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Abstract
Gaussian convolution operation is a fundamental procedure in several data analysis tasks and scientific fields. For example, 
Gaussian convolution is a central step in data assimilation and machine learning and it is also frequently used in image 
and signal processing. Gaussian recursive filters are a class of methods designed to approximate Gaussian convolutions in 
a fast way. In De Luca et al. (2019 15th international conference on signal-image technology and internet-based systems 
(SITIS), pp 941–648, 2019), we presented a parallel implementation of the K-iterated first-order Gaussian recursive filter. 
This algorithm has been proved to be very efficient and accurate. Here, we provide a new GPU-parallel implementation 
which is based on the third order recursive filter. This filter guarantees larger accuracy and a lower computational cost with 
respect to the first-order one. To manage an efficient memory strategy access, and to achieve better performance results, our 
algorithm exploits the CUDA capabilities available on the GPU environment. Results in terms of performance and accuracy 
are provided in tests and experiments.

Keywords Gaussian convolution · Recursive filter · GPU · CUDA

Introduction

It is well-known that convolution operations plays a sig-
nificant role in the computational process of most big-data 
analysis problems [13]. In particular, the Gaussian convo-
lution, that is the application of the Gaussian filter, can be 
considered needful for many procedures, for this reason it 
represents a pre-processing that rarely can be avoided. Some 
application fields are, for example, in Data Assimilation 

and Machine Learning, for solving three-dimensional vari-
ational analysis schemes [5] and in advanced image and sig-
nal processing [1, 10]. Significant efforts have been made 
to speedup the operation of Gaussian filter, since for large 
datasets it requires a considerable computation complexity. 
In fact, whatever the field of application, such a basic pre-
processing operation involves for large input sizes [7, 8, 11, 
12] too many operations and memory accesses. This is unac-
ceptable, for a basic step of data analysis software [15, 17, 
19]. Indeed, faster methods, parallel approaches and High 
Performance Computing (HPC) architectures, as multicore 
or Graphics Processing Units (GPUs), are strongly helpful 
for this kind of problem and many parallel implementations 
have been presented to this purpose (see survey in [2, 3, 6]).

More in details, if we denote by s(0) an input signal, that 
is a complex valued function:

the discrete Gaussian convolution s(g) of s(0) has entries 
defined as:

(1)s(0) =
{
s
(0)

j

}
j∈�

, with s
(0)

j
∈ �,

(2)s
(g)

j
=
(
g ∗ s(0)

)
j
=
∑
t∈�

gj−ts
(0)
t , ∀ j ∈ �,
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where

and g represents the Gaussian kernel with zero mean and 
standard deviation 𝜎 > 0 . The recursive filters (RFs) have 
widely used as computational tool to provide an efficient and 
fast approximation of Gaussian convolution. The basic idea 
of RFs consists in defining recursive formulas involving sub-
sequent entries of the output in a recursive way. This results 
in a series of linear equations to be solved to obtain the 
required approximation of the convolution output. A general 
description of RFs is the following. Given an input signal as 
in (1), a K-iterated n-order Gaussian RF filter computes the 
output s(K) , i.e. the K-iterate approximation of s(g) , whose 
entries solve the infinite sequences of equations:

K represents the number of filter iterations, while k denotes 
the filter iteration counter. Different RFs have been proposed 
in literature, by setting the smoothing coefficients �t and � 
(see [4] and references therein). In particular, starting from 
their formulation by [18, 20], RFs have been exploited for 
solving three-dimensional variational analysis schemes [5], 
as well as, in signal processing. The order of the filter char-
acterises the accuracy that is offered in approximating the 
convolution. The repeated application of a n-order filter, 
that is the application of a K-iterated filter, can improve that 
accuracy. However, when these filters are applied to signals 
with support in a finite domain, they continue to generate 
distortions and artifacts, mostly localised at the boundaries 
of the output. This issue is addressed, partially, by introduc-
ing the so-called boundary conditions [18] and a suitable 
extending-resizing strategy.

