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Abstract
Scientific workflow applications are deployed to run extensive volumes of data and to manage comprehensive observations 
and simulations. They are resource-intensive and time-utilizing applications that profit from processing in distributed envi-
ronments. Especially, workflow applications can highly support the simple access, scalability, and affordability provided 
by cloud computing. To attain this, disruptive and well-planned operation of managing the workflow tasks and running the 
compute pool in a cost-effective mode essential to be evolved. We present an adaptive resource provisioning and scheduling 
algorithm for scientific workflows on Infrastructure as a Service (IaaS) clouds. Our approach was planned to deal challenges 
especially to clouds, such as unlimited on-demand access, heterogeneity, performance variation and pay-per-use type (i.e., 
per minute billing). To correspondingly efficient to these uncertainties of cloud, therefore, our approach was developed 
with consider these necessary problems to run, and is achievable in making effective solutions that satisfy a user-described 
deadline and reduce the spending cost of the utilized environment using the service of resource provisioning and scheduling. 
Finally, experimental results show that it executes a workflow effectively with regard to achieving deadline and minimizing 
cost than other advanced algorithms.
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Introduction

Scientific workflows are described as computational tasks 
set and control or data-dependencies set among them. They 
are extensively utilized by the scientific groups to examine 
and run extensive volumes of data effectively. These huge 
scientific workflows are resource comprehensive applica-
tions and therefore are generally used on distributed environ-
ments. Scheduling approaches perform a significant role in 
processing workflows adequately because they are important 
for the management of the tasks on the distributed resource 
pool. Their findings are led by a set of Quality of Service 
(QoS) specifications described by the users’ of applica-
tion, such as reducing the makespan (complete execution 

time) and total cost, or satisfying a user-defined deadline or 
budget. This non-trivial problem of scheduling, in actually, 
is a recognized NP-Complete problem [1] and hence, algo-
rithms should prioritize on discovering optimal solution in 
an acceptable period of time.

Infrastructure as a Service (IaaS) clouds provides a sim-
ply accessible, scalable and adaptable infrastructure for the 
utilization of wide-ranging scientific workflows. They admit 
users’ opportunity to use a shared resource infrastructure 
on demand as charging just for what they utilize. This is 
achieved by renting Virtual Machines (VMs) or virtualized 
system resources, with a pre-described amount of CPU, 
storage, memory, and network bandwidth capacity. Vari-
ous compute resource sets (i.e., VM sets) are accessible to 
consumers at various costs to fit a large-scale of application 
demands. Apart from VMs, IaaS vendors also provide stor-
age and network systems to transfer the data in/out from/
to the storage system. To completely take benefit of these 
opportunities and services, scheduling algorithms should 
examine some significant attributes of clouds.

The primary attribute is the on-demand, adapt-
able resource framework. This attribute recommends a 
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re-development of the scheduling problem as usually 
described for existing distributed environments, such as 
cluster and grids. Clouds do not provide a limited range of 
computing resources, alternatively, they provide a virtually 
infinite set of resources with different configurations to be 
rented and utilized just for if they are demanded. This frame-
work generates the requirement for a resource provisioning 
heuristic that runs concurrently with scheduling algorithm; a 
strategy that finds not only the number and the type of VMs 
to demand from the cloud but also determines when is the 
right time to rent and deliver them. Since this objective is 
customized for cloud infrastructure, from now on, the term 
scheduling will be taken to mention to an algorithm efficient 
of integrating both scheduling and resource provisioning 
findings (solution).

Another attribute to examine is the profitability-based 
pricing type employed by cloud vendors. The fee of uti-
lizing the infrastructure demands to be examined or else, 
users probably paying unreasonable and excessive cost. For 
instance, the number of VMs rented, their type and total 
amount of unit they are utilized for, all contain a signifi-
cant impact on the overall cost of executing the workflow 
in the cloud. As a result, schedulers demand to discover a 
trade-off among total execution cost and total execution time 
(makespan).

A third attribute of clouds is their dynamic condition 
and the environmental uncertainties this makes with it. 
An instance is the unpredictability in performance demon-
strated by VMs with regard to processing times [2]. This 
unpredictability represents that in spite of a VM prototype 
being announced officially to have a particular CPU amount, 
it will probably execute at a less utilized amount that will 
vary overtime. It also represents that two homogenous VMs 
(same type) may give entirely various performances. More-
over, having many one or more users dividing a network 
represents that performance variation is also noticed in net-
working systems [2]. Now another origin of unpredictability 
are the delay of resource provisioning and de-provisioning; 
at are no promises on these values of provisioning and de-
provisioning delay and they could be extremely unpredict-
able and variable [3]. Knowing performance unpredictability 
is crucial for schedulers so that they can execute a workflow 
efficiently from unpredicted delays and satisfy the require-
ments of QoS. Finally, we taken pay per minute billing for 
reducing the overall execution cost.

The contribution of this paper can be explained as 
follows:

• Consequently of these attributes, we present an Adap-
tive Resource Provisioning and Scheduling (ARPS) algo-
rithm for scientific workflows on IaaS cloud.

• Our output discovers a balance among generating 
dynamic findings to respond to variations in the envi-

ronment and focusing forever to make high-standard 
schedules.

• It goals to reduce the complete utilized infrastructure 
spending cost as satisfying a user-described deadline.

• It is efficient in determining what compute systems to 
utilize examining heterogeneous VM categories, when 
the appropriate time to rent them and when they must be 
terminated to prevent unnecessary expenses.

• Finally, our experimental results show it is scalable with 
respect to number of tasks in the scientific workflow, it is 
fit and flexible to the cloud performance unpredictability 
and it is efficient of making effective solutions than the 
other advanced algorithms.

