
Vol.:(0123456789)

SN Computer Science (2021) 2:459
https://doi.org/10.1007/s42979-021-00825-z

SN Computer Science

ORIGINAL RESEARCH

Applying Model‑Driven Engineering to Stimulate the Adoption
of DevOps Processes in Small and Medium‑Sized Development
Organizations

The Case for Microservice Architecture

Jonas Sorgalla1  · Philip Wizenty1  · Florian Rademacher1  · Sabine Sachweh1 · Albert Zündorf2

Received: 4 April 2021 / Accepted: 18 August 2021 / Published online: 16 September 2021
© The Author(s) 2021

Abstract
Microservice architecture (MSA) denotes an increasingly popular architectural style in which business capabilities are
wrapped into autonomously developable and deployable software components called microservices. Microservice applica-
tions are developed by multiple DevOps teams each owning one or more services. In this article, we explore the state of
how DevOps teams in small and medium-sized organizations (SMOs) cope with MSA and how they can be supported. We
show through a secondary analysis of an exploratory interview study comprising six cases, that the organizational and tech-
nological complexity resulting from MSA poses particular challenges for small and medium-sized organizations (SMOs).
We apply model-driven engineering to address these challenges. As results of the second analysis, we identify the challenge
areas of building and maintaining a common architectural understanding, and dealing with deployment technologies. To
support DevOps teams of SMOs in coping with these challenges, we present a model-driven workflow based on LEMMA—
the Language Ecosystem for Modeling Microservice Architecture. To implement the workflow, we extend LEMMA with
the functionality to (i) generate models from API documentation; (ii) reference remote models owned by other teams; (iii)
generate deployment specifications; and (iv) generate a visual representation of the overall architecture. We validate the
model-driven workflow and our extensions to LEMMA through a case study showing that the added functionality to LEMMA
can bring efficiency gains for DevOps teams. To develop best practices for applying our workflow to maximize efficiency in
SMOs, we plan to conduct more empirical research in the field in the future.

Keywords  DevOps · Microservice architecture · Development process · Model-driven engineering

Introduction

Microservice architecture (MSA) is a novel architectural
style for service-based software systems with a strong focus
on loose functional, technical, and organizational coupling
of services [54]. In a microservice architecture, services

This article is part of the topical collection “New Paradigms of
Software Production and Deployment” guest edited by Alfredo
Capozucca, Jean-Michel Bruel, Manuel Mazzara and Bertrand
Meyer.

 *	 Jonas Sorgalla
	 jonas.sorgalla@fh-dortmund.de

	 Philip Wizenty
	 philip.wizenty@fh-dortmund.de

	 Florian Rademacher
	 florian.rademacher@fh-dortmund.de

	 Sabine Sachweh
	 sabine.sachweh@fh-dortmund.de

	 Albert Zündorf
	 zuendorf@uni-kassel.de

1	 IDiAL Institute, University of Applied Sciences and Arts
Dortmund, Otto‑Hahn‑Straße 27, 44227 Dortmund,
Germany

2	 Department of Computer Science and Electrical Engineering,
University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel,
Germany

http://orcid.org/0000-0002-7532-7767
http://orcid.org/0000-0002-3588-5174
http://orcid.org/0000-0003-0784-9245
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00825-z&domain=pdf

	 SN Computer Science (2021) 2:459459  Page 2 of 25

SN Computer Science

are tailored to distinct business capabilities and executed as
independent processes. The adoption of MSA is expected
to increase an application’s scalability, maintainability, and
reliability [54]. It is frequently employed to decompose mon-
olithic applications for which such quality attributes are of
critical scale [9].

MSA fosters the adoption of DevOps practices, because
it promotes to (i) bundle microservices in self-contained
deployment units for continuous delivery; and (ii) delegate
responsibility for a microservice to a single team being
composed of members with heterogeneous professional
backgrounds [4, 53]. Conway’s Law [15] is a determining
factor in DevOps-based MSA engineering. It states that the
communication structure of a system reflects the structure
of its development organization. Thus, to achieve loose cou-
pling and autonomy of microservices, it is also crucial to
divide the responsibility for microservices’ development and
deployment between autonomous DevOps teams [53]. As a
result, MSA engineering leads to a distributed development
process, in which several teams create coherent services of
the same software system in parallel.

While various larger enterprises like Netflix,1 Spotify,2 or
Zalando3 regularly report about their successful adoption of
MSA, there are only a small number of experience reports
(e.g., [12]) about how microservices combined with DevOps
can be successfully implemented in small and medium-sized
development organizations (SMOs) with less than 100 devel-
opers involved. Such SMOs typically do not have sufficient
resources to directly apply large-scale process models such
as Scrum at Scale [14, 77] in terms of employees, knowl-
edge, and experience.

To support SMOs in bridging the gap between available
resources and required effort for a successful adoption of
DevOps-based MSA engineering, we (i) investigate the
characteristics of small- and medium-scale microservice
development processes; and (ii) propose means to reduce
complexity and increase productivity in DevOps-based
MSA engineering within SMOs. More precisely, the con-
tributions of our article are threefold. First, we identify
challenges of SMOs in DevOps-based MSA engineering by
analyzing a data set of an exploratory qualitative study and
linking it with existing empirical knowledge. Second, we
employ model-driven engineering (MDE) [13] to introduce
a workflow for coping with the previously identified chal-
lenges in DevOps-based MSA engineering for SMOs. Third,
we present and validate extensions to LEMMA (Language
Ecosystem for Modeling Microservice Architecture), which
is a set of Eclipse-based modeling languages and model

transformations for MSA engineering [63] enabling sophis-
ticated modeling support for the workflow.

The remainder of this article is organized as follows. In
Section “Background”, we describe in detail the micros-
ervice architecture style particularly related to the design,
development, and operation stages. In addition, we explain
organizational aspects that result from the use of microser-
vices. Section “Language Ecosystem for Modeling Micros-
ervice Architecture” illustrates LEMMA as a set of mod-
eling languages and tools that address the MDE of MSA.
In Section “DevOps-Related Challenges in Microservice
Architecture Engineering of SMOs”, we analyze a dataset
based on an exploratory interview study in SMOs to identify
challenging areas in engineering MSA for DevOps teams in
SMOs. Based on these challenge areas, we present a model-
driven workflow in Section “A Model-Driven Workflow
for Coping with DevOps-Related Challenges in Microser-
vice Architecture Engineering and describe the extensions
of LEMMA to support the workflow. In this regard, Sec-
tion “Derivation of Microservice Models from API Docu-
mentations”” present means to derive LEMMA models
from API documentation, Section “Assembling a Common
Architecture Model from Distributed Microservice Models”
presents extensions to the LEMMA languages to assemble
individual microservice models, Section “Visualization of
Microservice Architecture Models” describes additions to
create a visual representation of microservice models, Sec-
tion 6.5 presents means to specify deployment infrastructure,
and Section “Generating Code From Distributed Deploy-
ment Infrastructure Models” elaborates on the ability to
generate infrastructure code. We validate our contributions
to LEMMA in Section “Validation”. Section “Discussion”
discusses the model-driven workflow and LEMMA compo-
nents towards the application in DevOps teams of SMOs.
We present related research in Section “Related Work”. The
article ends with a conclusion and outlook on future work in
Section “Conclusion and Future Work”.

Background

This section provides background on the MSA approach and
its relation towards the DevOps paradigm. It details spe-
cial characteristics in the design, development, operation,
and organization of microservice architectures and their
realization.

General

MSA is a novel approach towards the design, development,
and operation of service-based software systems [54]. There-
fore, MSA promotes to decompose the architecture of com-
plex software systems into services, i.e., loosely coupled

1  https://​netfl​ix.​github.​io.
2  https://​labs.​spoti​fy.​com.
3  https://​opens​ource.​zalan​do.​com.

https://netflix.github.io
https://labs.spotify.com
https://opensource.zalando.com

SN Computer Science (2021) 2:459	 Page 3 of 25  459

SN Computer Science

software components that interact by means of predefined
interfaces and are composable to synergistically realize
coarse-grained business logic [25].

Compared to other approaches for architecting service-
based software systems, e.g., SOA [25], MSA puts a strong
emphasis on service-specific independence. This independ-
ence distinguishes MSA from other approaches w.r.t. the
following features [53, 54, 64]:

–	 Each microservice in a microservice architecture focuses
on the provisioning of a single distinct capability for
functional or infrastructure purposes.

–	 A microservice is independent from all other architecture
components regarding its implementation, data manage-
ment, testing, deployment, and operation.

–	 A microservice is fully responsible for all aspects related
to its interaction with other architecture components,
ranging from the determination of communication proto-
cols over data and format conversions to failure handling.

–	 Exactly one team is responsible for a microservice and
has full accountability for its services’ design, develop-
ment, and deployment.

Starting from the above features, the adoption of MSA may
introduce increases in quality attributes [39] such as (i) scal-
ability, as it is possible to purposefully run new instances
of microservices covering strongly demanded functionality;
(ii) maintainability, as microservices are seamlessly replace-
able with alternative implementations; and (iii) reliability,
as it delegates responsibility for robustness and resilience
to microservices [19, 20, 54]. Additionally, MSA fosters
DevOps and agile development, because its single-team
ownership calls for heterogeneous team composition and
microservices’ constrained scope fosters their evolvabil-
ity [17, 80].

Despite its potential for positively impacting the afore-
mentioned features of a software architecture and its imple-
mentation, MSA also introduces complexity both to devel-
opment processes and operation [17, 73, 79]. Consequently,
practitioners in SMOs perceive the successful adoption of
MSA as complex [9]. Challenges that must be addressed in
MSA adoption are spread across all stages in the engineer-
ing process, and thus concern the design of the architecture,
its development and operation. Furthermore, MSA imposes
additional demands on the organization of the engineering
process.

Design Stage

A frequent design challenge in MSA engineering concerns
the decomposition of an application domain into micros-
ervices, each with a suitable functional granularity [32,
73]. Too coarse-grained microservice capabilities neglect

the aforementioned benefits of MSA in terms of service-
specific independence. Too fine-grained microservices, on
the other hand, may require an inefficiently high amount
of communication and thus network traffic at runtime [46].
Although there exist approaches such as Domain-driven
Design (DDD) [26] to support in the systematic decompo-
sition and granularity determination of a microservice archi-
tecture [54], their perceived complexity hampers widespread
adoption in practice [9, 28].

An additional specific in microservice design stems from
MSA’s omission of explicit service contracts [57]. By con-
trast to SOA, MSA considers the API of a microservice its
implicit contract [85], thereby delegating concerns in API
management, e.g., API versioning to microservices [73].
Consequently, microservices must ensure their compat-
ibility with possible consumers and also inform them about
possible interaction requirements. Furthermore, implicit
microservice contracts foster ad hoc communication, which
increases runtime complexity and the occurrence of cyclic
interaction relationships [78].

Development Stage

By contrast to monolithic applications, which rely on a holis-
tic, yet vendor-dependent technology stack [19], micros-
ervice architectures foster technology heterogeneity [54].
Specifically, due to the increase in service-specific inde-
pendence, each microservice may employ those technologies
that best fit a certain capability. Typical technology vari-
ation points [60] comprise programming languages, data-
bases, communication protocols, and data formats. However,
technology heterogeneity imposes a greater risk for techni-
cal debt, additional maintainability costs, and steeper learn-
ing curves, particularly for new members of a microservice
team [78].

Operation Stage

MSA usually requires a sophisticated deployment and opera-
tion infrastructure consisting of, e.g., continuous delivery
systems, a basic container technology and orchestration
platform, to cope with MSA’s emphasis of maintainability
and reliability [80]. In addition, microservices often rely
on further infrastructure components such as service dis-
coveries, API gateways, or monitoring solutions [5], which
lead to additional administration and maintenance effort.
Consequently, microservice operation involves a variety
of different technical components, thereby resulting in a
significant complexity increase compared to monolithic
applications [73].

Furthermore, technology heterogeneity also concerns
microservice operation w.r.t. technology variation points like
deployment and infrastructure technologies [60]. Particularly

	 SN Computer Science (2021) 2:459459  Page 4 of 25

SN Computer Science

the latter also involve independent decision-making by
microservice teams. For example, there exist infrastructure
technologies, e.g., to increase performance or resilience,
which directly focus on a microservice [5]. Hence, teams
are basically free to decide for suitable solutions based on
different criteria such as compatibility with existing micros-
ervice implementations or available experience.

Organizational Aspects

The use of MSA requires a compatible organizational struc-
ture, i.e., following Conway’s law, a structure that corre-
sponds to the communication principle of microservices.
This results in the necessity of using separate teams, each
of which is fully responsible for one or more services (cf.
Section “General”). The requirement that a team should
cover the entire software lifecycle of its microservices auto-
matically leads to the need for cross-functional teams. To
ensure collaboration between teams, large companies such
as Netflix or Spotify usually use established large-scale
agile process models [18], e.g., the Scaled Agile Framework
(SAFe) [66], Scrum at Scale [77], or the Spotify Model [71].
Establishing such a form of organization and to establish
organizational alignment may require upfront efforts [54].