In [9], we presented an accelerated implementation, 
on GPU environment, of the K-iterated first-order Gauss-
ian RF for 1D signals. The implementation is performed 
together with a suitable memory strategy which involves 
the strong usage GPU memory. More specifically, to 
reduce the memory access time, the redundant operations 
have been addressed in GPU L2 cache memory. This 
implementation has been proved to be very efficient and 
quite accurate, depending on the number of filter itera-
tions K. Greater efficiency, given the same accuracy level, 
can be reached by increasing the order of the basic RF. 
To this aim, in this work, we use the third order Gaussian 

(3)gt ≡ g(t) =
1

�
√
2�

exp

�
−

t2

2�2

�
,

(4)p
(k)

j
= �s
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�tp
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(5)s
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(k)

j
+
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�ts
(k)

j+t
, ∀ j ∈ �.

RF. The choice to involve this filter is strongly based on 
the will to achieve a faster and more accurate Gaussian 
convolution approximation. In particular, we first give a 
description about the third order Gaussian RF, then, in 
addiction, we propose an accelerated implementation of it 
in a GPU environment to retrieve good results in a lower 
time. Despite the high numerical stability of the method, 
for large input, a huge execution time is required. For 
this issue, here it is proposed a related GPU implementa-
tion based on the Compute Unified Device Architecture 
(CUDA) framework combined with an ad-hoc memory 
strategy [16]. More in details, the memory strategy forces 
the storing into local CUDA threads block’s register so 
that the memory access time is reduced. Experimental 
results confirm our contribution.

The rest of paper is organised as follows: “Mathematical 
details” gives preliminaries about recursive filters to approx-
imate the discrete Gaussian convolution, with more details 
and features about the third order one. Moreover, the issues 
related to the boundary conditions are described. “GPU-
parallel software for the third order RF” exhibits a detailed 
description of our GPU implementation, highlighting both 
the domain decomposition and memory management strat-
egy. In “Experimental results”, tests and experiments allow 
us to give interesting considerations about the reliability 
of our contribution and the related performance analysis. 
Finally, in “Conclusions” the conclusions are drawn.

Mathematical Details

This section deals with the description of the third order 
Gaussian recursive filter. Mathematical details about the 
derivation of the boundary conditions are shown. In par-
ticular, the comparison with the first-order filter, in terms of 
impulse response, proves the larger accuracy provided by 
the third order one.

From now on, we just consider K = 1 in Eqs. (4) and (5), 
that is we use the third order filter with a single iteration. 
Then, by considering the lighter notation:

The general form of such a filter becomes:

The equations in (6) are suitably referred to as the advanc-
ing filters while Eq. (7) are called backing filters. This is 

s ≡ s(K) = s(1), p ≡ p(K) = p(1).

(6)pj = �s
(0)

j
+ �1pj−1 + �2pj−2 + �3pj−3, ∀ j ∈ �,

(7)sj = �pj + �1sj+1 + �2sj+2 + �3sj+3, ∀ j ∈ �.
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because, when implementing a Gaussian RF as an algorithm, 
to a finite size input signal s(0) , the index j must increase in 
(4) and decrease in (5).

In a general setting, the smoothing coefficients �1 , �2 , �3 
and � depend on � , the order n and the number of iterations 
K. In this case, their value is only a function � . To fix them, 
following the approach described in [20], let us first intro-
duce a value q, related to � through the rules:

Then, by setting the value

the third order smoothing coefficients are set as:

When applying this filter, a good accuracy in approximat-
ing Gaussian convolution is guaranteed as it is shown in the 
experiments section. However, as already discussed in [4], 
this usually generates, in the algorithmic setting, distortions 

(8)

q =

⎧⎪⎨⎪⎩

0.98711 𝜎 − 0.96330 for 𝜎 > 2.5

3.97156 − 4.14554
√
1 − 0.26891𝜎 for 0.5 ≤ 𝜎 ≤ 2.5

𝜎 for 𝜎 < 0.5

� = 3.738128 + 5.788982 q + 3.382472 q2 + q3,

(9)

�1 = (5.788982 q + 6.764946 q2 + 3 q3)∕�

�2 = (−3.382472 q2 − 3 q3)∕�

�3 = q3∕�

� = 1 − (�1 + �2 + �3).

localised into the right boundary output entries. An example 
of this phenomenon, which is usually known as edge effect, 
it is shown in Fig. 1 where the output of the third order 
Gaussian filter (red marker), and the actual Gaussian con-
volution of the input signal (black solid line), are compared.

