × 105 2.77 157.3
5 × 105 4.66 457.5
1 × 106 3.42 354.4

SN Computer Science (2022) 3:78 Page 9 of 11 78

SN Computer Science

times achieved by using both sequential and parallel ver-
sions of the algorithm. In particular, we first execute the
CPU sequential algorithm by varying several input sizes.
Hence, we perform the same experiments, by using the
proposed parallel implementation with several CUDA
threads configurations (block × threads).

Table 2 highlights the gain of performance obtained
by the GPU implementation. In particular we observe
the growing of CPU times with the problem dimension
and the same thing happens for all GPU configurations.
However, the increase of performance of GPU imple-
mentation is noticeable and confirmed by the saved time
(at least 99, 8% for all executions). Table 2 also reveals
the best CUDA configuration for our implementation.
The setting

guarantees the best performance and allows us to execute a
fair and thread-safe execution. We notice that outcomes get
worse as the configuration thread number gets higher values
(1 × 1024). This is because a large threads number would
return an overload for each dedicated blocks’ register with
a related interleaving problem and a subsequent increased
overhead.

Test 3. GPU Gflops analysis. In this test, to confirm
the gain of performance with respect to the sequential
implementation, an addiction theoretical metric, i.e. the
performance analysis in Giga floating point operations
per second (Gflops), is analysed. Results obtained are

block × threads = 1 × 512,

referred to the same experiments of previous test and to
the best observed CUDA configuration.

We observe in Table 3 an appreciable enhancement of
performance obtained by exploiting the GPU architec-
ture: the performance increase, in terms of Gflops, for all
executions goes from a minimum of 75× to a maximum
of about 103× . This high gain is achieved thanks to the
chosen memory strategy management.

Performance Comparison With the First‑Order
Recursive Filter

In this section we present two tests to compare performance
between first-order Gaussian RF implementation proposed
in [9] and the version here implemented: the first test aims
to establish the number of iterations needed to obtain the
same accuracy for both software; the last test compares the
time executions, under the constraint of the same accuracy
level.

Test 4. Accuracy comparison. In this test, we measure
accuracy obtained using the third order RF and the first-
order one. The test involves several � values and seeks for
the suitable number of iterations, for the first-order imple-
mentation, needed to reach the same accuracy provided by
the third order one. We limit the discussion to the same input
signals of Test 1, with size N = 1000 and compute the error
by using the analogous metric defined in (22), that is we
denote by E(K)

1,�,N
 the error of the first-order RF. Notice that

the error behaviour is almost constant as the input size varies

Table 4 Error analysis between
first-order and third order
Gaussian RF by varying both
sigma values and iterations
number for first-order

 � E3,�,N E
(K)

1,�,N

K = 1 K = 3 K = 5 K = 8 K = 10 K = 12

1.5 0.0198 0.1031 0.0473 0.0344 0.0270 0.0246 0.0229
2.5 0.0096 0.0727 0.0254 0.0164 0.0115 0.0099 0.0088
5 0.0047 0.0465 0.0150 0.0091 0.0059 0.0048 0.0041
10 0.0031 0.0294 0.0094 0.0056 0.0035 0.0029 0.0024
20 0.0020 0.0266 0.0095 0.0058 0.0037 0.0030 0.0026

Table 5 Execution times
comparison by varying input
data size and � values between
first-order RF (K = 10) and
third order RF

N GPU time (s)

� = 2.5 � = 5 � = 10

First-order Third order First-order Third order First-order Third order

1 × 104 0.138 0.029 0.142 0.023 0.123 0.025
5 × 104 0.648 0.069 0.649 0.061 0.622 0.086
1 × 105 1.239 0.187 1.219 0.139 1.209 0.214
5 × 105 5.369 0.431 5.743 0.402 5.110 0.489
1 × 106 11.893 1.100 12.122 1.083 11.219 1.193

 SN Computer Science (2022) 3:7878 Page 10 of 11

SN Computer Science

(see Test 1) and this allows us to consider just a fixed value
of N.

Table 4 reveals the following issues: the error decreases
as � grows for both filters; at the same time, for all fixed
� the first-order RF error falls as K increases; finally, by
comparing the two filters, we obtain a similar accuracy
level always starting from about K = 10 iterations of the
first order RF, regardless of the � value.

Test 5. Time comparison. In this test we compare the
proposed implementation with the first-order one pre-
sented in [9], in terms of execution time. Since observa-
tions of previous test, to get a fair comparison, we set
K = 10 for all executions of the first-order RF imple-
mentation. This choice guarantees that the two software
give the same accuracy level. The test involves several
executions by varying both the � value and the input size
value N. The CUDA configuration is set as 1 × 512 for
both implementations. Table 5 shows that the execution
time, for both implementations, seems do not depend on
� , but only on the filter and, in particular, on the data
size. However, for all � and N values, a straight compari-
son shows that the third order execution times are always
smaller (from about 4 to 10 times) than the first-order
ones. This confirms that, under the constraint of the same
accuracy level, the third order RF can be considered the
most efficient.