Thus, MSA fosters DevOps practices, which can result
in lowered cost and accelerate the pace of product incre-
ments [53]. To this end, it is critical to foster a collaborative
culture within and across teams to promote integration and
collaboration among team members with different profes-
sional backgrounds [49].

A key enabler of a collaborative culture is the extensive
automation of manual tasks to prevent the manifestation of
inter-team and extra-team silos [49]. Specifically, it relieves
people from personal accountability for a task and may thus
help in reducing existing animosities of team members with
different professional backgrounds [45].

Another pillar of a collaborative culture is knowledge
sharing following established formats and guidelines [49].
It aims to mitigate the occurrence of insufficient commu-
nication, which can be an impediment in both MSA and
DevOps [17, 65].

Language Ecosystem for Modeling
Microservice Architecture

In our previous works we developed LEMMA [60, 63].
LEMMA is a set of Eclipse-based modeling languages and
model transformations that aims to mitigate the challenges
in MSA engineering (cf. Section “Background”) by means
of Model-driven Engineering (MDE) [13].

To this end, LEMMA refers to the notion of architecture
viewpoint [40] to support stakeholders in MSA engineer-
ing in organizing and expressing their concerns towards a
microservice architecture under development. More specif-
ically, LEMMA clusters four viewpoints on microservice
architectures. Each viewpoint targets at least one stakeholder
group in MSA engineering, and comprises one or more
stakeholder-oriented modeling languages.

The modeling languages enable the construction of
microservice architecture models and their composition by
means of an import mechanism. As a result, LEMMA allows
reasoning about coherent parts of a microservice architec-
ture [40], e.g., to assess quality attributes and technical debt
of microservices [62] or perform DevOps-oriented code
generation [61].

The following paragraphs summarize LEMMA’s
approach to microservice architecture model construction
and processing.

Microservice Architecture Model Construction

Figure 1 provides an overview of LEMMA’s modeling lan-
guages, their compositional dependencies and the addressed
stakeholders in MSA engineering.

LEMMA’s Domain Data Modeling Language [63] allows
model construction in the context of the domain viewpoint
on a microservice architecture. Therefore, it addresses the
concerns of domain experts and microservice develop-
ers. First, the language aims to mitigate the complexity of
DDD (cf. Section “Background”) by defining a minimal set
of modeling concepts for the construction of domain con-
cepts, i.e., data structures and list types, and the assignment
of DDD patterns, e.g., Entity or Value Object [26]. Addi-
tionally, it integrates validations to ensure the semantically

Fig. 1   Overview of LEMMA’s
modeling languages, their
compositional dependencies and
addressed stakeholders. Arrow
semantics follow those of UML
for dependency specifica-
tions [55]

SN Computer Science (2021) 2:459	 Page 5 of 25  459

SN Computer Science

correct usage of the patterns. Second, the language consid-
ers underspecification in DDD-based domain model con-
struction [59], thereby facilitating model construction for
domain experts. However, microservice developers may later
resolve underspecification to enable automated model pro-
cessing [61]. All other LEMMA modeling languages depend
on the Domain Data Modeling Language (cf. Fig. 1) because
it provides them with a Java-aligned type system [63] given
Java’s predominance in service programming [9, 67].

LEMMA’s Service Modeling Language [63] addresses
the concerns of microservice developers (cf. Fig. 1) in the
service viewpoint on a microservice architecture. One goal
of the Service Modeling Language is to make the APIs of
microservices explicit (cf. Section “Background”) but keep-
ing their definition as concise as possible based on built-in
language primitives. That is, the language provides devel-
opers with targeted modeling concepts for the definition of
microservices, their interfaces, operations and endpoints.
LEMMA service models may import LEMMA domain
models to identify the responsibility of a microservice for
a certain portion of the application domain [54] and type
operation parameters with domain concepts.

LEMMA’s Technology Modeling Language [60] consid-
ers technology to constitute a dedicated architecture view-
point [38] that frames the concerns of technology-savvy
stakeholders in MSA engineering, i.e., microservice devel-
opers and operators (cf. Fig. 1). The Technology Modeling
Language enables those stakeholder groups to construct and
apply technology models. A LEMMA technology model
modularizes information targeting a certain technology rel-
evant to microservice development and operation, e.g., pro-
gramming languages, software frameworks, or deployment
technologies. Furthermore, it integrates a generic metadata
mechanism based on technology aspects [60]. Technology
aspects may, for example, cover annotations of software
frameworks. LEMMA service and operation models depend
on LEMMA technology models (cf. Fig. 1) and import them
to apply the contained technology information to, e.g., mod-
eled microservices and containers. In particular, LEMMA’s
Technology Modeling Language aims to cope with technol-
ogy heterogeneity in MSA engineering (cf. Section “Back-
ground”) by making technology decisions explicit [74].

LEMMA’s Operation Modeling Language [63] addresses
the concerns of microservice operators (cf. Fig. 1) w.r.t. the
operation viewpoint in MSA engineering. To this end, the
language integrates primitives for the concise modeling of
microservice containers, infrastructure nodes, and technol-
ogy-specific configuration. To model the deployment of
microservices, LEMMA operation models import LEMMA
service models and assign modeled microservices to con-
tainers. Additionally, it is possible to express the depend-
ency of containers on infrastructure nodes such as service
discoveries or API gateways [5]. By providing microservice

operators with a dedicated modeling language we aim
to cope with operation challenges in MSA engineering
(cf. Section “Background”). First, the Operation Modeling
Language defines a unified syntax for the modeling of het-
erogeneous operation nodes of a microservice architecture.
Second, it is flexibly extensible with support for operation
technologies, e.g., for microservice monitoring or security,
leveraging LEMMA technology models (cf. Fig. 1). Third,
operation models may import other operation models, e.g.,
to compose the models of different microservice teams to
centralize specification and maintenance of shared infra-
structure components such as service discoveries and API
gateways.

Microservice Architecture Model Processing

LEMMA relies on the notion of intermediate model rep-
resentation [41] to facilitate the processing of constructed
models. To this end, LEMMA integrates a set of interme-
diate metamodels and intermediate model transformations.
The intermediate metamodels define the concepts to which
the elements of an intermediate model for a LEMMA model
conform. An intermediate model transformation is then
responsible for the automated derivation of an intermediate
model from a given input LEMMA model.

This approach to model processing yields several ben-
efits. First, intermediate metamodels decouple modeling
languages from model processors. Consequently, languages
can evolve independently from processors as long as the
intermediate metamodels remain stable. For example, it
becomes possible to introduce syntactic sugar in the form
of additional shorthand notations for language constructs.
Second, intermediate metamodels enable to incorporate
language semantics into intermediate models so that model
processors need not anticipate them. For instance, LEMMA
allows modeling of default protocols for communication
types within technology models. In case a service model
does not explicitly determine a protocol, e.g., for a microser-
vice, the default protocol of the service’s technology model
applies implicitly. The intermediate transformation, which
converts a service model into its intermediate representation,
makes the default protocol explicit. Thus, model processors
can directly rely on this information and need not determine
the effective protocol for a microservice themselves.

Next to intermediate model representations, LEMMA
also provides a model processing framework,4 which facili-
tates the implementation of Java-based model processors,
e.g., for microservice developers without a strong back-
ground in MDE. To this end, the framework leverages the

4  https://​github.​com/​Seela​bFhdo/​lemma/​tree/​master/​de.​fhdo.​lemma.​
model_​proce​ssing.

https://github.com/SeelabFhdo/lemma/tree/master/de.fhdo.lemma.model_processing
https://github.com/SeelabFhdo/lemma/tree/master/de.fhdo.lemma.model_processing

	 SN Computer Science (2021) 2:459459  Page 6 of 25

SN Computer Science

Inversion of Control (IoC) design approach [42], and its
realization based on the Abstract Class pattern [72] and Java
annotations [30]. In addition, the framework implements
the Phased Construction model transformation design pat-
tern [47]. That is, the framework consists of several phases
including phases for model validation and code generation.
To implement a phase as part of a model processor, develop-
ers need to provide an implementation of a corresponding
abstract framework class, e.g., AbstractCodeGener-
ationModule, and augment the implementation with a
phase-specific annotation, e.g., @CodeGenerationMod-
ule. At runtime, model processors pass control over the
program flow to the framework. The framework will then
(i) parse all given intermediate LEMMA models; (ii) trans-
form them into object graphs, which abstract from a concrete
modeling technology; and (iii) invoke the processor-specific
phase implementations with the object graphs. As a result,
the added complexities of MDE w.r.t. model parsing and
the construction of Abstract Syntax Trees as instantiations
of language metamodels [13] remain opaque for model pro-
cessor developers. Moreover, LEMMA’s model processing
framework provides means to develop model processors as
standalone executable Java applications. This characteristic
is crucial for the integration of model processors into con-
tinuous integration pipelines [43], which constitute a com-
ponent in DevOps-based MSA engineering [6, 9].

Figure 2 illustrates the interplay of intermediate model
transformations, and the implementation and execution of
model processors with LEMMA.

Figure 2 comprises two compartments.

The first compartment shows the structure of intermediate
model transformations with LEMMA based on the exam-
ple of a service model constructed with LEMMA’s Service
Modeling Language. The service model imports a variety
of domain models and technology models constructed with
LEMMA’s Domain Data Modeling Language and Technol-
ogy Modeling Language, respectively. As a preparatory
step, the service model is transformed into its intermediate
representation by means of LEMMA’s Intermediate Service
Model Transformation. Similarly, each imported domain
model is transformed into a corresponding intermediate
domain model leveraging LEMMA’s Intermediate Domain
Model Transformation. To this end, the transformation algo-
rithm restores the existing import relationships between
service models and domain models for their derived inter-
mediate representations. However, the algorithm does not
invoke intermediate transformations on technology models
imported by service models. Instead, the applied technology
information becomes part of intermediate service models so
that model processors can directly access them. Therefore,
LEMMA treats technology models and model processors
as conceptual unities. A model processor for a certain tech-
nology must be aware of the semantics of the elements in
its technology model and be capable in interpreting their
application, e.g., within service models.

The second compartment of Fig. 2 concerns model pro-
cessing. A LEMMA model processor constitutes an imple-
mentation conform to LEMMA’s model processing frame-
work, which thus provides the processor with capabilities for
model parsing and phase-oriented model processing. Typical

Fig. 2   Example for the interplay
of LEMMA’s intermediate
model transformations and
model processors based on its
model processing framework

SN Computer Science (2021) 2:459	 Page 7 of 25  459

SN Computer Science

results from processing service models comprise (i) executa-
ble microservice code; (ii) shareable API specifications, e.g.,
based on OpenAPI;5 (iii) event schemata, e.g., for Apache
Avro;6 and (iv) measures of static complexity and cohesion
metrics applicable to MSA [3, 8, 24, 35, 37].

DevOps‑Related Challenges in Microservice
Architecture Engineering of SMOs

In this section, we present an empirical analysis of micros-
ervice development processes (cf. Section “Organizational
Aspects”) in SMOs with the goal of identifying SMO-spe-
cific challenges in microservice engineering. For this pur-
pose, we perform a secondary analysis [36] of transcribed
qualitative interviews from one of our previous works [75].
Our analytical procedure specifically aims to identify chal-
lenges and obstacles during the development process.

Study Design

The study from which the dataset emerged is a compara-
tive multi-case study [84]. The aim of the study was to
gain exploratory insights into the development processes
of SMOs. To this end, in-depth interviews were conducted
on-site in 2019 with five software architects, each from a
different company, and afterwards transcribed. The inter-
views were conducted in a semi-structured manner and
covered the areas of (i) applied development process; (ii)
daily routines; (iii) meeting formats; (iv) tools; (v) documen-
tation; and (vi) knowledge management. Participants were
recruited from existing contacts of our research group to
SMOs. Furthermore, we constrained participant selection
to the professional level or senior software architects, and
SMOs that develop microservice systems with equal or less
than 100 people.

Dataset

As depicted in Table 1, the dataset includes transcripts and
derived paraphrases covering six different cases (Column C)
of microservice development processes in SMOs. In total,
we conducted five in-depth interviews (Column I) with soft-
ware architects whereby I4 covered two cases.

As shown in Table 1, we distinguish the cases into green-
field (new development from scratch), templated greenfield
(new development based on legacy system), and migra-
tion (transformation of a monolithic legacy system into an
MSA-based system) (Column Type). We further categorize
each development process by the domain of the micros-
ervice application under development (Column Domain).
The number of microservices present in the application
at the time of the interview (Column #Services), number
of people (Column #Ppl) and teams (Column #Teams)
involved vary depending on the case. Case 3 is a special
case. Although there are only two official teams, short-term
teams are formed depending on the scope of customization
needed per customer. This results in up to five teams work-
ing on the application simultaneously at certain points in
time. In all cases the interviewees stated to apply the Scrum
framework [68] for internal team organization. By contrast,
the collaboration across teams was in all cases not follow-
ing a particular formal methodology or model (cf. Sec-
tion “Organizational Aspects”). In addition, all interviewees
reported that they strive for a DevOps culture [21] in their
SMOs. A detailed description of the cases can be found in
our previous work [75].

Analytical Procedure

For the analysis of the dataset, we used the Constant Com-
parison method [70]. That is, we rescreened existing para-
phrases and marked challenges and/or solutions that our
interviewees told us about with corresponding codes for
challenges, obstacles, and solutions. We then used the coded
statements across all cases to combine similar statements to
higher-level challenges.

