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Abstract
Microservice architecture (MSA) denotes an increasingly popular architectural style in which business capabilities are 
wrapped into autonomously developable and deployable software components called microservices. Microservice applica-
tions are developed by multiple DevOps teams each owning one or more services. In this article, we explore the state of 
how DevOps teams in small and medium-sized organizations (SMOs) cope with MSA and how they can be supported. We 
show through a secondary analysis of an exploratory interview study comprising six cases, that the organizational and tech-
nological complexity resulting from MSA poses particular challenges for small and medium-sized organizations (SMOs). 
We apply model-driven engineering to address these challenges. As results of the second analysis, we identify the challenge 
areas of building and maintaining a common architectural understanding, and dealing with deployment technologies. To 
support DevOps teams of SMOs in coping with these challenges, we present a model-driven workflow based on LEMMA—
the Language Ecosystem for Modeling Microservice Architecture. To implement the workflow, we extend LEMMA with 
the functionality to (i) generate models from API documentation; (ii) reference remote models owned by other teams; (iii) 
generate deployment specifications; and (iv) generate a visual representation of the overall architecture. We validate the 
model-driven workflow and our extensions to LEMMA through a case study showing that the added functionality to LEMMA 
can bring efficiency gains for DevOps teams. To develop best practices for applying our workflow to maximize efficiency in 
SMOs, we plan to conduct more empirical research in the field in the future.

Keywords  DevOps · Microservice architecture · Development process · Model-driven engineering

Introduction

Microservice architecture (MSA) is a novel architectural 
style for service-based software systems with a strong focus 
on loose functional, technical, and organizational coupling 
of services [54]. In a microservice architecture, services 
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are tailored to distinct business capabilities and executed as 
independent processes. The adoption of MSA is expected 
to increase an application’s scalability, maintainability, and 
reliability [54]. It is frequently employed to decompose mon-
olithic applications for which such quality attributes are of 
critical scale [9].

MSA fosters the adoption of DevOps practices, because 
it promotes to (i) bundle microservices in self-contained 
deployment units for continuous delivery; and (ii) delegate 
responsibility for a microservice to a single team being 
composed of members with heterogeneous professional 
backgrounds [4, 53]. Conway’s Law [15] is a determining 
factor in DevOps-based MSA engineering. It states that the 
communication structure of a system reflects the structure 
of its development organization. Thus, to achieve loose cou-
pling and autonomy of microservices, it is also crucial to 
divide the responsibility for microservices’ development and 
deployment between autonomous DevOps teams [53]. As a 
result, MSA engineering leads to a distributed development 
process, in which several teams create coherent services of 
the same software system in parallel.

While various larger enterprises like Netflix,1 Spotify,2 or 
Zalando3 regularly report about their successful adoption of 
MSA, there are only a small number of experience reports 
(e.g., [12]) about how microservices combined with DevOps 
can be successfully implemented in small and medium-sized 
development organizations (SMOs) with less than 100 devel-
opers involved. Such SMOs typically do not have sufficient 
resources to directly apply large-scale process models such 
as Scrum at Scale [14, 77] in terms of employees, knowl-
edge, and experience.

To support SMOs in bridging the gap between available 
resources and required effort for a successful adoption of 
DevOps-based MSA engineering, we (i) investigate the 
characteristics of small- and medium-scale microservice 
development processes; and (ii) propose means to reduce 
complexity and increase productivity in DevOps-based 
MSA engineering within SMOs. More precisely, the con-
tributions of our article are threefold. First, we identify 
challenges of SMOs in DevOps-based MSA engineering by 
analyzing a data set of an exploratory qualitative study and 
linking it with existing empirical knowledge. Second, we 
employ model-driven engineering (MDE) [13] to introduce 
a workflow for coping with the previously identified chal-
lenges in DevOps-based MSA engineering for SMOs. Third, 
we present and validate extensions to LEMMA (Language 
Ecosystem for Modeling Microservice Architecture), which 
is a set of Eclipse-based modeling languages and model 

transformations for MSA engineering [63] enabling sophis-
ticated modeling support for the workflow.

