
Vol.:(0123456789)

SN Computer Science (2021) 2:475 
https://doi.org/10.1007/s42979-021-00866-4

SN Computer Science

ORIGINAL RESEARCH

Deep Quantile Regression for Unsupervised Anomaly Detection 
in Time‑Series

Ahmad Idris Tambuwal1 · Daniel Neagu1

Received: 16 January 2021 / Accepted: 8 September 2021 / Published online: 30 September 2021 
© The Author(s) 2021

Abstract
Time-series anomaly detection receives increasing research interest given the growing number of data-rich application 
domains. Recent additions to anomaly detection methods in research literature include deep neural networks (DNNs: e.g., 
RNN, CNN, and Autoencoder). The nature and performance of these algorithms in sequence analysis enable them to learn 
hierarchical discriminative features and time-series temporal nature. However, their performance is affected by usually assum-
ing a Gaussian distribution on the prediction error, which is either ranked, or threshold to label data instances as anomalous 
or not. An exact parametric distribution is often not directly relevant in many applications though. This will potentially 
produce faulty decisions from false anomaly predictions due to high variations in data interpretation. The expectations are 
to produce outputs characterized by a level of confidence. Thus, implementations need the Prediction Interval (PI) that 
quantify the level of uncertainty associated with the DNN point forecasts, which helps in making better-informed decision 
and mitigates against false anomaly alerts. An effort has been made in reducing false anomaly alerts through the use of 
quantile regression for identification of anomalies, but it is limited to the use of quantile interval to identify uncertainties in 
the data. In this paper, an improve time-series anomaly detection method called deep quantile regression anomaly detection 
(DQR-AD) is proposed. The proposed method go further to used quantile interval (QI) as anomaly score and compare it 
with threshold to identify anomalous points in time-series data. The tests run of the proposed method on publicly available 
anomaly benchmark datasets demonstrate its effective performance over other methods that assumed Gaussian distribution 
on the prediction or reconstruction cost for detection of anomalies. This shows that our method is potentially less sensitive 
to data distribution than existing approaches.

Keywords  Time-series · Anomaly detection · Prediction interval · Deep neural networks · Long short-term memory · 
Quantile regression

Introduction

Fast advances in Industry 4.0 technologies generate enor-
mous amount of data from large number of sensors [1] and 
other devices within an increasing number of industrial 
applications. The generated data are time-ordered measure-
ments processable as time-series data. Industries often col-
lect and exploit such data for a number of critical applica-
tions including anomaly detection. Anomaly is defined as 

unexpected point in time-series (e.g., a sudden sensor drift), 
or an anomalous subsequence within the time-series (e.g., 
a continuous change in the sensor readings), or points that 
are anomalous based on defined context, or an anomalous 
time-series within the entire time-series database [2]. Anom-
aly detection methods are needed for early fault detection, 
with potential contributions to avoid total system failure. 
This includes providing an early evidence for detection of 
mechanical faults [3] and sensor faults [4] in automotive 
vehicles during usage.

Anomaly detection techniques are generally categorized 
based on their output [2] into labeling and scoring tech-
niques. The labeling techniques, also called classification-
based methods, directly assign class labels (e.g., normal or 
abnormal) to the test instances using a trained model [5–7]. 
For supervised-learning purposes, such techniques rely on 
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pre-labeled data sets. However, labeling large volumes of 
data is often difficult, costly, and sometimes incomplete due 
to big data resource challenges. In contrast, the advantage 
brought by scoring techniques that assign anomaly scores 
based on a degree the data instance shows anomaly profile 
is similar to applications using unsupervised or semi-super-
vised learning. These techniques include statistical-based 
[8, 9] and distance-based methods [10–15]. However, due to 
the temporal nature of time-series, distance-based anomaly 
detection methods are difficult to be used due to their sensi-
tivity to noise and distance calculation function. In addition, 
they are not suitable for cases without sufficient relevant 
data, which are relative to the task at hand.

As such, other prediction-based methods such as Autore-
gression [16], ARMA [17], ARIMA [18], Kalman Filters 
[19], and general regression [20, 21] were proposed. Neither 
of these methods use sequential models that exploit the tem-
poral nature of time-series data which makes their predic-
tions less accurate.

Recent advancement in deep learning methods applica-
tions to big data collections opens also opportunities to study 
their applicability to anomaly detection [22]. These methods 
used sequential models, and their performance in sequence 
analysis reported in multimedia applications [23–26] enable 
them to learn the hierarchical discriminative features and 
time-series temporal nature [27]. In addition, for each time-
series point, an anomaly score is calculated which helps 
in handling the type of anomaly detection problem. Deep 
learning-based anomaly detection techniques using long 
short-term memory (LSTM) [28–30] and other forms of 
recurrent neural network (RNN) [31, 32], convolutional neu-
ral network (CNN) [33], and autoencoder [15, 34–39] dem-
onstrate higher performance over the previously mentioned 
prediction-base anomaly detection techniques. Despite their 
performance and unsupervised learning approach, they com-
pute the anomaly score by assuming a distribution usually 
of Gaussian type on the prediction error, which is either 
ranked, or threshold to label data instances as anomalous or 
not. However, an exact parametric distribution is often not 
directly relevant in some applications, and the assumption of 
any distribution will lead to false anomaly alerts due to high 
prediction variance. To solve this problem, Prediction Inter-
val (PI) in regression tasks is considered [40]. PI quantifies 
the level of uncertainty associated with the point forecasts, 
thereby offering an interval of confidence for a prediction of 
lower and upper bounds. Such approach is most welcome in 
applications requesting better-informed decisions and miti-
gate against false anomaly alerts, particularly and consistent 
required in industrial applications.

