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Abstract
Agriculture land is playing a vital role in developing the economy of Indian states and contributes ~ 15% of India’s gross 
domestic product (GDP). Moreover, agriculture is a major source of livelihood by engaging two-third (~ 66%) of the nation’s 
population in various activities such as food supply, the raw material to the industries, internal and external trade. There-
fore, the continuous monitoring and mapping of agricultural land are crucial for the sustainable life and development of the 
country. Most of the agriculture monitoring solutions are based on field observations or conventional strategies which are 
time-consuming and costlier. However, remote sensing delivers a cost-effective solution of acquiring information regarding 
the healthy or unhealthy vegetation in agricultural land with the help of a diverse range of advanced geospatial techniques 
such as classification, change detection, and pan-sharpening. In the present paper, we have performed a systematic survey 
with respect to recent advancements made in the classification algorithm, especially for agricultural land. These emerging 
methods incorporated in classifiers are machine learning and deep learning to enhance and detect the various features of 
vegetation parameters. It is expected that such studies will provide effective guidance to the researchers in better understand-
ing the features, limitations, and specific importance of emerging classifiers in the Agriculture domain.
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Introduction

Agriculture land is the backbone of the Indian economy 
and the major source of national income via agriculture 
and allied activities. Agriculture acts as a supply chain of 
food products and raw materials for industrial development, 
commercial activities, and international trade [77]. It has 
also been observed that in India, since the past few decades, 

agriculture activities have been continuously decreasing due 
to urbanization or the growth of other sectors [44]. But it is 
still high as compared to other countries. It is more impor-
tant to perform the comprehensive assessment of agriculture 
with respect to crop production which is essential to meet 
the demands of the food supply chain [78]. To assess the 
agricultural land, field observation methods are generally 
followed which is a time-consuming, expensive and tedious 
task [3]. Moreover, there is a very rare possibility of con-
tinuous monitoring on a daily or weekly basis. Crop map-
ping and classification are some of the most difficult tasks 
among agricultural land problems [32]. In agricultural land, 
the most common approach used for crop monitoring is the 
digital cameras or field observation for evaluation of the 
crop yield which may be costly or limited to the small area 
[12]. Therefore, automatic, consistent and a fast, system are 
necessary to deliver the precise crop mapping and monitor-
ing over all large scale [4].

Remote sensing via optical or microwave imaging offers 
a cost-effective way to monitor the land cover changes at a 
very large scale [29]. The continuous monitoring and assess-
ment of agricultural cropland provide valuable insights into 
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the different agronomic parameters [61, 69]. The use of 
advanced geospatial technologies is necessary to acquire 
information related to variations in soil, climate, and other 
physic-chemical changes [49]. The monitoring of agricul-
tural manufacturing systems follows strong seasonal patterns 
about the biological life cycle of yields. Every part of these 
factors is highly variable in time and space dimensions [71].

To monitor the agricultural land, various techniques 
are available such as change detection, classification, and 
fusion or pan-sharpening [44, 83]. Change detection proce-
dures are generally used to monitor multi-temporal changes 
and detailed information can be found in different studies 
[44, 83]. In change detection procedures, classification is 
an important element to categorize the different land types 
based on their similarity score and allow the user to extract 
the meaningful information in the form of a thematic map 
[45]. The classification techniques can be categorized as (a) 
supervised/ unsupervised; (b) parametric/non-parametric, 
(c) hard/soft, (d) per-pixel/sub-pixel, and (e) object-based 
classification [44]. Due to the limitations of various satel-
lite sensors, it is not possible to acquire the earth imagery at 
a very high temporal and spatial resolution simultaneously 
and there is a requirement to perform the pan-sharpening 
or fusion of high-resolution and low-resolution datasets. In 
many cases, pan-sharpening is found to be more effective to 
improve the classification and change detection results [81].