The edge effect can be attributed to the fact that 
to use the filter as algorithm, the right off-grid points 
N + 1,N + 2,N + 3 are set to 0, while this property in almost 
never true for the convolution output s(g) . To fix this draw-
back, a kind of modification of (6) and (7) for the more 
general case (n-order filters), which introduces the so-called 
boundary conditions or end conditions, has been proposed 
by Triggs and Sdika [18]. This approach is here described 
for the third order RF case.

Let us introduce the following 3 × 3 matrices:

and, for all t ∈ � , the column arrays:

(10)A =

⎛⎜⎜⎝

�1 �2 �3
1 0 0

0 1 0

⎞⎟⎟⎠
, C =

⎛⎜⎜⎝

� 0 0

0 0 0

0 0 0

⎞⎟⎟⎠
,

(11)

�t =
(
pt, pt−1, pt−2

)T
,

�t =
(
st, st+1, st+2

)T
,

�
(0)
t =

(
s
(0)
t , s

(0)

t+1
, s

(0)

t+2

)T
.

Fig. 1  Edge effect: third order 
RF (red line) and boundary con-
dition correction (blue line)
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For t = N , Eq. (17) takes the scalar form:

and it represents a way for priming the backing filter. In 
other words, the above described approach behaves as a sort 
of turning condition which takes in account all neglected 
equations when implementing the method in a finite setting. 
So, the matrix M, which only depends on � , has to be pre-
computed once in advance. This can be done, for example, 
by taking as an approximation of M, the partial sum:

where A0 = C and Al = AAl−1 A (for l ≥ 1 ), provided that 
the norm of Al is negligible. With this modification the third 
order Gaussian recursive filter can be implemented in the 
following Algorithm 1 where, to prime the advancing filter, 
we assign zero left end conditions, that is we assume to have 
s0
0
= s0

−1
= s0

−2
= 0 . 

(17)�t = M�t, with M
def
=

∞∑
l=0

AlCAl.

(18)
sN = M1,1pN +M1,2pN−1 +M1,3pN−2
sN+1 = M2,1pN +M2,2pN−1 +M2,3pN−2
sN+2 = M3,1pN +M3,2pN−1 +M3,3pN−2

,

(19)Mk =

k∑
l=0

Al,

With this notation, forward and backward filters in (6) and 
(7) can be rewritten in matrix form as:

Then, using repeatedly (12) in itself, and (13) in itself, we 
derive respectively:

If we assume the entries s(0)
j

 of the input signal are zero for 
j ≠ 1, 2,… ,N , the Eq. (14), for k > 0 and t ≥ N , becomes:

Finally, by assuming the output s is bounded, substituting 
(16) in (15), and taking the limit for l → ∞ , we get:

(12)�t+1 = C�
(0)

t+1
+ A�t,

(13)�t = C�
(0)
t + A�t+1.

(14)�t+k =

k−1∑
l=0

AlC�
(0)

t+k−l
+ Ak�t,

(15)�t =

k−1∑
l=0

AlC�
(0)

t+l
+ Ak�t+k.

(16)�t+k = Ak�t.
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Let us observe in Fig. 1 how the boundary conditions 
improve the accuracy on the right boundary (blue dia-
mond marker). In general, a way for establishing the 
accuracy provided by a Gaussian RF is to compare its 
impulse response to the Gaussian function. The 
impulse response represents the output of the filter 
when it is applied to the unit-sample  � =

{
�j
}
j∈�

 , 
where:

Figure 2 (left hand-side) compares the impulse responses 
of third order Gaussian RF and of the first-order one with 
three different iteration values (K = 1, 5, 10) . We can 
observe how the impulse response of the third order is 
closer to the ideal Gaussian response ( � = 5 ) with respect 
to all first-order curves. In other words, the accuracy pro-
vided by this filter is larger than the one obtained by the 
first-order RF for all K values. This assertion is confirmed 
looking at a more precise measure of the error which is 
highlighted in Fig. 2 on the right: here the component-
wise error is plotted and the red curve, related to the third 
order RF, is mostly below the blue curve related to the first-
order RF. We remark that taking a larger K can improve the 
accuracy of the first-order filter to the point of to overcome 
the accuracy offered by the third order one. However this 
choice would imply a very large cost in terms of com-
putational load. A deeper comparison is treated in Sect. 
“Experimental results”.

