
Vol.:(0123456789)

SN Computer Science (2021) 2:456
https://doi.org/10.1007/s42979-021-00852-w

SN Computer Science

ORIGINAL RESEARCH

Adaptive Resource Provisioning and Scheduling Algorithm
for Scientific Workflows on IaaS Cloud

P. Rajasekar1 · Yogesh Palanichamy1

Received: 2 March 2021 / Accepted: 6 September 2021 / Published online: 15 September 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Scientific workflow applications are deployed to run extensive volumes of data and to manage comprehensive observations
and simulations. They are resource-intensive and time-utilizing applications that profit from processing in distributed envi-
ronments. Especially, workflow applications can highly support the simple access, scalability, and affordability provided
by cloud computing. To attain this, disruptive and well-planned operation of managing the workflow tasks and running the
compute pool in a cost-effective mode essential to be evolved. We present an adaptive resource provisioning and scheduling
algorithm for scientific workflows on Infrastructure as a Service (IaaS) clouds. Our approach was planned to deal challenges
especially to clouds, such as unlimited on-demand access, heterogeneity, performance variation and pay-per-use type (i.e.,
per minute billing). To correspondingly efficient to these uncertainties of cloud, therefore, our approach was developed
with consider these necessary problems to run, and is achievable in making effective solutions that satisfy a user-described
deadline and reduce the spending cost of the utilized environment using the service of resource provisioning and scheduling.
Finally, experimental results show that it executes a workflow effectively with regard to achieving deadline and minimizing
cost than other advanced algorithms.

Keywords Resource provisioning · Scheduling · Scientific workflows · And IaaS cloud

Introduction

Scientific workflows are described as computational tasks
set and control or data-dependencies set among them. They
are extensively utilized by the scientific groups to examine
and run extensive volumes of data effectively. These huge
scientific workflows are resource comprehensive applica-
tions and therefore are generally used on distributed environ-
ments. Scheduling approaches perform a significant role in
processing workflows adequately because they are important
for the management of the tasks on the distributed resource
pool. Their findings are led by a set of Quality of Service
(QoS) specifications described by the users’ of applica-
tion, such as reducing the makespan (complete execution

time) and total cost, or satisfying a user-defined deadline or
budget. This non-trivial problem of scheduling, in actually,
is a recognized NP-Complete problem [1] and hence, algo-
rithms should prioritize on discovering optimal solution in
an acceptable period of time.

Infrastructure as a Service (IaaS) clouds provides a sim-
ply accessible, scalable and adaptable infrastructure for the
utilization of wide-ranging scientific workflows. They admit
users’ opportunity to use a shared resource infrastructure
on demand as charging just for what they utilize. This is
achieved by renting Virtual Machines (VMs) or virtualized
system resources, with a pre-described amount of CPU,
storage, memory, and network bandwidth capacity. Vari-
ous compute resource sets (i.e., VM sets) are accessible to
consumers at various costs to fit a large-scale of application
demands. Apart from VMs, IaaS vendors also provide stor-
age and network systems to transfer the data in/out from/
to the storage system. To completely take benefit of these
opportunities and services, scheduling algorithms should
examine some significant attributes of clouds.

The primary attribute is the on-demand, adapt-
able resource framework. This attribute recommends a

 * P. Rajasekar
 rajasekar@auist.net

 Yogesh Palanichamy
 yogesh@annauniv.edu

1 Department of Information Science and Technology,
College of Engineering, Anna University, Guindy, Chennai,
Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00852-w&domain=pdf

 SN Computer Science (2021) 2:456456 Page 2 of 16

SN Computer Science

re-development of the scheduling problem as usually
described for existing distributed environments, such as
cluster and grids. Clouds do not provide a limited range of
computing resources, alternatively, they provide a virtually
infinite set of resources with different configurations to be
rented and utilized just for if they are demanded. This frame-
work generates the requirement for a resource provisioning
heuristic that runs concurrently with scheduling algorithm; a
strategy that finds not only the number and the type of VMs
to demand from the cloud but also determines when is the
right time to rent and deliver them. Since this objective is
customized for cloud infrastructure, from now on, the term
scheduling will be taken to mention to an algorithm efficient
of integrating both scheduling and resource provisioning
findings (solution).

Another attribute to examine is the profitability-based
pricing type employed by cloud vendors. The fee of uti-
lizing the infrastructure demands to be examined or else,
users probably paying unreasonable and excessive cost. For
instance, the number of VMs rented, their type and total
amount of unit they are utilized for, all contain a signifi-
cant impact on the overall cost of executing the workflow
in the cloud. As a result, schedulers demand to discover a
trade-off among total execution cost and total execution time
(makespan).

A third attribute of clouds is their dynamic condition
and the environmental uncertainties this makes with it.
An instance is the unpredictability in performance demon-
strated by VMs with regard to processing times [2]. This
unpredictability represents that in spite of a VM prototype
being announced officially to have a particular CPU amount,
it will probably execute at a less utilized amount that will
vary overtime. It also represents that two homogenous VMs
(same type) may give entirely various performances. More-
over, having many one or more users dividing a network
represents that performance variation is also noticed in net-
working systems [2]. Now another origin of unpredictability
are the delay of resource provisioning and de-provisioning;
at are no promises on these values of provisioning and de-
provisioning delay and they could be extremely unpredict-
able and variable [3]. Knowing performance unpredictability
is crucial for schedulers so that they can execute a workflow
efficiently from unpredicted delays and satisfy the require-
ments of QoS. Finally, we taken pay per minute billing for
reducing the overall execution cost.

The contribution of this paper can be explained as
follows:

• Consequently of these attributes, we present an Adap-
tive Resource Provisioning and Scheduling (ARPS) algo-
rithm for scientific workflows on IaaS cloud.

• Our output discovers a balance among generating
dynamic findings to respond to variations in the envi-

ronment and focusing forever to make high-standard
schedules.

• It goals to reduce the complete utilized infrastructure
spending cost as satisfying a user-described deadline.

• It is efficient in determining what compute systems to
utilize examining heterogeneous VM categories, when
the appropriate time to rent them and when they must be
terminated to prevent unnecessary expenses.

• Finally, our experimental results show it is scalable with
respect to number of tasks in the scientific workflow, it is
fit and flexible to the cloud performance unpredictability
and it is efficient of making effective solutions than the
other advanced algorithms.

Related Work

There have been some assignments as the emergence of
cloud computing that targets to systematically organize sci-
entific workflows. Many are powerful and efficient in adjust-
ing to changes in the framework. A case is the algorithm of
Dynamic Provisioning Dynamic Scheduling (DPDS) [4] in
which the set of VMs is adapted requiring on how appropri-
ately they are being utilized by the application. This study
[5] also offers a dynamic process developed to represent
the dynamic characteristic of cloud frameworks from the
implementation and billing point of perspective. Planned a
fault-tolerant effective algorithm formed on the partial criti-
cal paths of workflows [6]. The Partitioned Balanced Time
Scheduling algorithm [7] calculates the suitable number of
resources requested per billing slot so that the cost is reduced
and a deadline is satisfied. Other dynamic approaches incor-
porate those presented by [8–21]. The main limitation of
these techniques is their task-level optimal scenario, which
is a trade-off for their adjustability to unpredicted delays.