However, the main focus of the present study is to make 
a comparative study on various emerging land-use and 
land-cover classifiers. Generally, supervised classification 
requires having adequate knowledge about prior informa-
tion or training data to generate classified images. Whereas, 
in unsupervised classifiers, there is no requirement of prior 
information or training data because it classifies the input 
dataset based on similarity or in the form of clusters [86]. 
Moreover, semi-supervised classifiers are more preferable 
due to their less dependency on user’s skills and handling 
more complex problems [81]. Nowadays, some machine 
learning or deep learning-based classifiers have become 
more popular due to their effectiveness in extracting critical 
information from remotely sensed data. Table 1 summarizes 
some of the basic and advanced classifiers, especially for 
agricultural land.

In the present paper, we address the major developments 
made into the field of classifiers based on satellite datasets, 
epically for agricultural land. The aim of the present analysis 
is on: (a) the recent advancements made in classification 
methods; and (b) comparative analysis of different strategies 
to monitor agricultural land. This paper also highlights the 
different types of satellite sensors available or previously 
used in agriculture applications and various steps involved 
in satellite dataset pre-processing as explained in the sec-
ond section. Afterward, a detailed review of conventional 
as well as advanced classification models for agriculture 

applications. At last, we have made the summary and future 
recommendations for optimal ways to use satellite datasets 
of agricultural land in sections.

Classification Models

The supervised classification requires the training data to 
classify the input dataset [34] such as decision tree, mini-
mum distance [39], nearest neighbor (NN) [102], and 
maximum likelihood classifier (MLC) [14]. Whereas, the 
unsupervised classifiers divide the spectral information into 
specified class categories based on statistical information 
acquired from an image itself [15, 16]. Such as ISO [89] 
and K-mean [15, 16]. The parameters classifiers like mean-
vector and covariance matrix are often generated from train-
ing samples [63]. In the case of complicated landscapes, 
parametric classifiers generate undesirable results such as 
linear discriminant analysis [63] and MLC [15, 16]. Non-
parametric classifiers are generally based on the exclusion 
of statistical parameters and free to learn with the help of 
training dataset such as support vector machine (SVM) [74], 
NN [21], decision tree [21].

Conventional classifiers are generally based on the sig-
natures generated from the training dataset (Table 2). These 
classifiers generally ignore the mixed pixel information and 
provide the result based on maximum likelihood [33]. Such 
as MLC [24], NN, decision tree [14, 36].

Whereas, subpixel classifier offers the combination of 
partial membership of multiple class categories within a 
specific pixel [86] such as Fuzzy-set [80, 84], spectral mix-
ture analysis [63] and linear mixture model [87]. The OBC 
classifiers involved the categorization of pixels based on 
the spatial relationship with the surrounding pixels [39]. In 
this paper, we have reviewed different approaches (neural 
networks, machine learning, and deep learning) with high-
lighting various features like classification techniques, clas-
sifier, sensor category, crop/parameters, and performance 
accuracy. NN (Neural Networks) are smart tools to derive 
thematic maps from satellite datasets (Table 2).

Machine Learning‑Based Classifiers

The machine learning approach is used to solve large nonlin-
ear problems using datasets from various sources. It enables 
improved decision-making and knowledgeable procedures 
in a real-world scenario with minimum dependency on the 
user’s skill. It provides a flexible and powerful structure for 
the integration of expert information into the system. The 
machine learning approaches are broadly used for the accu-
rate measuring of biotic stress for weed detection as well as 
plant disease in the crop (Table 3). Cai et al. [7] described 
the utilization of Landsat series spectral data to solve the 
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problem of clouds while implementing the machine learn-
ing model and more accurate analysis of the classification 
process. Coopersmith et al. [10] reported the landowner to 
hesitant to place sensors due to financial cost, difficulty, and 
sometimes infeasibility physical visit to the remote location 
which may be limited by modeling the wetting or drying pro-
cess through machine learning algorithms. Duro et al. [14] 
selected a subset of a large amount of drainage basin select 
for a long-term study land-use and land-cover monitoring.