Related Work

There have been some assignments as the emergence of 
cloud computing that targets to systematically organize sci-
entific workflows. Many are powerful and efficient in adjust-
ing to changes in the framework. A case is the algorithm of 
Dynamic Provisioning Dynamic Scheduling (DPDS) [4] in 
which the set of VMs is adapted requiring on how appropri-
ately they are being utilized by the application. This study 
[5] also offers a dynamic process developed to represent 
the dynamic characteristic of cloud frameworks from the 
implementation and billing point of perspective. Planned a 
fault-tolerant effective algorithm formed on the partial criti-
cal paths of workflows [6]. The Partitioned Balanced Time 
Scheduling algorithm [7] calculates the suitable number of 
resources requested per billing slot so that the cost is reduced 
and a deadline is satisfied. Other dynamic approaches incor-
porate those presented by [8–21]. The main limitation of 
these techniques is their task-level optimal scenario, which 
is a trade-off for their adjustability to unpredicted delays.

Other characteristic of the scope are static approaches. 
An instance is the algorithm of Static Provisioning Static 
Scheduling (SPSS) [4] and Co-evolutionary Genetic Algo-
rithm (CGA) [22]. Planned to schedule a set of interlinked 
workflows (i.e., ensembles), it generates a scheduling and 
provisioning strategy prior to processing any task. An addi-
tional case is the IaaS Cloud Partial Critical Path (IC-PCP) 
algorithm [23]. It is formed on the partial critical paths of 
workflows and attempts to reduce the total execution cost as 
satisfying a time constraint. Other specifications consider 
[24–28]. Usually, these strategies are extremely sensitive to 
performance delays and processing time calculation of tasks, 
which is a trade-off for their potential to execute workflow-
level optimization and consider different solutions prior to 
deciding the most effective one. This work offers a dynamic 
approach developed to schedule a workflow on on-demand 
and spot instances [29]. To attain this, they have techniques 
in place to adopt spot and on-demand instance. However, 
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most of the time spot price instances are not reliable and 
switch to on-demand instance latter to run the workflow for 
satisfying the deadline constraint.

Irrelevant to completely static or dynamic approaches, 
our objective integrates both with the purpose of discover 
an effective solution between changeability and the advan-
tages of global optimization. Dyna [5] and SCS [30] are an 
instance of an algorithm trying to succeed this. It possesses 
a global optimization strategy that permits it to discover the 
suitable mapping of task to VM category. This mapping is 
then taken at processing time to scale the computing systems 
in or out and to organize tasks while they turn proceed for 
execution. Our plan is varied to Dyna and SCS because the 
static module does not study the whole workflow form and 
alternatively optimizes the organization of a subgroup of 
the workflow tasks. Furthermore, our static plan creates a 
usual schedule for these tasks instead of only choosing VM 
instance.

Application and its Resource model

We examine workflows represented as Directed Acyclic 
Graph (DAGs); that is, DAG with leading edges and no con-
ditional dependencies. Generally, a workflow W is made up 
of a group of tasks T = {t1, t2,…,tn} plus a group of leading 
edges E. A leading edge eij = (ti,tj) is present if it is a depend-
ency of data among task ti and tj, instance in which task  ti 
is implied to be parent of tj and task tj is implied to be child 
of  ti. As a result, a child task that cannot process up to all of 
its parents tasks has finished and its input file is accessible 
in the relative compute system. In addition to, a workflow is 
connected with a deadline Dw, described as a time restric-
tion. Moreover, we believe that the scale of a task St (task 
size) is computable in Million of Instructions (MIs) and that, 
for each task, this fact is offered as information to scheduler.

A pay-per-use framework where VMs are rented when-
ever required and are billed per billing slot is tested. Some 
incomplete utilization happens in the machine use being 
charged as full-time utilization. We represent VM category, 
VMT, with respect to its processing capability  PCvmt and its 
charge per billing slot Cvmt. We describe  PCvmt with respect 
to the unit of instructions the CPU can run per second, Mil-
lion of Instructions Per Second (MIPS). It is believed that for 
every type of VM, its processing capability in MIPS can be 
evaluated formed on the facts provided by vendors.

Scientific workflows run data in the structure of files. A 
general method taken to divide these files between tasks is 
to deploy peer-2-peer (P2P) framework in which files are 
transported immediately from the VM processing the parent 
task to the VM processing the children task. An additional 
approach is to take a general storage in sharing mode, such 

as Amazon s3 as a file cache. In this instance, tasks keep 
their output in the general storage and recover their inputs 
from the general storage as similar. We investigate the latter 
framework developed on the benefits it provides. Initially, 
the stored data are kept at it and therefore, can be taken for 
retrieval in the event of failure. Second, it enables for com-
putation in asynchronous. In the P2P fashion, synchronous 
communication among tasks represent that VMs should 
be continued to be processing up to all of the child tasks 
have obtained the relative data. With a storage in shared 
on the opposite, the VM processing the parent task can be 
transferred immediately as the data are kept in the storage 
resource. This could possibly not just maximize the resource 
utilization, but also minimize the charge of VM renting.

We believe data transfer from/to the general storage sys-
tem is in the house, as is the instance for commodity like 
Rackspace Block Storage, Amazon S3, and Google Cloud 
Storage. Like for the usual data storage, many cloud vendors 
amount formed on the volume of data being saved. We do 
not consider this fee in the overall implementation cost, nei-
ther our performance and nor the performance of the algo-
rithms deployed for differentiated in the evaluations. The 
motivation for this can consider our technique with others 
developed to transport files in a P2P form. Moreover, despite 
the procedure, the stored amount of data for a considered 
workflow is most similarly correspondent in every condition 
that it does not outcome in a variability in cost.