Within the collection of approaches that used PI for 
anomaly detection, valuable solutions range from Bayes-
ian approaches [41] to interpret dropout as performing 
variational inference [40, 42] at the cost of either higher 

computational demands or strong requirements. In contrast, 
a probabilistic forecasting model that returns a full condi-
tional distribution was proposed in [43]. The probabilistic 
forecasts were achieved by assuming also a distribution usu-
ally Gaussian on the prediction error. However, as stated 
earlier, an exact parametric distribution is often not relevant 
in applications which will lead to false anomaly alerts due 
to high prediction variance.

To address the above challenges, quantile regression 
method is used in [44] which is limited to the use of quan-
tile interval to identify only uncertainties in the data. In this 
paper, an improve unsupervised anomaly detection method 
called deep quantile regression anomaly detection (DQR-
AD) is proposed that go further to used quantile interval 
as anomaly score and compare it with a threshold value to 
detect anomalies in time-series data. The proposed method 
consists of three processing modules: first, a segmentation 
module that segments the time-series into overlapping win-
dows. Second, a prediction module that uses quantile regres-
sion to forecast quantile values. Finally, an anomaly detec-
tion module to compute an anomaly score for individual 
point using quantile interval (QI) as a range between upper 
and lower quantiles forecasted in the first module. The tests 
run of this method with publicly available anomaly bench-
mark datasets shows that it outperforms other baseline tech-
niques that assume Gaussian distribution on prediction error 
to identify anomalies. In this paper:

1.	 An improved unsupervised deep learning-based anom-
aly detection method (DQR-AD) is proposed for detec-
tion and classification of anomalies in time-series data. 
Unlike previous approach [44] which used quantile 
interval to identify uncertainties in time-series data, 
DQR-AD uses quantile interval as anomaly score and 
compares it with threshold value to identify anomalies 
in the data. In this way, a more comprehensive picture 
of anomalous points can be achieved and classified from 
the normal points.

2.	 No assumption of any data distribution is required. 
Unlike other baseline deep learning-based anomaly 
detection techniques that assume Gaussian distribution 
on prediction error to compute anomaly score, DQR-AD 
uses QI to quantify the level of uncertainty to compute 
anomaly score which reduced the rate of false positives. 
Experimental results in “Experiments” confirm this on 
a case basis.

3.	 Unlike the work in [44] that evaluate the performance 
of their method using only a single dataset and without 
any comparison with other methods, this paper conducts 
an extensive evaluation and comparison with six base-
line methods using two benchmarks of both real and 
synthetic datasets.. This demonstrates the ability of our 
proposed method to detect higher number of anomalies 
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with low false-positive rates and its applicability on mul-
tivariate time-series as confirmed in “Conclusion and 
Future Work”.

The rest of the paper is organized as follows: “Literature 
Review” reviews related works. In “The Proposed DQR-AD 
Method”, the proposed method and its algorithm depiction 
are detailed. “Experiments” describes the experiments test-
ing the proposed process. Finally, “Conclusion and Future 
Work” contains conclusions and future studies generated 
from this work.

Literature Review

This section provides the review of related literature about 
time-series anomaly detection methods.

Many time-series anomaly detection techniques have 
been studies in the recent years [45]. These techniques 
include statistical-based [8, 9, 46] and distance-based meth-
ods [10–15]. Statistical-based methods use the distribution 
of the data which is not directly relevant in many appli-
cations. Distance-based methods compute anomaly scores 
by calculating the distance between sample points, thereby 
assuming normal points exist in the same area which is far 
apart from the abnormal data points. Moreover, due to the 
temporal nature of time-series, distance-based anomaly 
detection methods are difficult to be used due to their sensi-
tivity to noise and distance calculation function. In addition, 
they are not suitable for cases without enough normal data, 
which are relative to the task at hand.

As a result of above-mentioned problems, several predic-
tion-based methods were proposed which includes classical 
regression models such as Autoregression [16], ARMA [17], 
ARIMA [18], Kalman Filters [19], and general regression 
[20, 21]. Neither of these methods use sequential models 
that exploit the temporal nature of time-series data which 
makes their predictions less accurate. Recent advancement 
in deep learning methods applications to big data collec-
tions open also opportunities to study their applicability to 
anomaly detection [22] where prediction-based anomaly 
detection methods uses deep learning algorithms for time-
series anomaly detection. For example recently, recurrent 
neural networks (RNNs) particularly based on long short-
term memory (LSTM) [47] or gated recurrent unit (GRU) 
[23] have been reported consistently for anomaly detection 
in published research.

Various RNN structures have been reported to be used 
for time-series anomaly detection [22]: Malhotra et al. [28] 
proposed a deep learning-based anomaly detection method 
(LSTM-AD) that used stacked LSTM as prediction model 
to learn time-series normal pattern and predict the future 
points. The model is evaluated using prediction error and 

likelihood of the point to be an anomaly is measured through 
an assumption of Gaussian distribution on the error. A simi-
lar approach was used by Chauhan and Vig [48] for detec-
tion of anomalies in ECG data. The method used RNN aug-
mented with LSTM to detect 4 different types of anomalous 
behavior. In a similar context, Singh [49] explored the use of 
LSTM for anomaly detection in temporal data with a similar 
approach as in [28] by training the predictive model with 
normal time-series pattern by modeling the prediction error 
as Gaussian distribution to estimate the likelihood of an 
observed future value to be anomaly. In addition, the paper 
also investigates an alternative way of maintaining LSTM 
states and how that can affect its prediction and detection 
performance.

