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Abstract
Up-to-date, given the expanding increase of the population and the development of human daily lifestyles, the expenditure 
of freshwater resources increments progressively. It appears that there is a need to optimize at least the consumption of 
fresh water in agriculture. For this reason, novel various irrigation technologies have been deployed in this context like drip 
irrigation, flood irrigation, and decision support systems to come up with the constraints of climate changes that decrease 
the water availability but it is still limited. Therefore, the majority of researchers are working until today on automating 
the irrigation systems. These smart systems rely mainly on the advances of information technologies like the internet of 
things, big data, and machine learning for aligning irrigations with climatic changes. Besides, integrating the predictive 
process helps in anticipating and adapting to the climatic constraints in agriculture, using meticulous soil and environment 
dependencies analysis based on features’ prediction. In this paper, we enriched our proposed flexible online learning (OL) 
framework designed for promoting irrigation decisions based on soil characteristics analysis and prediction. We shed the light 
on a comparative study of four predictive methods, in particular, the auto-regressive moving average, the eXtreme Gradient 
Boosting, the random forest, and the deep artificial neural networks implemented inside the Hadoop/Spark environment to 
predict the humidity of the soil, relying on soil temperature and time in several depths. In the end, we discussed the precision 
of these models in various conditions.
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Introduction

Referring to [1], it appears that in developing countries the 
agriculture represents the essential source for many products 
and food employed by a multitude of organisms to keep and 
improve their lives, Their traditional methods’ freshwater 
use attains 85% for this purpose, managing limited freshwa-
ter appears as a challenging release in agricultural activities 
specifically when the water needs escalate at a fast pace, like 
in African countries, the crucial increase of population low-
ers the water availability, without forgetting that the majority 

of these countries are in semi-arid zones characterized with 
unstable rainfall, and long drought periods which reflects 
negatively on the crop yield. Appropriately, the irrigation 
task becomes very challenging for the farmer because of the 
water resource depletion.

Thus, different irrigation techniques have been employed 
to minimize the use of freshwater resources in agriculture, 
like flood irrigation that relies on covering the field with 
water, drip irrigation that decreases water distribution 
much better through a direct water supply to the root zone 
or delivering water to the soil surface over valves, pressure 
lines, and emitters, sprinkler irrigation that applies irrigation 
identical to natural rainfall through pumping using a system 
of pipes. Besides, it is perceived that there is a need for 
powerful resolutions are mandatory to outstrip this restric-
tion. For this reason, researchers have been performing many 
advancements studies and achievements to invent novel 
water resources management systems benefiting from the 
recent advances on the internet of things (IoT), big data, and 
machine learning (ML). Thus, to support decision-making 
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in the drip irrigation system, a smart system relying on soil 
image processing, field sensing, and mobile technologies to 
boost the irrigation planning by determining the amount of 
water required for the plants’ cultivation [2]. Likewise, some 
researchers in [3] proposed an automatic irrigation system 
that employs a GPRS module and wireless sensor network to 
optimize up to 90% of water use in comparison to traditional 
techniques. Furthermore, it appears that the most difficult 
task of researchers who use machine learning is the selection 
of the best model, data samples, and the corresponding data 
sets. Hence to come up with these issues, it is required to test 
different machine learning algorithms and training models 
with various data samples to determine the best one for an 
efficient prediction with the highest accuracy that is assumed 
by our proposed framework in our previous work in [4], in 
which we computed three forecasting methods specifically 
the ARIMA, the XGBoost, and the random forest.

Moreover, this paper provides an advanced online frame-
work to implement more methods in soil features in different 
depths to deal with an accurate predictive model that antici-
pates soil parameter changes and better irrigation planning 
in agriculture standing on supervised learning, especially the 
deep artificial neural networks.

The remainder of this paper is composed as follows: the 
next section epitomizes a brief survey about the last smart 
irrigation systems and soil features forecasting facilities. The 
third section shows the followed methodology. The fourth 
section depicts the suggested  framework architecture. The 
fifth section outlines a case study of predicting soil moisture 
and the forecasting models implemented in our frameworks 
such as the auto-regressive moving average, the random for-
est, the eXtreme Gradient Boosting, and the deep artificial 
neural networks. As considerably, this paper discussed the 
performance analysis of the tested forecasting methods. 
The last section, encapsulate the prediction results and syn-
thesizes a comparison of the outcomes of these predictive 
models. In the end, we conclude by examining the limits, 
advantages, and potential perspectives of this work.