(20)�j =

{
1 if j = 0,

0 otherwise .

GPU‑Parallel Software for the Third Order RF

Despite the high numerical stability of the described method, 
for large input, a huge execution time is required for comput-
ing the third order RF. For this issue, we propose a GPU-
CUDA implementation of Algorithm 1 described in the pre-
vious section, based on ad-hoc memory access and a suitable 
domain decomposition approach. More in details, our parallel 
strategy exploits an efficient memory strategy access, forc-
ing the storing of data into the local CUDA threads block’s 
register. Moreover, to obtain a reliable and performing com-
putation, the algorithm is organised as follows.

In the first phase, step 1, we use a domain decomposi-
tion approach: this consists in splitting the input signal s(0) into 
t local blocks s(0),m

�
 ( � = 0,… , � − 1 ), one for each thread. 

Therefore, the input signal, of size N, is distributed at each 
thread j, using the standard balanced approach, so that the 
local input size for each thread is d =

⌊
N

�

⌋
 . However, to avoid 

a distortion effect, similar to the one discussed in [9], that is 
a large perturbation on the blocks boundary entries due to the 
application of the third order RF to each block, an overlapping 
procedure is also introduced. That is, each block s(0),m

�
 includes 

further 2m entries of the input signal, by creating overlapping 
areas shared by all couples of subsequent blocks. The whole 
procedure can be seen as a domain decomposition with over-
lapping strategy and m denotes the overlapping size.

In this way, each thread � loads in its own local memory 
the block s(0),m

�
 , whose size is d + 2m or d + 1 + 2m (depend-

ing on �) . More precisely, by using the remainder 
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Fig. 2  Left: impulse response comparison. Right: component-wise errors
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r = mod(N, �) , the entries of the j-th local block are formally 
defined as:

where the input signal entries are set to zero, when not avail-
able ( s(0)

i
= 0 for i ≤ 0 and i > N) . Therefore, considering 

the overlapping entries, the local size becomes nloc + 2m 
( nloc = d or nloc = d + 1).

(21)

(
s
(0),m

�

)
i
=

{
s
(0)

�d+�+i−m+1
, i = 0,… , d + 2m if � < r,

s
(0)

�d+r+i−m+1
, i = 0,… , d + 2m − 1 otherwise,

The next phase, step 2, performs the third order 
Gaussian RF. In this step the output blocks, denoted by sm

�
 , 

are computed locally, for each thread applying Algo-
rithm 1 to s(0),m

�
.

Finally, in the last phase, step 3, the local results are 
collected by loading them into a global output signal. To 
do this, a resizing operation is performed before: that is 
the first and last m entries of sm

�
 are removed to obtain the 

local outputs s� . Algorithm 2 shows the procedure in detail. 

Since the Algorithm 2 is implemented in the GPU-CUDA 
environment, this entails, first of all, that the input data are 
transferred from host to the device global memory and, after the 
computation, a new transfer of data from the device to host is 

required. But, despite the unavoidable transfer times, the overall 
algorithm can be executed by all threads in a fully-parallel way 
and this makes the execution really performing. In Algorithm 3, 
a more detailed version of the procedure is shown. 