The remainder of this article is organized as follows. In 
Section “Background”, we describe in detail the micros-
ervice architecture style particularly related to the design, 
development, and operation stages. In addition, we explain 
organizational aspects that result from the use of microser-
vices. Section “Language Ecosystem for Modeling Micros-
ervice Architecture” illustrates LEMMA as a set of mod-
eling languages and tools that address the MDE of MSA. 
In Section “DevOps-Related Challenges in Microservice 
Architecture Engineering of SMOs”, we analyze a dataset 
based on an exploratory interview study in SMOs to identify 
challenging areas in engineering MSA for DevOps teams in 
SMOs. Based on these challenge areas, we present a model-
driven workflow in Section “A Model-Driven Workflow 
for Coping with DevOps-Related Challenges in Microser-
vice Architecture Engineering and describe the extensions 
of LEMMA to support the workflow. In this regard, Sec-
tion “Derivation of Microservice Models from API Docu-
mentations”” present means to derive LEMMA models 
from API documentation, Section “Assembling a Common 
Architecture Model from Distributed Microservice Models” 
presents extensions to the LEMMA languages to assemble 
individual microservice models, Section “Visualization of 
Microservice Architecture Models” describes additions to 
create a visual representation of microservice models, Sec-
tion 6.5 presents means to specify deployment infrastructure, 
and Section “Generating Code From Distributed Deploy-
ment Infrastructure Models” elaborates on the ability to 
generate infrastructure code. We validate our contributions 
to LEMMA in Section “Validation”. Section “Discussion” 
discusses the model-driven workflow and LEMMA compo-
nents towards the application in DevOps teams of SMOs. 
We present related research in Section “Related Work”. The 
article ends with a conclusion and outlook on future work in 
Section “Conclusion and Future Work”.

Background

This section provides background on the MSA approach and 
its relation towards the DevOps paradigm. It details spe-
cial characteristics in the design, development, operation, 
and organization of microservice architectures and their 
realization.

General

MSA is a novel approach towards the design, development, 
and operation of service-based software systems [54]. There-
fore, MSA promotes to decompose the architecture of com-
plex software systems into services, i.e., loosely coupled 

1  https://​netfl​ix.​github.​io.
2  https://​labs.​spoti​fy.​com.
3  https://​opens​ource.​zalan​do.​com.

https://netflix.github.io
https://labs.spotify.com
https://opensource.zalando.com
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software components that interact by means of predefined 
interfaces and are composable to synergistically realize 
coarse-grained business logic [25].

Compared to other approaches for architecting service-
based software systems, e.g., SOA [25], MSA puts a strong 
emphasis on service-specific independence. This independ-
ence distinguishes MSA from other approaches w.r.t. the 
following features [53, 54, 64]:

–	 Each microservice in a microservice architecture focuses 
on the provisioning of a single distinct capability for 
functional or infrastructure purposes.

–	 A microservice is independent from all other architecture 
components regarding its implementation, data manage-
ment, testing, deployment, and operation.

–	 A microservice is fully responsible for all aspects related 
to its interaction with other architecture components, 
ranging from the determination of communication proto-
cols over data and format conversions to failure handling.

–	 Exactly one team is responsible for a microservice and 
has full accountability for its services’ design, develop-
ment, and deployment.

Starting from the above features, the adoption of MSA may 
introduce increases in quality attributes [39] such as (i) scal-
ability, as it is possible to purposefully run new instances 
of microservices covering strongly demanded functionality; 
(ii) maintainability, as microservices are seamlessly replace-
able with alternative implementations; and (iii) reliability, 
as it delegates responsibility for robustness and resilience 
to microservices [19, 20, 54]. Additionally, MSA fosters 
DevOps and agile development, because its single-team 
ownership calls for heterogeneous team composition and 
microservices’ constrained scope fosters their evolvabil-
ity [17, 80].

Despite its potential for positively impacting the afore-
mentioned features of a software architecture and its imple-
mentation, MSA also introduces complexity both to devel-
opment processes and operation [17, 73, 79]. Consequently, 
practitioners in SMOs perceive the successful adoption of 
MSA as complex [9]. Challenges that must be addressed in 
MSA adoption are spread across all stages in the engineer-
ing process, and thus concern the design of the architecture, 
its development and operation. Furthermore, MSA imposes 
additional demands on the organization of the engineering 
process.

Design Stage

A frequent design challenge in MSA engineering concerns 
the decomposition of an application domain into micros-
ervices, each with a suitable functional granularity  [32, 
73]. Too coarse-grained microservice capabilities neglect 

the aforementioned benefits of MSA in terms of service-
specific independence. Too fine-grained microservices, on 
the other hand, may require an inefficiently high amount 
of communication and thus network traffic at runtime [46]. 
Although there exist approaches such as Domain-driven 
Design (DDD) [26] to support in the systematic decompo-
sition and granularity determination of a microservice archi-
tecture [54], their perceived complexity hampers widespread 
adoption in practice [9, 28].