Other characteristic of the scope are static approaches.
An instance is the algorithm of Static Provisioning Static
Scheduling (SPSS) [4] and Co-evolutionary Genetic Algo-
rithm (CGA) [22]. Planned to schedule a set of interlinked
workflows (i.e., ensembles), it generates a scheduling and
provisioning strategy prior to processing any task. An addi-
tional case is the IaaS Cloud Partial Critical Path (IC-PCP)
algorithm [23]. It is formed on the partial critical paths of
workflows and attempts to reduce the total execution cost as
satisfying a time constraint. Other specifications consider
[24–28]. Usually, these strategies are extremely sensitive to
performance delays and processing time calculation of tasks,
which is a trade-off for their potential to execute workflow-
level optimization and consider different solutions prior to
deciding the most effective one. This work offers a dynamic
approach developed to schedule a workflow on on-demand
and spot instances [29]. To attain this, they have techniques
in place to adopt spot and on-demand instance. However,

SN Computer Science (2021) 2:456 Page 3 of 16 456

SN Computer Science

most of the time spot price instances are not reliable and
switch to on-demand instance latter to run the workflow for
satisfying the deadline constraint.

Irrelevant to completely static or dynamic approaches,
our objective integrates both with the purpose of discover
an effective solution between changeability and the advan-
tages of global optimization. Dyna [5] and SCS [30] are an
instance of an algorithm trying to succeed this. It possesses
a global optimization strategy that permits it to discover the
suitable mapping of task to VM category. This mapping is
then taken at processing time to scale the computing systems
in or out and to organize tasks while they turn proceed for
execution. Our plan is varied to Dyna and SCS because the
static module does not study the whole workflow form and
alternatively optimizes the organization of a subgroup of
the workflow tasks. Furthermore, our static plan creates a
usual schedule for these tasks instead of only choosing VM
instance.

Application and its Resource model

We examine workflows represented as Directed Acyclic
Graph (DAGs); that is, DAG with leading edges and no con-
ditional dependencies. Generally, a workflow W is made up
of a group of tasks T = {t1, t2,…,tn} plus a group of leading
edges E. A leading edge eij = (ti,tj) is present if it is a depend-
ency of data among task ti and tj, instance in which task ti
is implied to be parent of tj and task tj is implied to be child
of ti. As a result, a child task that cannot process up to all of
its parents tasks has finished and its input file is accessible
in the relative compute system. In addition to, a workflow is
connected with a deadline Dw, described as a time restric-
tion. Moreover, we believe that the scale of a task St (task
size) is computable in Million of Instructions (MIs) and that,
for each task, this fact is offered as information to scheduler.

A pay-per-use framework where VMs are rented when-
ever required and are billed per billing slot is tested. Some
incomplete utilization happens in the machine use being
charged as full-time utilization. We represent VM category,
VMT, with respect to its processing capability PCvmt and its
charge per billing slot Cvmt. We describe PCvmt with respect
to the unit of instructions the CPU can run per second, Mil-
lion of Instructions Per Second (MIPS). It is believed that for
every type of VM, its processing capability in MIPS can be
evaluated formed on the facts provided by vendors.

Scientific workflows run data in the structure of files. A
general method taken to divide these files between tasks is
to deploy peer-2-peer (P2P) framework in which files are
transported immediately from the VM processing the parent
task to the VM processing the children task. An additional
approach is to take a general storage in sharing mode, such

as Amazon s3 as a file cache. In this instance, tasks keep
their output in the general storage and recover their inputs
from the general storage as similar. We investigate the latter
framework developed on the benefits it provides. Initially,
the stored data are kept at it and therefore, can be taken for
retrieval in the event of failure. Second, it enables for com-
putation in asynchronous. In the P2P fashion, synchronous
communication among tasks represent that VMs should
be continued to be processing up to all of the child tasks
have obtained the relative data. With a storage in shared
on the opposite, the VM processing the parent task can be
transferred immediately as the data are kept in the storage
resource. This could possibly not just maximize the resource
utilization, but also minimize the charge of VM renting.

We believe data transfer from/to the general storage sys-
tem is in the house, as is the instance for commodity like
Rackspace Block Storage, Amazon S3, and Google Cloud
Storage. Like for the usual data storage, many cloud vendors
amount formed on the volume of data being saved. We do
not consider this fee in the overall implementation cost, nei-
ther our performance and nor the performance of the algo-
rithms deployed for differentiated in the evaluations. The
motivation for this can consider our technique with others
developed to transport files in a P2P form. Moreover, despite
the procedure, the stored amount of data for a considered
workflow is most similarly correspondent in every condition
that it does not outcome in a variability in cost.

We respect the fact of VM de-provisioning and provi-
sioning delay and believe that CPU capacity of VMs is not
consistent [2]. As opposed to, it differs over time with its
most obtainable value being the CPU power promoted by
vendor. Also, we believe network congestion makes a vari-
ance in data transport times [31]. The bandwidth allocated
to a transportation relies on the current variance for the net-
work connection being utilized. Also, we believe a general
storage with an infinite storage room. The speed at which it
is efficient of writing and reading data differs according to
the number of processes presently reading or writing data
from the storage system. Lastly, the running time of task t
on a VM type VMT, PTvmt

t
 is described as the total of its

processing time and the time it needs to scan the input facts
from the general storage and write the created output to the
general storage. Account that at whatever time a parent and a
children’s task are performing in the corresponding machine,
there is no essential to retrieve the child's input data from
the storage system.

According to the aforementioned explanations, the prob-
lem would be officially described as proceeds: discover a
schedule S with less EC (Execution cost) while ensure its
associated M (Makespan) does not run over the deadline is
shown in Eq. (1).

 SN Computer Science (2021) 2:456456 Page 4 of 16

SN Computer Science

ARPS Algorithm

Motivation

ARPS has dynamic and static characteristics. Its dynamicity
exists in the factor that the scheduling findings are gener-
ated at processing time, whenever tasks are delivered into
a processing queue. This admits it to adjust to unpredicted
delays made by faulty estimates or by environmental uncer-
tainties, such as delays in VM provisioning, network conges-
tion and performance variation. The static module extends
the potentiality of the algorithm from generating decisions
formed on a single task to generating decisions formed on
a set of tasks. The aim is to discover a trade-off among the
local fact of dynamic procedures and global fact of static
procedures. This is done by introducing the idea of pipeline
and by consistently scheduling entire tasks in the process-
ing queue at only one time. In this manner, APRS is apt to
generate suitable optimization findings and discover high-
standard schedules.

A pipeline is a general topological form in scientific
workflows and is commonly a set of tasks with 1-to-1
sequential correspondence among them. Generally, a pipe-
line P is described as a group of tasks Tp = {t1, t2,…,tm}
where m ≥ 2 and at is an edge ec,c+1 among task tc and task
tc+1. In different words, t1 is the parent task of t2, t2 is the
parent task of t3 and so forth. The initial task in a pipeline
probably has other than one parent but it should only have
one-child task. All upcoming tasks should have one parent
(former task of pipeline) and one child (later task of pipe-
line). A pipeline is connected with a deadline Dp which is
similar to the deadline of the final task in the series. For
example, is depicted in Fig. 1a.