SN Computer Science (2022) 3:78 Page 7 of 11 78

SN Computer Science

keyword, combined with this special array definition, forces 
the Parallel Thread Execution (PTX) to store the data into 
the local register of each block. Lines 6–11 of Algorithm 3 
perform the parallel work on the GPU device and, in par-
ticular, at line 9 the call of third order RF kernel on the local 
x_local[index] input signal is carried out. Here, each 
thread, according to SIMT [14] paradigm, applies the filter 
by guaranteeing the total independent work and keeping in 
sure the memory transactions. While, line 11 is related to 
gathering of the local results of each thread in the global 
output. The copy operation, of data from local register to 
the global memory, is obtained by erasing the 2m over-
lapped values and according to avoid memory contention. 
Since each thread writes only the n_loc central elements 
of own local result the procedure is memory-safe. In next 
section, experimental results will prove the accuracy of the 
third order RF and the efficiency of the proposed parallel 
implementation.

Experimental Results

In this section, we propose several tests and experiments 
to prove the reliability and the main features of our imple-
mentation. In particular, the experiments are carried out in 
the following high-performance computer with technical 
specifications:

– 2 CPU Intel Xeon with 6 cores, E5-2609v3, 1.9 Ghz, 
32 GB of RAM, 4 channels 51 Gb/s memory bandwidth

Table 1  Euclidean norm relative error E3,�,N

� N

100 316 1000 3162 10000

1.5 0.0259 0.0212 0.0198 0.0197 0.0199
2.5 0.0122 0.0101 0.0096 0.0100 0.0099
5 0.0066 0.0048 0.0047 0.0047 0.0045
10 0.0060 0.0032 0.0031 0.0026 0.0022
20 0.0077 0.0030 0.0020 0.0013 0.0011
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Fig. 3  Maximum (left) and mean (right) relative point-wise errors

The parallel algorithm uses a suitable memory alloca-
tion for each thread to manage the synchronous operations. 
In fact, after the input signal vector of data is loaded in the 
global device memory, local stacks are set (see lines 1–5) 
for each thread by considering the padding pieces related 
to the overlapping value m. Each thread performs a pre-
liminary check of the local chunk by means of the local 
index chunk_idx. Therefore, following the overlapping 
procedure, if the left and the right sides of the input data 
are provided, these values are added, otherwise m values, 
set to zero, are inserted on the off-grid positions. In prac-
tice, a forced usage of local register for each CUDA block is 
performed, by setting the CUDA kernel by means of the __
launch_bounds__ keyword, which indicates how many 
registers the compiler could use, for the __global__ 
function. This trick was used because a good choice of the 
number of used registers guarantees an atomic access of 
each thread, per block, to its own register. Moreover, to 
ensure a coalescing memory access and a minimization of 
memory transaction, a local array is defined and stored into 
the local register. The use of the __launch_bounds__ 
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– 2 NVIDIA GeForce GTX TITAN X, 3072 CUDA cores, 
1 Ghz clock for core, 12 GB DDR5, 336 Gb/s as band-
width.

To take full advantage of the massive parallelism of the 
GPU environment, our implementation of Algorithm 3 is 
designed for CUDA, the best recent framework for exploit-
ing all GPUs’ features. The implementation aims to obtain 
a performance improvement by adopting specific memory 
management techniques. More in details, the memory strat-
egy management provides to increase the size available of 
local stack and heap memory for each thread and for each 
threads’ block. Thanks to this enhancement, in a big data 
context, the memory access time is reduced. To make effec-
tively fair computations, i.e. avoiding any memory conten-
tion, we use the CUDA routine cudaDeviceSetLimit, 
by setting as:

– first parameter cudaLimitMallocHeapSize;
– second parameter cudaLimitStackSize;
– size, according to hardware architecture, the value 

1024 × 1024 × 1024.

By exploiting this procedure and using the malloc sys-
tem-call, the dynamic allocation of the memory device is 
possible.

The following tests, executed on the aforementioned 
hardware, have been designed to prove the accuracy of the 
Algorithm 3, its performance in terms of execution time, 
and to compare it with a similar code which implements 
the first-order Gaussian recursive filter [9]. All execution 
times reported in the following tests are taken as averages 
of 10 runs.

Third Order Performance

In this section we present the tests for the third order RF 
GPU-parallel algorithm: the first test shows the accuracy 
obtained; the second test analyses the execution times and 

it establishes the impact of the GPU configuration; the third 
test measures the performance in terms of floating point 
operations.