Related Works

In the view of the past few decades, numerous predictive 
researches have been carried out to improve the efficiency 
in water resource supervision relying on the advances of 
machine learning algorithms and smart systems. Some 
research among them is focused on predicting actual evap-
otranspiration from time series analysis such as imple-
menting various machine-learning methods on three types 
of evapotranspiration models with different input data. 
Among these methods, the application of M5P regression 
trees, bagging, random forests, and regression support vec-
tors to data from an experimental site in Central Florida 

according to [5]. Likewise, a comparison of two types of 
streamflow modeling was performed [6] using machine 
learning algorithms. The first one is based only on climatic 
data (precipitation, temperatures, and potential evapo-
transpiration), the second one integrates also the previous 
flows in the data entrees. Many predictive models were 
tested to predict the river flows such as the multiple linear 
regression, the TUW hydrological model, the eXtreme 
Gradient Boosting, the Deep Learning Neural Network, 
and the Random Forest. The performance analysis was 
performed using the root mean square error, the R2 statis-
tics, the Kling–Gupta efficiency, and the Nash–Sutcliffe 
Efficiency) statistics and perceptual bias. Three options 
have been employed to improve the precision of these 
flow simulation methods, to see the effect of the selected 
method on the accuracy of the results, the impact of fea-
ture engineering on the accuracy and the efficiency of the 
created models. Moreover, a smart irrigation decision 
support system (SIDSS) was done to manage irrigation 
of crops standing on a weekly estimation of water needs 
using soil measurements and weather parameters collected 
by divers autonomous nodes disposed of inside the field 
using ANFIS, and PLSR machine learning techniques 
referring to [7]. In the same context, a smart system based 
on open-source technology performs an algorithm based 
on K-means and SVR methods, has been proposed by [8], 
that provides the irrigation requirements’ forecast for the 
near future using both of sensing of the ground parameter 
(soil moisture, soil temperature …etc.), and the weather 
features (humidity, precipitation, UV, and air temperature) 
predicted for the near future available on the Internet. In 
this system, the data input is remotely sensed in the cloud 
using web services, and the acquisition of information 
insights is ensured in real-time based on sensors network 
and weather forecast through a decision support system 
tool and web visualization. Until today, a new decision 
support system based on models is invented in [9], that 
relies on wireless sensors network to collect real-time 
soil and environmental data, neural network algorithm 
to predict hourly soil moisture content requirements, and 
soil evapotranspiration benefitting from Blaney–Criddle 
method and fuzzy logic to monitor and control irrigation 
efficiency aligned with the weather and to generate and 
send adequate mobile notifications about irrigation needs 
into farmer by GSM modem integration. Consequently, 
water has been saved and yield has been increased appro-
priately. Recently, there are several models for analytics 
in machine learning like support vector machines, deci-
sion trees, random forests, artificial neural networks, and 
Bayesian networks used to support farmers in crop cultiva-
tion and intelligent farming. Otherwise, an overview about 
yield prediction based on agrarian factors and weather 
features compared supervised and unsupervised machine 
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learning algorithms using various error patterns such as 
the root mean square error, the relative root mean square 
error, the mean absolute error, and the R2 determination 
coefficient as reported in [10].

In an irrigated area in northwestern Bangladesh depend-
ent on groundwater, a study to evaluate the effects of cli-
mate change on the cost of irrigation for different RCP situ-
ations was directed in [11] applying a general circulation 
model (GCMs) for projecting the climate, an experiential 
hydrological pattern based on support vector machines 
for simulating the state of the groundwater from climatic 
variables, and a multiple linear regression to estimate the 
irrigation charge induced through the groundwater levels' 
fluctuation. The results reveal that the climate changes pro-
voked declination in groundwater level which inflicted the 
increase of crop production cost less than other costs. To 
overcome over-or under-irrigation due to spatial changes in 
deep percolations, rainfall, runoff, irrigation, crop water use, 
and irrigation depth, and especially, to support decisions on 
sprinkler irrigation control, a site-specific integrated irriga-
tion controller was invented which allows real-time moni-
toring of irrigation tasks through Bluetooth communication 
using an in-field wireless sensor network (WSN) and remote 
sensing of soil, canopy, air temperature, and soil moisture 
retrieved from cultivated fields. This system converts an 
automated irrigation machine from a traditional mechani-
cal and hydraulic system to a controllable electronic sys-
tem for individual sprinkler control, then, it monitors their 
geographic locations by a self-positioning system, and it 
finally makes a decision, when to irrigate and how much 
water to apply by each sprinkler head in a specific loca-
tion. The WISC software was tested for in-field wireless 
sensor-based closed-loop irrigation control during the 2007 
growing season under a linear-move irrigation system on a 
field planted to malting barley in the Eastern Agricultural 
Research Center of Montana State University in Sidney 
and it has succeeded to monitor remotely in real-time field 
conditions and control feedback for site-specific irrigation 
with a strong correlation of R2 = 0.98 with water captured 
by catching cans [12].