Table 1   Overview of explored
SMO cases [75]

C I Type Domain #Services #Ppl #Teams

C1 I1 Templated Greenfield Public Administration 60 ≈ 30 5
C2 I2 Migration B2B E-Commerce 8 10 3
C3 I3 Greenfield IoT 18 28 2 (up to 5)
C4 I4 Migration B2B E-Commerce 34 ≈ 10 2
C5 Migration B2C E-Commerce 8 ≈ 10 2
C6 I5 Templated Greenfield Logistics 15−20 75 ≈ 10

5  http://​spec.​opena​pis.​org/​oas/​v3.1.0.
6  https://​avro.​apache.​org.

http://spec.openapis.org/oas/v3.1.0
https://avro.apache.org

	 SN Computer Science (2021) 2:459459  Page 8 of 25

SN Computer Science

Study Results and Challenges

Our analysis of the dataset resulted in the discovery of sev-
eral common challenges across all cases. Comparable to
other empirical studies, e.g., [81] or [34], our participants
reported about the high technical complexity and high
training effort during a microservice development process
compared to a monolithic approach. Other discovered chal-
lenges in line with existing literature, e.g., [29], concern
the slicing of the business domain into individual micros-
ervices and the most suitable granularity of a microservice
(cf. Section “Background”).

In the following, we elaborate on two challenge areas
(CA) which we found to be of particular concern for SMOs
adopting a DevOps culture in more detail.

CA1: Developing, Communicating, and Stabilizing
a Common Architectural Understanding

Developing a common architectural understanding of the
architecture components of an application is essential for
developing a software in an organization which follows the
DevOps paradigm [6]. In particular, this includes an under-
standing of the goals and communication relationships of
architecture components. The interviewees also think that
the development of a general understanding of architecture
among those involved in development is an important pre-
requisite for granting teams autonomy and trust.

For cases C2, C4 and C5 (cf. Table 1), which each com-
prise approx. ten people and two to three teams, the prac-
tices to achieve this understanding are Scrum Dailies [68]
and regular developer meetings about the current status of
the architecture. However, in case of more involved people,
achieving a common understanding is reported to be very
challenging. For cases C1, C3, and C6, the system develop-
ment initially started with fewer people, and as the software
product became successful, more people and teams were
added. Regarding this development and the common archi-
tectural understanding I1 states that “From one agile team
to multiple agile teams is a huge leap, you have to regularly
adapt and question the organization. [...] you need a com-
mon understanding of the architecture and a shared vision
of where we want to go [...], we are working on that every
day and I don’t think we’ll ever be done.”

A strategy that we observed to create this common
architectural understanding in C1, C3, and C6 is the crea-
tion of new meeting formats. However, a contradicting key
aspect of the DevOps culture is to minimize coordination
across teams as much as possible [6]. The arising problem
is also experienced by our interviewees. The more people
and teams involved in exchanging knowledge to develop an
architectural understanding, the more time-consuming the
exchange becomes. In the case of C6, this has led to the

discontinuation of comprehensive knowledge exchanges due
to the excessive time involved. They now only meet on the
cross-team level to discuss technologies, e.g., a particular
authentication framework or a new programming language.
We interpret this development as a step towards the intro-
duction of horizontal knowledge exchange formats such as
Guilds in the Spotify Model [71]. As a result, C6 is currently
challenged with building a common understanding of the
architecture only through these technology-focused discus-
sions. This is a problem area that is also evident in the data
of other empirical studies. For example, Bogner et al. [9]
report on the creation of numerous development guidelines
by a large development organization to enforce a common
architectural understanding. However, the development of
guidelines requires that architecture decisions, technology
choices, and use cases are documented [33], a practice we
encountered only at C4 and C5.

In terms of technical documentation, the teams in all six
cases use Swagger to document the microservices’ APIs.
Other documentation, such as a wiki system or UML dia-
grams, either is not used or not kept up to date. In almost all
cases, access to the API documentation is not regulated cen-
trally, but is instead provided by the respective team through
explicit requests, e.g., by e-mail. Only C3 has extensive and
organization-wide technical documentation as it is described
by I3: “Swagger is a good tool, but of course this is not com-
pletely sufficient, which is why we have an area where the
entire concept of the IT platform [...] is explained. We also
have a few tutorials.”

Summarizing CA1, we suspect that SMOs are particu-
larly affected by the challenge of implementing a common
architectural understanding as part of a successful DevOps
culture. This may be due to a mostly volatile organization in
which the number of developers and software features often
grows as development progresses, as well as the reported
hard transition from a single to multiple agile teams. Docu-
menting architecture decisions, deriving appropriate guide-
lines, and an accessible technical documentation are key fac-
tors for an efficient development process that become more
relevant with more teams and developers involved [50] and
is therefore often not considered by SMOs early in the devel-
opment process.

CA2: Complexity of Deployment Techniques and Tools

A recurrent challenge we identified is how to deal with the
operation of microservice applications within the develop-
ment process. While cross-functional teams following the
DevOps paradigm are mentioned in the literature, e.g., [53],
as being recommended for the implementation of micros-
ervices architectures, in each of the researched cases we
found specialized units for operating microservices instead
of operators included as a part of a microservice team. In

SN Computer Science (2021) 2:459	 Page 9 of 25  459

SN Computer Science

C1, C2, and C6 we encountered entire teams solely dedi-
cated to operational aspects. In all cases, the development
process included a handover of developed services to those
specialized units for operating the microservice application.
Although most interviewees were aware that this contradicts
the ownership principle of microservices (cf. Section “Gen-
eral”) and they all stated to try to establish a pure DevOps
without specialized teams, the effort to learn the basics of
the necessary operational aspects is perceived as high. In this
regard I2 comments “The complexity (note: of cloud-based
deployment platforms) is already very, very high, you know.
I would say that each of these functions in such a platform
is a technology in itself that you have to learn.” In contrast
to operations, the SMOs are successful in including other
professions, such as UI/UX, as parts of their cross-functional
teams. Our data indicates that this is due to two main rea-
sons. First, the inherently high complexity of the operational
technologies and the associated high hurdle of learning and
integrating them into the microservice development process.
Second, the transfer of this knowledge not only into special
units but into the individual microservice teams to do justice
to a DevOps approach.

Summarizing CA2, deployment and operation in the
SMOs studied is not in the responsibility of the teams to
which the respective microservices belong. This seems to
be due to the complexity of operation technologies and the
associated learning effort. This might particularly be an
issue for SMOs due to the challenging environment, where
there are few resources to substitute, e.g., for a colleague
who needs to learn an operation technology.

Case Study

In this section, we present a case study that we will use in
the following sections to illustrate and validate our model-
driven workflow (cf. Section “A Model-Driven Workflow for
Coping with DevOps-Related Challenges in Microservice
Architecture Engineering”) to address the challenges in Sec-
tion “DevOps-Related Challenges in Microservice Architec-
ture Engineering of SMOs”. We decided on the usage of a
case study to show the applicability of our approach because
non-disclosure agreements prevent us from presenting our
approach in the context of the explored SMO cases (cf. Sec-
tion “Dataset”). Therefore, we selected an open source case
study microservice architecture, which maps to the design
and implementation of the explored SMO cases w.r.t. the
scope of our approach. More precisely, the case study (i)
employs Swagger for API documentation (cf. Section “Study
Results and Challenges”), (ii) uses synchronous and asyn-
chronous communication means, (iii) is mainly based on the
Java programming language, and (iv) the number of software

components matches the smaller SMOs in our qualitative
analysis (cf. Section “Dataset”).

The case study is based on a fictional insurance com-
pany called Lakeside Mutual [76]. The application serves
to exemplify different API patterns and DDD for MSA.
The application comprises several micro-frontends [58],
i.e., semi-independent frontends that invoke backend func-
tionality, and microservices centered around the insurance
sector, e.g., customer administration, risk management, and
customer self-administration functions. The application’s
source code as well as documentation is publicly available
on GitHub.7

Figure 3 depicts the architectural design of the Lakeside
Mutual application. Overall it consists of five functional
backend microservice. Each microservice is aligned with
a micro-frontend.

Except for the Risk Management Server, all
microservices are implemented in Java8 using the Spring
framework.9 A micro-frontend communicates with its
aligned microservice using RESTful HTTP [27]. Addition-
ally, the Risk Management Client and Risk Man-
agement Server communicate via gRPC. For internal
service to service communication, the software system also
relies on synchronous RESTful HTTP, but also on asyn-
chronous amqp messaging over an Active MQ message
broker. The Customer Management Backend and
the Customer Core services also provide generated API
documentations based on Swagger.10

Besides the functional microservices, the Lakeside
Mutual application also uses infrastructural microservices.
The Eureka Server implements a Service Registry [64]
to enable loose coupling between microservices and their
different instances. For monitoring purposes, the Spring
Boot Admin service provides a monitoring interface
for the health status of individual services and the overall
application.

A Model‑Driven Workflow for Coping
with DevOps‑Related Challenges
in Microservice Architecture Engineering

This section proposes a model-driven workflow based on
LEMMA (cf. Section “Language Ecosystem for Mod-
eling Microservice Architecture”) to cope with the chal-
lenges identified in Section “DevOps-Related Challenges
in Microservice Architecture Engineering of SMOs”. More

7  https://​github.​com/​Micro​servi​ce-​API-​Patte​rns/​Lakes​ideMu​tual.
8  https://​www.​java.​com.
9  https://​spring.​io.
10  https://​swagg​er.​io/.

https://github.com/Microservice-API-Patterns/LakesideMutual
https://www.java.com
https://spring.io
https://swagger.io/

	 SN Computer Science (2021) 2:459459  Page 10 of 25

SN Computer Science

precisely, the workflow provides a common architectural
understanding of a microservice application (cf. Chal-
lenge CA1 in Section “Study Results and Challenges”), and
reduces the complexity in deploying and operating micros-
ervice architectures (Challenge CA2).

In the following subsections, we present the design of
the workflow (cf. Section LEMMA-Based Workflow for
Coping with DevOps Challenges”). Next, we describe the
components, which we have added to LEMMA, to support
the workflow. These components include (i) interoperabil-
ity bridges between OpenAPI and LEMMA models (CA1;
cf. Section “Derivation of Microservice Models from API
Documentations”); (ii) an extension to the Service Mod-
eling Language to allow the import of remote models (CA1;
cf. Section “Assembling a Common Architecture Model
from Distributed Microservice Models”); (iii) a model
processor to visualize microservice architectures (CA1;
cf. “Visualization of Microservice Architecture Models”);
(iv) enhancement of the Operation Modeling Language
(cf. Section “Enhancing Distributed Microservice Models
with Deployment Infrastructure Models”; and (v) code gen-
erators for microservice deployment and operation (CA2;
cf. Section “Generating Code from Distributed Deployment
Infrastructure Models”).

Furthermore, we present in detail prototypical compo-
nents that we have added to the LEMMA ecosystem to

support the workflow. These include deriving models from
API documentation (cf. Section “Derivation of Microser-
vice Models from API Documentations”) and assembling
microservice models into an architecture model (cf. Sec-
tion “Assembling a Common Architecture Model from
Distributed Microservice Models”) as a means to build a
common architectural understanding (CA1). The presented
components also comprise means to enrich microservice
models with deployment infrastructure models (cf. Sec-
tion “Enhancing Distributed Microservice Models with
Deployment Infrastructure Models”) to more easily handle
operational aspects for SMOs (CA2).

To ensure replicability of our results, we have provided
a GitHub repository11 which contains documentation on
how to setup LEMMA and its presented extensions. It fur-
ther contains all generated artifacts as well as sources and
scripts to rerun the generations. Finally, it includes a manu-
ally constructed set of LEMMA models which represent all
Java-based microservices of the Lakeside Mutual case study
(cf. Section “Case Study”).

Synchronous Communication

Asynchronous Communication

Backend Microservice offering infrastructural functions for, e.g., service discovery or messaging.

Microservice providing business functionalities via REST interfaces.

Micro-Frontend that provides UI components, e.g., service-specifix views.

«Infrastructure Microservice»
Microservice

«Functional Microservice»
Microservice

«Micro-Frontend»
Micro-Frontend

Key:

Synchronous Communication

Asynchronous Communication

Backend Microservice offering infrastructural functions for, e.g., service discovery or messaging.

Microservice providing business functionalities via REST interfaces.

Micro-Frontend that provides UI components, e.g., service-specifix views.