By finding pipelines in a scientific workflow, we can
simply extend the perspective from one task to a group of
tasks that could be scheduled more effectively as a set rather
than on their characteristic. To ignore processing and com-
munication overheads and also the VM provisioning and
shutdown delays, tasks in a pipeline are integrated simulta-
neously and are consistently allocated to execute on the same
VM. The explanations are twofold. First one are tasks which
are sequential and in demand to execute one by one. There
is no advantage with respect to parallelization on allocating
them various VMs. Second one is parent task output file
becomes the input file of the child task by processing on the
same VM, we ignore the cost and the transferring time of
data files out/in from/to the general storage.

(1)
Minimize EC

Constraint toM ≤ Dw.

The heuristics taken to schedule organized tasks are origi-
nated from the topological structures of workflows. Apart
from pipelines, a scientific workflow also has concurrent
forms made up of tasks without dependencies among them.
These tasks can process concurrently and are commonly
based whenever data aggregation or distribution occurs. In
the strategy of data distribution [32], the output of a task is
assigned to one or more tasks for running. In the strategy of
data aggregation [32], the output of various tasks is com-
bined, or organized, by only one task. Figure 1a depicts these
structures for an example.

The concurrent tasks in these workflow framework can
be homogeneous tasks. The situation in which the tasks are
uniform (homogeneous) is usual in workflows; examples of
familiar applications with this features are LIGO, Montage,
Epigenomics and CyberShake. Formed on this, we conceive a
plan to effectively schedule homogeneous concurrent tasks that
are of the equivalent size (MIs) and are at the concurrent level
in the structure. Once taking a level-based deadline allocation
strategy, these concurrent tasks will also admit the very same
deadline. As an instance, investigate the data aggregation situ-
ation, all concurrent tasks have to complete processing prior to
the aggregation task can begin; hence, they would be allocated
the very same time constraint which would be same to the time
the aggregation task is expected to start. In addition, there are
other facts apart from aggregation and distribution where the
concurrent tasks with the similar attributes can be discovered,
anyway, we prioritize on these as representatives for demon-
strating the reason behind our scheduling scheme.

The significant static scheduling approach of APRS com-
prises then on clustering queued tasks of homogeneous and
with the equivalent deadline into the sets. Two typical sets
can be noticed in Fig. 1a, the first set is composed of entire
tasks of Type 1 and second set is composed of entire tasks
of Type 4. Scheduling these sets of tasks is very simpler
than scheduling entire workflow. There are no inter-rela-
tionships, the tasks are same type and have to complete at
the equivalent time. We represent the problem of process-
ing these tasks within their deadline and with lesser cost as
an unrestrained knapsack problem variation and discover a
better solution taking dynamic programming. The similar
idea is followed to pipelines, they are clustered into sets and
planned in the similar way as sets of tasks are. An instance
of a set of pipelines is shown in Fig. 1c, d.

We have thus developed ARPS which is dynamic to a
particular extent with the aim of adjusting to unpredicted
delays consequence of the uncertainties of cloud frame-
works, but that also keeps static features that make it to pro-
duce high-standard schedules and satisfy deadline at lesser
costs. Furthermore, it integrates a strategy-based technique
with dynamic programming as to be able to run extensive
workflows in a scalable and efficient manner.

SN Computer Science (2021) 2:456 Page 5 of 16 456

SN Computer Science

Fig. 1 Examples of scientific workflows. a Examples of set of tasks and three different topological structures discovered in workflows: data
aggregation, data distribution and pipelines. b LIGO workflow. c Montage workflow. d Epigenomics workflow. e CyberShake workflow

 SN Computer Science (2021) 2:456456 Page 6 of 16

SN Computer Science

Unrestrained Knapsack Problem

The unrestrained knapsack problem is a combinatorial opti-
mization of NP-hard problem that obtains from the problem
of choosing the most profitable objects to load into limited
weight knapsack. Considered n objects of various types,
each type of object 1 ≤ i ≤ n with an equivalent weight wi and
value vi, the aim is to find the type and number of objects to
load; hence, that the knapsack weight range W is not over-
reached and the entire value of the objects is maximized.
Unbound number of each object type is believed.

Let xi ≥ 0 be the group of objects of type i to be filled in
the knapsack set. Then, UKP would be described as (2).

This problem could be efficiently solved employing
dynamic programming by examining knapsack of lesser
spaces as subproblems and saving the optimal value for each
space. Let wi > 0, therefore a vector could be described,
where m[wi] is the value of maximum that could be acquired
with a weight equal or less than to weight wi. In this manner,
m[0] = 0 and (m[wi] = maxwj≤wi

 (vJ + m[wi – wj]). The solu-
tion time complexity is O(nW) as estimating every m[wi]
comprises considering n objects and there are W values of
m[wi] to estimate. This processing time is pseudo-polyno-
mial as it evolves exponentially with the range of W. Still,
there are some algorithms that can effectively work out UKP.
For example, EDUK [33] algorithm which integrates the
ideas of monotonic recurrence [34], periodicity [35] and
dominance [36]. Evaluations conducted by the correspond-
ents show its ability to be changed in size. For example, for
W > 2 × 108, n = 105, and the objects with weight in the [1,
 105] limit, the processing time average was discovered to be
0.150 s.

Algorithm

APRS initially pre-processes the workflow by finding the
pipelines and by allocating an amount of the deadline Dw
to every individual task. To identify the pipelines, tasks are
initially clustered in topological structure, in this manner,
we assure data-dependencies are secured. Then, pipelines
are created according to the following plan. For each clus-
tered tasks that has not been executed, the ARPS recursively
attempts to create a pipeline that begins with that task. The
fundamental logic of the recursion occurs when the running
task has no child, or when it has beyond one child, or when
it has a child with beyond one parent. The recursive pro-
cess happens when the running task has precisely one child
which all together has exactly one parent task. In this condi-
tion, task is attached to the pipeline and the recursion keeps

(2)Maximize

n∑

i=1

v
i
x
i

Subject to

n∑

i=1

w
i
x
i
≤ W.

Fig. 1 (continued)

SN Computer Science (2021) 2:456 Page 7 of 16 456

SN Computer Science

running with its child task. When a pipeline was found and
the recursion completes, the approach is continued for the
following unexecuted clustered task, this runs on up to there

is no clustered task remaining to be processed. A further
thorough explanation of the recursive stage of the process
is shown in Algorithm 1.

Algorithm 1
Identify a Pipeline Repeatedly

1. Process IDENTIFYPIPELINE(Task t, Pipeline P)
2. if t.child.size > 1 OR t.child.size = 0 OR
3. t.child[0].parentssize > 1 then
4. if p.tasks.size > 0 then
5. p.addTask(t)
6. end if
7. return
8. end if
9. p.addTask(t)
10. identifyPipeline(t.child[0],p)
11. end process

For the distribution of deadline, the ARPS initially
estimates the earliest finish time of each task described as
 eftt = maxp∈t.parents{eftp} + PTvmt

t
 . The slowest type of VMT

is utilized to estimate the running time of a task. In this
manner, they can just enhance if various types of VM are
taken. Anyway, if taking the slowest type of VM represents
not being capable to satisfy the deadline, subsequently the
next speediest VM model is taken to calculate process-
ing times and so forth. Next, the extra time, described as
the gap among the deadline and earliest finish time of the
scientific workflow (Dw = maxt∈W{eftp}) is estimated and
shared among the workflow group formed on the number of
tasks they keep. At last, each task is allocated its deadline
Dt = maxp∈t.parents{Dp} + PTvmt

t
 + t.level.extra.