Conclusions

In this work, we presented a new GPU-parallel implemen-
tation which is based on the third order recursive filter,
to approximate the Gaussian convolution operation. Start-
ing by some preliminary results achieved by the use of the
first-order Gaussian RF, here we described how the third
order one can guarantee a larger accuracy at a lower com-
putational cost. We outlined the related sequential CPU
algorithm and, in addition, we proposed to accelerate it
in a GPU environment. In fact, using an ad-hoc memory
management of device, we exploited the massive paral-
lelism of GPUs using a well-established strategy for data
decomposition through suitable routines of the CUDA
framework. This has enabled us to provide a very fast tool
to approximate the Gaussian convolution, as shown in the
experimental section.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Aprovitola A, Gallo L. Edge and junction detection improve-
ment using the canny algorithm with a fourth order accurate
derivative filter. In: 2014 tenth international conference on sig-
nal-image technology and internet-based systems, IEEE. 2014.
pp. 104–11.

 2. Chaurasia G, Ragan-Kelley J, Paris S, Drettakis G, Durand F.
Compiling high performance recursive filters. In: Proceedings
of the 7th conference on high-performance graphics. 2015.
pp. 85–94.

 3. Cuomo S, De Michele P, Galletti A, Marcellino L. A GPU parallel
implementation of the local principal component analysis overcom-
plete method for DW image denoising. In: 2016 IEEE symposium
on computers and communication (ISCC), IEEE. 2016. pp. 26–31.

 4. Cuomo S, Farina R, Galletti A, Marcellino L. A K-iterated scheme
for the first-order Gaussian recursive filter with boundary con-
ditions. In: 2015 federated conference on computer science and
information systems (FedCSIS), IEEE. 2015. pp. 641–47.

 5. Cuomo S, Galletti A, Giunta G, Marcellino L. Numerical effects
of the Gaussian recursive filters in solving linear systems in the
3Dvar case study. Numer Math Theory Methods Appl. 2017;10:3.

 6. Cuomo S, Galletti A, Marcellino L. A GPU algorithm in a dis-
tributed computing system for 3D MRI denoising. In: 2015 10th
international conference on P2P, parallel, grid, cloud and internet
computing (3PGCIC), IEEE. 2015. pp. 557–62.

 7. De Luca P, Fiscale S, Landolfi L, Di Mauro A. Distributed
genomic compression in MapReduce paradigm. In: International
conference on internet and distributed computing systems (2019),
New York: Springer; 2019. pp. 369–78.

 8. De Luca P, Galletti A, Giunta G, Marcellino L. Accelerated
Gaussian convolution in a data assimilation scenario. In: Interna-
tional conference on computational science . New York: Springer;
2020. pp. 199–211.

 9. De Luca P, Galletti A, Marcellino L. A Gaussian recursive filter
parallel implementation with overlapping. In: 2019 15th interna-
tional conference on signal-image technology & internet-based
systems (SITIS) (2019), IEEE. 2019. pp. 641–48.

 10. Gonzales RC, Woods RE. Digital image processing, 2002.
 11. Gutiérrez PD, Lastra M, Benítez JM, Herrera F. SMOTE-GPU:

big data preprocessing on commodity hardware for imbalanced
classification. Prog Artif Intell. 2017;6(4):347–54.

 12. Hewer G, Martin R, Zeh J. Robust preprocessing for Kalman
filtering of glint noise. IEEE Trans Aerosp Electron Syst.
1987;1:120–8.

 13. Liu H, Ong YS, Shen X, Cai J. When Gaussian process meets big
data: A review of scalable GPs. IEEE Trans Neural Netw Learn
Syst. 2020;31(11):4405–23.

 14. László E, Giles MB, Appleyard J, Szolgay P. Methods to utilize
SIMT and SIMD instruction level parallelism in tridiagonal solv-
ers. In 2014 14th international workshop on cellular nanoscale
networks and their applications (CNNA). 2014. pp. 1–2.

 15. Marcellino L, Montella R, Kosta S, Galletti A, Di Luccio D,
Santopietro V, Ruggieri M, Lapegna M, D’Amore L, Laccetti G.
Using GPGPU accelerated interpolation algorithms for marine
bathymetry processing with on-premises and cloud based compu-
tational resources. Lecture notes in computer science (including
subseries lecture notes in artificial intelligence and lecture notes
in bioinformatics) 10778 LNCS (2018), pp. 14–24.

 16. NVIDIA. 2020. https:// docs. nvidia. com/ cuda/ cuda-c- progr
amming- guide/ index. html

 17. Steinkraus D, Buck I, Simard P. Using GPUs for machine learn-
ing algorithms. In: Eighth international conference on document

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

SN Computer Science (2022) 3:78 Page 11 of 11 78

SN Computer Science

analysis and recognition (ICDAR’05) (2005), IEEE. 2005. pp.
1115–20.

 18. Triggs B, Sdika M. Boundary conditions for young-van vliet recur-
sive filtering. IEEE Trans Signal Process. 2006;54(6):2365–7.

 19. Yip H-M, Ahmad I, Pong T-C. An efficient parallel algorithm for
computing the gaussian convolution of multi-dimensional image
data. J Supercomput. 1999;14(3):233–55.

 20. Young IT, Van Vliet LJ. Recursive implementation of the gaussian
filter. Signal Process. 1995;44(2):139–51.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	GPU-CUDA Implementation of the Third Order Gaussian Recursive Filter
	Abstract
	Introduction
	Mathematical Details
	GPU-Parallel Software for the Third Order RF
	Experimental Results
	Third Order Performance
	Performance Comparison With the First-Order Recursive Filter

	Conclusions
	References