«Infrastructure Microservice»
Microservice

«Functional Microservice»
Microservice

«Micro-Frontend»
Micro-Frontend

Key:

Lakeside Mutual

«http»

«http»
«http»

«Infrastructure Microservice»
Actice MQ

«Infrastructure Microservice»
Spring Boot Admin

«Infrastructure Microservice»
Eureka Server

«Functional Microservice»
Customer Core

«Functional Microservice»
Risk Management Server

«Functional Microservice»
Policy Management Backend

«Functional Microservice»
Customer Self-Service Backend

«Functional Microservice»
Customer Management Backend

«Micro-Frontend»
Risk Management Client

«Micro-Frontend»
Policy Management Frontend

«Micro-Frontend»
Customer Self-Service Frontend

«Micro-Frontend»
Customer Management Frontend

«http»

«http» «http»

«http» «http»

«amqp»

«amqp»

«amqp»

«gRPC»«http»«http»«http»

Fig. 3   Structure of the case study Lakeside Mutual microservice application

11  https://​github.​com/​Seela​bFhdo/​SN2021.

https://github.com/SeelabFhdo/SN2021

SN Computer Science (2021) 2:459	 Page 11 of 25  459

SN Computer Science

LEMMA‑Based Workflow for Coping with DevOps
Challenges

Figue 4 shows the conceptual elements and their relation-
ships which underlie the design of our LEMMA-based
workflow for coping with the DevOps challenge areas
(cf. Section “DevOps-Related Challenges in Microservice
Architecture Engineering of SMOs”).

An Organization includes multiple DevOps
Teams, each responsible for one or more Microser-
vices (cf. Section “Organizational Aspects”). The sum
of all microservices forms the Microservice Appli-
cation that is developed by the organization. Associated
with a microservice is a corresponding documentation of
its interfaces (API Documentation). For each micros-
ervice owned by it, the team constructs a Set of LEMMA
Views as a model representation (cf. Section “Language
Ecosystem for Modeling Microservice Architecture”).
The sum of all LEMMA models forms an Architec-
ture Model which describes the system’s architecture.
This model can be used by the organization, e.g., to gain
insight into existing dependencies between the microser-
vices involved.

Based on the conceptual elements and their relationships,
Fig. 5 shows our model-driven workflow for DevOps-based
microservices development in SMOs as a UML activity
diagram [55].

We depict the workflow from the perspective of a single
DevOps team including all steps required for the develop-
ment of a new microservice. When incremental changes are
made to individual aspects of a microservice, only the steps
affected by the changes need to be performed.

The process starts with the planning of the development.
The team decides whether to follow a code-first or
model-first approach. We support both variants to allow
the teams autonomy according to the DevOps paradigm [6].

Code-First Approach Here, the team first implements the
microservice consisting of structure and behavior.
Based on the finished implementation, the team creates an
API Documentation, which can be done manually or
automatically with tools such as Swagger.12 Using the API
documentation, a LEMMA domain model and a LEMMA
service model are automatically derived (cf. Section “Deri-
vation of Microservice Models from APIDocumentations”)
and, if necessary, refined by the team. In parallel, the team
creates a LEMMA operation model, since the information
required for this kind of model cannot be derived from the
API documentation (cf. Section “Derivation of Microservice
Models from APIDocumentations”).

Model-First Approach Alternatively, the team can decide
to first model the structure and operation of the microservice
using LEMMA. In the subsequent implementation activity,
the structural aspects can be generated based on the previ-
ously constructed models and only the manual implemen-
tation of the behavior is necessary (cf. Section “Language
Ecosystem for Modeling Microservice Architecture”).

Regardless of which of the two approaches was chosen,
in the end LEMMA domain, service, and operation models
are available and describe the Dev and Ops aspects of the
microservice under development.

The operation model is then used to Generate a
Deployment Specification for a container-based
environment which mitigates the complexity of the operation
(cf. Section “Generating Code from Distributed Deployment
Infrastructure Models”). The team refines this specification
as needed and then deploys the microservice. In parallel, the
models generated during the workflow are sent to a central
model repository and made available to the entire organiza-
tion where they can be used by other teams to gain insight

Fig. 4   Overview of the concepts
within the workflow and their
interrelationships represented as
a UML class diagram [55]

12  https://​swagg​er.​io/.

https://swagger.io/

	 SN Computer Science (2021) 2:459459  Page 12 of 25

SN Computer Science

and a common understanding of the application’s architec-
ture, e.g., by visualizing its structure.

Based on the use of model transformations and code gen-
eration steps, we argue that the application of the workflow
is possible with almost the same resources as the current
development processes in the individual DevOps teams
that we were able to explore as cases in the empirical study
(cf. Section “DevOps-Related Challenges in Microservice
Architecture Engineering of SMOs”). This applies to both
the code-first and model-first approaches. At its core, the
code-first approach relies on the same development steps,
i.e., implementing structure and behavior of a microser-
vice, as non-model-based processes in the individual teams,
so that even teams without experience in MDE can adapt
the flow in a non-invasive way. Besides the actual imple-
mentation, the workflow provides a service’s description
in the form of LEMMA viewpoint models, which can be
used as a communication basis and for knowledge trans-
fer to create a common architecture understanding (CA1;

cf. Section “Study Results and Challenges”) in the organiza-
tion. This can be used to, e.g., accelerate verbal coordination
processes between teams, improve the documentation, or
identify microservice bad smells [78]. In addition, by using
LEMMA operation models and generating deployment spec-
ifications, it is easier for teams of an SMO to address the Ops
aspects themselves without passing on the responsibility for
deployment to another unit (CA2; cf. Section “Study Results
and Challenges”). This enables teams to foster the ownership
principle of MSA (cf. Section “General”).

Derivation of Microservice Models from API
Documentations

To enable the model-driven workflow with sophisticated
modeling support by LEMMA, we extended the ecosystem
with the ability to derive data and service models from API
documentation into LEMMA modeling files. In particular,
our extension targets API documentation that conforms to

Visualize
Architecture Model

Approach?

[code-first]

[model-first]

Assemble
Architecture Model

OrganizationDevOps Team

Visualize
Architecture Model

Approach?

[code-first]

[model-first]

Assemble
Architecture Model

OrganizationDevOps Team

 LEMMA-Based Workflow for DevOps Teams in SMOs

Refine Generated Models

Deploy

Refine Deployment
Specification

Model Operation

Develop BehaviorDevelop Behavior

Implement Microservice

Generate Deployment
Specification

Automatic derivation
of LEMMA models

Refine Structure

Develop Structure

Develop Behavior

Model With LEMMA

Model Technologies

Receive Models

Send Models

Generate Structure

Generate
LEMMA Intermediate Models

Model Operation

Model Services

Model Domain Data

Develop Structure

Develop Behavior

Implement Microservice

Generate
Data Model

Generate
Service Model

Process
API documentation

Plan Development

Provide
API Documentation

Fig. 5   Proposed workflow for DevOps teams for model-driven microservices development represented as a UML activity diagram [55]

SN Computer Science (2021) 2:459	 Page 13 of 25  459

SN Computer Science

the OpenAPI Specification13 (OAS) [56]. OAS defines a
standardized interface to describe RESTful APIs. One of the
most popular tools implementing OAS is Swagger, which
was used by all SMOs in the qualitative study (cf. Sec-
tion “DevOps-Related Challenges in MicroserviceArchi-
tecture Engineering of SMOs”).

The transformation of OAS files into LEMMA files can
be classified as an interoperability issue in which OAS mod-
els are to be converted into LEMMA models. We therefore
applied the interoperability bridge process proposed by
Brambilla et al. [10]. Figure 6 shows the applied interoper-
ability bridge process.

First, using the Swagger parsing framework,14 an OAS
conform API model in the YAML [7] or JSON [22] format

is converted into an in-memory API Model. We then
perform three model transformations where the informa-
tion from the API Model is transformed into a Domain
Data Model, Service Model, and a Technology
Model which each correspond to their respective LEMMA
metamodel (cf. Section “Language Ecosystem for Modeling-
Microservice Architecture”). Table 2 describes which OAS
objects15 are mapped to which LEMMA model kind.

To be able to transform the in-memory LEMMA models
as files, we extended LEMMA with extractors [10] for tech-
nology, service, and data models.

Listing 1 and Listing 2 illustrate the application of the
process.

Fig. 6   Process to transform OAS conform API models into LEMMA models

Table 2   Applied mappings between OAS and LEMMA concepts

OAS Objects LEMMA model Description of mapping

Info Domain Data Name and version of the Domain and its Context
Schemas Domain Data DataStructures of the Context
Paths Domain Data Inline schemas are transformed to additional DataStructures and arrays are mapped to ListTypes
Info Service Name and commentary of the Microservice
Tag Service Used to derive a service’s Interfaces which cluster Operations
Paths Service Operations of an Interface comprising its Endpoints, Parameters, HTTP request method as

Aspect, and Commentary
Media Types Technology All mentioned media types in a OAS model are transformed to DataFormats of the RESTful HTTP

Protocol.
Data Types Technology Mapped to TechnologySpecificPrimitiveTypes.

13  Version 3.0.3.
14  https://​github.​com/​swagg​er-​api/​swagg​er-​parser. 15  https://​spec.​opena​pis.​org/​oas/​v3.0.​3#​opena​pi-​object.

https://github.com/swagger-api/swagger-parser
https://spec.openapis.org/oas/v3.0.3#openapi-object

	 SN Computer Science (2021) 2:459459  Page 14 of 25

SN Computer Science

Listing 1 shows an excerpt of the API documentation
file of the Customer Core microservice from the case study
(cf. Section “Case Study”). In detail, the listing presents
the OAS description for an HTTP GET request on the path
cities/{postalCode} (Lines 2 and 3). This includes,
e.g., the unique id getCitiesForPostalCodeUs-
ingGET (Line 6) of the operation, the incoming param-
eters (Lines 8–14), and the information that a response
returns an object based on the CitiesResponseDto
schema (Lines 15–20). The excerpt shows only the response
for HTTP status code 200 (Line 16). OAS also offers the
possibility to define responses for other status codes, e.g.,
HTTP status code 404, but these are currently not consid-
ered in the transformation to LEMMA in our prototypical
implementation.

Listing 2 shows the LEMMA service model automati-
cally transformed from the CustomerCore OAS model in

Listing 1. First, the results of the other transformations are
imported into the service model. This includes the pre-
viously transformed LEMMA domain data model cus-
tomerCore.data resulting from the OAS schemas
(Lines 1 and 2), which contains all data structures such
as CitiesResponseDto, and the technology model
OpenApi.technology (Line 3), which contains, e.g.,
the OpenAPI-specific primitive data types and the media
types used in the CustomerCore OAS model. Line 5 ena-
bles the OpenApi technology for the com.lakesidemu-
tual.customercore.CustomerCore microservice,
whose definition starts in Lines 6 and 7. The microservice
comprises an interface named cityReferenceData-
Holder which was derived by the associated tags in the
OAS model (Line 8). The interface consists of the opera-
tion getCitiesForPostalCodeUsingGET named
after the OAS operationId (Lines 18–22). The opera-
tion commentary section (Lines 9–14) is populated using
the summary information from OAS. The OAS path is
added as an endpoint (Line 15) and the operation classi-
fied as an HTTP GET request (Line 17). The OAS response
associated with the HTTP status code 200 is modeled as
an OUT parameter and named returnValue (Lines 20
and 21).

Assembling a Common Architecture Model
from Distributed Microservice Models

Microservices can interact with and depend on each other to
realize coarse-grained functionality [54]. In the case study
(cf. Section “Case Study”), such a relationship is found
between the microservices Customer Management
Backend and Customer Core. Such dependencies can-
not be derived from an API documentation, since its purpose
is to describe the provided interface of a service and not the
invocation of functionality provided by other architecture
components. However, these dependencies are essential to
be able to assemble and assess an architecture model and to
raise a common architectural understanding across the whole
organization (cf. Section “Study Results and Challenges”).
Therefore, within the workflow (cf. Section “LEMMA-
Based Workflow for Coping with DevOps Challenges”),
the dependencies should be added manually by the teams in
the LEMMA models. This can be done during the Model
Services activity when using the model-first approach
and during the Refine Generated Models activity
when using the code-first approach.

However, LEMMA service models originally were only
able to depend on other LEMMA service models if they are
accessible in the local file system. Therefore, to allow teams
the expression of interaction dependencies with the microser-
vices of other teams, we have extended LEMMA to allow exter-
nal service imports. Listing 3 shows the service model of the

SN Computer Science (2021) 2:459	 Page 15 of 25  459

SN Computer Science

Customer Management Backend microservice from
the case study. The microservice imports show the two alterna-
tives. The syntax for importing locally accessible service files is
shown in Lines 3 and 4. Alternatively, the import in Lines Lines
6–8 exemplifies the mechanism for external imports.

As soon as the Eclipse IDE detects such an external
import in the model, it offers a quickfix that automatically
downloads the referenced file and, if it is OAS-compliant
API documentation, starts a corresponding transformation
to LEMMA (see Section “Microservice Architecture Model
Processing”). This also makes it possible to model a depend-
ency to a service of another team, even if this team does not
yet provide its own model but only API documentation.

Since LEMMA models are textual [63] and with the
extension it is possible to import external sources, the model
files of the different teams can be managed centrally as an
architecture model by a version management system such as
Git and thus integrated into CI/CD pipelines, e.g., by a Git
hook16 that copies the models to a central model repository
with each release of the microservice.

Visualization of Microservice Architecture Models

To enable visualization of the architecture using LEMMA
(cf. Section LEMMA-Based Workflow for Coping with
DevOps Challenges”), we have developed the LEMMA
Visualizer.17 It is able to transform several LEMMA

intermediate service models (cf. Section “Microservice
Architecture Model Processing”) into a single graphical
representation using a model-to-text transformation [13]. In
its current form, the visualizer is a standalone executable Jar
file. The Jar file can be passed the paths to several service
models, which serve as input, and a target path for generat-
ing the visualization as arguments through the command
line. The steps of the transformation are depicted in Fig. 7.