An additional specific in microservice design stems from 
MSA’s omission of explicit service contracts [57]. By con-
trast to SOA, MSA considers the API of a microservice its 
implicit contract [85], thereby delegating concerns in API 
management, e.g., API versioning to microservices [73]. 
Consequently, microservices must ensure their compat-
ibility with possible consumers and also inform them about 
possible interaction requirements. Furthermore, implicit 
microservice contracts foster ad hoc communication, which 
increases runtime complexity and the occurrence of cyclic 
interaction relationships [78].

Development Stage

By contrast to monolithic applications, which rely on a holis-
tic, yet vendor-dependent technology stack [19], micros-
ervice architectures foster technology heterogeneity [54]. 
Specifically, due to the increase in service-specific inde-
pendence, each microservice may employ those technologies 
that best fit a certain capability. Typical technology vari-
ation points [60] comprise programming languages, data-
bases, communication protocols, and data formats. However, 
technology heterogeneity imposes a greater risk for techni-
cal debt, additional maintainability costs, and steeper learn-
ing curves, particularly for new members of a microservice 
team [78].

Operation Stage

MSA usually requires a sophisticated deployment and opera-
tion infrastructure consisting of, e.g., continuous delivery 
systems, a basic container technology and orchestration 
platform, to cope with MSA’s emphasis of maintainability 
and reliability [80]. In addition, microservices often rely 
on further infrastructure components such as service dis-
coveries, API gateways, or monitoring solutions [5], which 
lead to additional administration and maintenance effort. 
Consequently, microservice operation involves a variety 
of different technical components, thereby resulting in a 
significant complexity increase compared to monolithic 
applications [73].

Furthermore, technology heterogeneity also concerns 
microservice operation w.r.t. technology variation points like 
deployment and infrastructure technologies [60]. Particularly 
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the latter also involve independent decision-making by 
microservice teams. For example, there exist infrastructure 
technologies, e.g., to increase performance or resilience, 
which directly focus on a microservice [5]. Hence, teams 
are basically free to decide for suitable solutions based on 
different criteria such as compatibility with existing micros-
ervice implementations or available experience.

Organizational Aspects

The use of MSA requires a compatible organizational struc-
ture, i.e., following Conway’s law, a structure that corre-
sponds to the communication principle of microservices. 
This results in the necessity of using separate teams, each 
of which is fully responsible for one or more services (cf. 
Section “General”). The requirement that a team should 
cover the entire software lifecycle of its microservices auto-
matically leads to the need for cross-functional teams. To 
ensure collaboration between teams, large companies such 
as Netflix or Spotify usually use established large-scale 
agile process models [18], e.g., the Scaled Agile Framework 
(SAFe) [66], Scrum at Scale [77], or the Spotify Model [71]. 
Establishing such a form of organization and to establish 
organizational alignment may require upfront efforts [54].

Thus, MSA fosters DevOps practices, which can result 
in lowered cost and accelerate the pace of product incre-
ments [53]. To this end, it is critical to foster a collaborative 
culture within and across teams to promote integration and 
collaboration among team members with different profes-
sional backgrounds [49].

A key enabler of a collaborative culture is the extensive 
automation of manual tasks to prevent the manifestation of 
inter-team and extra-team silos [49]. Specifically, it relieves 
people from personal accountability for a task and may thus 
help in reducing existing animosities of team members with 
different professional backgrounds [45].

Another pillar of a collaborative culture is knowledge 
sharing following established formats and guidelines [49]. 
It aims to mitigate the occurrence of insufficient commu-
nication, which can be an impediment in both MSA and 
DevOps [17, 65].

Language Ecosystem for Modeling 
Microservice Architecture

In our previous works we developed LEMMA [60, 63]. 
LEMMA is a set of Eclipse-based modeling languages and 
model transformations that aims to mitigate the challenges 
in MSA engineering (cf. Section “Background”) by means 
of Model-driven Engineering (MDE) [13].

To this end, LEMMA refers to the notion of architecture 
viewpoint [40] to support stakeholders in MSA engineer-
ing in organizing and expressing their concerns towards a 
microservice architecture under development. More specif-
ically, LEMMA clusters four viewpoints on microservice 
architectures. Each viewpoint targets at least one stakeholder 
group in MSA engineering, and comprises one or more 
stakeholder-oriented modeling languages.

The modeling languages enable the construction of 
microservice architecture models and their composition by 
means of an import mechanism. As a result, LEMMA allows 
reasoning about coherent parts of a microservice architec-
ture [40], e.g., to assess quality attributes and technical debt 
of microservices [62] or perform DevOps-oriented code 
generation [61].