We respect the fact of VM de-provisioning and provi-
sioning delay and believe that CPU capacity of VMs is not 
consistent [2]. As opposed to, it differs over time with its 
most obtainable value being the CPU power promoted by 
vendor. Also, we believe network congestion makes a vari-
ance in data transport times [31]. The bandwidth allocated 
to a transportation relies on the current variance for the net-
work connection being utilized. Also, we believe a general 
storage with an infinite storage room. The speed at which it 
is efficient of writing and reading data differs according to 
the number of processes presently reading or writing data 
from the storage system. Lastly, the running time of task t 
on a VM type VMT, PTvmt

t
 is described as the total of its 

processing time and the time it needs to scan the input facts 
from the general storage and write the created output to the 
general storage. Account that at whatever time a parent and a 
children’s task are performing in the corresponding machine, 
there is no essential to retrieve the child's input data from 
the storage system.

According to the aforementioned explanations, the prob-
lem would be officially described as proceeds: discover a 
schedule S with less EC (Execution cost) while ensure its 
associated M (Makespan) does not run over the deadline is 
shown in Eq. (1).
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ARPS Algorithm

Motivation

ARPS has dynamic and static characteristics. Its dynamicity 
exists in the factor that the scheduling findings are gener-
ated at processing time, whenever tasks are delivered into 
a processing queue. This admits it to adjust to unpredicted 
delays made by faulty estimates or by environmental uncer-
tainties, such as delays in VM provisioning, network conges-
tion and performance variation. The static module extends 
the potentiality of the algorithm from generating decisions 
formed on a single task to generating decisions formed on 
a set of tasks. The aim is to discover a trade-off among the 
local fact of dynamic procedures and global fact of static 
procedures. This is done by introducing the idea of pipeline 
and by consistently scheduling entire tasks in the process-
ing queue at only one time. In this manner, APRS is apt to 
generate suitable optimization findings and discover high-
standard schedules.

A pipeline is a general topological form in scientific 
workflows and is commonly a set of tasks with 1-to-1 
sequential correspondence among them. Generally, a pipe-
line P is described as a group of tasks Tp = {t1, t2,…,tm} 
where m ≥ 2 and at is an edge ec,c+1 among task tc and task 
tc+1. In different words,  t1 is the parent task of t2, t2 is the 
parent task of t3 and so forth. The initial task in a pipeline 
probably has other than one parent but it should only have 
one-child task. All upcoming tasks should have one parent 
(former task of pipeline) and one child (later task of pipe-
line). A pipeline is connected with a deadline Dp which is 
similar to the deadline of the final task in the series. For 
example, is depicted in Fig. 1a.

By finding pipelines in a scientific workflow, we can 
simply extend the perspective from one task to a group of 
tasks that could be scheduled more effectively as a set rather 
than on their characteristic. To ignore processing and com-
munication overheads and also the VM provisioning and 
shutdown delays, tasks in a pipeline are integrated simulta-
neously and are consistently allocated to execute on the same 
VM. The explanations are twofold. First one are tasks which 
are sequential and in demand to execute one by one. There 
is no advantage with respect to parallelization on allocating 
them various VMs. Second one is parent task output file 
becomes the input file of the child task by processing on the 
same VM, we ignore the cost and the transferring time of 
data files out/in from/to the general storage.

(1)
Minimize EC

Constraint toM ≤ Dw.

The heuristics taken to schedule organized tasks are origi-
nated from the topological structures of workflows. Apart 
from pipelines, a scientific workflow also has concurrent 
forms made up of tasks without dependencies among them. 
These tasks can process concurrently and are commonly 
based whenever data aggregation or distribution occurs. In 
the strategy of data distribution [32], the output of a task is 
assigned to one or more tasks for running. In the strategy of 
data aggregation [32], the output of various tasks is com-
bined, or organized, by only one task. Figure 1a depicts these 
structures for an example.

The concurrent tasks in these workflow framework can 
be homogeneous tasks. The situation in which the tasks are 
uniform (homogeneous) is usual in workflows; examples of 
familiar applications with this features are LIGO, Montage, 
Epigenomics and CyberShake. Formed on this, we conceive a 
plan to effectively schedule homogeneous concurrent tasks that 
are of the equivalent size (MIs) and are at the concurrent level 
in the structure. Once taking a level-based deadline allocation 
strategy, these concurrent tasks will also admit the very same 
deadline. As an instance, investigate the data aggregation situ-
ation, all concurrent tasks have to complete processing prior to 
the aggregation task can begin; hence, they would be allocated 
the very same time constraint which would be same to the time 
the aggregation task is expected to start. In addition, there are 
other facts apart from aggregation and distribution where the 
concurrent tasks with the similar attributes can be discovered, 
anyway, we prioritize on these as representatives for demon-
strating the reason behind our scheduling scheme.

The significant static scheduling approach of APRS com-
prises then on clustering queued tasks of homogeneous and 
with the equivalent deadline into the sets. Two typical sets 
can be noticed in Fig. 1a, the first set is composed of entire 
tasks of Type 1 and second set is composed of entire tasks 
of Type 4. Scheduling these sets of tasks is very simpler 
than scheduling entire workflow. There are no inter-rela-
tionships, the tasks are same type and have to complete at 
the equivalent time. We represent the problem of process-
ing these tasks within their deadline and with lesser cost as 
an unrestrained knapsack problem variation and discover a 
better solution taking dynamic programming. The similar 
idea is followed to pipelines, they are clustered into sets and 
planned in the similar way as sets of tasks are. An instance 
of a set of pipelines is shown in Fig. 1c, d.