With the emphasis on the explosion of massive data anal-
ysis technologies, it can be noted that there is a multitude 
of free tools and libraries in python which made available 
to public access for machine learning, granting an efficient 
preparation (Numpy and Pandas, etc.) and deep and accurate 
data analysis and prediction in a reasonable time (PySpark, 
Keras, Scikit-learn, etc.), and easy results plotting (Matplot-
lib, Seaborn, etc.). A meaningful study in [13] has compared 
these libraries to select the better ones for each kind of data 
preparation, analysis, or prediction. They recommended the 
usage of Pandas for data preprocessing and manipulation, 
politely and seaborn and Matplotlib for data customization 
and visualization while they suggested for the Deep Learn-
ing, the usage of PyTorch or Keras for responsive prototyp-
ing, and TensorFlow for active customization. Also, they 
recommended the usage of Hadoop Streaming and PySpark 
in the field of big data (Table 1).

Methodology

We performed in our previous experimentations in [4] three 
machine learning algorithms, in particular, the extreme gra-
dient boosting, the random forest, and the auto-regressive 
moving average for training the soil data set using various 
inputs features selected by the resampling method. In this 
paper, we trained the data set using also the deep ANN with 
the same resampling inputs. Then, we predicted the soil 
moisture in several depths for the test period. XGBoost is a 
novel technique invented by GBMs to boost the accuracy of 
predictive models benefiting from the predictive power of 
multiple learners by engaging the gradient boosting trees. In 
this algorithm, at each iteration, the final predictive model 
is the aggregated prediction from several weak learners and 
a new classifier is added to the previous learning models 
to reduce its errors. XGBoost is implemented in multiple 
programming languages in parallel with improving param-
eters as necessary related to [14]. Another model used in 
this paper is the random forest, that are a combination of 
multiple tree predictors that provide autonomous predictions 
using equivalent input data distribution, and at the end of 

Table 1  An overview of predictive models and relevant features by Asmae El Mezouari and Mehdi Najib [4]

References Forecasting methods Parameters

[5] Support vector machines, bagging, random forest, and M5P 
regression trees

Net solar radiation, heat flux, moisture content, wind-speed, mean 
moisture, mean temperature

[6] Multiple linear regression, random forest, extreme gradient 
boosting, and deep learning neural network

Meteorological data (precipitation, temperatures and potential 
evapotranspiration)

[7] Partial least square regression, and adaptive neuro fuzzy infer-
ence systems

Soil moisture, soil temperature, rain fall, wind speed, crop evapo-
transpiration, radiation, dew point

[8] Support vector regression, and SVR + K-means Moisture, temperature, UV, weather temperature, humidity, and 
precipitation
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computing, the highly voted predictions are selected as a 
final output. Random forest empowers an enormous set of 
weak classifiers to build a robust classifier [15]. ARIMA 
is a statistic-based model used for prediction based on 
linear time series analysis upon which the final predicted 
results are the product of many past examinations and ran-
dom error [16]. According to [17], the ARIMA overcomes 
non-stationary time series issues using the differentiation 
technique of an order (d). ARIMA relies on two models, 
the pure auto-regressive model represented by lag order (p) 
and the moving average model expressed by order of the 
moving average (q). The last predictive model is the deep 
artificial neural networks that processes the data using mul-
tiple layers in the network, in a way similar to the human 
brain information processing in biology [18]. Deep learning 
is distinguished from the basic artificial neural networks in 
the way that the learning nodes are autonomous and can 
independently train and process the data itself to improve 
its learning and intelligence.

Framework Structuring

The proposed framework is invented for soil diagnosis and 
prediction to boost irrigation scheduling and to ease deci-
sion-making in agriculture. Furthermore, it aims not only 
to allow upload and integrate dataset, to provide predictions 
but to interpret and export the best results through a web 
interface as well. The Fig. 1 represents an illustration of the 
proposed framework composition.