With a slightly different approach, Bontemps et al. [50] 
combined LSTM prediction model with circular array for 
detection of collective anomalies. In contrast to the previous 
point anomaly detection techniques that consider each time 
step separately, they trained the model to predict multiple 
time steps, thereby storing the prediction errors from those 
steps in a circular array with minimum attack time. This 
detection method faces the problem of identifying collective 
anomaly by defining a threshold using available labels in 
the validation data. Instead of using a circular array, Sau-
rav et al. [31] developed an alternative procedure that make 
used of sliding window to handle time-series temporal and 
streaming nature. This technique used an incremental model 
that is trained whenever a new datum arrives. This enables 
the model to adapt changes (sudden, incremental, gradual, 
and continues concept drifts) in the time-series data. In addi-
tion, the authors used GRU units in the RNN architecture, 
that are simplified version of LSTM units. Although, the 
method used sliding window for multi-step ahead prediction 
and related prediction error for updating model parameters 
which enable online anomaly detection, the anomaly score 
of the window is computed as an average of the square of 
individual points estimated error. This will lead to false-pos-
itive result and increase in misidentification of anomalous 
points in real time where data instance arrives one after the 
other. To solve this problem, Shipmon et al. [51] proposed 
another method which combined LSTM-based prediction 
model to predict expected time-series value and Gaussian 
tail probability rule defined in [52] to estimate the likelihood 
of the predicted value to be an anomaly based on prediction 
history. In their paper, the distribution of an error is model 
as indirect probabilistic metric and was used to measure the 
likelihood that the current state is anomalous. Although, the 
distribution of prediction error is technically not Gaussian in 
some applications, they model it using normal distribution 
which may still result in false-positive result in a very noisy, 
unpredictable streams.

In an online fashion, hierarchical temporal memory 
(HTM) is used for anomaly detection in data streams [52]. 
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This method models the temporal nature of the data stream 
at a given time and make predictions for the next time step. 
At each step, the actual instance is compared with the pre-
dicted instance to compute anomaly score which is thresh-
olded to determine whether the point is anomalous or not. 
The likelihood of a point to be anomaly is determined by 
assumption of Gaussian distribution on prediction error. 
In another context, convolutional neural networks (CNN) 
are used as a prediction model as an unsupervised anomaly 
detection method (DeepAnT) for time-series data [33]. The 
DeepAnT method consists of two modules: (1) the predic-
tion module for predicting the next time step using a slid-
ing window; (2) the anomaly detection module responsible 
for data labeled as anomaly based on the prediction passed 
from the predictor module. This method also used the same 
procedure as the previous methods where anomaly score is 
computed by assumption of a normal distribution on predic-
tion error.

However, the above-mentioned methods face two main 
challenges with real-life complex systems. First, not always 
the relevant variables are captured, and therefore, relevant 
existing or incomplete time-series could affect model per-
formance. Second, an exact parametric distribution is often 
not directly relevant in some applications and assumption of 
any distribution will lead to false anomaly alerts due to high 
prediction variance.

To solve unpredictable nature of the time-series, an 
autoencoder is used for learning hidden representation and 
extraction of relevant features from the time-series data. 
autoencoder involves two parts, encoder and decoder. The 
encoder learns how to encode or compress the input data. 
The decoder reconstructs the encoded data back to input 
space. Efficient data encoding proposals that do not require 
additional supervised labeling become popular in current 
solutions for anomaly and novelty detection problems. Mal-
hotra et al. [34] proposed an LSTM-based encoder–decoder 
for anomaly detection in multivariate time-series data. The 
encoder–decoder model learn the normal representation of 
the time-series by reconstructing it in an unsupervised man-
ner. The authors assumed a model trained on time-series for 
normal behavior performs well for reconstruction normal 
time-series and poorly on abnormal time-series. This will 
lead to higher reconstruction error that can be used for com-
puting an anomaly score to identify anomalies in the time-
series data. Like the previous methods, a normal distribution 
is assumed on reconstruction error, which enhance the com-
putation of anomaly score. In a similar context, deep autoen-
coders are proposed by Schreyer et al. [35] for fraud detec-
tion in large-scale accounting data. A different approach is 
proposed in [15] that combined autoencoder and clustering 
algorithm for novelty detection. This is achieved by comput-
ing an error threshold from the autoencoder model and pass 
it to the density-based clustering method. The compressed 

data from the autoencoder are clustered to identify novelty 
groups as low-density points. Similarly, Zong et al. [37] 
combine autoencoder with Gaussian mixture model (GMM) 
for unsupervised anomaly detection. The autoencoder is used 
for dimensionality reduction where the low-dimensional 
representation together with reconstruction error is pass to 
GMM for density estimation and identification of anomalies. 
Even though these methods demonstrate higher performance 
due to their unsupervised learning approach, they face simi-
lar challenge of assumption of a Gaussian distribution on the 
reconstruction error which is either ranked or threshold for 
anomaly detection. However, as mentioned earlier, an exact 
parametric distribution is often not directly relevant in some 
applications and assumption of any distribution will lead to 
false anomaly alerts due to high reconstruction variance.

In an attempt to mitigate the false-positive problem, Hun-
dman et al. [53] introduced pruning procedure and learn-
ing from history of labeled anomalies in data streams. The 
pruning procedure, limited by maximum error/s, helps in 
ensuring the anomalous sequences which are not affected or 
depended by regular noise. Such procedures could improve 
precision of the detection method but are also affected by the 
use of maximum errors in their evaluation, thereby remov-
ing or reclassifying minimum error as nominal could lead to 
missed detections. To solve this problem, uncertainty is con-
sidered in the deep learning-based predictions for anomaly 
detection.