We have thus developed ARPS which is dynamic to a 
particular extent with the aim of adjusting to unpredicted 
delays consequence of the uncertainties of cloud frame-
works, but that also keeps static features that make it to pro-
duce high-standard schedules and satisfy deadline at lesser 
costs. Furthermore, it integrates a strategy-based technique 
with dynamic programming as to be able to run extensive 
workflows in a scalable and efficient manner.
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Fig. 1  Examples of scientific workflows. a Examples of set of tasks and three different topological structures discovered in workflows: data 
aggregation, data distribution and pipelines. b LIGO workflow. c Montage workflow. d Epigenomics workflow. e CyberShake workflow
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Unrestrained Knapsack Problem

The unrestrained knapsack problem is a combinatorial opti-
mization of NP-hard problem that obtains from the problem 
of choosing the most profitable objects to load into limited 
weight knapsack. Considered n objects of various types, 
each type of object 1 ≤ i ≤ n with an equivalent weight wi and 
value vi, the aim is to find the type and number of objects to 
load; hence, that the knapsack weight range W is not over-
reached and the entire value of the objects is maximized. 
Unbound number of each object type is believed.

Let xi ≥ 0 be the group of objects of type i to be filled in 
the knapsack set. Then, UKP would be described as (2).

This problem could be efficiently solved employing 
dynamic programming by examining knapsack of lesser 
spaces as subproblems and saving the optimal value for each 
space. Let wi > 0, therefore a vector could be described, 
where m[wi] is the value of maximum that could be acquired 
with a weight equal or less than to weight wi. In this manner, 
m[0] = 0 and (m[wi] = maxwj≤wi

 (vJ + m[wi – wj]). The solu-
tion time complexity is O(nW) as estimating every m[wi] 
comprises considering n objects and there are W values of 
m[wi] to estimate. This processing time is pseudo-polyno-
mial as it evolves exponentially with the range of W. Still, 
there are some algorithms that can effectively work out UKP. 
For example, EDUK [33] algorithm which integrates the 
ideas of monotonic recurrence [34], periodicity [35] and 
dominance [36]. Evaluations conducted by the correspond-
ents show its ability to be changed in size. For example, for 
W > 2 ×  108, n =  105, and the objects with weight in the [1, 
 105] limit, the processing time average was discovered to be 
0.150 s.

Algorithm

APRS initially pre-processes the workflow by finding the 
pipelines and by allocating an amount of the deadline Dw 
to every individual task. To identify the pipelines, tasks are 
initially clustered in topological structure, in this manner, 
we assure data-dependencies are secured. Then, pipelines 
are created according to the following plan. For each clus-
tered tasks that has not been executed, the ARPS recursively 
attempts to create a pipeline that begins with that task. The 
fundamental logic of the recursion occurs when the running 
task has no child, or when it has beyond one child, or when 
it has a child with beyond one parent. The recursive pro-
cess happens when the running task has precisely one child 
which all together has exactly one parent task. In this condi-
tion, task is attached to the pipeline and the recursion keeps 

(2)Maximize

n∑

i=1

v
i
x
i

Subject to

n∑

i=1

w
i
x
i
≤ W.

Fig. 1  (continued)
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running with its child task. When a pipeline was found and 
the recursion completes, the approach is continued for the 
following unexecuted clustered task, this runs on up to there 

is no clustered task remaining to be processed. A further 
thorough explanation of the recursive stage of the process 
is shown in Algorithm 1.

Algorithm 1 
Identify a Pipeline Repeatedly

1.    Process IDENTIFYPIPELINE(Task t, Pipeline P) 
2.          if t.child.size > 1 OR t.child.size = 0 OR
3.              t.child[0].parentssize > 1 then
4.              if p.tasks.size > 0 then 
5.                       p.addTask(t)
6.              end if
7.              return
8.          end if
9.          p.addTask(t)
10.            identifyPipeline(t.child[0],p)
11.   end process

For the distribution of deadline, the ARPS initially 
estimates the earliest finish time of each task described as 
 eftt =  maxp∈t.parents{eftp} + PTvmt

t
 . The slowest type of VMT 

is utilized to estimate the running time of a task. In this 
manner, they can just enhance if various types of VM are 
taken. Anyway, if taking the slowest type of VM represents 
not being capable to satisfy the deadline, subsequently the 
next speediest VM model is taken to calculate process-
ing times and so forth. Next, the extra time, described as 
the gap among the deadline and earliest finish time of the 
scientific workflow (Dw =  maxt∈W{eftp}) is estimated and 
shared among the workflow group formed on the number of 
tasks they keep. At last, each task is allocated its deadline 
Dt =  maxp∈t.parents{Dp} + PTvmt

t
 + t.level.extra.

When a workflow is pre-processed, the task scheduling 
happens. In the initial iteration, all the arrival tasks (those 
without parent tasks) turn prepared for processing and are 
put in a scheduling order. These tasks are scheduled and 
in a while they complete their processing, their child tasks 
are delivered onto the scheduling order. This approach is 
continued until whole workflow tasks have been executed 
successfully. To schedule the tasks in the order, tasks are 
initially clustered into sets of tasks and sets of pipelines. A 
set of tasks sot is described as a set of one or multiple tasks 
Tsot that can execute in concurrent. The total number of tasks 
in a set divides the same deadline Dsot, is of the homogene-
ous Tsot and is not role of a pipeline. Generally, sot = (Tsot, 
Dsot, Tsot). The description of set of pipelines sop is same 
but in place of a set of tasks, the set holds one or multiple 
pipelines Psop that are in parallel. The element sop = (Psop, 
Dsop), where (Dsop) is the deadline limit the pipelines in the 
set keep in general, usually defines the plan.

To discover the bags of sets of tasks SoT = {sot1,…,sotn} 
and sets of pipelines SoP = {sop1,…,sopn}, every task in the 

order is executed in the following manner. If a task does not 
associate to a pipeline, then it is put into  soti that includes 
tasks of the homogeneous and with the equivalent deadline. 
If no correspondent  soti is present, a fresh set is generated 
and the task allocated to it. If, on the other side, the task 
associates to a pipeline, the parallel pipeline is put in the  sopi 
which includes pipelines with the same types of tasks and 
deadline. If there is no  sopi with this attributes, a fresh set 
is generated with its only component being the considered 
deadline.