First, one or more intermediate service model files
are passed to the LEMMA Model Processor (cf. Sec-
tion “Microservice Architecture Model Processing"). These
are converted to their in-memory representation and then
processed. Using the JGraphT framework [51], we create a
directed graph that we populate with microservices found
during the processing of the intermediate models as verti-
ces and any existing imports from other services as edges.
Microservices that are neither imported nor import another
service and are thus without an edge are added as isolated
vertices. Then we use JGraphT’s DOTExporter to convert
the graph into a textual representation of the graph based on
the DOT language.18 During the export, we enrich the DOT
representation with attributes which describe the appear-
ance of the vertices and edges for the later visualization,
e.g., we add coloring and describe vertex shapes. Finally,
we use GraphViz [23] to generate an image of the graph’s
DOT representation that represents the system architecture
in the form of a box-and-line diagram as a Portable Network
Graphics (.png) file. The visualizer supports the setting
of different levels of detail of the display in relation to the
attributes of microservice vertices. A resulting architecture
image which shows the functional microservices from the
case study is shown in Fig. 8. To generate the image, the
visualizer was configured to render with a detail level which
shows interfaces but not operations.

Enhancing Distributed Microservice Models
with Deployment Infrastructure Models

In this subsection, we elaborate on the creation of an opera-
tion model (cf. Section “Case Study”) that complements
the previously created data and service models to form a
complete set of LEMMA views describing a microservice

Fig. 7   Model-to-Text trans-
formation to generate a visual
representation of a microservice
application’s architecture

16  https://​git-​scm.​com/​book/​en/​v2/​Custo​mizing-​Git-​Git-​Hooks.
17  https://​github.​com/​Seela​bFhdo/​SN2021/​blob/​master/​de.​fhdo.​
lemma.​visua​lizer-0.​8.0-​SNAPS​HOT-​stand​alone.​jar. 18  https://​graph​viz.​org/​doc/​info/​lang.​html.

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://github.com/SeelabFhdo/SN2021/blob/master/de.fhdo.lemma.visualizer-0.8.0-SNAPSHOT-standalone.jar
https://github.com/SeelabFhdo/SN2021/blob/master/de.fhdo.lemma.visualizer-0.8.0-SNAPSHOT-standalone.jar
https://graphviz.org/doc/info/lang.html

	 SN Computer Science (2021) 2:459459  Page 16 of 25

SN Computer Science

(cf. Section “LEMMA-Based Workflow for Coping with
DevOps Challenges”). The operation model is constructed
using LEMMAs Operation Modeling Language (OML) Sec-
tion “Microservice Architecture Model Construction”). This
approach specifically addresses the Operation and Deploy-
ment Stages of MSA (cf. Sections “Operation Stage” and
“Development Stage“) and therefore addresses CA2 (cf. Sec-
tion “Study Results and Challenges”) by providing function-
alities for describing the microservice models’ deployment,
including their dependencies to infrastructural services, e.g.,
API gateways, services discoveries, and databases. Addi-
tionally, OML abstracts from concrete technology-specific
deployment configurations and reduces the overall complex-
ity of deploying a microservice application.

To enable DevOps teams in SMOs to take full owner-
ship of their respective services, which mitigates the need
to apply specialized teams dedicated to operating the
whole microservice application (cf. Section “DevOps-
Related Challenges in Microservice Architecture Engineer-
ing of SMOs”), we have extended the OML with means
to import other operation models as nodes and, therefore,
nest operation specifications with each other. I.e. teams do
not have to maintain individual models for infrastructure
microservices, but can use the new mechanism to import
the operation model, e.g., for a Eureka service discovery

(cf. Section “Case Study”), from a central model repository
(cf. Section “Assembling a Common Architecture Model
from Distributed Microservice Models”).

OML now enables the DevOps Team to describe the
deployment of a microservice and all necessary depend-
encies. Listing 4 shows an excerpt of the operation model
for the deployment of the CustomerCore microservice.
Lines 1 and 2 of the listing import the customerCore.
services model derived from the services’ Open API
specification (cf. Section “Derivation of Microservice Mod-
els from API Documentations”). The following Lines 3–6
deal with the import of the technology for service deploy-
ment. The Container_base technology model uses
Docker19 and Kubernetes20 for service deployment. Lines 7
and 8 illustrate the new possibility to import other operation
models as nodes by importing the eureka.operation
model that describes the deployment of a service discovery
by the Eureka21 technology.

Fig. 8   Generated visualization of the architecture of the case study (cf. Section 5)

19  https://​www.​docker.​com.
20  https://​kuber​netes.​io/.
21  https://​github.​com/​Netfl​ix/​eureka.

https://www.docker.com
https://kubernetes.io/
https://github.com/Netflix/eureka

SN Computer Science (2021) 2:459	 Page 17 of 25  459

SN Computer Science

Lines 10 and 11 assign the technology to the Cus-
tomerCoreContainer (Line 12). The container
runs the deployed microservices and clusters deployment-
relevant information, e.g., dependencies to infrastructural
components such as databases, service-specific configura-
tions, and protocol-specific endpoints. For this purpose,
Lines 12–14 create the CustomerCoreContainer and
assign the Kubernetes deployment technology which is
imported from the container_base technology model.
The deployment of the CustomerCore microservice via
the container is shown in Lines 15 and 16. The following
Lines 17–25, show the dependency to the ServiceDis-
covery imported from the eureka.operation model.
In detail, Line 19 starts the service-specific configuration
of the CustomerCore microservice by specifying the
eurekaUri responsible for configuring the dependency
to the ServiceDiscovery. The CustomerCore
microservice exposes its functionality via a rest endpoint
(Lines 21–23).

Besides modeling the deployment of microservice-spe-
cific configurations, OML also enables the DevOps team
to specify infrastructural components’ deployment, e.g.,
service discoveries and databases. Listing 5 describes the
deployment of the ServiceDiscovery. Lines 1–3
import the containerbase.technology and
eureka.technology models. The models include the
specification of the technology used for the deployment
of the ServiceDiscovery. Lines 4 and 5 import the
CustomerCore operation model (cf. Listing 4) because
the CustomerCore microservice uses the service discov-
ery. Lines 7 and 8 assign the imported technology to the
ServiceDiscovery.

Line 9 starts the actual specification of the Service-
Discovery, which uses the imported Eureka technol-
ogy. The following Line 10 contains the dependency to the
CustomerCoreContainer, specified in Listing 4. The
service-specific configuration of the ServiceDiscov-
ery is set via the assignment of default values in
Lines 12–16. Lines 13 and 14 set the actual hostname and
port of the service.

Overall, LEMMA’s OML enables the DevOps team to
construct operation models which specify the deployment
of microservices and their dependencies on the microser-
vice application’s infrastructural components. The opera-
tion models consist of the concepts of containers and
infrastructure nodes. Containers (cf. Listing 4) specify the
deployment of microservice, whereby infrastructure nodes
contain the configuration for infrastructural components,
e.g., API gateways, databases, and service discoveries
(cf. Listing 5).

	 SN Computer Science (2021) 2:459459  Page 18 of 25

SN Computer Science

Generating Code from Distributed Deployment
Infrastructure Models

In Section “Enhancing Distributed Microservice Models
with Deployment Infrastructure Models” we introduced
OML as a methodology to describe the deployment of a ser-
vice-based software system. In this subsection, we contribute
a code generation pipeline for creating deployment-related
artifacts based on the operation models using LEMMA’s
Model Processor (cf. Section “Microservice Architecture
Model Processing”). As depicted in Fig. 9, the code genera-
tion pipeline consists of two consecutive stages.

The first stage of the code generation pipeline consists
of a model-to-model transformation [13] transforming an
operation model into an intermediate operation model in the
sense of LEMMA’s intermediate model processing (cf. Sec-
tion “Microservice Architecture Model Processing”).

The second stage of the code generation pipeline deals
with the creation of the deployment-relevant artifacts. Based
on an intermediate operation model, the code generators
already included in LEMMA (cf. Section “Language Eco-
system for Modeling Microservice Architecture”) provide a
variety of different functionalities that are usually bound to
a specific technology model. As already shown in Listing 4
and Listing 5, the described operation models both use the
container_base technology model.

The container_base model clusters a technology
stack suited for a service-based software system with focus-
ing on container technologies [44] such as Docker, Docker-
Compose, and Kubernetes. Listing 6 shows an excerpt of
this specific technology model. Line 1 specifies the actual
name of the model. Lines 2–7 describe the deployment
technologies of the model, in this particular case
Kubernetes. Additionally, Kubernetes supports the
operation environments golang, python3, and
openjdk as its default.

The second part of Listing 6 contains the definition of
operation aspects for further service deployment specifica-
tion from Lines 8 to 13. Lines 10 and 11 define the Dock-
erfile aspect, which can be applied to containers in
operation models. The aspect consists of a single attribute
named content containing the actual content of the Dock-
erfile. Furthermore, the content attribute has the property
mandatory to it, so it can only be configured a single time
per container.

The Container Base Code Generator (CBCG)22 supports
the container_base technology model (cf. Listing 6)
to derive a set of deployment-related artifacts such as build
scripts, Dockerfiles, and Kubernetes configurations. Fur-
thermore, the CBCG integrates with existing microservice
configuration files by extending them with operation-specific
entries, e.g., service discovery addresses, as necessary.

Listing 7 shows a Dockerfile generated by the CBCG
from the operation model in Listing 4. The Dockerfile con-
tains a basic configuration consisting of a Docker image
deduced from the modeled operation environment. In Lines

Fig. 9   Code generation pipeline for creating deployment relevant artifacts from LEMMAs operation models

22  https://​github.​com/​Seela​bFhdo/​lemma/​tree/​master/​code%​20gen​
erato​rs/​de.​fhdo.​lemma.​model_​proce​ssing.​code_​gener​ation.​conta​iner_​
base.

https://github.com/SeelabFhdo/lemma/tree/master/code%20generators/de.fhdo.lemma.model_processing.code_generation.container_base
https://github.com/SeelabFhdo/lemma/tree/master/code%20generators/de.fhdo.lemma.model_processing.code_generation.container_base
https://github.com/SeelabFhdo/lemma/tree/master/code%20generators/de.fhdo.lemma.model_processing.code_generation.container_base

SN Computer Science (2021) 2:459	 Page 19 of 25  459

SN Computer Science

2–15 several artifacts are copied into the image. Line 17 con-
figures the port 8110 on which the microservice is started.
Finally, Lines 18–20 define the entrypoint of the Docker
image to compile and run the microservice.

While the CBCG is able to create a basic Dockerfile,
the OML also integrates with LEMMA’s aspect mechanism
so that it becomes possible to leverage the Dockerfile
aspect from the container_base technology model (cf.
Listing 6) to customize Dockerfile generation.

In addition to Dockerfiles, the CBCG may also gener-
ate Kubernetes deployment files. In general, a derived
Kubernetes file consists of parts that concern deployment
and service configuration. The deployment part shown
in Listing 8 clusters the configuration of the Kubernetes
pod23 to which a microservice gets deployed. Line 1
defines the apiVersion the Kubernetes file uses.
Line 2 contains the definition of the configuration kind:
deployment. Lines 5–7 assign a name to the deploy-
ment, i.e., customercorecontainer. Line 8 deter-
mines the configuration of the Kubernetes deployment,
specifically the set of replicas that shall be created
for the deployment.

Listing 9 contains the service part of the Kubernetes
deployment and the configuration on how the microservices

application is exposed. Lines 1 and 2 cluster information
about the apiVersion and configuration type of the
Kubernetes file, i.e., kind: Service, followed by the
name assignment in Lines 4–6. Additionally, the listing
defines the exposure of the microservice via port 8110 in
Lines 9–11.

In addition to the deployment-related generated artifacts,
LEMMA’s code generation pipeline also supports the exten-
sion of existing service configurations. For this purpose, we
implemented additional code generators for technologies
like MongoDB,24 MariaDB,25 Zuul, and Eureka.

Listing 10 contains a variety of configuration options for
Spring-based microservice implementations. The spring.
application.name and server.port options in
Lines 1 and 2 are derived from the modeled microservice’s
name and its specified endpoint in the LEMMA models.
Lines 3–7 result from the Eureka configuration shown in
Listing 4. They configure the endpoints for connecting to
the eureka service discovery.

Validation

In this section, we validate the present LEMMA extensions
that implement the workflow (cf. Section “A Model-Driven
Workflow for Coping with DevOps-Related Challenges in
Microservice Architecture Engineering”). To enable repli-
cability of our results, we provide a validation package on
GitHub.26 To make the validation feasible, we first manu-
ally reconstructed the functional backend and infrastruc-
ture microservices of Lakeside Mutual (cf. Section “Case
Study”) using a systematic process [62]. This step was nec-
essary because the backend and infrastructure microservices
of Lakeside Mutual are implemented in Java and not mod-
eled with LEMMA. In detail, our reconstruction includes all
four Java-based functional microservices and the infrastruc-
tural microservices Eureka Server and Spring Boot
Admin (cf. Section “Case Study”).