Various approaches have been developed to address 
uncertainty in deep neural networks for anomaly detection. 
They range from Bayesian approach [41] to interpreting 
dropout as performing variational inference [40, 42]. In these 
methods, prediction interval (PI) which quantifies the level 
of uncertainty associated with the point forecasts is consid-
ered. David et al. [54] proposed anomaly detection method 
that used auto regression model and its prediction interval 
to identify anomalies in environmental sensor streams. 
The authors calculate prediction interval that accounts for 
uncertainty in both input data and model parameters. They 
classified a data point as anomalous when it falls outside a 
given prediction interval. In contrast, Lingxue and Nikolay 
[40] argued that the measurement of prediction uncertainty 
does not depend on only input data and model parameters 
but rather combine with model misspecification and inher-
ent noise. They achieved this by introducing an updated 
approach that used autoencoder for time-series predictions 
along with uncertainty estimates to forecast extreme events 
at Uber. In a similar context, Legrand et al. [42] investi-
gated how inclusion of uncertainty in computation of anom-
aly score improves the performance of anomaly detection 
using autoencoder. They does that by developing a new 
anomaly score function that is weighted with uncertainty 
as opposed to the Bayesian score function introduce in [40]. 
This approach is computationally demanding or impose 
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strong requirements. Reunanen et al. [38] proposed another 
unsupervised anomaly detection method that combine 
autoencoder and logistic regression for outlier detection and 
prediction in sensor data streams. The autoencoder recon-
structs the input data and produces hidden representation of 
the input that can be used to create the required labels for 
logistic regression to classify anomalous points. The outlier 
is identified as extreme values that exceed a limit of three 
standard deviation defined using Chebyshev’s inequality or 
any deviation in the correlation of data features. Although 
no assumption of the distribution of the data is required, but 
the method assumes the descriptive statistics (δ and μ) of 
the unknown normal values to be initially defined. It is also 
assumed the feature value of the initial data point to have 
non-zero variance often which the scaling limits for outlier 
detection cannot be define.

In contrast, a probabilistic forecasting model that returns 
a full conditional distribution was proposed in [43]. The 
authors introduced probabilistic forecasting using autoen-
coder model that directly output parameters of negative 
binomial and Gaussian likelihoods for real-valued time-
series. This shows that the probabilistic forecasts were also 
achieved by assumption of a Gaussian distribution on the 
prediction error.

However, an exact parametric distribution is often not rel-
evant in applications which will lead to false anomaly alerts 
due to high prediction variance. Also, none of the above-
mentioned methods used quantile regression which predicts 
conditional quantiles and can produce probabilistic forecast 
without making any distributional assumption. An attempt 
was made to use quantile regression for anomaly detection 
[44], but it is limited to the use of quantile interval to iden-
tify only uncertainties in the data. This limitation leads to 
the development of an improve quantile regression anomaly 
detection method (DQR-AD) in this paper. The proposed 
method go further and used the identified uncertainties to 
set up a threshold which is compared with quantile interval 
to classified anomalies.

The Proposed DQR‑AD Method

This section presents a detailed description of the proposed 
(DQR-AD) method. The proposed deep quantile regression 
anomaly detection (DQR-AD) process consists of three mod-
ules, which include time-series segmentation, time-series 
prediction, and anomaly detection. A detailed concept of 
these modules is depicted in Fig. 1 and described in the fol-
lowing subsections.

Fig. 1   Flowchart diagram of DQR-AD method that involves time-series segmentation, prediction, and anomaly detection
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Time‑Series Segmentation

This section presents time-series segmentation module 
which is used to segment time-series into overlapping 
windows which works as follows: consider a multivariate 
time-series x = {x1, x2,… , xt} , where t represent the time-
series length and each point xi ∈ Rm (for i = 1… t ) in the 
time-series have m-dimensions which correspond to the m 
features or sensor channels read at time t. A sliding window 
method is used to segment the time-series into two sequence 
of overlapping windows each with size l. First, is history 
window ( hw ) 

{
xt−l,… , xt−1, xt

}
 that defines the number of 

previous time steps which will be used as input to the model. 
Second, is the l-steps predicted window (pw) , that represent 
the number of time steps to be predicted where the number 
of dimensions d being predicted is 1 < d < m . For example, 
consider a history window of five previous time steps hw = 5 
and one step ahead prediction window pw = 1 as shown in 
(1):

The left-hand side of Eq. (1) serve as input data to the 
regression model and the right-hand side as the output which 
is treated as a label to the input data. This paper aims at 
predicting the next time step value with a single feature 
(i.e., d = 1 and pw = 1 ) which resulted in a single scaler 
prediction ŷt to be generated for the actual value at each 
step t . Detailed steps involved in time-series segmentation 
are given in Algorithm 1. The Algorithm receives as input 
a sequence of time-series, number of time steps which rep-
resent the size of history window, and number of features. 
It then loops though the sequence segmenting it into subse-
quence of history and prediction window which are stored 
in two different lists. The Algorithm returns these two lists 
as output.

(1)xt−4, xt−3, xt−2, xt−1, xt → xt+1.

To reduce the dynamic range of signal and enhance the 
performance of the regression model, the min–max normali-
zation method is applied on the output from Algorithm 1 
before passing to the next module. Normalization is impor-
tant for numerical stability of training the deep neural net-
works, particularly because time-series prone to anomalies 
can have unbounded records. It also provides more emphasis 
on the temporal pattern of time-series and has been shown 
to be useful for sequence mining [55]. The sequence of both 
history and prediction windows are scaled between 0 and 1 
( xij ∈ [0,1] ) where j = 1…m , as shown in (2):

where xmax and xmin represent vectors of minimum and maxi-
mum values of the features. Each point in time will be scaled 
per each feature.