When the bags of SoP and SoT are generated, we proceed 
to map them. Both categories of sets are scheduled taking 
the related plan, with the slight variation being the pipe-
line tasks should be handled as a component. We define the 
strategy taking SoT, consider anyway that the correspond-
ing rules follow when scheduling SoP. To schedule SoT, we 
rerun the following strategy for every set  soti ∈ SoT that has 
only one task (sets with a single task are managed as spe-
cific type and scheduled correspondingly). Initially, APRS 
attempts to minimize the size of the set and reutilize earlier 
rented VMs by allocating a bunch of tasks as achievable to 
non-busy VMs. The number of tasks scheduled to an acces-
sible VMs is decided by the number of tasks that can com-
plete prior to their deadline and prior to the next billing slot 
of the VM. In this manner, wastage of earlier charged CPU 
cycles is minimized without disturbing the workflow makes-
pan. Then, a plan of resource provisioning is generated for 
the rest of the tasks in the set.

To create a cost-effective resource provisioning strategy, 
APRS should search various solutions taking various VM 
models and consider their related costs. We attain this and 
discover the suitable consolidation of VMs that can com-
plete the tasks in the set within the time with less cost by 
stating the problem as UKP variation and work it out taking 
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dynamic programming. An object of knapsack is described 
by its category, load, and value. For our job, we describe 
a scheduling object of knapsack  SKIJ =  (VMTJ,  NTJ, CJ) 
where the type of object relates to a type of VM VMTj, the 
load is the maximal number of tasks NTj that can process in 
a type of VM  NTj prior to their deadline, and the associated 
price Cj of processing  NTj tasks in a type of VM  VMTj. 
Moreover, we believe there is an infinite number of VMs 
of every type that could be possibly rented and describe the 
weight limit of knapsack as the number of tasks in the set, 
that is, W =|Tsot|. The objective is to discover a bag of objects 
SKI; hence, that their integrated weight (the total number of 
tasks) is at minimum as huge as the weight limit of knapsack 
(the number of tasks in the set) and whose integrated value 
is lesser (the cost of executing the tasks is lesser). Officially, 
a set of tasks scheduling problem is written as (3).

After sorting out the problem of UKP, resource provi-
sioning RPsot

i
 =  (VMTi,  numVMi,  NTi) is acquired for each 

type of VM. It represents the amount of VMs of category 
 VMTi to utilize  numVMi and determined number of tasks to 
process on every VM  (NTi). In special condition in which no 

(3)Minimize

n∑

i=1

C
i
× x

i
Subject to

n∑

i=1

NT
i
× x

i
≥ |
|Tsot

|
|.

VM categories that can complete the tasks within the time, 
a provisioning scheme of the pattern RPfastest

sot
 =  (VMTfastest, 

W, 1) is generated. This represents that VM of the quick-
est instance should be rented for every task in the set; 
hence, they can process in concurrent and complete as 
soon as achievable. Afterwards, for every RPsot

i
 for which 

 numVMi > 0, APRS attempts to identify a type of VM 
 VMTi, which has been rented early and is available to utilize. 
If it presents, then  NTi tasks from the set are mapped on to 
it. In this manner, we minimize cost utilizing already billed 
for time periods and ignore newly rented VMs high provi-
sioning delays. If it is not accessible VM of the demanded 
type, then a new VM is provided and  NTi tasks from the set 
are mapped on to it.

We investigate the condition of a set with a single or only 
one task as a specific case. Scheduled single tasks on avail-
able VMs if they can complete the task within the time and 
prior to their present billing slot completes. If there is no 
available VM that can attain this, then a new type of VM 
that is efficient in completing the task by its time limit at the 
lowest cost is provided and the task mapped to it. If no such 
type of VM can complete by its time limit, the accessible 
type of fastest VM is taken. The SoT scheduling pseudo-
code is depicted in Algorithm 2.

Algorithm 2 
SoT Scheduling

1.    Process ScheduleSoT(SoT) 
2.          for all sot ∈ SoT do 
3.              if all sot.tasks.size > 1then
4.                 RPsot = UKPFormedProvisioningStrategy(sot)
5.                 for all ∈ do
6.                    for k=0; k<numVMi; K++ do
7.                        n tasks = min{Nti, sot.size}
8.                        tasks = {t1,…tnTasks|ti ∈ sot.tasks}
9.                        remove tasks from sot.tasks
10.                      vm = identifyFreeVM(VMTi)
11.                      if vm == null then
12.                      vm = leaseNewVM(VMT)
13.                      end if 
14.                           scheduleTasks(task, vm)
15.                   end for 
16.                 end for 
17.            else 
18.                 task = sot.tasks[0]
19.                 vm = identifyfreeVMForTask(task, deadline),
20.                 if vm ==null then
21.                       vm = leaseNEWVM(VMTi)
22.                 end if
23.                     scheduleTasks(task, vm)
24.            end if
25.         end for
26.   end process
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ARPS repeatedly adapts the deadline allocation to reflect 
the usual complete time of tasks. If a task completes before 
than predicted, all of the leftover tasks will have longer time 
to process and cost can be possibly minimized. Once a task 
completes longer than predicted, the deadline of all lefto-
ver tasks is improvised to ignore delays that would guide 
to the complete deadline being violated. ARPS also has a 
mechanism of rescheduling that admits it to manage with 
unpredicted delays occurred while processing a set of tasks 
(or pipelines). As many tasks are consistently allocated to a 
VM, a delay in the performance of a single task will have an 
influence on the expected completing time of the upcoming 
tasks. To reduce this influence, once a task associating to a 
set completes after its time limit on  VMi, then the tasks in 
the processing order of  VMi are examined in the following 
manner. If rest of the tasks in the order of  VMi can complete 
by their improvised deadline, then no activity is considered. 
If  VMi cannot complete its assigned tasks within their time 
limit, then the tasks are delivered return into the scheduling 
order; hence, they can be re-mapped again according to their 
improvised deadline.