23  https://​kuber​netes.​io/​docs/​conce​pts/​workl​oads/​pods/.

24  https://​www.​mongo​db.​com/.
25  https://​maria​db.​org/.
26  https://​github.​com/​Seela​bFhdo/​SN2021.

https://kubernetes.io/docs/concepts/workloads/pods/
https://www.mongodb.com/
https://mariadb.org/
https://github.com/SeelabFhdo/SN2021

	 SN Computer Science (2021) 2:459459  Page 20 of 25

SN Computer Science

In addition, we retrieved the current API documentation
of Lakeside Mutual by putting the architecture into operation
and triggering the generation of the documentation using
prepared REST requests. At the end of this process, we could
refer to the current API documentations of Lakeside Mutu-
al’s Customer Core and Customer Management
Backend (cf. Fig. 3 in Section “Case Study”), which are
the two components for which the application provides API
documentation.

We then performed the individual generation steps of our
workflow (cf. Section “A Model-Driven Workflow for Cop-
ing with DevOps-Related Challenges in Microservice Archi-
tecture Engineering”) based on our reconstructed LEMMA
models and the case study’s API documentation. We illus-
trate the results of the application of our workflow as shown
in Table 3 using the Lines of Code (LoC) metric.

As Table 3 shows, using the OAS-conform API docu-
mentation, we were able to generate 171 and 174 LoC of
LEMMA Domain Data and Service files for the Customer
Core and the Customer Management Backend micros-
ervices, respectively. Although the same operations and
parameters for interfaces are present in the models generated
by our workflow and the reconstructed LEMMA models, the
LoC are higher in our reconstructed models. This is due to
the fact that, e.g., the operation-related portion of LoC or
technology-related annotations for databases are present in
the manual models, but not in the generated ones, since no
information on this is available from the API documentation.

Regarding the generation of deployment specifications,
we were able to generate 285 lines of infrastructure code
for Docker and Kubernetes from the reconstructed operation
models of the functional microservices. Teams can abstract
from technology-specific infrastructure code and, in combi-
nation with LEMMA’s source code generators such as the

Java Base Generator [61], generate directly executable and
deployable stubs of their services.

Discussion

The model-based workflow presented in Section “A
Model-Driven Workflow for Coping with DevOps-Related
Challenges in Microservice Architecture Engineering”
addresses the previously identified challenge areas (cf. Sec-
tion “DevOps-Related Challenges in Microservice Archi-
tecture Engineering of SMOs”). In detail, the workflow
provides means to establish a common understanding of
architecture in an organization scaling to the level of mul-
tiple teams for the first time (CA1) and the complexity of
operational aspects in microservice engineering (CA2).

We argue that by documenting the architecture in a cen-
tralized manner (cf. Sections “Derivation of Microservice
Models from API Documentations” and “Assembling a
Common Architecture Model from Distributed Microservice
Models”), combined with the ability to visualize it (cf. Sec-
tion “Visualization of Microservice Architecture Models”),
teams and higher-level stakeholders, such as project spon-
sors, have a good basis for sharing knowledge and gaining
insight into each other’s development artifacts through the
inherent abstraction property of the models [48]. Box-and-
line diagrams, in particular, have the advantage that people
can more easily grasp relations between concepts [13].

Another added value of our approach is the ability to
seamlessly integrate deployment specifications into archi-
tecture models as a LEMMA operation model with the pos-
sibility to derive deployment configurations for heteroge-
neous deployment technologies, i.e., to generate them for
Docker and Kubernetes (cf. Section “Generating Code from
Distributed Deployment Infrastructure Models”). To this

Table 3   Overview of the
number of LoC of the different
model artifacts involved in the
LEMMA-based workflow

Service Type Viewpoint LoC

Manually built models
 All Services LEMMA All 3702
 All Services LEMMA Operation 311
 Customer Core LEMMA All 588
 Customer Core LEMMA Operation 50
 Customer Management Backend LEMMA All 458
 Customer Management Backend LEMMA Operation 49

API documentation
 Customer Core OAS/JSON Domain Data & Service 534
 Customer Core LEMMA Domain Data & Service 171
 Customer Management Backend OAS/JSON Domain Data & Service 496
 Customer Management Backend LEMMA Domain Data & Service 174

Deployment specification
 All Services Docker Kubernetes Operation 285

SN Computer Science (2021) 2:459	 Page 21 of 25  459

SN Computer Science

regard, Combemale et al. [13] underline the added value of
models to abstract complexity in the deployment process
making the process more manageable. However, deployment
technologies supported by our workflow constitute de-facto
standards [69], LEMMA does limited justice to the hetero-
geneous technology landscape concerning cloud providers.
In particular, we do not specifically address cloud-based
deployment platforms such as AWS27 or Azure.28 Presum-
ably, LEMMA is able to support such technologies through
specific technology models (cf. Section “Microservice
Architecture Model Construction”). In the future, we plan
to address this limitation by providing LEMMA technol-
ogy models and code generators for languages targeting the
Infrastructure as Code [52] paradigm, e.g., Terraform [11].
As a result, LEMMA would support model-based deploy-
ment to a variety of cloud-based deployment platforms.

To implement and take advantage of the LEMMA-based
workflow, team members need to learn and use a new tech-
nology with LEMMA. As the validation (cf. Section “Vali-
dation”) shows, teams can significantly increase efficiency
through the available generation facilities of LEMMA.
However, we need further empirical evaluation in practice
(cf. Section “Conclusion and Future Work”) to more accu-
rately assess in which cases the efficiency gains from better
documentation, accessible architectural understanding, and
generation of deployment specifications outweigh the effort
required to learn LEMMA and in which cases they do not.

An important aspect on which the efficiency of the
workflow depends is the organization-wide agreement on
the level of detail of the models shared between teams. For
example, if a very high level of detail is agreed upon, i.e.,
including as much information as possible from the source
code in the models, as we applied to the reconstruction of
the case study (cf. Table 3), generated artifacts must be
more refined by the DevOps teams. This results in a higher
effort. This can exemplified by the Customer Core Service
(cf. “Validation”). The reconstructed model contains consid-
erably more LoC, e.g., regarding technologies, than the gen-
erated model. In contrast, if the organization agrees on a low
level of detail that, e.g., only considers technology-agnostic
domain, service, and operation models (cf. Section “Lan-
guage Ecosystem for Modeling Microservice Architecture”),
very few adjustments to the generated models are necessary.
This fact is also evident from our experience in performing
the validation (cf. “Validation”). Although we were famil-
iar with both LEMMA and the source code from the case
study, the manual reconstruction was a tedious and time-
consuming task of several hours compared to the automatic
generation of the models.

A technical limitation within the LEMMA-based work-
flow is the unidirectional artifact creation. Changes to the
models currently have to be made by the team owning the
corresponding microservice. However, to further extend a
shared understanding of the architecture as well as to follow
DevOps’ minimize communication efforts characteristic [21],
it would be beneficial if other teams or stakeholders could
request editing of services of other teams directly using
the shared models, e.g., to add an attribute to an interface
operation.

Related Work

In the following, we describe related work from the areas
of service and operation modeling, comparable qualitative
studies, and workflows for DevOps-oriented development
of microservice architectures in the context of model-driven
software engineering.

MSA Service Modeling Terzić et al. [82] present Micro-
Builder, a tool that enables the modeling and generation
of microservices. At its core, MicroBuilder comprises the
MicroDSL modeling language. Like LEMMA, MicroDSL is
based on the Eclipse Modeling Framework. Unlike LEMMA,
however, MicroBuilder is closely linked to Java and Spring
as specific technologies, so that the MicroDSL metamodel
would have to be adapted for new technologies. MicroBuilder
also addresses only the role of the developer and neglects
stakeholders such as domain experts or operators. In addi-
tion, MicroBuilder does not address MSA’s characteristic of
having multiple teams involved in the development process.
Another model-based approach called MicroART [31] is pro-
vided by Granchelli et al. MicroART contains a DSL called
MicroARTDSL which aims to capture architecture informa-
tion. The purpose of MicroART is to recover microservice
architectures through static and dynamic analysis. As such,
MicroART can support organizations in raising a common
architectural understanding similar to the visualization we
proposed in Section “Visualization of Microservice Architec-
ture Models”. However, MicroART does not provide a model-
based workflow for the teams and lacks the rich ecosystem
of LEMMA comprising means to also model and generate
domain data, operational aspects, and different technologies.
Alshuqayran et al. [1] present MiSAR an empirically derived
approach for generating architectural models of microservice
applications. Like LEMMA, MiSAR also leverages MDE
and provides a metamodel centered around the microservice
concept. It includes concepts for, e.g., interfaces, operations,
and service types. However, MiSAR primarily focuses on
reconstructing models from existing source code and does
not provide a concrete syntax aligned with the metamodel like
LEMMA’s textual notation. In addition, MiSAR has a cohe-
sive metamodel for operation and service modeling. LEMMA,

27  https://​aws.​amazon.​com/.
28  https://​azure.​micro​soft.​com/.

https://aws.amazon.com/
https://azure.microsoft.com/

	 SN Computer Science (2021) 2:459459  Page 22 of 25

SN Computer Science

on the other hand, supports separate model kinds derived from
the roles in the MSA engineering process and also includes
means for modeling domain data.

Qualitative Study Bogner et al. [9] describe a study related
to our qualitative empirical analysis (cf. Section “DevOps-
Related Challenges in Microservice Architecture Engineering
of SMOs”) that includes 14 interviews with software archi-
tects. In contrast to our analysis, Bogner et al. do not focus on
the challenges in the workflow of the organizations, but on the
technologies used and software quality aspects. Another inter-
view study was conducted by Haselböck et al. [34] focusing
on software design aspects such as the sizing of microservices.
A questionnaire based study on Bad Smells in MSA was con-
ducted by Taibi et al. [78]. The study touches on organizational
aspects and is included in our argumentation of the challenges
(cf. Section “Study Results and Challenges”, but due to the
study design as a questionnaire, the development process as a
whole was not considered.

Development Workflows In the context of our proposed
workflow (cf. Section “LEMMA-Based Workflow for Cop-
ing with DevOps Challenges”), there are several large-scale
agile process models or methodologies that can foster the
development of MSA by multiple DevOps teams. Exam-
ples include Scrum at Scale [77], the Spotify Model [71],
or SAFe [66] (cf. Section Organizational Aspects). How-
ever, these approaches generally only become viable
when an organization has at least 50 or more developers
involved [18], and are therefore not suitable for SMOs fac-
ing the challenge of initially scaling their small organization
from one to two or three teams. In addition, the aforemen-
tioned approaches address development at an organizational
level and do not address development practices. Therefore,
we expect our proposed workflow (cf. Section “LEMMA-
Based Workflow for Coping with DevOps Challenges”) to
integrate well with the stated large-scale approaches.

MSA Operation Modeling The essential deployment
metamodel (EDMM) [83] is an approach that combines
existential components of the deployment of a software
system in a metamodel, taking into account concepts such
as configuration management [16] and infrastructure as
code [52]. EDMM makes a specific mapping concerning
the technology used for the software system’s provisioning
process based on the metamodel. For deploying the micros-
ervice application, EDMM supports technologies like Pup-
pet,29 Terraform,30 AWS Cloud Formation,31 and Cloudify.32
Unlike EDMM, LEMMA addresses the deployment of

service-based systems and their data structures and service
composition. Besides, EDMM provides mapping concerning
specific cloud providers. On the other hand, LEMMA pro-
vides technology-specific provisioning artifacts that can be
used with different cloud providers. DICER [2] represents an
approach based on technology-independent models for the
generation of infrastructure as code and is used to deploy the
software system. DICER models encapsulate monitoring,
self-adaptation, configuration management, server deploy-
ment, and software system deployment. Also, DICER fos-
ters the transformation of models into artifacts for service
deployment using TOSCA33 and other technologies. The
functional scope of DICER relates exclusively to the provi-
sioning or operation of the software system. Furthermore,
DICER does not support the modeling of data structures or
service composition. Like LEMMA, DICER also provides
technology-specific artifacts that can be used for the deploy-
ment process. Additionally, it also provides a graphical rep-
resentation in the form of UML deployment diagrams, which
LEMMA does not provide on an operational view.

Conclusion and Future Work

In this paper, we have identified two key challenge areas for
SMOs through an empirical analysis of an interview study
(cf. Section 4). First, it is challenging for SMOs to develop
and maintain a common understanding of architecture in an
organization that is scaling to multiple teams for the first
time through the application of MSA. Second, deployment
in particular seems challenging due to its complexity, so
SMOs tend to constitute special operation teams contrary to
the microservice ownership principle (cf. Section “Organi-
zational Aspects”). This is detrimental to the implementa-
tion of DevOps practices and the benefits hoped for within
the teams.