Time‑Series Prediction

This section describes a time-series prediction module 
which involves deep quantile regression (DQR) that uses 
the history window ( hw ) to forecast the quantiles of the next 
time step ( pw ). The section starts with the description of 
DQR process which works as follows: the DQR model is 
built using multilayered LSTM-based RNNs. The choice 
of LSTM is motivated by its performance on forecasting 
time-series points and its ability to hold long-term tempo-
ral relationship within the time-series [56]. However, this 
paper focuses on developing a prediction model, which can 
forecast time-series points considering uncertainty. This 
is achieved via quantile regression that generate quantiles 
as oppose to point estimate in ordinary LSTM model [56]. 
Quantile regression is used, because it predicts conditional 

(2)xi =
xi − xmin

xmax − xmin

,
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quantiles of the target distribution which produces accurate 
probabilistic forecast without making any distributional 
assumptions [57]. To perform quantile regression on LSTM, 
the custom quantile loss (QL) function in Eq. (3) penalizes 
errors based on the quantile values generated and error’s 
sign:

where � is the required quantile with values between 0 and 
1 and �i = yi − f (xi) with f (xi) as the predicted quantile and 
yi as the observed value for the corresponding input x . To 
create a quantile loss for the entire dataset, the average of the 
quantile loss for an individual point is taken, as shown in (4):

In quantile regression, models are trained to minimize 
the QL, and by minimizing this loss, the model will have 
the ability to predict the normal behavior of the time-series. 
To estimate uncertainty, the DQR model focuses on predict-
ing quantile values [lower (10th), upper (90th), and classi-
cal (50th) quantiles]. However, one of the complexities of 
estimating uncertainties in LSTM using QR is uncertainty 
due to internal weights initialization, which results in quan-
tiles overlapping. To handle this problem, bootstrapping is 
employed. This allows the regression model to be iterated 
n times, thereby storing the predicted values in an array 
which is finally used to compute the desired quantiles. By 

(3)L
(
𝜉
i
|𝛼
)
=

{
𝛼𝜉

i
if 𝜉

i
≥ 0

(𝛼 − 1)𝜉
i
if 𝜉

i
< 0

,

(4)L(y, f |�) = 1

N

∑N

i=1
L
(
yi − f (xi)|�

)
.

predicting upper and lower quantiles, the model is consid-
ered to have covered the range of possible values where the 
difference or interval between these values will be small 
when the model is sure about the future and big otherwise. 
This behavior is used to enable model to detect abnormal 
values from test set as described in the next section. Detailed 

Fig. 2   DQR model architecture for time-series prediction

Fig. 3   Samples time-series with anomalies
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steps of time-series prediction based on developed model 
are given in Algorithm 2. The Algorithm receives as input 
the list of history and prediction windows which is used to 
train and fit the model for quantile regression. The model 
predicts the quantiles values for each next time step based 
on the history. To achieve this, a quantile loss function is 
created which is integrated with LSTM model. To have an 
optimal result, bootstrapping is employed where the model is 
iterated 100 times predicting and storing the quantile values 
in an array. Thus, the output of this algorithm is an array of 
predicted quantiles.

Model Architecture Summary

An extensive experiment is carried out to finalize on the 
model architecture and its parameters. The model consists 
of four hidden layers that include input, output, and two 
hidden layers for prediction of quantile values, as shown 
in Fig. 2. The input layer has l input nodes correspond-
ing to segmented time-series into l window vectors which 
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represents the hw . The first and second hidden layers are 
composed of 64 and 16 number of nodes, respectively, which 
is followed by an element-wise activation function ReLU. 
The output layer is a fully connected dense layer with its 
nodes connected to all nodes in the previous layers. This 
last layer calculates the predicted quantiles of the next time 
stamp with a number of nodes equal to the size of pw . For 
the model predicting only next time stamp, the number of 
output nodes is 1.

Anomaly Detection and Classification

This section presents anomaly detection and classification 
module which classify anomalous points in time-series data. 
The anomaly detection process is described as follows: given 
the model predicted quantiles from previous section, a time-
series point can then be identified as anomalous using the 
QI. The QI is computed as difference between upper and 
lower quantiles (90–10 quantiles range). The interval will 
be small when the model knows about the future and, on 
the contrary, to have uncertainties when there is a bigger 

interval. This is because the model is not trained to handle 
this type of scenarios and is unable to detect such changes 
in the data that can result in anomalies. The QI is used 
as anomaly score: large values flag up similarly relevant 
anomalies for the given timestamp. However, this module 
is expected to clarify the threshold based on the time-series 
type: a limitation and constraint for most anomaly detection 
techniques. When the QI related to a point in time is greater 
than the threshold, that point is classified and flagged up 
as anomaly. According to the literature [41, 54], two strat-
egies are used for flagging abnormal data which include: 
anomaly detection (AD) and anomaly detection and miti-
gation (ADAM). To allow continues detection of anomaly, 
AD is chosen in this method as against ADAM, which faces 
the problem of false alarms for dynamic data [41]. Detailed 
steps of anomaly detection process are given in Algorithm 3. 
The Algorithm receives as input arrays of lower and upper 
quantile from the previous module, and a fixed threshold 
value. Quantile interval is then computed as a difference 
between upper and lower intervals. The QI is compared with 
the threshold to classify anomalies which is given as output. 
The output is given as an array of anomalous points.
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Experiments

This section covers the extensive experiments conducted to 
test and compare the performance of DQR-AD with six other 
state-of-the-art anomaly detection methods that model pre-
diction error using Gaussian distribution to identify anoma-
lies. These methods include DeepAnT [33], NumentaTM 
[52], ContextOSE [58], EXPoSE [59], AE [38], and VAE-
LSTM [39]. The experiment is conducted using real and 
synthetic datasets from different application domain. We 
divided the experiment into two parts, because AE is evalu-
ated using different benchmark dataset based on a different 
metric. The division is based on NAB and sMAP benchmark 
datasets. Each experiment describes the dataset and exper-
imental setups, and ends with results and discussion. All 
experiments are carried out on the same computer with Intel 
Pentium core i7 processor, Windows OS, and deep learning 
libraries on python anaconda 3.7.