As stated before, the bag of sets of pipelines SoP is sched-
uled taking the same procedure taken for SoT. Simply as 
tasks, pipelines contain a deadline and a size. Hence, we 
can follow the same scheduling procedure and represent the 
challenge as a UKP variation with a little bit difference in the 
description of knapsack object. For pipelines,  SKIj = (VMTj, 
 NPj,  Cj), where an object's weight  NPj, is similar to the 
determined number of pipelines a VM model can complete 
prior to their deadline. The remapping heuristic is also same 
to that of tasks, other than that whenever a task in a pipeline 
is wait longer, the rest of the pipeline tasks are remained to 
complete in the VM as time-ahead pipelines are remapped 
form on their improvised deadline. When again, sets with 
only one pipeline are handled as a specific type and are allo-
cated to available VMs if they can complete them within 
their time limit or rented new type of VM that can complete 
them within their time limit at less cost.

Lastly, ARPS switches off VM if its utilization is near-
ing the next charging slot and if no tasks allocated to it. 
A calculation of the delay of VM de-provisioning is taken 
to secure the VM switch-off request is forwarded before 
enough, hence that it ends being charged prior to the ends 
of current billing slot.

Experimental Results

We used the CloudSim framework [37] to set up the cloud 
platform in which APRS was estimated by four well-known 
scientific workflows from many scientific fields: LIGO 
associating to astrophysics field, Montage associating to 
astronomy field, Epigenomics associating to bioinformatics 

field, and Cybershake associating to physics field. The 
LIGO, Montage, Epigenomics and CyberShake are seen 
in Fig. 1b–e. Each workflow possesses various topological 
frameworks, various data and computational features. Their 
characterization and description is given by [32].

Two approaches were utilized to estimate the standard 
of the schedules made by ARPS. The first algorithm is Co-
evolutionary Genetic Algorithm (CGA) [22] which allots 
sub-deadlines to each task and executes them on to currently 
rented or existing VMs so that overall cost is reduced. It was 
selected because it is a static approach potential of making 
optimal solution. Its limitation is its insufficiency to satisfy 
deadlines when unpredicted delays happen. Anyway, we are 
more fascinated in comparing ARPS to CGA when both are 
capable of satisfying the deadline constraints. Moreover, by 
considering them, we are capable of verifying our result’s 
adjustability and show how at what time other algorithms 
did not succeed to improve from unpredicted delays ARPS 
achieves while doing so.

Next algorithm is Dyna [5], an advanced dynamic 
approach that possesses an autoscaling feature that allots 
and de-allots VMs formed on the present status of tasks. It 
was developed to schedule multiple workflows even but it is 
able to be adjusted to schedule only one workflow at a time. 
It identifies the suitable cost-effective type of VM for each 
task by A star search. This algorithm is improvised through 
every interval of scheduling and represents the number of 
VMs of each category demanded with the aim of the tasks 
to complete by their time limit with less cost. The aim is to 
show how the ARPS static component admits it to make 
high-standard schedules than the algorithm of Dyna.

An IaaS vendor giving a solitary data region and four cat-
egories of VM was deployed. The configuration type of VM 
is formed on the offerings of Google Compute Engine and 
is presented in Table 1. A 60 s’s billing slot was modeled, 
as given by vendors, such as Microsoft Azure and Google 
Compute Engine. For all types of VM, the delay of provi-
sioning was given to thirty seconds [38] and shut down delay 
was assigned to three seconds [3]. Performance variation of 
CPU was used after the judgings by [2]. The VM perfor-
mance is reduced at most 24% formed on the distribution of 
normal with a mean and standard deviation of 10% and 12%, 
respectively. A total available bandwidth of network connec-
tions is shared among entire transfers utilizing the network 
connection at a considerable particular moment. This allo-
cation of bandwidth was achieved utilizing the algorithm of 
progressive filling [39] to set data transfer time and conges-
tion degradation. A maximum speed of reading and writing 
of global shared storage was also set. The speed of reading 
possible by a considered transfer is found by the number of 
processes reading presently from the storage and the similar 
guideline using for the writing speed. In this manner, storage 
system congestion is simulated.
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Workflows with about 1000 tasks were utilized for the 
estimation. We admit the fact that the task sizes estimation 
would not be 100% perfect and therefore, launching in our 
experiment a variation of ± 10% formed on uniform distribu-
tion to each task size. The experiments were evaluated using 
three different deadlines, Dw1

 is the strictest one, Dw2
 and 

Dw3
 are the medium and relaxed one. For every workflow, 

Dw1
 is same to the time it needs to run the tasks in the work-

flow path and the time it needs to transfer all I/O files from/
to the storage. The leftover deadlines are formed on Dw1

 
and a size of interval Dint = Dw1

∕2 ∶ Dw2
= Dw1

+ Dint and 
Dw3

 = Dw2
 + Dint . The results shown are the mean acquired 

after executing every experiment 25 times.

Results and Analysis

Evaluation of Makespan and Cost: The obtained average 
makespan (total execution time) and cost for each work-
flow is shown in Fig. 2. The source lines in the line plots of 
makespan linking to the values of three deadlines utilized for 
every workflow. Estimating the makespan and cost in terms 
of this value is significant as the important goal of entire 
algorithms is to complete within the deadline.