To address these two challenge areas, we have presented
a model-driven workflow based on LEMMA (cf. Sec-
tion “Language Ecosystem for Modeling Microservice
Architecture”) for developing microservice architectures
(cf. Section “A Model-Driven Workflow for Coping with
DevOps-Related Challenges in Microservice Architec-
ture Engineering”) and elaborated on the components we
have added to LEMMA to support this workflow. The
components comprise (i) interoperability bridges between
OpenAPI and LEMMA models (cf. Section “Derivation of
Microservice Models from API Documentations”); (ii) an
extension to the Service Modeling Language to allow the
import of remote models (cf. Section “Assembling a Com-
mon Architecture Model from Distributed Microservice
Models”); (iii) a model processor to visualize microservice

29  https://​puppet.​com/.
30  https://​www.​terra​form.​io/.
31  https://​aws.​amazon.​com/.
32  https://​cloud​ify.​co/. 33  https://​cloud​ify.​co/​tosca/.

https://puppet.com/
https://www.terraform.io/
https://aws.amazon.com/
https://cloudify.co/
https://cloudify.co/tosca/

SN Computer Science (2021) 2:459	 Page 23 of 25  459

SN Computer Science

architectures (cf. Section“ Visualization of Microservice
Architecture Models”); (iv) enhancing the Operation Mod-
eling Language through the ability to import infrastructural
nodes (cf. Section “Enhancing Distributed Microservice
Models with Deployment Infrastructure Models”); and (v)
code generators for microservice deployment and operation
(cf. Section “Generating Code from Distributed Deployment
Infrastructure Models”).

For future work we plan to conduct a qualitative observa-
tion and interview study which aims to evaluate the proposed
workflow in practice. In particular, we plan to evaluate the
integrability into CI/CD pipelines as well as the adoption of
our proposed mixture of manual and automatic steps within
the workflow. Furthermore, we are also currently exploring
the possibility of automating our reconstruction process for
LEMMA models [61]. Finally, we would like to investigate
whether our proposed approach can be applied to other soft-
ware architectures.

Regarding the presented LEMMA extensions, we are
going to mature the prototypical development and improve
accessibility for users, e.g., by providing a web-based dash-
board to trigger the visualizer and access the generated
images. Furthermore, we would like to develop LEMMA’s
means to support a common architectural understanding in
an organization not only through the presented visualization
but also through analytical means such as code metrics.

Author Contributions  Not applicable.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Data Availability Statement  We strive to make our research as repli-
cable as possible. To this end we have provided all modeling artifacts,
images, scripts, and a documentation in a publicity available GitHub
repository, which is accessible at https://​github.​com/​Seela​bFhdo/​
SN2021. Due to confidentiality agreements, we are not allowed to
provide the transcribed interviews of our qualitative study. On request
we are able to provide anonymized text passages should questions arise
by the reviewers or editors.

Declarations 

Funding  Not applicable.

Conflict of interest/Competing interests  On behalf of all authors, the
corresponding author states that there is no conflict of interest.

Code availability  Within the article, we use and extend the modeling
ecosystem LEMMA developed by our research group. LEMMA is
under the MIT license available on GitHub through this link https://​
github.​com/​Seela​bFhdo/​lemma. The specific source code contribu-
tions for this article are also ready together with the data and other
material in this prepared GitHub repository https://​github.​com/​Seela​
bFhdo/​SN2021.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Alshuqayran N, Ali N, Evans R. Towards micro service architec-
ture recovery: An empirical study. In: 2018 IEEE International
Conference on software architecture (ICSA). IEEE. 2018. p.
47–56. https://​doi.​org/​10.​1109/​ICSA.​2018.​00014.

	 2.	 Artač M, Borovšak T, Nitto ED, Guerriero M, Perez-Palacin D,
Tamburri DA. Infrastructure-as-Code for data-intensive archi-
tectures: a model-driven development approach. In: 2018 IEEE
International conference on software architecture (ICSA). IEEE.
2018. p. 156–65. https://​doi.​org/​10.​1109/​ICSA.​2018.​00025.

	 3.	 Athanasopoulos D, Zarras AV, Miskos G, Issarny V, Vassili-
adis P. Cohesion-driven decomposition of service interfaces
without access to source code. IEEE Trans Serv Comput.
2015;8(4):550–62.

	 4.	 Balalaie A, Heydarnoori A, Jamshidi P. Microservices architecture
enables DevOps: migration to a cloud-native architecture. IEEE
Softw. 2016;33(3):42–52. https://​doi.​org/​10.​1109/​MS.​2016.​64.

	 5.	 Balalaie A, Heydarnoori A, Jamshidi P. Migrating to cloud-
native architectures using microservices: an experience report.
In: Celesti A, Leitner P, editors. Advances in service-oriented and
cloud computing. Cham: Springer; 2016. p. 201–15.

	 6.	 Bass L, Weber I, Zhu L. DevOps: a software architect's perspec-
tive. 1st ed. Boston: Addison-Wesley Educational; 2015.

	 7.	 Ben-Kiki O, Evans C. Ingy döt Net: YAML ain’t markup language
(YAML) Version 1.2. 3rd Edition, Patched at 2009-10-01. Tech.
rep., https://​yaml.​org, 2009. Accessed 2 Apr 2021.

	 8.	 Bogner J. On the evolvability assurance of microservices: met-
rics, scenarios, and patterns. Ph.D. thesis. Stuttgart: University
of Stuttgart; 2020.

	 9.	 Bogner J, Fritzsch J, Wagner S, Zimmermann A. Microservices
in industry: Insights into technologies, characteristics, and soft-
ware quality. In: 2019 IEEE International Conference on software
architecture companion (ICSA-C). IEEE, 2019; p. 187–95. https://​
doi.​org/​10.​1109/​ICSA-C.​2019.​00041.

	10.	 Brambilla M, Cabot J, Wimmer M. Model-driven software engi-
neering in practice. 2nd ed. San Rafael: Morgan & Claypool;
2017.

	11.	 Brikman Y. Terraform: up & running: writing infrastructure as
code. Sebastopol: O'Reilly Media; 2019.

	12.	 Buchgeher G, Winterer M, Weinreich R, Luger J, Wingelhofer R,
Aistleitner M. Microservices in a small development organization.
In: Lopes A, de Lemos R, editors. Software architecture. Cham:
Springer International Publishing; 2017. p. 208–15.

	13.	 Combemale B, France RB, Jézéquel JM, Rumpe B, Steel J,
Vojtisek D. Engineering modeling languages: turning domain
knowledge into tools. 1st ed. Philadelphia: Chapman & Hall/CRC;
2017.

	14.	 Conboy K, Carroll N. Implementing large-scale agile frameworks:
challenges and recommendations. IEEE Softw. 2019;36(2):44–50.

https://github.com/SeelabFhdo/SN2021
https://github.com/SeelabFhdo/SN2021
https://github.com/SeelabFhdo/lemma
https://github.com/SeelabFhdo/lemma
https://github.com/SeelabFhdo/SN2021
https://github.com/SeelabFhdo/SN2021
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00025
https://doi.org/10.1109/MS.2016.64
https://yaml.org
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041

	 SN Computer Science (2021) 2:459459  Page 24 of 25

SN Computer Science

	15.	 Conway ME. How do committees invent? Datamation.
1968;14(4):28–31.

	16.	 Delaet T, Joosen W, Vanbrabant B. A survey of system configura-
tion tools. In: Proceedings of the 23rd Large Installations Systems
Administration (LISA) Conference. Usenix association 2010; p.
1–14. https://​doi.​org/​10.​5555/​19249​76.​19249​77.

	17.	 Di Francesco P, Malavolta I, Lago P. Research on architecting micros-
ervices: trends, focus, and potential for industrial adoption. In: 2017
IEEE International Conference on software architecture (ICSA).
IEEE, 2017; p. 21–30. https://​doi.​org/​10.​1109/​ICSA.​2017.​24.

	18.	 Dikert K, Paasivaara M, Lassenius C. Challenges and success fac-
tors for large-scale agile transformations: a systematic literature
review. J Syst Softw. 2016;119:87–108.

	19.	 Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi
F, Mustafin R, Safina L. Microservices: yesterday, today, and
tomorrow. In: Mazzara M, Meyer B, editors. Present and ulterior
software engineering. Cham: Springer International Publishing;
2017. p. 195–216.

	20.	 Dragoni N, Lanese I, Larsen ST, Mazzara M, Mustafin R, Safina
L. Microservices: how to make your application scale. In:
Petrenko AK, Voronkov A, editors. Perspectives of system infor-
matics. Cham: Springer; 2018. p. 95–104.

	21.	 Ebert C, Gallardo G, Hernantes J, Serrano N. Devops. IEEE
Softw. 2016;33(3):94–100. https://​doi.​org/​10.​1109/​MS.​2016.​68.

	22.	 Ecma International. The JSON data interchange syntax. Standard
ECMA-404. Ecma International; 2017.

	23.	 Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G. Graph-
viz—open source graph drawing tools. In: Mutzel P, Jünger M,
Leipert S, editors. Graph drawing. Berlin: Springer Berlin Hei-
delberg; 2002. p. 483–4.

	24.	 Engel T, Langermeier M, Bauer B, Hofmann A. Evaluation of
microservice architectures: a metric and tool-based approach. In:
Mendling J, Mouratidis H, editors. Information systems in the big
data era. Cham: Springer; 2018. p. 74–89.

	25.	 Erl T. Service-oriented architecture (SOA): concepts, technology
and design. 1st ed. Philadelphia: Prentice Hall; 2005.

	26.	 Evans E. Domain-driven design. 1st ed. Boston: Addison-Wesley;
2004.

	27.	 Fielding RT. Architectural styles and the design of network-based
software architectures. Ph.D. thesis (2000)

	28.	 Francesco PD, Lago P, Malavolta I. Migrating towards micros-
ervice architectures: an industrial survey. In: 2018 IEEE Interna-
tional Conference on software architecture (ICSA). IEEE, 2018;
p. 29–38. https://​doi.​org/​10.​1109/​ICSA.​2018.​00012.

	29.	 Fritzsch J, Bogner J, Zimmermann A, Wagner S. From monolith
to microservices: a classification of refactoring approaches. In:
Bruel JM, Mazzara M, Meyer B, editors. Software engineering
aspects of continuous development and new paradigms of soft-
ware production and deployment. Cham: Springer International
Publishing; 2019. p. 128–41.

	30.	 Gosling J, Joy B, Steele G, Bracha G, Buckley A, Smith D. The
Java language specification: Java se 13 edition. Specification JSR-
388 Java SE 13, Oracle America, Inc. (2019)

	31.	 Granchelli G, Cardarelli M, Francesco PD, Malavolta I, Iovino L,
Salle AD. Towards recovering the software architecture of micros-
ervice-based systems. In: 2017 IEEE International Conference on
software architecture workshops (ICSAW). IEEE 2017; p. 46–53.
https://​doi.​org/​10.​1109/​ICSAW.​2017.​48.

	32.	 Haesen R, Snoeck M, Lemahieu W, Poelmans S. On the definition
of service granularity and its architectural impact. In: Bellahsène
Z, Léonard M, editors. Advanced information systems engineer-
ing. Berlin: Springer; 2008. p. 375–89.

	33.	 Haselböck S, Weinreich R, Buchgeher G. Decision models for
microservices: design areas, stakeholders, use cases, and require-
ments. In: Lopes A, de Lemos R, editors. Software architecture.
Cham: Springer; 2017. p. 155–70.

	34.	 Haselböck S, Weinreich R, Buchgeher G. An expert interview
study on areas of microservice design. In: 2018 IEEE 11th Con-
ference on service-oriented computing and applications (SOCA),
2018; p. 137–44. https://​doi.​org/​10.​1109/​SOCA.​2018.​00028.

	35.	 Haupt F, Leymann F, Scherer A, Vukojevic-Haupt K. A frame-
work for the structural analysis of REST APIs. In: 2017 IEEE
international conference on software architecture (ICSA).
Springer; 2017. p. 55–8. https://​doi.​org/​10.​1109/​ICSA.​2017.​40.

	36.	 Heaton J. Secondary analysis of qualitative data. In The SAGE
handbook of social research methods. Thousand Oaks: SAGE
Publications Ltd; 2008. p. 506–519. https://​doi.​org/​10.​4135/​97814​
46212​165.

	37.	 Hirzalla M, Cleland-Huang J, Arsanjani A. A metrics suite for
evaluating flexibility and complexity in service oriented architec-
tures. In: Feuerlicht G, Lamersdorf W, editors. Service-oriented
computing—ICSOC 2008 workshops. Berlin: Springer; 2009. p.
41–52.

	38.	 Hofmeister C, Kruchten P, Nord RL, Obbink H, Ran A, America
P. A general model of software architecture design derived from
five industrial approaches. J Syst Softw. 2007;80(1):106–26.

	39.	 ISO/IEC. Systems and software engineering—systems and soft-
ware quality requirements and evaluation (SQuaRE)— system
and software quality models. Standard ISO/IEC 25010:2011(E),
International Organization for Standardization/International Elec-
trotechnical Commission. 2011.

	40.	 ISO/IEC/IEEE. Systems and software engineering—architecture
description. Standard ISO/IEC/IEEE 42010:2011(E), Interna-
tional Organization for Standardization/ International Electro-
technical Commission/Institute of Electrical and Electronics
Engineers. 2011.

	41.	 Jézéquel JM, Combemale B, Derrien S, Guy C, Rajopadhye S.
Bridging the chasm between MDE and the world of compilation.
Softw Systl Model. 2012;11(4):581–97. https://​doi.​org/​10.​1007/​
s10270-​012-​0266-8.