Deep Learning‑Based Classifiers

The deep learning further extends machine learning appli-
cations into more depth as well as transforms the dataset 
using the different function that hierarchically allows data 
representation, through several levels’ abstractions. A 
strong benefit of deep learning is feature-based learning that 
includes the automatics extraction of different features from 
input dataset Table 4, represents the various deep learning 
approaches including CaffeNet and convolution neural net-
work (CNN). Kussul et al. [33] utilized the multilevel deep 
learning architecture for the classification of different land 
use and land cover types from remotely sensed datasets. In 
this section, we briefly review relevant deep learning-based 
models that were originally proposed for visual dataset pro-
cessing and that are widely used for state-of-the-art research 
into deep learning in Remote Sensing Dataset. In addition, 
we mention the latest deep learning developments, which are 
not yet widely applied to remote sensing but may help create 
the next generation of its algorithms. Figure 1 gives an over-
view of the deep learning models we discuss in this section.

Further, [76] provided a better understanding of the 
capability of Sentinel-1 dataset radar dataset or images for 
agricultural land mapping. Ndikumana et al. [53] developed 
the deep learning model efficiently and perfectly classify 
cloud, shadow, and land cover in different high-resolution 
satellite datasets. Moreover, Zhou et al. [102] investigated 
the suitability and potential of DCNN in the supervised 
classification of POLSAR (Polarimetric Synthetic Aperture 
Radar) dataset. Spatial information was naturally employed 
to terrain classification due to the properties of convolutional 
networks (Table 5).

Sowing and Harvest of Summer and Winter 
Crops

Figure 2 represents the Sowing and harvesting of different 
crops during the summer season (May–October) and win-
ter (October–April) [41]. The phonological stages for each 
crop’s and Botanical names such as wheat (Triticum aesti-
vum), Barley (Hordeum vulgare), Mustard (Brassica nigra), 
Berseem (Trifolium alexandrinum), Paddy (Oryza sativa), 

Corn (Zea mays), Millet (Pennisetum typhodium), Sorghum 
(Sorghum bicolor) and Sugarcane (Saccharum officinarum) 
have been acquired from growth guides provided by Punjab 
State’s Department of Forestry, Agriculture, and established 
by interviews with neighborhood farmers [33].

Traditionally, mapping the vegetation of an entire area 
is a matter of time and requires a demanding field sur-
vey. Remotely sensed datasets, especially such as senti-
nel-2, Landsat-8, and MODIS dataset the classification 
and monitoring of vegetation can be accomplished more 
cost-effectively with more detail in less period with the 
help of machine learning and deep learning approaches 
(Table 6). Three stages play an important role for vegeta-
tion monitoring or mapping of Punjab state’s region such 
as plantation, growth, and harvest time of crop cycle. In 
the past, classifiers have proved useful for finding dif-
ferent crop classes such as SVM [77] and KNN [34] for 
wheat; RF, SVM [77] and NN [101] for barley; RF, KNN 
and DCNN [34] for mustard; DT, RF and SVM [26] for 
Berseem and paddy; KNN [7] for corn; RF [4] for mil-
let and sorghum and MLP [33] RF and DCNN [34] for 
sugarcane.

Summary and Conclusion

The main focus of the present analysis is on the recent 
advancements made in classification methods and com-
parative studies on different strategies to monitor agri-
cultural land [28]. Agriculture monitoring via remote 
sensing offers a cost-effective and rapid way. Nowadays, 
a significant contribution has been in the field of agricul-
ture monitoring via satellite images due to the free data 
access policy offered by most space organizations [36]. 
With continuous development in space technology such 
as high spectral, spatial, and temporal resolutions, more 
or unexplored information can be warranted in the future 
[46]. Advanced geospatial classification techniques such 
as machine learning and deep learning can be more sig-
nificant to extract important information from agricultural 
land [58].