When a workflow is pre-processed, the task scheduling
happens. In the initial iteration, all the arrival tasks (those
without parent tasks) turn prepared for processing and are
put in a scheduling order. These tasks are scheduled and
in a while they complete their processing, their child tasks
are delivered onto the scheduling order. This approach is
continued until whole workflow tasks have been executed
successfully. To schedule the tasks in the order, tasks are
initially clustered into sets of tasks and sets of pipelines. A
set of tasks sot is described as a set of one or multiple tasks
Tsot that can execute in concurrent. The total number of tasks
in a set divides the same deadline Dsot, is of the homogene-
ous Tsot and is not role of a pipeline. Generally, sot = (Tsot,
Dsot, Tsot). The description of set of pipelines sop is same
but in place of a set of tasks, the set holds one or multiple
pipelines Psop that are in parallel. The element sop = (Psop,
Dsop), where (Dsop) is the deadline limit the pipelines in the
set keep in general, usually defines the plan.

To discover the bags of sets of tasks SoT = {sot1,…,sotn}
and sets of pipelines SoP = {sop1,…,sopn}, every task in the

order is executed in the following manner. If a task does not
associate to a pipeline, then it is put into soti that includes
tasks of the homogeneous and with the equivalent deadline.
If no correspondent soti is present, a fresh set is generated
and the task allocated to it. If, on the other side, the task
associates to a pipeline, the parallel pipeline is put in the sopi
which includes pipelines with the same types of tasks and
deadline. If there is no sopi with this attributes, a fresh set
is generated with its only component being the considered
deadline.

When the bags of SoP and SoT are generated, we proceed
to map them. Both categories of sets are scheduled taking
the related plan, with the slight variation being the pipe-
line tasks should be handled as a component. We define the
strategy taking SoT, consider anyway that the correspond-
ing rules follow when scheduling SoP. To schedule SoT, we
rerun the following strategy for every set soti ∈ SoT that has
only one task (sets with a single task are managed as spe-
cific type and scheduled correspondingly). Initially, APRS
attempts to minimize the size of the set and reutilize earlier
rented VMs by allocating a bunch of tasks as achievable to
non-busy VMs. The number of tasks scheduled to an acces-
sible VMs is decided by the number of tasks that can com-
plete prior to their deadline and prior to the next billing slot
of the VM. In this manner, wastage of earlier charged CPU
cycles is minimized without disturbing the workflow makes-
pan. Then, a plan of resource provisioning is generated for
the rest of the tasks in the set.

To create a cost-effective resource provisioning strategy,
APRS should search various solutions taking various VM
models and consider their related costs. We attain this and
discover the suitable consolidation of VMs that can com-
plete the tasks in the set within the time with less cost by
stating the problem as UKP variation and work it out taking

 SN Computer Science (2021) 2:456456 Page 8 of 16

SN Computer Science

dynamic programming. An object of knapsack is described
by its category, load, and value. For our job, we describe
a scheduling object of knapsack SKIJ = (VMTJ, NTJ, CJ)
where the type of object relates to a type of VM VMTj, the
load is the maximal number of tasks NTj that can process in
a type of VM NTj prior to their deadline, and the associated
price Cj of processing NTj tasks in a type of VM VMTj.
Moreover, we believe there is an infinite number of VMs
of every type that could be possibly rented and describe the
weight limit of knapsack as the number of tasks in the set,
that is, W =|Tsot|. The objective is to discover a bag of objects
SKI; hence, that their integrated weight (the total number of
tasks) is at minimum as huge as the weight limit of knapsack
(the number of tasks in the set) and whose integrated value
is lesser (the cost of executing the tasks is lesser). Officially,
a set of tasks scheduling problem is written as (3).

After sorting out the problem of UKP, resource provi-
sioning RPsot

i
 = (VMTi, numVMi, NTi) is acquired for each

type of VM. It represents the amount of VMs of category
 VMTi to utilize numVMi and determined number of tasks to
process on every VM (NTi). In special condition in which no

(3)Minimize

n∑

i=1

C
i
× x

i
Subject to

n∑

i=1

NT
i
× x

i
≥ |
|Tsot

|
|.

VM categories that can complete the tasks within the time,
a provisioning scheme of the pattern RPfastest

sot
 = (VMTfastest,

W, 1) is generated. This represents that VM of the quick-
est instance should be rented for every task in the set;
hence, they can process in concurrent and complete as
soon as achievable. Afterwards, for every RPsot

i
 for which

 numVMi > 0, APRS attempts to identify a type of VM
 VMTi, which has been rented early and is available to utilize.
If it presents, then NTi tasks from the set are mapped on to
it. In this manner, we minimize cost utilizing already billed
for time periods and ignore newly rented VMs high provi-
sioning delays. If it is not accessible VM of the demanded
type, then a new VM is provided and NTi tasks from the set
are mapped on to it.

We investigate the condition of a set with a single or only
one task as a specific case. Scheduled single tasks on avail-
able VMs if they can complete the task within the time and
prior to their present billing slot completes. If there is no
available VM that can attain this, then a new type of VM
that is efficient in completing the task by its time limit at the
lowest cost is provided and the task mapped to it. If no such
type of VM can complete by its time limit, the accessible
type of fastest VM is taken. The SoT scheduling pseudo-
code is depicted in Algorithm 2.

Algorithm 2
SoT Scheduling

1. Process ScheduleSoT(SoT)
2. for all sot ∈ SoT do
3. if all sot.tasks.size > 1then
4. RPsot = UKPFormedProvisioningStrategy(sot)
5. for all ∈ do
6. for k=0; k<numVMi; K++ do
7. n tasks = min{Nti, sot.size}
8. tasks = {t1,…tnTasks|ti ∈ sot.tasks}
9. remove tasks from sot.tasks
10. vm = identifyFreeVM(VMTi)
11. if vm == null then
12. vm = leaseNewVM(VMT)
13. end if
14. scheduleTasks(task, vm)
15. end for
16. end for
17. else
18. task = sot.tasks[0]
19. vm = identifyfreeVMForTask(task, deadline),
20. if vm ==null then
21. vm = leaseNEWVM(VMTi)
22. end if
23. scheduleTasks(task, vm)
24. end if
25. end for
26. end process

SN Computer Science (2021) 2:456 Page 9 of 16 456

SN Computer Science

ARPS repeatedly adapts the deadline allocation to reflect
the usual complete time of tasks. If a task completes before
than predicted, all of the leftover tasks will have longer time
to process and cost can be possibly minimized. Once a task
completes longer than predicted, the deadline of all lefto-
ver tasks is improvised to ignore delays that would guide
to the complete deadline being violated. ARPS also has a
mechanism of rescheduling that admits it to manage with
unpredicted delays occurred while processing a set of tasks
(or pipelines). As many tasks are consistently allocated to a
VM, a delay in the performance of a single task will have an
influence on the expected completing time of the upcoming
tasks. To reduce this influence, once a task associating to a
set completes after its time limit on VMi, then the tasks in
the processing order of VMi are examined in the following
manner. If rest of the tasks in the order of VMi can complete
by their improvised deadline, then no activity is considered.
If VMi cannot complete its assigned tasks within their time
limit, then the tasks are delivered return into the scheduling
order; hence, they can be re-mapped again according to their
improvised deadline.