In the case of LIGO, Dw1 demonstrates to be too strict for 
each algorithm to complete within the deadline. Anyway, the 
comparison between the obtained makespan of ARPS and 
the deadline is very little. Moreover, ARPS makes the lesser 
cost schedules in this situation. The Dw2

 deadline interval is 
yet not eased sufficient for the algorithm of Dyna or CGA 
to reach their target, anyway, ARPS shows its adjust-ability 
and potentiality to make less cost schedules by being an 
algorithm to complete its execution prior to the deadline 
and with the cheapest cost. For the leftover deadline, Dw3

 , 
both Dyna and APRS are having the ability of satisfying 
the constraint, in case Dyna possesses a somewhat lesser 
makespan but ARPS possesses the cheapest cost. CGA is 
just potential of satisfying the deadline in relaxed deadline 
interval and in this situation, ARPS performs better than 
CGA with respect to overall cost. Generally, ARPS satisfies 
all deadlines and in all situations, succeeds high-standard 
schedules with the lesser cost.

For Montage, Dyna and ARPS satisfy each deadline with 
ARPS constantly making less cost schedules. CGA does 
not succeed to satisfy the strictest deadline but achieves in 
satisfying Dw2

 and Dw3
 . Its victory in satisfying two out of 

three deadlines would be defined in the information that 
the majority of the task in the application of montage is 

examined small and needs less utilization of CPU, guiding 
to a possible less amount of performance variation effect on 
the consistent schedule. In the instance of Dw2

 , CGA demon-
strates its capability to make less cost schedules and outper-
forms than CGA and ARPS; even though ARPS possesses 
a less makespan in this instance, its cost is somewhat larger 
than CGA. For Dw3

 , anyway, ARPS succeeds in making less 
cost outputs than Dyna and CGA.

In the case of Epigenomics, CGA does not succeed to 
meet deadline in Dw1

 , whereas deadline succeeded by ARPS, 
followed by Dyna and lastly, ARPS algorithm is only capable 
of satisfying Dw2

 with less cost. The constraint of third dead-
line is achieved by CGA and ARPS, with ARPS perform 
better than CGA with respect to cost. Lastly, as the deadline 
turn relaxed sufficient, all three approaches achieved in sat-
isfying the deadline and ARPS achieves it with less cost. The 
huge deadline fail percentage of CGA and Dyna in Dw2

 is 
caused by high CPU consumption characteristics of the tasks 
of Epigenomics, representing that performance degradation 
of CPU will possess a crucial effect on the processing time 
of tasks making unpredicted delays.

In the case of Cybershake, ARPS achieves in satisfying 
all user-defined deadlines with less makespan and less cost 
than Dyna and CGA. The result show that even in situations 
like this, ARPS stays efficient and responsive. It achieves in 
satisfying all three deadlines with less makespan and cost 
amidst the algorithms that satisfies the constraint. The huge 
number of data that demand to be shifted when executing 
this workflow guides to CGA battling to improve from the 
rates of less data transfer because of congestion in network 
and hence not succeeding to satisfying the three deadlines. 
And also Dyna does not succeed to adjust to these delays 
within the deadline and not achieves to satisfy the three 
toughest deadlines.

Finally, ARPS algorithm is the most efficient in satisfy-
ing deadlines. In terms of mean, it achieves in satisfying the 
deadline constraint in cent percent of the instances, while 
Dyna achieves 45.833% and CGA achieves 12.5%. These 
outputs are in line with what was predicted of every algo-
rithm. The static heuristic is not more effective in satisfy-
ing the deadlines, whereas adjust-ability in ARPS and Dyna 
permits them to achieve their goal frequently. The experi-
ment results also show the ARPS efficiency with respect 
to its potentiality to make less cost schedules. It performs 
better than CGA and Dyna as in all cases, ARPS succeeds 
the cheapest cost when examined the difference to the algo-
rithms of Dyna and CGA that satisfied the deadline. Another 
advantage of ARPS that would be noticed from the outputs 
is its capability to constantly increase the time it needs to 
execute the workflow. The significance of these dependen-
cies in the information that multiple users are eager to trade-
off execution time for lesser costs as others is eager to pay 
more cost for fastest execution. The algorithm demands to 

Fig. 2  Evaluation of makespan and cost. The three column in the 
makespan graph represents the three deadline values and depicted its 
cost below to makespan graph. a LIGO workflow makespan and cost. 
b Montage workflow makespan and cost. c Epigenomics workflow 
makespan and cost. d CyberShake workflow makespan and cost

◂
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act not beyond this logic with the aim of the value of dead-
line considered by users to be reasonable.

Network Use Estimation

Network connections are notable bottlenecks in IaaS cloud 
platforms. For example, address the variation of data transfer 
time up to sixty five percent in Ec2 cloud [31]. Therefore, as 
representatives of minimizing the origins of uncertainty and 
enhancing the execution of scientific workflow applications, 
it is crucial for the algorithms of scheduling to attempt to 
minimize the data transferred amount by the cloud network 
platform. In this portion, we estimate the unit of files read 
from the storage by each algorithm. Remember that a task 
does not demand to read from the general storage at what-
ever time the input data files, its needs are early accessible 
in the VM where it is executing.

The column chart in Fig. 3 demonstrate average amount 
of input data files reading over three deadlines for each 
scientific workflow and each algorithm. The source line 
represents the complete number of input data files that are 
demanded by the tasks in the workflow. By planning pipe-
lines in only one VM and by executing as multiple tasks 
or pipelines from the identical set in only one VM, ARPS 
is achievable in minimizing 50% or further the amount of 

input data files read from the global storage. In particular, 
ARPS reads the minimum number of input files when dif-
ferentiated to Dyna and CGA in the situations of the work-
flow of LIGO and Epigenomics. The number of input data 
files read from the global storage are minimized by 59% in 
LIGO workflow and 76% in Epigenomics workflow. For the 
application of montage workflow, Dyna and ARPS succeed 
with slight performance variation and minimize the amount 
of input files reading by more than 53%. Lastly, ARPS is 
achievable in minimizing the amount of input files reading 
than the algorithm of CGA and Dyna in CyberShake and the 
amount of files read in CyberShake from the global storage 
are minimized by around 47%.