	42.	 Johnson RE, Foote B. Designing reusable classes. J Object-Orient
Program. 1988;1(2):22–35.

	43.	 Jongeling R, Carlson J, Cicchetti A. In: Impediments to introduc-
ing continuous integration for model-based development in indus-
try. In: 2019 45th Euromicro Conference on software engineer-
ing and advanced applications (SEAA), IEEE, 2019; p. 434–41.
https://​doi.​org/​10.​1109/​SEAA.​2019.​00071.

	44.	 Kang H, Le M, Tao S. Container and microservice driven design
for cloud infrastructure DevOps. In: 2016 IEEE International Con-
ference on Cloud Engineering (IC2E). IEEE, 2016; p. 202–11.
https://​doi.​org/​10.​1109/​IC2E.​2016.​26.

	45.	 Knoche H, Hasselbring W. Drivers and barriers for microservice
adoption—a survey among professionals in Germany. Enterp
Model Inf Syst Arch. 2019;14(1):1–35.

	46.	 Kratzke N, Quint PC. Investigation of impacts on network per-
formance in the advance of a microservice design. In: Helfert M,
Ferguson D, Méndez Muñoz V, Cardoso J, editors. Cloud comput-
ing and services science. Cham: Springer; 2017. p. 187–208.

	47.	 Lano K, Kolahdouz-Rahimi S. Model-transformation design pat-
terns. IEEE Trans Softw Eng. 2014;40(12):1224–59.

	48.	 Ludewig J. Models in software engineering—an introduction.
Softw Syst Model. 2003;2(1):5–14. https://​doi.​org/​10.​1007/​
s10270-​003-​0020-3.

	49.	 Luz WP, Pinto G, Bonifácio R. In: Proceedings of the 12th ACM/
IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM ’18 Building a collaborative culture:
a grounded theory of well succeeded DevOps adoption in practice,
ACM, New York, NY, USA, 2018; p. 6:1–6:10. https://​doi.​org/​10.​
1145/​32392​35.​32402​99.

	50.	 Martini A, Pareto L, Bosch J. Communication factors for speed
and reuse in large-scale agile software development. In: Proceed-
ings of the 17th International Software Product Line Conference,

https://doi.org/10.5555/1924976.1924977
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/SOCA.2018.00028
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.4135/9781446212165
https://doi.org/10.4135/9781446212165
https://doi.org/10.1007/s10270-012-0266-8
https://doi.org/10.1007/s10270-012-0266-8
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/IC2E.2016.26
https://doi.org/10.1007/s10270-003-0020-3
https://doi.org/10.1007/s10270-003-0020-3
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299

SN Computer Science (2021) 2:459	 Page 25 of 25  459

SN Computer Science

SPLC ’13. Association for Computing Machinery, New York, NY,
USA, 2013; p. 42–51. https://​doi.​org/​10.​1145/​24916​27.​24916​42.

	51.	 Michail D, Kinable J, Naveh B, Sichi JV. JGraphT—a java library
for graph data structures and algorithms. ACM Trans Math Softw.
2020;46(2):1–29. https://​doi.​org/​10.​1145/​33814​49.

	52.	 Morris K. Infrastructure as code: managing servers in the cloud.
1st ed. Sebastopol: O'Reilly; 2016.

	53.	 Nadareishvili I, Mitra R, McLarty M, Amundsen M. Microservice
architecture: aligning principles, practices, and culture. 1st ed.
Sebastopol: O'Reilly; 2016.

	54.	 Newman S. Building microservices: designing fine-grained sys-
tems. 1st ed. Sebastopol: O'Reilly; 2015.

	55.	 OMG. OMG Unified Modeling Language (OMG UML) version
2.5.1. Standard formal/17-12-05, Object Management Group. 2017.

	56.	 OpenAPI Initiative. OpenAPI specification 3.0.3. 2020.
	57.	 Papazoglou MP. Web services: principles and technology. 1st ed.

London: Pearson Education; 2008.
	58.	 Peltonen S, Mezzalira L, Taibi D. Motivations, benefits, and issues

for adopting micro-frontends: a multivocal literature review. Inf
Softw Technol. 2021;136:106571. https://​doi.​org/​10.​1016/j.​infsof.​
2021.​106571. https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​
S0950​58492​10005​49.

	59.	 Rademacher F, Sachweh S, Zündorf A. Towards a UML profile for
domain-driven design of microservice architectures. In: Cerone
A, Roveri M, editors. Software engineering and formal methods.
Cham: Springer; 2018. p. 230–45.

	60.	 Rademacher F, Sachweh S, Zündorf A. Aspect-oriented modeling
of technology heterogeneity in microservice architecture. In: 2019
IEEE International Conference on software architecture (ICSA).
IEEE, 2019; p. 21–30. https://​doi.​org/​10.​1109/​ICSA.​2019.​00011.

	61.	 Rademacher F, Sachweh S, Zündorf A. Deriving microservice
code from underspecified domain models using DevOps-enabled
modeling languages and model transformations. In: 2020 46th
Euromicro Conference on software engineering and advanced
applications (SEAA). IEEE, 2020); p. 229–36. https://​doi.​org/​
10.​1109/​SEAA5​1224.​2020.​00047

	62.	 Rademacher F, Sachweh S, Zündorf A. A modeling method for
systematic architecture reconstruction of microservice-based
software systems. In: Nurcan S, Reinhartz-Berger I, Soffer P,
Zdravkovic J, editors. Enterprise: business-process and informa-
tion systems modeling. Berlin: Springer International Publishing;
2020. p. 311–26.

	63.	 Rademacher F, Sorgalla J, Wizenty P, Sachweh S, Zündorf A.
Graphical and textual model-driven microservice development. In:
Bucchiarone A, Dragoni N, Dustdar S, Lago P, Mazzara M, Rivera
V, Sadovykh A, editors. Microservices: science and engineering.
Berlin: Springer; 2020. p. 147–79.

	64.	 Richards M. Microservices vs. service-oriented architecture. 1st
ed. Newton: O'Reilly; 2016.

	65.	 Riungu-Kalliosaari L, Mäkinen S, Lwakatare LE, Tiihonen J,
Männistö T. DevOps adoption benefits and challenges in practice:
a case study. In: Abrahamsson P, Jedlitschka A, Nguyen Duc A,
Felderer M, Amasaki S, Mikkonen T, editors. Product-focused
software process improvement. Cham: Springer; 2016. p. 590–7.

	66.	 Scaled Agile, Inc. Achieving business agility with safeⓇ 5.0.
2019.

	67.	 Schermann G, Cito J, Leitner P. All the services large and micro:
revisiting industrial practice in services computing. In: Norta A,
Gaaloul W, Gangadharan GR, Dam HK, editors. Service-oriented
computing–ICSOC 2015 workshops. Berlin: Springer; 2016. p.
36–47.

	68.	 Schwaber K, Beedle M. Agile software development with scrum,
vol. 1. Upper Saddle River: Prentice Hall; 2002.

	69.	 Shah J, Dubaria D. Building modern clouds: using docker,
kubernetes & google cloud platform. In: 2019 IEEE 9th Annual

Computing and Communication Workshop and Conference
(CCWC). IEEE, 2019; p. 0184–0189. https://​doi.​org/​10.​1109/​
CCWC.​2019.​86664​79.

	70.	 Shull F, Singer J, Sjøberg DIK, editors. Guide to advanced empiri-
cal software engineering. London: Springer; 2008. https://​doi.​org/​
10.​1007/​978-1-​84800-​044-5.

	71.	 Smite D, Moe NB, Levinta G, Floryan M. Spotify guilds: how to
succeed with knowledge sharing in large-scale agile organizations.
IEEE Softw. 2019;36(2):51–7.

	72.	 Sobernig S, Zdun U. Inversion-of-control layer. In: Proceedings of
the 15th European Conference on Pattern Languages of Programs,
EuroPLoP ’10. ACM, New York, NY, USA; 2010, p. 1–22. https://​
doi.​org/​10.​1145/​23289​09.​23289​35.

	73.	 Soldani J, Tamburri DA, Heuvel WJVD. The pains and gains of
microservices: a systematic grey literature review. J Syst Sofw.
2018;146:215–32. https://​doi.​org/​10.​1016/j.​jss.​2018.​09.​082.
http://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0164​12121​
83021​39.

	74.	 Soliman M, Riebisch M, Zdun U. Enriching architecture knowl-
edge with technology design decisions. In: 2015 12th Working
IEEE/IFIP Conference on software architecture. IEEE, 2015; p.
135–144. https://​doi.​org/​10.​1109/​WICSA.​2015.​14.

	75.	 Sorgalla J, Sachweh S, Zündorf A. Exploring the microservice
development process in small and medium-sized organizations. In:
Morisio M, Torchiano M, Jedlitschka A, editors. Product-focused
software process improvement. Cham: Springer International Pub-
lishing; 2020. p. 453–60.

	76.	 Stocker M, Zimmermann O, Lübke D, Zdun U, Pautasso C. Inter-
face quality patterns—communicating and improving the quality
of microservices apis. In: 23rd European Conference on pattern
languages of programs 2018 (2018). https://​doi.​org/​10.​1145/​
32823​08.​32823​19. http://​eprin​ts.​cs.​univie.​ac.​at/​5661/.

	77.	 Sutherland J. The scrum@scale guide version, vol. 2. 2020.
	78.	 Taibi D, Lenarduzzi V. On the definition of microservice bad

smells. IEEE Softw. 2018;35(3):56–62. https://​doi.​org/​10.​1109/​
MS.​2018.​21410​31.

	79.	 Taibi D, Lenarduzzi V, Pahl C. Processes, motivations, and issues
for migrating to microservices architectures: an empirical investi-
gation. IEEE Cloud Computing. 2017;4(5):22–32. https://​doi.​org/​
10.​1109/​MCC.​2017.​42509​31.

	80.	 Taibi D, Lenarduzzi V, Pahl C. Continuous architecting with
microservices and DevOps: a systematic mapping study. In:
Muñoz VM, Ferguson D, Helfert M, Pahl C, editors. Cloud com-
puting and services science. Cham: Springer; 2019. p. 126–51.

	81.	 Taibi D, Lenarduzzi V, Pahl C. Microservices anti-patterns: a tax-
onomy. Cham: Springer; 2020. p. 111–28.

	82.	 Terzić B, Dimitrieski V, Kordić S, Milosavljević G, Luković I.
Development and evaluation of MicroBuilder: a model-driven tool
for the specification of REST microservice software architectures.
Enterp Inf Syst. 2018;12(8–9):1034–57. https://​doi.​org/​10.​1080/​
17517​575.​2018.​14607​66.

	83.	 Wurster M, Breitenbücher U, Falkenthal M, Krieger C, Leymann
F, Saatkamp K, Soldani J. The essential deployment metamodel:
a systematic review of deployment automation technologies. SICS
Softw-Intensive Cyber-Phys Syst. 2020;35(1):63–75.

	84.	 Yin RK. Case study research and applications: design and meth-
ods. 6th ed. Thousand Oaks: SAGE Publications; 2017.

	85.	 Zimmermann O. Microservices tenets. Comput Sci Res
Dev. 2017;32(3–4):301–10. https:// ​doi. ​org/​10.​1007/​
s00450-​016-​0337-0.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2491627.2491642
https://doi.org/10.1145/3381449
https://doi.org/10.1016/j.infsof.2021.106571
https://doi.org/10.1016/j.infsof.2021.106571
https://www.sciencedirect.com/science/article/pii/S0950584921000549
https://www.sciencedirect.com/science/article/pii/S0950584921000549
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/CCWC.2019.8666479
https://doi.org/10.1109/CCWC.2019.8666479
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1145/2328909.2328935
https://doi.org/10.1145/2328909.2328935
https://doi.org/10.1016/j.jss.2018.09.082
http://www.sciencedirect.com/science/article/pii/S0164121218302139
http://www.sciencedirect.com/science/article/pii/S0164121218302139
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1145/3282308.3282319
https://doi.org/10.1145/3282308.3282319
http://eprints.cs.univie.ac.at/5661/
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

	Applying Model-Driven Engineering to Stimulate the Adoption of DevOps Processes in Small and Medium-Sized Development Organizations
	Abstract
	Introduction
	Background
	General
	Design Stage
	Development Stage
	Operation Stage
	Organizational Aspects

	Language Ecosystem for Modeling Microservice Architecture
	Microservice Architecture Model Construction
	Microservice Architecture Model Processing

	DevOps-Related Challenges in Microservice Architecture Engineering of SMOs
	Study Design
	Dataset
	Analytical Procedure
	Study Results and Challenges
	CA1: Developing, Communicating, and Stabilizing a Common Architectural Understanding
	CA2: Complexity of Deployment Techniques and Tools

	Case Study
	A Model-Driven Workflow for Coping with DevOps-Related Challenges in Microservice Architecture Engineering
	LEMMA-Based Workflow for Coping with DevOps Challenges
	Derivation of Microservice Models from API Documentations
	Assembling a Common Architecture Model from Distributed Microservice Models
	Visualization of Microservice Architecture Models
	Enhancing Distributed Microservice Models with Deployment Infrastructure Models
	Generating Code from Distributed Deployment Infrastructure Models

	Validation
	Discussion
	Related Work
	Conclusion and Future Work
	References