Test 1. Accuracy. In this test we measure the truncation 
error due to the application of the third order filter instead 
of the Gaussian one. To do this, we use different values of 
� and we increase the input size N. Input signals s0 are ran-
domly distributed, uniformly in the interval [0, 1], and the 
error shown in Table 1 is the two-norm relative error:

where sg is the Gaussian convolution of s0 while s3 is the out-
put of the third order RF obtained by our parallel software.

Observe that, for all fixed value � , the error remains 
almost constant as the size N increases. That is the method 
is accurate (below 1% ) for all tests executed. Moreover, for 
all fixed size the error generally decreases as � grows. To 
also include a point-wise analysis, we reported two images 
(Fig. 3) related to the component-wise error behaviour. The 
errors we consider are:

– the maximum relative point-wise error: 

– the mean relative point-wise error: 

Figure 3 shows that all components of the output have a 
low relative error, for all sizes and � values (see Max_PE3,�,N 
on the left). Of course, by comparing the two sub-figures, 
we observe that the mean error level (right curves) is always 
lower than the corresponding maximum value (left curves). 
Finally, right sub-figure highlights that all error values are, 
again, almost constant for all outcomes.

Test 2. Execution times acceleration and GPU con-
figuration. In this experiment we compare execution 

(22)E3,�,N =
‖sg − s3‖2
‖sg‖2 ,

Max_PE3,�,N = max
i=1,…,N

|||||

(
sg
)
i
−
(
s3
)
i(

sg
)
i

|||||
;

Mean_PE3,�,N =
1

N

N∑
i=1

|||||

(
sg
)
i
−
(
s3
)
i(

sg
)
i

|||||
.

Table 2  Comparison of GPU (more configurations) and CPU execu-
tion times for different input sizes

N CPU GPU configuration (block × threads)

1 × 128 1 × 256 1 × 512 1 × 1024

1 × 104 115.61 0.067 0.039 0.029 0.031
5 × 104 123.77 0.175 0.084 0.069 0.140
1 × 105 504.17 0.892 0.231 0.187 0.489
5 × 105 1499.42 1.535 0.699 0.431 0.913
1 × 106 4090.68 3.951 1.602 1.100 2.350

Table 3  Gflops 
comparison: CPU vs GPU 
( block × thread s = 1 × 512)

Input size CPU GPU

1 × 104 2.49 200.3
5 × 104 5.65 411.7
1 × 105 2.77 157.3
5 × 105 4.66 457.5
1 × 106 3.42 354.4
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times achieved by using both sequential and parallel ver-
sions of the algorithm. In particular, we first execute the 
CPU sequential algorithm by varying several input sizes. 
Hence, we perform the same experiments, by using the 
proposed parallel implementation with several CUDA 
threads configurations (block × threads).

Table 2 highlights the gain of performance obtained 
by the GPU implementation. In particular we observe 
the growing of CPU times with the problem dimension 
and the same thing happens for all GPU configurations. 
However, the increase of performance of GPU imple-
mentation is noticeable and confirmed by the saved time 
(at least 99, 8% for all executions). Table 2 also reveals 
the best CUDA configuration for our implementation. 
The setting

guarantees the best performance and allows us to execute a 
fair and thread-safe execution. We notice that outcomes get 
worse as the configuration thread number gets higher values 
(1 × 1024). This is because a large threads number would 
return an overload for each dedicated blocks’ register with 
a related interleaving problem and a subsequent increased 
overhead.

Test 3. GPU Gflops analysis. In this test, to confirm 
the gain of performance with respect to the sequential 
implementation, an addiction theoretical metric, i.e. the 
performance analysis in Giga floating point operations 
per second (Gflops), is analysed. Results obtained are 

block × threads = 1 × 512,

referred to the same experiments of previous test and to 
the best observed CUDA configuration.

We observe in Table 3 an appreciable enhancement of 
performance obtained by exploiting the GPU architec-
ture: the performance increase, in terms of Gflops, for all 
executions goes from a minimum of 75× to a maximum 
of about 103× . This high gain is achieved thanks to the 
chosen memory strategy management.