Part I Experiment: NAB Dataset

Dataset Description

NAB (Numenta Anomaly Benchmark) [60] is a publicly 
available streaming benchmark dataset released by Numenta 
and available in their repository.1 The benchmark dataset 
has been widely used in the literature for evaluating anom-
aly detection techniques [31, 52]. This dataset contains 58 
data streams, each with 1000–22,000 records. The dataset 
contains real data from different application domains: road 
traffic, network utilization, online advertisement, sensors on 
industrial machines, and social media, and some artificially 
generated data files with artificial anomalies. Each dataset 
file records have time stamps and data values with anomaly 
labels stored in a separate set of files. An additional column 
is created in each dataset that hold anomalous label of each 
data point. The labels are created either based on the known 
root cause or as a result of labeling procedures defined in 
[52]. Although NAB contains labeled streaming anomaly 
detection datasets, it is faced with some challenges, which 
may affect point anomaly detection [61]. First, each label 
of an unusual point depends on the defined anomalous win-
dow. Which means when one data point within the window 
is an anomaly, all other data points in that window are also 
abnormal. Second, most of the data files have different data 
distribution where the distribution of some few timestamps 
is quite different from the distribution of the remaining time-
series. The second challenge affects the choice of training 
and test sets which may come from different distribution 
and will have a negative impact on training and evaluation 
of time-series models. However, this characteristic becomes 

the main reason why we selected this dataset to evaluate 
the performance of our model in handling uncertainties due 
to model misspecification, as discussed in “The Proposed 
DQR-AD Method”. Figure 3 shows time-series samples with 
anomalous points from the dataset.

Experimental Setup

In this subsection, we provide detail description of how the 
experiment is conducted. Two levels of the same experiment 
are conducted in this section. On the first level, DQR-AD 
is evaluated and compared with five time-series anomaly 
detection methods based on precision and recall using 20 
NAB time-series from different domains. In this experimen-
tal work, the same time-series reported in [33] are used. 
On the second level of the experiment, detailed analysis of 
all the seven state-of-the-art methods and compare them 
with DQR-AD on the whole NAB benchmark datasets. For 
anomaly detection part, AE and VAE-LSTM are evaluated 
on the same settings and parameters with DQR-AD; while 
for the remaining methods, we used the same settings and 
parameters as stated in [33]. For this detailed evaluation, 
we used F-score (5) to report an overall performance of the 
anomaly detection methods. F-score is the most commonly 
used metric to evaluate the performance of anomaly detec-
tion methods [33]. Since NAB records have multiple time-
series related to different application domains, average Fscore 
is reported for each method in relation to each domain:

To train all the models for time-series detection, records 
of each time-series are organized in 80% training set and 
20% test set. From the training set, 20% of it will be used 
for validation. Both the training, test, and validation sets are 
segmented into history ( hw ) and prediction window (pw ). 
The size of history window is set up by looking at the data to 
notice the presence of either daily, hourly, or weekly pattern 
in all the time-series. As such, a daily history window of size 
24 timestamps (one observation every hour) and a predic-
tion window of size 1 were chosen for predicting only one 
timestamp. No label information is required in this unsuper-
vised training process. Instead, for each window of previous 
timestamps, only next timestamp is predicted and serve as 
the target. We also used the same 20% test split and the same 
window size for all the anomaly detection methods we used 
in our comparisons. DQR-AD, LSTM-AD, and VAE-LSTM 
models are trained using mini-batch gradient descent where 
a batch size of 128 is used and 50 number of epochs. For 
DQR-AD, we make use of bootstrapping by reactivating the 
dropout with value 0.3 and iterate for 100 times, thereby 

(5)Fscore = 2 ×
Precision × Recall

Precision + Recall
.

1   https://​github.​com/​numen​ta/​NAB.

https://github.com/numenta/NAB
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storing the predicted values in an array which is finally used 
to compute the desired quantiles.

As highlighted earlier, the limitation of finding best 
threshold is relevant in evaluating anomaly detection meth-
ods. Since each time-series in the NAB dataset is different, 
a generic threshold for all benchmark collection time-series 
is not easy to be found or defined. As such, we used the 
validation data to set a threshold for each time-series. This 
is achieved in many cases with a trade-off approach between 
precision and recall of the predicted results on validation 
data. The threshold value is then used to classify anomalous 
points in the test data.