This framework could be described as follow, the first 
data integration module aims to import the soil and envi-
ronment data extracted in a MongoDB database, from the 
environment and soil sensing into the data storage unit 
of the Hadoop ecosystem (HDFS); while the second data 
processing module intends to perform parallel predictions 
through processing different machine learning algorithms, in 
particular, the ARIMA, XGBoost, random forest, and deep 

artificial neural networks to select the best predictive model 
after analyzing their performances, and to export the results 
through a web interface. The resulting predictions would be 
used for predicting the soil and environment features that 
would be employed for water need estimation and irrigation 
planning. It allows adding other predictive models, features, 
and performance measures to perform optimum predictions 
in a fast way.

Materials and Methods

Data Processing Tools

Dealing with big data storage and analysis in the agricultural 
field is a challenging subject, especially when we are talking 
about aligning with climate changes; we are automatically 
oriented to lift complications related to retrieving knowledge 
from climatic and hydrologic historical data. For this reason, 
we have chosen to integrate data inside the Hadoop using 
MongoDB Connector, HDFS to read from and write data to 
the disk, and Apache Spark to speed up machine learning 
processing via in-memory computation (RAM) as is shown 
in Fig. 2.

In this paper, we focus on testing different machine learn-
ing techniques such as ARIMA, XGBoost, random forest, 
deep ANN to make predictions in parallel and on a distrib-
uted scale and to analyze performance to select and save the 
best predictive model.

For machine learning processing, spark deployed an 
open-source and powerful library called MLlib that makes 
it scalable and wieldy [19]. As with each basic predic-
tive model implementation, and after integrating the data 
in HDFS using MongoDB Connector; we performed our 
predictions in Hadoop Spark using python (PySpark) by 
following the next steps, using diverse libraries (Sparktk, 
XGBoost4J-Spark, Tree, Keras, …) for each algorithm as 
needed:

Start

Soil Dataset
(MongoDB)Soil and 

envirement 
DATA

Data Integra�on

MAP

ARIMA

REDUCE: 
Predic�on of the best 
Predic�ve Model for 

each Depth X

Stop

Performance Analysis

HDFS

Web Interface : Results in  
XLS,PNG and PDF)

XGBoost Regression

Random Forest 
Regression

Depth X

Depth X

Depth X

Deep ANN Depth X

Fig. 1  An overview of the proposed framework Fig. 2  An overview of the proposed techniques [4]
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• Step 1: Reading data file from h in spark, constructing 
the data frame, and using time method to invoke time.

• Step 2: Splitting the dataset into train data and test data.
• Step 3: Converting the data into vectors using Vector 

Assembler.
• Step 4: Transforming the vectors into necessary data 

frames.
• Step 5: Building and fitting the model with the training 

and test data to train it.
• Step 6: Making predictions on the test data.
• Step 7: Calculating performance measures (MAE, MSE, 

RMSE, R2-accuracy) to evaluate the accuracy of the 
model.

• Step 8: Exporting and conceiving results.

Performance Measures

We measured the performance of these predictive models 
using the mean absolute error, the r-squared accuracy, and 
the root mean square error.

RMSE

The RMSE is the measure of the residuals within divined 
and perceived values. In general, the decrement of this 
measure describes that the precision is high. In our case, 
all predictive models have the same output feature (irriga-
tion amount). Consequently, the root mean square error is 
sufficient to assess their performance. It is calculated using 
the formula:

where n is the count of the data, yi is the ongoing output of 
instance i, and yi is the corresponding ending estimation.

MAE

The mean absolute error measures the absolute deviation 
between the true and the predicted values. This means that 
the results that have a negative sign are ignored. MAE is 
calculated as

R‑Squared Accuracy R-squared is the fraction by which the 
variance of the dependent variable is more than the vari-
ance of the errors. It describes the square of the correlation 
between the observed and estimated variables,

(1)RMSE =

√√√√
n∑

i=1

(
yi − yi

)2

n
,

(2)MAE =

n∑

i=1

|yi − xi|
n

.

The R-squared accuracy is a percentage between 0 and 
100:

• 0 tells that the model did not interpret the variability in 
predicted data around its mean.

• 100 proves that the predictive model reveals completely 
the variability in the independent variable around its 
mean.