Performance Comparison With the First‑Order 
Recursive Filter

In this section we present two tests to compare performance 
between first-order Gaussian RF implementation proposed 
in [9] and the version here implemented: the first test aims 
to establish the number of iterations needed to obtain the 
same accuracy for both software; the last test compares the 
time executions, under the constraint of the same accuracy 
level.

Test 4. Accuracy comparison. In this test, we measure 
accuracy obtained using the third order RF and the first-
order one. The test involves several � values and seeks for 
the suitable number of iterations, for the first-order imple-
mentation, needed to reach the same accuracy provided by 
the third order one. We limit the discussion to the same input 
signals of Test 1, with size N = 1000 and compute the error 
by using the analogous metric defined in (22), that is we 
denote by E(K)

1,�,N
 the error of the first-order RF. Notice that 

the error behaviour is almost constant as the input size varies 

Table 4  Error analysis between 
first-order and third order 
Gaussian RF by varying both 
sigma values and iterations 
number for first-order

 � E3,�,N E
(K)

1,�,N

K = 1 K = 3 K = 5 K = 8 K = 10 K = 12

1.5 0.0198 0.1031 0.0473 0.0344 0.0270 0.0246 0.0229
2.5 0.0096 0.0727 0.0254 0.0164 0.0115 0.0099 0.0088
5 0.0047 0.0465 0.0150 0.0091 0.0059 0.0048 0.0041
10 0.0031 0.0294 0.0094 0.0056 0.0035 0.0029 0.0024
20 0.0020 0.0266 0.0095 0.0058 0.0037 0.0030 0.0026

Table 5  Execution times 
comparison by varying input 
data size and � values between 
first-order RF ( K = 10 ) and 
third order RF

N GPU time (s)

� = 2.5 � = 5 � = 10

First-order Third order First-order Third order First-order Third order

1 × 104 0.138 0.029 0.142 0.023 0.123 0.025
5 × 104 0.648 0.069 0.649 0.061 0.622 0.086
1 × 105 1.239 0.187 1.219 0.139 1.209 0.214
5 × 105 5.369 0.431 5.743 0.402 5.110 0.489
1 × 106 11.893 1.100 12.122 1.083 11.219 1.193
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(see Test 1) and this allows us to consider just a fixed value 
of N.

Table 4 reveals the following issues: the error decreases 
as � grows for both filters; at the same time, for all fixed 
� the first-order RF error falls as K increases; finally, by 
comparing the two filters, we obtain a similar accuracy 
level always starting from about K = 10 iterations of the 
first order RF, regardless of the � value.

Test 5. Time comparison. In this test we compare the 
proposed implementation with the first-order one pre-
sented in [9], in terms of execution time. Since observa-
tions of previous test, to get a fair comparison, we set 
K = 10 for all executions of the first-order RF imple-
mentation. This choice guarantees that the two software 
give the same accuracy level. The test involves several 
executions by varying both the � value and the input size 
value N. The CUDA configuration is set as 1 × 512 for 
both implementations. Table 5 shows that the execution 
time, for both implementations, seems do not depend on 
� , but only on the filter and, in particular, on the data 
size. However, for all � and N values, a straight compari-
son shows that the third order execution times are always 
smaller (from about 4 to 10 times) than the first-order 
ones. This confirms that, under the constraint of the same 
accuracy level, the third order RF can be considered the 
most efficient.

Conclusions

In this work, we presented a new GPU-parallel implemen-
tation which is based on the third order recursive filter, 
to approximate the Gaussian convolution operation. Start-
ing by some preliminary results achieved by the use of the 
first-order Gaussian RF, here we described how the third 
order one can guarantee a larger accuracy at a lower com-
putational cost. We outlined the related sequential CPU 
algorithm and, in addition, we proposed to accelerate it 
in a GPU environment. In fact, using an ad-hoc memory 
management of device, we exploited the massive paral-
lelism of GPUs using a well-established strategy for data 
decomposition through suitable routines of the CUDA 
framework. This has enabled us to provide a very fast tool 
to approximate the Gaussian convolution, as shown in the 
experimental section.
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