Experimental Result and Discussion

Figure 4 shows DQR-AD anomaly detection results on a 
single time-series: the red lines represent actual time-series 
and QI in blue dots. It can be seen in this example; the QI 
goes high in the period of uncertainties (circled in green). 
We used this behavior to set up a threshold value of 17,000 
which is maximum trade-off value between precision and 
recall of the validation set, as shown in Fig. 5. The threshold 
value is then used for classification in the test data. The clas-
sification results on the test set are shown in Fig. 6, where 
the actual normal points are depicted in blue and abnormal 
points in orange with a red line indicating the threshold used 

Fig. 4   For nyc_taxi dataset, actual time-series values (red) plotted against the QI (blue) to show periods of uncertainties (circled in green) in the 
test set

Fig. 5   A trade-off between precision    and recall used for setting up a 
threshold value Fig. 6   Using a threshold value of 17,000 for classification
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by DQR-AD for classification of anomalies. True-positive 
and false-positive values are depicted with points above the 
threshold line in orange and blue, respectively. To have a 
better look of the classification result, a confusion matrix 
is shown in Fig.  7. The confusion matrix shows when 

compared with DeepAnT method on the same time-series 
and under the same settings, it shows the same performance 
in terms of number of anomalies identified (true positive) 
but with higher rate of false-positive value equal to 41 as 
shown in the confusion matrix in Fig. 8.

Fig. 7   Confusion matrix for 
DQR-AD

Fig. 8   Confusion matrix for 
DeepAnT
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As indicated in the above figures, the classification result 
of DQR-AD is significantly better than that of DeepAnT in 
terms of false-positive values which is the main problem 
that this paper addresses. On more detailed level, Table 1 
shows results of the first level of the experiment. It can be 
observed from this table that DQR-AD obtained relatively 
better precision and recall than NumentaTM, ContextOSE, 
and DeepAnT in almost all the time-series except in Real-
KnownCause time-series where VAE-LSTM have better 
performance only in recall. This demonstrates the ability 

Table 1   Comparative evaluation of DQR-AD with four anomaly detection methods (NumentaTM, ContextOSE, DeepAnT, and VAE-LSTM) on 
20 NAB time-series from different domains

Precision and recall are reported in this table

NAB dataset NumentaTM ContextOSE DeepAnT VAE-LSTM DQR-AD

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Real known cause
 nyc_taxi 0.85 0.006 1 0.002 1 0.002 0.961 1 1 0.33
 ambient_temperature 0.05 0.006 0.33 0.001 0.26 0.06 0.806 1 1 0.06
 cpu_utilization 0.52 0.01 0.12 0.001 0.63 0.36 0.694 1 1 0.5
 ec2_request_late 1 0.009 1 0.009 1 0.04 0.993 1 1 0.7
 machine_temperature 0.27 0.004 1 0.001 0.8 0.001 0.559 1 0.5 0.5
 rogue_agent_key_hold 0.5 0.005 0.33 0.005 0.34 0.05 0.02 0.1 1 0.05
 rogue_agent_key_updown 0 0 0 0 0.11 0.001 0.11 0 0.5 0.1

Real Ad exchange
 exchange-2_cpc_results 0 0 0.5 0.006 0.03 0.33 0 0 0.7 0.11
 exchange-3_cpc_results 1 0.007 0.75 0.02 0.71 0.03 0 0 1 0.33

Real tweets
 Twitter_volume_GOOG 0.38 0.005 0.75 0.002 0.75 0.01 0.03 1 0.83 1
 Twitter_volume_IBM 0.22 0.005 0.37 0.002 0.5 0.005 0 0 1 0.1

Real traffic
 occupancy_6005 0.2 0.004 0.5 0.004 0.5 0.004 0.01 1 1 0.1
 occupancy_t4013 0.66 0.008 1 0.008 1 0.036 0.11 0.5 1 0.48
 speed_6005 0.25 0.008 0.5 0.004 1 0.008 0 0 1 0.5
 speed_7578 0.6 0.02 0.57 0.03 1 0.07 0.01 0.33 1 0.25
 speed_t4013 0.8 0.01 1 0.008 1 0.08 0 0 1 0.20
 TravelTime_387 0.33 0.004 0.6 0.01 1 0.004 0 0 0 0
 TravelTime_451 0 0 1 0.005 1 0.009 0.10 1 1 0.25

Real AWS cloud watch
 ec2_cpu_utilization_5f5533 1 0.01 1 0.005 1 0.01 0.06 1 1 0.23
 rds_cpu_utilization_cc0c53 1 0.002 1 0.005 1 0.03 0 0 1 0.33

Table 2   Comparative evaluation 
of DQR-AD with five other 
anomaly detection methods 
(ContextOSE, EXPoSE, 
NumentaTM, DeepAnT, and 
VAE-LSTM) applied to entire 
NAB dataset using mean F score 
for each domain

Datasets ContextOSE EXPoSE NumentaTM VAE-LSTM DeepAnT DQR-AD

Real known cause 0.005 0.005 0.012 0.629 0.200 0.408
Real Ad exchange 0.022 0.005 0.035 0.006 0.132 0.301
Real tweets 0.003 0.003 0.010 0.011 0.075 0.280
Real traffic 0.02 0.011 0.036 0.060 0.223 0.376
Real AWS cloud watch 0.007 0.015 0.018 0.002 0.146 0.031
Artificial with anomaly 0.022 0.004 0.017 0.012 0.156 0.276

of DQR-AD in detecting higher number of anomalies with 
low false-positive rates. On the other hand, Table 2 shows 
the result of the second-level experiment where mean Fscore 
for the four algorithms is reported on the whole NAB data-
set. As indicated in the table, DQR-AD outperforms other 
methods in all domains except in two domains (i.e., real 
known cause and real AWS cloud watch) where VAE-LSTM 
and DeepAnT, respectively, have better performance with 
relatively small margin. It is therefore clear that DQR-AD 
outperforms both other methods on 4 out of 6 domains (as 
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indicated in bold) from the table. DQR-AD is approximately 
two-to-three times better than the DeepAnT which perform 
better than all the remaining four methods for different 
domains in the NAB dataset.