As stated before, the bag of sets of pipelines SoP is sched-
uled taking the same procedure taken for SoT. Simply as
tasks, pipelines contain a deadline and a size. Hence, we
can follow the same scheduling procedure and represent the
challenge as a UKP variation with a little bit difference in the
description of knapsack object. For pipelines, SKIj = (VMTj,
 NPj, Cj), where an object's weight NPj, is similar to the
determined number of pipelines a VM model can complete
prior to their deadline. The remapping heuristic is also same
to that of tasks, other than that whenever a task in a pipeline
is wait longer, the rest of the pipeline tasks are remained to
complete in the VM as time-ahead pipelines are remapped
form on their improvised deadline. When again, sets with
only one pipeline are handled as a specific type and are allo-
cated to available VMs if they can complete them within
their time limit or rented new type of VM that can complete
them within their time limit at less cost.

Lastly, ARPS switches off VM if its utilization is near-
ing the next charging slot and if no tasks allocated to it.
A calculation of the delay of VM de-provisioning is taken
to secure the VM switch-off request is forwarded before
enough, hence that it ends being charged prior to the ends
of current billing slot.

Experimental Results

We used the CloudSim framework [37] to set up the cloud
platform in which APRS was estimated by four well-known
scientific workflows from many scientific fields: LIGO
associating to astrophysics field, Montage associating to
astronomy field, Epigenomics associating to bioinformatics

field, and Cybershake associating to physics field. The
LIGO, Montage, Epigenomics and CyberShake are seen
in Fig. 1b–e. Each workflow possesses various topological
frameworks, various data and computational features. Their
characterization and description is given by [32].

Two approaches were utilized to estimate the standard
of the schedules made by ARPS. The first algorithm is Co-
evolutionary Genetic Algorithm (CGA) [22] which allots
sub-deadlines to each task and executes them on to currently
rented or existing VMs so that overall cost is reduced. It was
selected because it is a static approach potential of making
optimal solution. Its limitation is its insufficiency to satisfy
deadlines when unpredicted delays happen. Anyway, we are
more fascinated in comparing ARPS to CGA when both are
capable of satisfying the deadline constraints. Moreover, by
considering them, we are capable of verifying our result’s
adjustability and show how at what time other algorithms
did not succeed to improve from unpredicted delays ARPS
achieves while doing so.

Next algorithm is Dyna [5], an advanced dynamic
approach that possesses an autoscaling feature that allots
and de-allots VMs formed on the present status of tasks. It
was developed to schedule multiple workflows even but it is
able to be adjusted to schedule only one workflow at a time.
It identifies the suitable cost-effective type of VM for each
task by A star search. This algorithm is improvised through
every interval of scheduling and represents the number of
VMs of each category demanded with the aim of the tasks
to complete by their time limit with less cost. The aim is to
show how the ARPS static component admits it to make
high-standard schedules than the algorithm of Dyna.

An IaaS vendor giving a solitary data region and four cat-
egories of VM was deployed. The configuration type of VM
is formed on the offerings of Google Compute Engine and
is presented in Table 1. A 60 s’s billing slot was modeled,
as given by vendors, such as Microsoft Azure and Google
Compute Engine. For all types of VM, the delay of provi-
sioning was given to thirty seconds [38] and shut down delay
was assigned to three seconds [3]. Performance variation of
CPU was used after the judgings by [2]. The VM perfor-
mance is reduced at most 24% formed on the distribution of
normal with a mean and standard deviation of 10% and 12%,
respectively. A total available bandwidth of network connec-
tions is shared among entire transfers utilizing the network
connection at a considerable particular moment. This allo-
cation of bandwidth was achieved utilizing the algorithm of
progressive filling [39] to set data transfer time and conges-
tion degradation. A maximum speed of reading and writing
of global shared storage was also set. The speed of reading
possible by a considered transfer is found by the number of
processes reading presently from the storage and the similar
guideline using for the writing speed. In this manner, storage
system congestion is simulated.

 SN Computer Science (2021) 2:456456 Page 10 of 16

SN Computer Science

SN Computer Science (2021) 2:456 Page 11 of 16 456

SN Computer Science

Workflows with about 1000 tasks were utilized for the
estimation. We admit the fact that the task sizes estimation
would not be 100% perfect and therefore, launching in our
experiment a variation of ± 10% formed on uniform distribu-
tion to each task size. The experiments were evaluated using
three different deadlines, Dw1

 is the strictest one, Dw2
 and

Dw3
 are the medium and relaxed one. For every workflow,

Dw1
 is same to the time it needs to run the tasks in the work-

flow path and the time it needs to transfer all I/O files from/
to the storage. The leftover deadlines are formed on Dw1

and a size of interval Dint = Dw1

∕2 ∶ Dw2
= Dw1

+ Dint and
Dw3

 = Dw2
 + Dint . The results shown are the mean acquired

after executing every experiment 25 times.

Results and Analysis

Evaluation of Makespan and Cost: The obtained average
makespan (total execution time) and cost for each work-
flow is shown in Fig. 2. The source lines in the line plots of
makespan linking to the values of three deadlines utilized for
every workflow. Estimating the makespan and cost in terms
of this value is significant as the important goal of entire
algorithms is to complete within the deadline.

In the case of LIGO, Dw1 demonstrates to be too strict for
each algorithm to complete within the deadline. Anyway, the
comparison between the obtained makespan of ARPS and
the deadline is very little. Moreover, ARPS makes the lesser
cost schedules in this situation. The Dw2

 deadline interval is
yet not eased sufficient for the algorithm of Dyna or CGA
to reach their target, anyway, ARPS shows its adjust-ability
and potentiality to make less cost schedules by being an
algorithm to complete its execution prior to the deadline
and with the cheapest cost. For the leftover deadline, Dw3

 ,
both Dyna and APRS are having the ability of satisfying
the constraint, in case Dyna possesses a somewhat lesser
makespan but ARPS possesses the cheapest cost. CGA is
just potential of satisfying the deadline in relaxed deadline
interval and in this situation, ARPS performs better than
CGA with respect to overall cost. Generally, ARPS satisfies
all deadlines and in all situations, succeeds high-standard
schedules with the lesser cost.

For Montage, Dyna and ARPS satisfy each deadline with
ARPS constantly making less cost schedules. CGA does
not succeed to satisfy the strictest deadline but achieves in
satisfying Dw2

 and Dw3
 . Its victory in satisfying two out of

three deadlines would be defined in the information that
the majority of the task in the application of montage is

examined small and needs less utilization of CPU, guiding
to a possible less amount of performance variation effect on
the consistent schedule. In the instance of Dw2

 , CGA demon-
strates its capability to make less cost schedules and outper-
forms than CGA and ARPS; even though ARPS possesses
a less makespan in this instance, its cost is somewhat larger
than CGA. For Dw3

 , anyway, ARPS succeeds in making less
cost outputs than Dyna and CGA.