From the previous literature, it is apparent that pixel-
based methods have certain limitations such as not consid-
ering the variations within a pixel which can be effectively 
solved with the help of sub-pixel-based approaches up to a 
great extent. There is further existence of variation within 
a pixel [9]. Most studies on satellite datasets highlighted 
the performance of object-based classification approaches 
for different regions such as agriculture areas, urban areas, 
forests, and wetlands [47]. In the past various years, different 
studies have been carried out using different emerging clas-
sifiers in remote sensing-based agriculture applications [91]. 
Worked on NN and concluded that NN spontaneously selects 
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the training samples on the contextual information extracted 
from the target area [34]. Moreover, the spatial distributions 
of the objects have also been improved and strengthened 
as it uses multi-scale contextual information [34, 76]. The 
accuracy in class-category and boundary information has 
also been improved in NN classified maps [18].

Moreover, the machine learning classifiers such as DT 
[26], SVM [20], RF [1], MLP [15, 16] and KNN [7] has 

the potential to improve the classification results in agricul-
ture regions as compared to conventional classifiers [37]. 
Moreover, machine learning techniques directly study infor-
mation from small data samples through their features and 
successively construct a difficult statistical model to make 
predictions on larger ones [15, 16]. These features come 
from variables that are involved in classification, namely 
predicting variables [7]. Such data-driven approaches can 

Table 2   General convention in agricultural land

OBIA object-based image analysis, RF random forest, MLC maximum likelihood classification, MLP multi-layer perceptron’s, SVM support vec-
tor machine

Category Classifier Sensor Crop/parameter Performance References

Hierarchical Classification RF Landsat 7,
Landsat 8,
Sentinel 2-A, 2-B

Soy, maize, cotton, beans, carrot, onion, potato, 
millet, sorghum

– [4]

Supervised MLC, RF TerraSAR-X, Radar-
sat-2, Envisat, FOR-
MOSAT-2

Maize, pumpkin, rice, soya 85% [24]

OBIA and Pixel-based RF Sentinel-2 Carrots, maize, onions, soya, sugar beet, 
sunflower

[26]

Pixel-based and Parcel-based MLP Landsat-8, Sentinel-2 Wheat, rapeseed, maize, sugar beet, sunflower, 
soybeans

89.40% [33]

Supervised RF, SVM Radarsat-2, Formosat-2 Wheat, barley, rapeseed, grassland 70% [77]

Table 3   Agricultural land with machine learning (ML)

KNN K-nearest neighbors, DT decision tree, RF random forest, SVM support vector machine, MLP multi-layer perceptron’s, BRF bias-corrected 
random forest, PLDA probabilistic linear discriminant analysis, ANN artificial neural network, Xgboost extreme gradient boosting

Category Classifier Sensor Crop/parameter Performance References

Supervised KNN Landsat 5,7 and 8 for 2000 to 
2015

Corn, soybean 95% [7]

Supervised Boosted Perceptrons, 
Regression Trees, KNN

Situ Sensors Statistical soil dryness 91–94% [10]

Supervised DT, RF, SVM Online GeoBase spatial Data 
portal (www.​geoba​se.​ca)

Mixed grassland, crop, 
wetland, exposed rock/soil, 
water, riparian,

DT (88.84%), RF 
(93.39%), SVM 
(94.21%)

[26]

Unsuper-
vised /
Supervised

K-means, SVM, MLP BRF MODIS (MOD09GA) satellite 
sensor

Cropland grids [15, 16]

Supervised DT, KNN, SVM, RF Landsat-8 Wheat, grape, canola, lucerne, 
lupine, olive, pasture

96.2% [21]

Supervised Adaboost.M1, DT KNN, 
naiveBayes, PLDA, RF, 
SVM

Digital Orthophoto Map 
(DOM)

Crop, bare land, woodland, 
water, building, road

Object-Based [39]

Supervised ANN, RF, SVM Sentinel-2 Agricultural land, water, 
urban, bare soil, grassland, 
forest, cloud