Case Study

In the present case study, we tried to test and compare the 
accuracy of the ARIMA, Random Forest, XGBoost, and 
Deep ANN methods representing the fundamental shaft of 
scheduling irrigation. For this purpose, we used a 5 years’ 
real time-series of hourly soil moisture and temperature data, 
sensed in five depths (5, 20, 35, 50 and 75 cm) from the 
rain-snow transition zone, the Johnston Draw catchment, 
Reynolds Creek Experimental Watershed, and Critical Zone 
Observatory, USA [20]. This Dataset contains over 35,064 
records from 10/1/2010 to 09/30/2014. We have tested these 
methods in the data of the 5 cm depth. Figure 5 illustrates 
the trends of the studied time-series (Fig. 3).

Results and Discussion

ARIMA Model Selection

ARIMA model selection consists of specifying the three 
parameters p, d, and q. In the first step, we started by the 
determination of the parameter “d” that represents the dif-
ferencing order needed to make the time series stationary. 
This parameter is determined by the autocorrelation diagram 
analysis of the time series. Figure 4 shows a regular decrease 
in the autocorrelation values which indicates that the initial 
time-series is not stationary. In our case, the first differenc-
ing order was adequate to make it stationary, and the null 
autocorrelation value in Fig. 5 proves this hypothesis.

The auto-correlation (AC) and the partial-autocorrelation 
(PAC) diagrams are used to determine the "q" parameters 
of the MA model, and the "p" parameter of the AR model. 
Referring to Fig. 5, any order of the AC diagram exceeds 
the confidence level. Thus, parameter q is equal to 0. Based 
on the analysis of the PAC in Fig. 4, we can observe that the 
first two autocorrelation values exceed the confidence level. 
As a result, the “p” parameter can be equal to 0, 1 or 2. To 
select the best configuration, we tested the accuracy of all 
combinations of the three parameters like the following con-
figurations ARIMA (1, 0, 0), ARIMA (1, 1, 1), and ARIMA 
(2, 0, 2) using out-of-time cross-validation.

(3)R2 accuracy = Explained variation∕total variation,
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In out-of-time cross-validation, we can go back a few 
steps in time and predict the future for as many steps as we 
have taken. Then we perform the comparison between the 
forecast and the perceived data. To do out-of-time cross-
validation, you need to build a training and test dataset 
by dividing the time series into two adjoining parts near 
the 75:25 ratio or a reasonable distribution based on the 
time frequency of the series. The obtained results show 
that the last model outperforms the other models in terms 
of accuracy. Consequently, ARIMA (2, 0, 2) is chosen for 
soil moisture prediction. Figure 6 portrays the results of 

the soil moisture prediction for the tested last year using 
this model.

XGBoost Model Selection

In this step, we trained XGBoost Regression Model using 
soil moisture and temperature of four years in the 5 cm depth 
and then we used only the soil moisture parameter in the 
same depth. After that, we performed predictions for the last 
year. The trend in Fig. 7 illustrates the results of prediction 
using soil moisture and temperature parameters and the trend 
in Fig. 8 shows the result of the prediction using only soil 
moisture parameter.

Fig. 3  Times-series of hourly 
soil moisture and temperature in 
5 depths (USA) [4]

Fig. 4  AC and PAC of non-stationary soil moisture in 5 cm depth [4]

Fig. 5  AC and PAC—first-order differencing soil moisture in 5  cm 
depth [4]
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Random Forest Model Selection

In this step, we trained the random forest regression model 
using soil moisture and temperature of 4 years in the 5 cm 
depth, and then we used only the soil moisture parameter 
in the same depth. After that, we performed predictions for 
the last year. The trend below in Fig. 9 shows the result of 
prediction using soil moisture and temperature parameters 
and the trend in Fig. 10 shows the result of prediction using 
only soil moisture parameter.

Deep Artificial Neural Network Model Selection

In this step, we trained deep artificial neural network model 
using the first four years’ soil moisture and temperature in 
the 5 cm depth, and then we used only the soil moisture 
parameter in the same depth. After that, we made predictions 
for the last year.