In the case of Epigenomics, CGA does not succeed to
meet deadline in Dw1

 , whereas deadline succeeded by ARPS,
followed by Dyna and lastly, ARPS algorithm is only capable
of satisfying Dw2

 with less cost. The constraint of third dead-
line is achieved by CGA and ARPS, with ARPS perform
better than CGA with respect to cost. Lastly, as the deadline
turn relaxed sufficient, all three approaches achieved in sat-
isfying the deadline and ARPS achieves it with less cost. The
huge deadline fail percentage of CGA and Dyna in Dw2

 is
caused by high CPU consumption characteristics of the tasks
of Epigenomics, representing that performance degradation
of CPU will possess a crucial effect on the processing time
of tasks making unpredicted delays.

In the case of Cybershake, ARPS achieves in satisfying
all user-defined deadlines with less makespan and less cost
than Dyna and CGA. The result show that even in situations
like this, ARPS stays efficient and responsive. It achieves in
satisfying all three deadlines with less makespan and cost
amidst the algorithms that satisfies the constraint. The huge
number of data that demand to be shifted when executing
this workflow guides to CGA battling to improve from the
rates of less data transfer because of congestion in network
and hence not succeeding to satisfying the three deadlines.
And also Dyna does not succeed to adjust to these delays
within the deadline and not achieves to satisfy the three
toughest deadlines.

Finally, ARPS algorithm is the most efficient in satisfy-
ing deadlines. In terms of mean, it achieves in satisfying the
deadline constraint in cent percent of the instances, while
Dyna achieves 45.833% and CGA achieves 12.5%. These
outputs are in line with what was predicted of every algo-
rithm. The static heuristic is not more effective in satisfy-
ing the deadlines, whereas adjust-ability in ARPS and Dyna
permits them to achieve their goal frequently. The experi-
ment results also show the ARPS efficiency with respect
to its potentiality to make less cost schedules. It performs
better than CGA and Dyna as in all cases, ARPS succeeds
the cheapest cost when examined the difference to the algo-
rithms of Dyna and CGA that satisfied the deadline. Another
advantage of ARPS that would be noticed from the outputs
is its capability to constantly increase the time it needs to
execute the workflow. The significance of these dependen-
cies in the information that multiple users are eager to trade-
off execution time for lesser costs as others is eager to pay
more cost for fastest execution. The algorithm demands to

Fig. 2 Evaluation of makespan and cost. The three column in the
makespan graph represents the three deadline values and depicted its
cost below to makespan graph. a LIGO workflow makespan and cost.
b Montage workflow makespan and cost. c Epigenomics workflow
makespan and cost. d CyberShake workflow makespan and cost

◂

 SN Computer Science (2021) 2:456456 Page 12 of 16

SN Computer Science

act not beyond this logic with the aim of the value of dead-
line considered by users to be reasonable.

Network Use Estimation

Network connections are notable bottlenecks in IaaS cloud
platforms. For example, address the variation of data transfer
time up to sixty five percent in Ec2 cloud [31]. Therefore, as
representatives of minimizing the origins of uncertainty and
enhancing the execution of scientific workflow applications,
it is crucial for the algorithms of scheduling to attempt to
minimize the data transferred amount by the cloud network
platform. In this portion, we estimate the unit of files read
from the storage by each algorithm. Remember that a task
does not demand to read from the general storage at what-
ever time the input data files, its needs are early accessible
in the VM where it is executing.

The column chart in Fig. 3 demonstrate average amount
of input data files reading over three deadlines for each
scientific workflow and each algorithm. The source line
represents the complete number of input data files that are
demanded by the tasks in the workflow. By planning pipe-
lines in only one VM and by executing as multiple tasks
or pipelines from the identical set in only one VM, ARPS
is achievable in minimizing 50% or further the amount of

input data files read from the global storage. In particular,
ARPS reads the minimum number of input files when dif-
ferentiated to Dyna and CGA in the situations of the work-
flow of LIGO and Epigenomics. The number of input data
files read from the global storage are minimized by 59% in
LIGO workflow and 76% in Epigenomics workflow. For the
application of montage workflow, Dyna and ARPS succeed
with slight performance variation and minimize the amount
of input files reading by more than 53%. Lastly, ARPS is
achievable in minimizing the amount of input files reading
than the algorithm of CGA and Dyna in CyberShake and the
amount of files read in CyberShake from the global storage
are minimized by around 47%.

Sensitivity of Provisioning Delay

The ARPS execution time is determined by the ability to
satisfy the defined strict constraint of deadline under vari-
ous provisioning delay; this is estimated by considering the
workflows’ deadline ratio. In this manner, ratio value less
than one means ARPS execution time is within a deadline,
ratio value is equal means ARPS execution time and dead-
line are equal and the ratio value is larger than one means
a deadline violation. These procedures are followed to next
section also with different values of performance variation.

Fig. 3 Average number of files read from the global storage by each algorithm. The red line represents the total number of files required as input
by the given workflow. a LIGO. b Montage. c Epigenomics. d CyberShake

SN Computer Science (2021) 2:456 Page 13 of 16 456

SN Computer Science

The pricing model contributes frequent operations of
VM provisioning and hence, it is significant to estimate
the capability of ARPS ability to complete the execution of
workflow no higher than the deadline given within different
delays of VM provisioning. The delays were ranged from 0
to 150 s. Figure 4 depicts obtained strict deadline ratios for
each workflow application considers across various provi-
sioning delay.

For the application of Ligo, most of the ratio values
under one for all delays of provisioning except last two
values of 120 and 150. The obtained ratio values of these
provisioning delay are slightly larger than one. This is
because of the algorithm failed to satisfy the deadline, as
it is too strict for it to be succeeded with such larger delays
of provisioning. Finally, the Montage application shows
maximum ratio values higher than one in last three sce-
narios except first three. This is made by too strict deadline
for ARPS algorithm to complete on time despite the delays
of provisioning. In the case of Epigenomics application, all
data points of ratio are less than one and clearly showing
the ability of ARPS algorithm to adapt in improving pro-
visioning delays if the budget admits for it. For the appli-
cation of CyberShake, last two ratio values are larger than
one. This happening by the algorithm budget corresponds
to be too tight and as the delay of provisioning increases
the ratio values are also increased.

Sensitivity of Performance Variation

Knowing performance variation is significant for schedulers,
hence they can improve from unpredicted delays and satisfy
the requirements of QoS. The algorithm sensitivity to VM per-
formance variation was analyzed by studying the strict dead-
line ratio within different values of variation in performance.
It was done using normal distribution with different average
values. The average values were specified as part of the maxi-
mum performance degradation of CPU ranges from 0 to 60%.

The obtained results are shown in Fig. 5. For the applica-
tions of Ligo and Epigenomics, all values are lesser than one
except the last one of 60% degradation due to the tight budget
of algorithm. For the Montage application, achieving the ratio
values below one are 0%, 10%, 30% performance variation
and violating the ratio values are 20%, 40% 50% and 60%
degradation due to the strict deadline. Finally, the application
of CyberShake, most ratio values are nearer to the one and
exceeds the values of 50% and 60% performance degradation
due to the deadline interval is too strict.