90% [37]

Supervised DT, RF SVM SPOT-6 and RADARSAT-2 Palm oil, grass, vegetation, 
paddy, water, bare and 
flooded soil

88.08% [20]

Supervised DT, RF, SVM, Xgboost Sentinel-2 Agriculture, deciduous, water, 
wetland, clearcut, coniferous, 
artificial, open land

75.8% [1]

http://www.geobase.ca
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Table 4   Agricultural land with Deep Learning

RF random forest, KNN K-nearest neighbors, DCNN deep convolutional neural networks, SVM support vector machine, CNN convolutional Neu-
ral Network, NN nearest neighbour

Category Classifier Sensor Crop/parameter Performance (%) References

Unsupervised RF, KNN, DCNNs Landsat-8 and Sentinel-1A Water, forest, grassland, bare land, winter 
wheat, winter-spring cereals, rapeseed, 
soybeans, sunflowers, maize, and sugar 
beet

88.7, 92.7, 93.5, 94.6 [34]

Supervised KNN, RF, SVM Sentinel-1A/1B SAR dataset Rice, sunflower, lawn, irrigated grassland, 
wheat, alfalfa, tomato, melon, clover, 
swamps, vineyard

96 [53]

Supervised CNN Planet-Scope and Sentinel-2 Cloud labels: clear, haze, partly cloudy, 
cloudy. shade labels: un-shaded, partly 
shaded, and shaded. land cover label:

agriculture, water, bare ground, habita-
tion, forest,

84 [76]

Supervised NN POLSAR Find the 14 classes like Forest, Peas, 
Lucerne, Beet, Wheat, Potatoes, 
Grasses, Bare soil, Rapeseed, Wheat2, 
Wheat3, Barley, Water, Buildings

92.46 [101]

Fig. 1   An overview of various 
deep learning classifiers: a deep 
convolution neural network 
(DCNN), b autoencoders, 
c recurrent neural network 
(RNN), and d convolution 
neural network (CNN)
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enhance the possibilities to adaptively improve the perfor-
mance of a model by avoiding the problem of over-fitting or 
under-fitting [1].

On the other hand, the deep learning classifier such 
as CNN [76], RNN [5] and DCNNs [34] or object-based 

classification techniques improve the extraction of the 
agricultural land classes [76]. Within the deep learning 
approach, convolutional and pooling layers are connected 
alternatively to simplify the features towards deep and intel-
lectual representations. Typically, the convolutional layer 

Table 5   Deep learning models and its application

DCNN deep convolution neural network, RNN recurrent neural network, CNN convolution neural network

Techniques Advantages Disadvantages Applications

DCNN Once trained, the predictions are pretty fast
DCNN can be trained with any number of 

inputs and layers [79, 82]

It is computationally more expensive and 
time-consuming to train with traditional 
CPUs [53]

Agricultural land, plantations [70]

Auto-encoders It can be trained with any number of inputs 
and layers [2]

Auto-encoders work best with more data 
points [38]

It depends a lot on training data. This leads 
to the problem of over-fitting [56]

Agriculture, cotton, mulberry, 
sugarcane [6, 13] 

RNN It remembers each information through time 
[27]

RNN is even used with convolutional layers 
to extend the effective pixel neighborhood 
[97]

Training an RNN is a very difficult task [62]
Gradient vanishing and exploding problems 

[98]

[15, 16, 22,, 25] 

CNN Learns the filters automatically without men-
tion them explicitly [23]

Captures the spatial features from an image

Overfitting and the need for large training 
datasets [41–43]

The high computational cost of training [75, 
76]

[25, 64, 78]

Fig. 2   An overview of various 
agricultural production phases
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improves the learning procedure through a set of samples 
or image patches across the dataset [91]. Those weights are 
shared by different feature maps, in which multiple features 
are learned with a reduced number of parameters, and an 
activation function, e.g., rectified linear unit is followed to 
strengthen the non-linearity of the convolutional operations 
[62]. The pooling layer involves max-pooling or average-
pooling, where the summary statistics of local regions are 
derived to further enhance the generalization capability.