Part II Experiment: sMAP Dataset

Dataset Description

In this part of the experiment, we tested and evaluated our 
method using sMAP dataset which used in [38]. The dataset 
is retrieved using a python public front end.2 sMAP is a real 
sensor data that consist reading of electrical sensors from an 
elevator in Cory Hall at University of California, Berkeley. 
The dataset contains five unlabeled time-series (SMAP1 to 
SMAP5) each one having 20,000 data points and four fea-
tures. To label the time-series and ease the computation of 
evaluation metric for our algorithm, we used the same pro-
cedure as in [38] where the valued of the random features of 
a data point are swapped. This approach preserves the order 
of the data points and helps in providing an access to the 
anomalies during evaluation.

Experimental Setup

We used the same setting in part 1 experiment where our 
proposed model is train using 80–20 splitting pattern. Simi-
larly, an additional 20% from the training set is used for 
evaluation. Both the training, test, and validation sets are 
segmented into history ( hw ) and prediction window (pw ). 
The size of history window is set up daily window of size 24 
timestamps (one observation every hour). A prediction win-
dow of size 1 was chosen for predicting only one timestamp 
where for each window of previous timestamps, only next 
timestamp is predicted. We maintained the unsupervised 
learning in the training process of both algorithms by remov-
ing the class label and consider for each window of previous 
timestamps, only the next timestamp is predicted and serve 
as the target. For AE, we used 2 and 10 hidden neurons 

to provide an extensive evaluation of the outlier detection 
algorithm as indicated in [38]. While on the other hand, 
we used the same parameter settings in the previous part of 
the experiment for DQR-AD. In this part of the experiment, 
AUROC is used as metric to measure the performance of 
our model. Similar to [38], the performance evaluation is 
repeated ten times which enable evaluation of our learning 
algorithm for data stream. An average AUROC for the ten 
repetitions is reported for each time-series.

Experimental Results and Discussion

Table 3 reports the outlier detection performance of DQR-
AD compared with AE on the sMAP dataset (SMAP1 to 
SMAP5). Each cell of the table contains an average AUROC 
value of ten repetitions. It can be observed from the table 
that both algorithms achieved AUROC value that exceed 
0.8 which shows that they all succeeded in detecting anoma-
lies in sensor streams. However, the result in Table 3 dem-
onstrate good performance of DQR-AD where out of the 
five-time-series (SMAP1 to SMAP5), DQR-AD is 10% 
better in performance than AE on three datasets (SMAP1, 
SMAP3, and SMAP5) and relatively equal performance 
on the remaining two datasets which have higher level of 
noise. This demonstrates the ability of DQR-AD in consist-
ently providing an accurate result on different datasets and 
experimental settings. The use of sMAP time-series with 
four-dimensional features demonstrates the applicability of 
our proposed approach in multivariate time-series data.

Conclusion and Future Work

This paper presents a deep learning-based anomaly detec-
tion method for detection and classification of anomalies in 
time-series data. Deep quantile regression anomaly detec-
tion (DQR-AD) is unsupervised and does not require any 
assumption of regular data distribution to identify anoma-
lous data points. Instead, the method used quantile interval 
which quantifies the level of uncertainties associated with 
the LSTM point forecasts and helps mitigates against false 
anomaly alerts. The proposed method can detect sudden 
spikes in time-series: this particular challenge is gener-
ally missed in reports listed in the literature review section 
that propose other distance and density anomaly detection 
methods.

In the first part of the experiment, DQR-AD is evalu-
ated on the NAB benchmark dataset containing 58 real and 
synthetic time-series and compared with 6 other prediction-
based anomaly detection methods that assume normal distri-
bution on prediction or reconstruction error for identification 
of anomalies. The experimental results as shown in Table 1 
indicate that DQR-AD obtained relatively better precision 

Table 3   Comparative evaluation of DQR-AD and AE (h = 2, h = 10) 
on five sMAP datasets (SMAP1 to SMAP5)

An average AUROC is reported on each dataset

Datasets AE (h = 2) AE (h = 10) DQR-AD

SMAP1 0.88 0.89 0.98
SMAP2 0.89 0.89 0.86
SMAP3 0.88 0.88 0.95
SMAP4 0.88 0.88 0.87
SMAP5 0.88 0.88 0.95

2  https://​pytho​nhost​ed.​org/​Smap/​en/2.​0/​python_​access.​html.

https://pythonhosted.org/Smap/en/2.0/python_access.html
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than all other methods. This demonstrates that DQR-AD is 
capable of detecting higher number of anomalous points 
with low false-positive rates. Similarly, the results in Table 2 
show DQR-AD to be approximately two-to-three times bet-
ter than the DeepAnT which performs better than all the 
remaining methods on all domains in the NAB dataset. This 
demonstrates that our approach can be practically applied 
on the time-series with large amount of unlabeled data. In 
the second part of the experiment, DQR-AD have 10% better 
performance than AE on three datasets (SMAP1, SMAP3, 
and SMAP5) and equal performance on the remaining two 
datasets (SMAP2 and SMAP4) with relatively higher level 
of noise. The use of sMAP time-series with four-dimen-
sional features demonstrate the applicability of DQR-AD 
on multivariate time-series data.

The future work will be focused on optimizing this 
method to incorporate more scenarios for comparison. Also, 
to improve our model, we will add feature extraction module 
through autoencoder that will extract time-series representa-
tion before predictions. We will also work toward extending 
the method to identify both concept drift and anomalies in 
real-time sensor streams.
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