Another possible cause for violating the deadline con-
straint is the reason that ARPS generates a static provi-
sioning method for SoTs and SoPs. Although this allows
the algorithm to generate better decision of optimization
to minimize the workflow’s makespan, it also reduces its
responsiveness to environment uncertainties.

Fig. 4 Strict deadline ratio obtained for each workflow with different provisioning delay

 SN Computer Science (2021) 2:456456 Page 14 of 16

SN Computer Science

ARPS Time Complexity Evaluation

Theorem 1 The complexity time of ARPS is O (m*n), which
denotes the number of tasks as m and the number of VM as
n.

Confirmation Choosing VM for every clustered topologi-
cal tasks has complexity time O(n). Hence, for entire tasks,
the complexity time is O(m*n). Therefore, the overall time
complexity of ARPS is O(m*n).

Conclusion and Future Work

APRS is an Adaptive Resource Provisioning and Scheduling
algorithm for scientific workflows on IaaS cloud efficient
of making good standard schedules was depicted. It has as
goals reducing the total cost of utilizing the infrastructure
of cloud as satisfying a user-described deadline. The proce-
dure is dynamic to a particular range to reciprocate to the
unpredicted delays and environmental uncertainties usual
in cloud computing. Moreover, it has a static module that
admits it to discover the better schedule for a set of workflow
tasks, as a result enhancing the standard of the schedules it
produces. By minimizing the workflow into sets of pipelines
and homogeneous tasks that split a deadline, we can frame-
work their scheduling as a UKP variation and solve it using
dynamic programming in pseudo-polynomial time.

The experiment results demonstrate that our key has
a more effective performance than other algorithms. It is
achievable in satisfying deadlines in a state of unpredicted
delays including VM performance variation, VM provision-
ing delay, network congestion and inaccurate estimations of

Fig. 5 Strict deadline ratio obtained for each workflow with different performance variation

Table 1 Types of VM based on Google Compute Engine offering

Name Memory (GB) Google com-
pute engine
units

Price per minute

n1-standard-8 30 22 $0.0084
n1-standard-4 15 11 $0.0042
n1-standard-2 7.5 5.50 $0.0021
n1-standard-1 3.75 2.75 $0.00105

SN Computer Science (2021) 2:456 Page 15 of 16 456

SN Computer Science

task size. It attains this at less cost, even lesser than entirely
static techniques which have the capability of utilizing the
whole workflow form and comparing different outputs prior
to the execution of workflow.

As future assignment, we would like to consider the
workflow contains heterogeneous tasks at each level, such
as SIPHT and observation with different optimization tech-
niques, such as PSO algorithm, and compare their execu-
tion with ARPS. Moreover, we would like to enhance the
resource model to examine the cost of data transfer between
data regions, hence, that VMs would be used on different
data centers. We would like to execute the ARPS with real-
time workflows.

Acknowledgements The first author would like to thank “Anna Cen-
tenary Research Fellowship, Anna University” for supporting the pro-
posed research work financially in the form of scholarship.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval All procedures performed in studies involving human
participants were in accordance with the ethical standards of its institu-
tional and /or national research committee and with the 1964 Helsinki
Declaration and its later amendment or comparable ethical standards.

Informed consent Informed consent was obtained from all individual
participants involved in the study.

References

 1. Ullman JD. NP-complete scheduling problems. J Comput Syst Sci.
1975;10(3):384–93.

 2. Schad J, Dittrich J, Quiané-Ruiz JA. Runtime measurements in the
cloud: observing, analyzing, and reducing variance. Proc VLDB
Endow. 2010;3(1–2):460–71.

 3. Mao M, Humphrey M. A performance study on the vm startup
time in the cloud. In: 2012 IEEE Fifth International Conference
on cloud computing. IEEE. 2012; p. 423–30. https:// doi. org/ 10.
1109/ CLOUD. 2012. 103.

 4. Malawski M, Juve G, Deelman E, Nabrzyski J. Cost-and deadline-
constrained provisioning for scientific workflow ensembles in iaas
clouds In: Proceedings of the International Conference on high
performance computing, networking, storage and analysis, 2012;
pp. 1–11. https:// doi. org/ 10. 1109/ SC. 2012. 38.

 5. Zhou AC, He B, Liu C. Monetary cost optimizations for hosting
workflow-as-a-service in IaaS clouds. IEEE Trans Cloud Comput.
2015;4(1):34–48.

 6. Poola D, Ramamohanarao K, Buyya R. Fault-tolerant workflow
scheduling using spot instances on clouds. In: ICCS. 2014; p.
523–533.

 7. Byun EK, Kee YS, Kim JS, Maeng S. Cost optimized provision-
ing of elastic resources for application workflows. Futur Gener
Comput Syst. 2011;27(8):1011–26.

 8. Arabnejad V, Bubendorfer K, Ng B. Budget and deadline aware
e-science workflow scheduling in clouds. IEEE Trans Parallel
Distrib Syst. 2018;30(1):29–44.

 9. Bhatti MK, Oz I, Amin S, Mushtaq M, Farooq U, Popov K, Brors-
son M. Locality-aware task scheduling for homogeneous parallel
computing systems. Computing. 2018;100(6):557–95.

 10. de Oliveira D, Ocaña KA, Baião F, Mattoso M. A provenance-
based adaptive scheduling heuristic for parallel scientific work-
flows in clouds. J Grid Comput. 2012;10(3):521–52.

 11. Huu TT, Montagnat J. Virtual resources allocation for workflow-
based applications distribution on a cloud infrastructure. In: 2010
10th IEEE/ACM International Conference on cluster, cloud and
grid computing. IEEE. 2010; p. 612–17. https:// doi. org/ 10. 1109/
CCGRID. 2010. 23.

 12. Ghose M, Kaur S, Sahu A. Scheduling real time tasks in an
energy-efficient way using VMs with discrete compute capaci-
ties. Computing. 2020;102(1):263–94.

 13. Nik SSM, Naghibzadeh M, Sedaghat Y. Cost-driven workflow
scheduling on the cloud with deadline and reliability constraints.
Computing. 2020;102(2):477–500.

 14. Xu M, Cui L, Wang H, Bi Y. A multiple QoS constrained schedul-
ing strategy of multiple workflows for cloud computing. In: 2009
IEEE International Symposium on parallel and distributed pro-
cessing with applications. IEEE. 2009; p. 629–34. https:// doi. org/
10. 1109/ ISPA. 2009. 95.

 15. Deldari A, Naghibzadeh M, Abrishami S. CCA: a deadline-con-
strained workflow scheduling algorithm for multicore resources
on the cloud. J Supercomput. 2017;73(2):756–81.

 16. Das D, Banerjee S, Kundu A, Chandra S, Pal S, Biswas U. An
approach towards development of a migration enabled improved
datacenter broker policy. Aptikom J Comput Sci Inf Technol.
2019;4(3):112–24.

 17. Mandal R, Mondal MK, Banerjee S, Biswas U. An approach
toward design and development of an energy-aware VM selec-
tion policy with improved SLA violation in the domain of green
cloud computing. J Supercomput. 2020; 76:7374–93. https:// doi.
org/ 10. 1007/ s11227- 020- 03165-6.