The advanced methodologies (ML and DL) have the 
potential to become very important to the monitoring of 
agricultural land using satellite datasets. To apply these 
technologies for plant diseases, weed detection, real-time 
field operations, and soil analysis may become routine 
operations in close to future agriculture [17, 53]. Moreo-
ver, the development and integration of advanced algo-
rithms in classification or change detection procedures 
may be beneficial to acquire information regarding the 
different vegetation types over agricultural land. Further, 
the machine and deep learning-based techniques can also 
be tested for vegetation monitoring over rugged terrain 
where remote sensing is highly affected with differential 
illumination effects in the form of shadow [79].

In this paper, we have systematically reviewed the state-
of-art machine learning and deep learning techniques in 
remote sensing data analysis [67]. The deep learning tech-
niques were originally rooted in machine learning fields 
for classification and recognition tasks, and they have only 
recently appeared in the remote sensing and geoscience 
community [30]. From the five perspectives of (a) super-
vised/ unsupervised; (b) Parametric/non-parametric, (c) 
hard/soft, (d) per-pixel/sub-pixel, and (e) object-based 
classification, we have found that deep learning techniques 
have had significant successes in the areas of target recog-
nition and scene understanding, i.e., areas that have widely 
accepted as challenges in recent decades in the remote 

sensing community because such applications require us 
to abstract the high-level semantic information from the 
bottom level features, while the traditional remote sens-
ing methods of feature describing feature extraction clas-
sification are shallow models, with which it is extremely 
difficult or impossible to uncover the high-level represen-
tation [8].

In agricultural land, which is an SVM-based technique, 
the testing on the automatic extraction of human-made 
objects is not made, and the segmentation accuracy limita-
tion is not resolved [50]. The developed SVM classifier is 
not suitable for the applications, such as change identifica-
tion and monitoring of the environment [100]. The clas-
sification accuracy is not achieved to the expected limit in 
the developed multi-spectral dataset by utilization of the 
SVM and RF classifiers [53]. The classification result is 
not improved by the DT classifier as the training dataset, 
and the testing area is limited. The research challenges 
in the DNN-based classification are, DCNN is not advis-
able for the classification of multi-sensor and multi-res-
olution satellite datasets (Singh, Sethi, and Singh, 2021). 
The developed ANN classifier [79, 82] cannot achieve the 
expected accuracy in massive distinct region databases and 
suffer from high computational complexity. However, the 
research in deep learning is still young and many queries 
remain unsolved. They are some potentially interesting 
topics in machine learning and deep learning for remote 
sensing data analysis such as (a) the total number of train-
ing samples [99]; (b) the complexity of remote sensing 
images [11]; (c) transfer between data sets [96]; (d) depth 
of deep learning model [104].
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SS, supervised the work, including a re-writing task and visualization, 

Table 6   Different machine 
learning and deep learning 
approaches related to 
agriculture informatics

KNN K-nearest neighbors, DT decision tree, RF random forest, SVM support vector machine, MLP multi-
layer perceptron’s, RNN recurrent neural network, CNN convolution neural network, DCNN Deep convolu-
tion neural network

Techniques Classifiers Agri. information Examples

Machine learning KNN Grassland [93]
DT Fertile cultivated land, green pasture [31, 59]
RF Grassland, farmland, tropical crops, herb. 

dry, olive grove, green- lands
[31, 66],

SVM Vegetation, grassland, farmland [31, 73],
MLP Fertile cultivated land, green pasture [59]
K-mean Grassland, farmland [54]

Deep Learning RNN Summer and winter crops, vegetation, vine-
yards, sugarcane crops

[25]

CNN Vegetation, plantations [25, 64, 79]
DCNN Agricultural land, plantations [70]
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