Sensitivity of Provisioning Delay

The ARPS execution time is determined by the ability to 
satisfy the defined strict constraint of deadline under vari-
ous provisioning delay; this is estimated by considering the 
workflows’ deadline ratio. In this manner, ratio value less 
than one means ARPS execution time is within a deadline, 
ratio value is equal means ARPS execution time and dead-
line are equal and the ratio value is larger than one means 
a deadline violation. These procedures are followed to next 
section also with different values of performance variation.

Fig. 3  Average number of files read from the global storage by each algorithm. The red line represents the total number of files required as input 
by the given workflow. a LIGO. b Montage. c Epigenomics. d CyberShake
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The pricing model contributes frequent operations of 
VM provisioning and hence, it is significant to estimate 
the capability of ARPS ability to complete the execution of 
workflow no higher than the deadline given within different 
delays of VM provisioning. The delays were ranged from 0 
to 150 s. Figure 4 depicts obtained strict deadline ratios for 
each workflow application considers across various provi-
sioning delay.

For the application of Ligo, most of the ratio values 
under one for all delays of provisioning except last two 
values of 120 and 150. The obtained ratio values of these 
provisioning delay are slightly larger than one. This is 
because of the algorithm failed to satisfy the deadline, as 
it is too strict for it to be succeeded with such larger delays 
of provisioning. Finally, the Montage application shows 
maximum ratio values higher than one in last three sce-
narios except first three. This is made by too strict deadline 
for ARPS algorithm to complete on time despite the delays 
of provisioning. In the case of Epigenomics application, all 
data points of ratio are less than one and clearly showing 
the ability of ARPS algorithm to adapt in improving pro-
visioning delays if the budget admits for it. For the appli-
cation of CyberShake, last two ratio values are larger than 
one. This happening by the algorithm budget corresponds 
to be too tight and as the delay of provisioning increases 
the ratio values are also increased.

Sensitivity of Performance Variation

Knowing performance variation is significant for schedulers, 
hence they can improve from unpredicted delays and satisfy 
the requirements of QoS. The algorithm sensitivity to VM per-
formance variation was analyzed by studying the strict dead-
line ratio within different values of variation in performance. 
It was done using normal distribution with different average 
values. The average values were specified as part of the maxi-
mum performance degradation of CPU ranges from 0 to 60%.

The obtained results are shown in Fig. 5. For the applica-
tions of Ligo and Epigenomics, all values are lesser than one 
except the last one of 60% degradation due to the tight budget 
of algorithm. For the Montage application, achieving the ratio 
values below one are 0%, 10%, 30% performance variation 
and violating the ratio values are 20%, 40% 50% and 60% 
degradation due to the strict deadline. Finally, the application 
of CyberShake, most ratio values are nearer to the one and 
exceeds the values of 50% and 60% performance degradation 
due to the deadline interval is too strict.

Another possible cause for violating the deadline con-
straint is the reason that ARPS generates a static provi-
sioning method for SoTs and SoPs. Although this allows 
the algorithm to generate better decision of optimization 
to minimize the workflow’s makespan, it also reduces its 
responsiveness to environment uncertainties.

Fig. 4  Strict deadline ratio obtained for each workflow with different provisioning delay



 SN Computer Science (2021) 2:456456 Page 14 of 16

SN Computer Science

ARPS Time Complexity Evaluation

Theorem 1 The complexity time of ARPS is O (m*n), which 
denotes the number of tasks as m and the number of VM as 
n.

Confirmation Choosing VM for every clustered topologi-
cal tasks has complexity time O(n). Hence, for entire tasks, 
the complexity time is O(m*n). Therefore, the overall time 
complexity of ARPS is O(m*n).

Conclusion and Future Work

APRS is an Adaptive Resource Provisioning and Scheduling 
algorithm for scientific workflows on IaaS cloud efficient 
of making good standard schedules was depicted. It has as 
goals reducing the total cost of utilizing the infrastructure 
of cloud as satisfying a user-described deadline. The proce-
dure is dynamic to a particular range to reciprocate to the 
unpredicted delays and environmental uncertainties usual 
in cloud computing. Moreover, it has a static module that 
admits it to discover the better schedule for a set of workflow 
tasks, as a result enhancing the standard of the schedules it 
produces. By minimizing the workflow into sets of pipelines 
and homogeneous tasks that split a deadline, we can frame-
work their scheduling as a UKP variation and solve it using 
dynamic programming in pseudo-polynomial time.

The experiment results demonstrate that our key has 
a more effective performance than other algorithms. It is 
achievable in satisfying deadlines in a state of unpredicted 
delays including VM performance variation, VM provision-
ing delay, network congestion and inaccurate estimations of 

Fig. 5  Strict deadline ratio obtained for each workflow with different performance variation

Table 1  Types of VM based on Google Compute Engine offering

Name Memory (GB) Google com-
pute engine 
units

Price per minute

n1-standard-8 30 22 $0.0084
n1-standard-4 15 11 $0.0042
n1-standard-2 7.5 5.50 $0.0021
n1-standard-1 3.75 2.75 $0.00105
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task size. It attains this at less cost, even lesser than entirely 
static techniques which have the capability of utilizing the 
whole workflow form and comparing different outputs prior 
to the execution of workflow.

As future assignment, we would like to consider the 
workflow contains heterogeneous tasks at each level, such 
as SIPHT and observation with different optimization tech-
niques, such as PSO algorithm, and compare their execu-
tion with ARPS. Moreover, we would like to enhance the 
resource model to examine the cost of data transfer between 
data regions, hence, that VMs would be used on different 
data centers. We would like to execute the ARPS with real-
time workflows.
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