 18. Banerjee S, Adhikary M, Mandal D, Biswas U. Service delivery
improvement for the cloud service providers and customers. Int
J Comput Appl. 2012; 51(5):20–3. https:// cites eerx. ist. psu. edu/
viewd oc/ downl oad? doi= 10.1. 1. 734. 7497& amp; rep= rep1& amp;
type= pdf.

 19. Banerjee S, Chowdhury A, Mukherjee S, Biswas U. An approach
towards development of a new cloudlet allocation policy with
dynamic time quantum. Autom Control Comput Sci. 2018;
52(3):208–19.

 20. Banerjee S, Chowdhury A, Mukherjee S, Biswas U. An approach
towards development of an intelligent cloudlet scheduling mecha-
nism for Cloud QoS improvement. Int J Hybrid Intell Syst. 2017;
14(1–2):21–30.

 21. Roy S, Banerjee S, Chowdhury KR, Biswas U. Development and
analysis of a three phase cloudlet allocation algorithm. J King
Saud Univ-Comput Inf Sci. 2017; 29(4):473–83.

 22. Liu L, Zhang M, Buyya R, Fan Q. Deadline-constrained coevo-
lutionary genetic algorithm for scientific workflow scheduling in
cloud computing. Concurr Comput Pract Exp. 2017;29(5):e3942.

 23. Abrishami S, Naghibzadeh M, Epema DH. Deadline-constrained
workflow scheduling algorithms for infrastructure as a service
clouds. Futur Gener Comput Syst. 2013;29(1):158–69.

 24. Calheiros RN, Buyya R. Meeting deadlines of scientific workflows
in public clouds with tasks replication. IEEE Trans Parallel Dis-
trib Syst. 2013;25(7):1787–96.

 25. Faragardi HR, Sedghpour MRS, Fazliahmadi S, Fahringer T,
Rasouli N. GRP-HEFT: A budget-constrained resource provision-
ing scheme for workflow scheduling in IaaS clouds. IEEE Trans
Parallel Distrib Syst. 2019; 31(6):1239–54.

 26. Niu M, Cheng B, Feng Y, Chen J. Gmta: A geo-aware multi-agent
task allocation approach for scientific workflows in container-
based cloud. IEEE Trans Netw Serv Manag. 2020;17(3):1568–81.

https://doi.org/10.1109/CLOUD.2012.103
https://doi.org/10.1109/CLOUD.2012.103
https://doi.org/10.1109/SC.2012.38
https://doi.org/10.1109/CCGRID.2010.23
https://doi.org/10.1109/CCGRID.2010.23
https://doi.org/10.1109/ISPA.2009.95
https://doi.org/10.1109/ISPA.2009.95
https://doi.org/10.1007/s11227-020-03165-6
https://doi.org/10.1007/s11227-020-03165-6
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.734.7497&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.734.7497&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.734.7497&rep=rep1&type=pdf

 SN Computer Science (2021) 2:456456 Page 16 of 16

SN Computer Science

 27. Wu Z, Ni Z, Gu L, Liu X. A revised discrete particle swarm opti-
mization for cloud workflow scheduling. In: 2010 International
Conference on computational intelligence and security. IEEE.
2010; p. 184–8. https:// doi. org/ 10. 1109/ CIS. 2010. 46.

 28. Yassa S, Chelouah R, Kadima H, Granado B. Multi-objective
approach for energy-aware workflow scheduling in cloud com-
puting environments. Sci World J. 2013; pp.1–13. https:// www.
hinda wi. com/ journ als/ tswj/ 2013/ 350934/.

 29. Poola D, Ramamohanarao K, Buyya R. Enhancing reliability of
workflow execution using task replication and spot instances.
ACM Trans Auton Adapt Syst (TAAS). 2016;10(4):1–21.

 30. Mao M, Humphrey M. Auto-scaling to minimize cost and meet
application deadlines in cloud workflows. In: SC'11: Proceedings
of 2011 International Conference for high performance com-
puting, networking, storage and analysis. IEEE. 2011; p. 1–12.
https:// ieeex plore. ieee. org/ abstr act/ docum ent/ 61144 35.

 31. Jackson KR, Ramakrishnan L, Muriki K, Canon S, Cholia S, Shalf
J, Wasserman HJ, Wright NJ. Performance analysis of high perfor-
mance computing applications on the amazon web services cloud.
In: 2010 IEEE Second International Conference on cloud comput-
ing technology and science. IEEE. 2010; p. 159–68. https:// doi.
org/ 10. 1109/ Cloud Com. 2010. 69.

 32. Bharathi S, Chervenak A, Deelman E, Mehta G, Su MH, Vahi K.
Characterization of scientific workflows. In: 2008 Third Workshop
on workflows in support of large-scale science. IEEE. 2008; p.
1–10. https:// doi. org/ 10. 1109/ WORKS. 2008. 47239 58.

 33. Andonov R, Poirriez V, Rajopadhye S. Unbounded knapsack
problem: dynamic programming revisited. Eur J Oper Res.
2000;123(2):394–407.

 34. Andonov R, Rajopadhye S. A sparse knapsack algo-tech-cuit and
its synthesis. In: Proceedings of IEEE International Conference
on application specific array processors (ASSAP'94). IEEE, 1994;
p. 302–13. https:// doi. org/ 10. 1109/ ASAP. 1994. 331794.

 35. Gilmore PC, Gomory RE. The theory and computation of knap-
sack functions. Oper Res. 1966;14(6):1045–74.

 36. Gilmore PC, Gomory RE. A linear programming approach to the
cutting stock problem—part II. Oper Res. 1963;11(6):863–88.

 37 Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R.
CloudSim: a toolkit for modeling and simulation of cloud comput-
ing environments and evaluation of resource provisioning algo-
rithms. Softw Pract Exp. 2011;41(1):23–50.

 38. Stadill S. By the numbers: How google compute engine stacks
up to amazon ec2. 2013. https:// gigaom. com/ 2013/ 03/ 15/ by- the-
numbe rs- how- google- compu te- engine- stacks- up- to- amazon- ec2/.

 39. Bertsekas DP, Gallager RG, Humblet P. Data networks, vol. 2.
New Jersey: Prentice-Hall International; 1992.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/CIS.2010.46
https://www.hindawi.com/journals/tswj/2013/350934/
https://www.hindawi.com/journals/tswj/2013/350934/
https://ieeexplore.ieee.org/abstract/document/6114435
https://doi.org/10.1109/CloudCom.2010.69
https://doi.org/10.1109/CloudCom.2010.69
https://doi.org/10.1109/WORKS.2008.4723958
https://doi.org/10.1109/ASAP.1994.331794
https://gigaom.com/2013/03/15/by-the-numbers-how-google-compute-engine-stacks-up-to-amazon-ec2/
https://gigaom.com/2013/03/15/by-the-numbers-how-google-compute-engine-stacks-up-to-amazon-ec2/

	Adaptive Resource Provisioning and Scheduling Algorithm for Scientific Workflows on IaaS Cloud
	Abstract
	Introduction
	Related Work
	Application and its Resource model
	ARPS Algorithm
	Motivation
	Unrestrained Knapsack Problem
	Algorithm

	Experimental Results
	Results and Analysis
	Network Use Estimation
	Sensitivity of Provisioning Delay
	Sensitivity of Performance Variation
	ARPS Time Complexity Evaluation

	Conclusion and Future Work
	Acknowledgements
	References