We created our Deep ANN (multi-layer perceptron) using 
the Keras sequential model combined with the rmsprop opti-
mizer, which is a very popular optimization algorithm. We 
also employed an input layer of the ten relevant features 
for the first sampling input (soil moisture, soil temperature, 
hour, day of the week, quarter, month, year, day of the year, 
day of the month, and the week of the year) and an input 
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Fig. 6  The 5cm depth’ soil moisture prediction using  exclusively 
the soil moisture parameter [4]
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Fig. 7  XGBoost soil moisture prediction in 5  cm depth using soil 
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layer of the 9 relevant features for the second sampling input 
(soil moisture, hour, day of the week, quarter, month, year, 
day of the year, day of the month, and the week of the year), 
with the activation function relu and using 100 hidden units 
for all experiments. Moreover, we added a hidden layer with 
60 hidden units, with the activation function relu and an 
output layer for predicting the target feature (soil moisture). 
Likewise, we used the MSE as a loss function, the MAE, 
and the accuracy as evaluation metrics. Figure 11 shows the 
ANN model used to perform prediction with the described 
typical configuration for linear regression. After trying many 
configurations, like different random hidden units, and vari-
ous activation functions, we found that this model is the 
appropriate option in terms of accuracy.

The trend below in Fig. 12 shows the result of predic-
tion using soil moisture and temperature parameters and the 
trend in Fig. 13 shows the result of prediction using only soil 
moisture parameter. It seems that the curve representing the 
forecast of soil moisture based solely on soil moisture fol-
lows a quite precise trend close to the real values.

Synthesis

The tests carried out by the ARIMA (2, 0, 2), the XGBoost, 
the random forests, and the deep ANN algorithms show that 
both methods are accurate for forecasting soil moisture. The 
calculation of the root mean square error, the mean absolute 
error, and the R-squared accuracy prove the efficiency of these 
models, Table 2 shows the evaluation matrix.

Finally, we find that the deep ANN outperforms both mod-
els in terms of accuracy in predicting using only the soil mois-
ture parameter and this is maybe related to the homogeneity in 
the data that reinforces the learning of the deep ANN model. 
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Fig. 9  Random forests soil moisture prediction in 5  cm depth using 
soil moisture and temperature parameters [4]
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Fig. 11  The ANN model’s configuration
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In addition, the appropriate configuration of the model like 
increasing the number of epochs minimizes the errors. Like-
wise, the activation function injects nonlinear properties into 
the network to learn any complex relationship between input 
and output; and that represents one of the principal interesting 
concepts in universal approximation implemented in the ANN 
model which improves the efficiency of the model. Besides, 
we observed clearly that XGBoost and Random Forests give 
the same accuracy whether if we used the soil temperature 
parameter or not.

Conclusion and Perspectives

In the present paper, we engaged in improving our proposed 
framework that allows us to compute various predictive 
algorithms over the soil variables in different depths, by add-
ing the Artificial Neural Network model in the processing 
phase. The main goal of this experimentation is to select the 
most accurate predictive model that will anticipate the soil 
state changes and help farmers in aligning irrigation sched-
uling with climatic changes; and basically, in improving the 
yield in agriculture, benefitting from various supervised 
learning machines by comparing their efficiencie. Hence, to 
select the best predictive model that would improve the irri-
gation planning, we have compared four forecasting models 
especially ARIMA, XGBoost, Random Forests, and Deep 
ANN in terms of several precision measures such as the 
MAE, the RMSE, and the R-squared accuracy..

Moreover, to approve this solution, we tested these fore-
casting methods upon a real-time series of soil moisture 
and temperature in the USA and we have examined their 
efficiency using different performance measures. Based on 
the results, we found that both ARIMA, XGBoost, Random 
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Fig. 12  Deep ANN soil moisture prediction in 5 cm depth using soil 
moisture and temperature parameters
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Fig. 13  Deep ANN soil moisture prediction in 5 cm depth using only 
soil moisture parameter

Table 2  Confusion matrix of the evaluated models

Models/parameters Evaluation Moisture and 
temperature

Only soil 
moisture

ARIMA MAE – 0.052
RMSE – 0.060
R-squared accuracy – 0.211

XGBoost MAE 0.021 0.022
RMSE 0.148 0.148
R-squared accuracy  − 0.386  − 0.386

Random forests MAE 0.027 0.027
RMSE 0.148 0.148
R-squared accuracy  − 0.386  − 0.386

ANN MAE 0.013 0.008
RMSE 0.017 0.011
R-squared accuracy 0.92 0.97
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Forests, and Deep ANN models provided accurate predic-
tions. However, the Deep ANN outperforms all models in 
terms of precision in all cases.

As a perspective, we suppose that employing such effi-
cient and powerful processing and predictive tools in fore-
casting the soil state could support irrigation planning in 
the short and the long terms. Also, testing other predictive 
models in future work could improve the results, particu-
larly while integrating different parameters and validation 
processes.
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