The following paragraphs summarize LEMMA’s 
approach to microservice architecture model construction 
and processing.

Microservice Architecture Model Construction

Figure 1 provides an overview of LEMMA’s modeling lan-
guages, their compositional dependencies and the addressed 
stakeholders in MSA engineering.

LEMMA’s Domain Data Modeling Language [63] allows 
model construction in the context of the domain viewpoint 
on a microservice architecture. Therefore, it addresses the 
concerns of domain experts and microservice develop-
ers. First, the language aims to mitigate the complexity of 
DDD (cf. Section “Background”) by defining a minimal set 
of modeling concepts for the construction of domain con-
cepts, i.e., data structures and list types, and the assignment 
of DDD patterns, e.g., Entity or Value Object [26]. Addi-
tionally, it integrates validations to ensure the semantically 

Fig. 1   Overview of LEMMA’s 
modeling languages, their 
compositional dependencies and 
addressed stakeholders. Arrow 
semantics follow those of UML 
for dependency specifica-
tions [55]



SN Computer Science (2021) 2:459	 Page 5 of 25  459

SN Computer Science

correct usage of the patterns. Second, the language consid-
ers underspecification in DDD-based domain model con-
struction [59], thereby facilitating model construction for 
domain experts. However, microservice developers may later 
resolve underspecification to enable automated model pro-
cessing [61]. All other LEMMA modeling languages depend 
on the Domain Data Modeling Language (cf. Fig. 1) because 
it provides them with a Java-aligned type system [63] given 
Java’s predominance in service programming [9, 67].

LEMMA’s Service Modeling Language [63] addresses 
the concerns of microservice developers (cf. Fig. 1) in the 
service viewpoint on a microservice architecture. One goal 
of the Service Modeling Language is to make the APIs of 
microservices explicit (cf. Section “Background”) but keep-
ing their definition as concise as possible based on built-in 
language primitives. That is, the language provides devel-
opers with targeted modeling concepts for the definition of 
microservices, their interfaces, operations and endpoints. 
LEMMA service models may import LEMMA domain 
models to identify the responsibility of a microservice for 
a certain portion of the application domain [54] and type 
operation parameters with domain concepts.

LEMMA’s Technology Modeling Language [60] consid-
ers technology to constitute a dedicated architecture view-
point [38] that frames the concerns of technology-savvy 
stakeholders in MSA engineering, i.e., microservice devel-
opers and operators (cf. Fig. 1). The Technology Modeling 
Language enables those stakeholder groups to construct and 
apply technology models. A LEMMA technology model 
modularizes information targeting a certain technology rel-
evant to microservice development and operation, e.g., pro-
gramming languages, software frameworks, or deployment 
technologies. Furthermore, it integrates a generic metadata 
mechanism based on technology aspects [60]. Technology 
aspects may, for example, cover annotations of software 
frameworks. LEMMA service and operation models depend 
on LEMMA technology models (cf. Fig. 1) and import them 
to apply the contained technology information to, e.g., mod-
eled microservices and containers. In particular, LEMMA’s 
Technology Modeling Language aims to cope with technol-
ogy heterogeneity in MSA engineering (cf. Section “Back-
ground”) by making technology decisions explicit [74].

LEMMA’s Operation Modeling Language [63] addresses 
the concerns of microservice operators (cf. Fig. 1) w.r.t. the 
operation viewpoint in MSA engineering. To this end, the 
language integrates primitives for the concise modeling of 
microservice containers, infrastructure nodes, and technol-
ogy-specific configuration. To model the deployment of 
microservices, LEMMA operation models import LEMMA 
service models and assign modeled microservices to con-
tainers. Additionally, it is possible to express the depend-
ency of containers on infrastructure nodes such as service 
discoveries or API gateways [5]. By providing microservice 

operators with a dedicated modeling language we aim 
to cope with operation challenges in MSA engineering 
(cf. Section “Background”). First, the Operation Modeling 
Language defines a unified syntax for the modeling of het-
erogeneous operation nodes of a microservice architecture. 
Second, it is flexibly extensible with support for operation 
technologies, e.g., for microservice monitoring or security, 
leveraging LEMMA technology models (cf. Fig. 1). Third, 
operation models may import other operation models, e.g., 
to compose the models of different microservice teams to 
centralize specification and maintenance of shared infra-
structure components such as service discoveries and API 
gateways.

Microservice Architecture Model Processing

LEMMA relies on the notion of intermediate model rep-
resentation [41] to facilitate the processing of constructed 
models. To this end, LEMMA integrates a set of interme-
diate metamodels and intermediate model transformations. 
The intermediate metamodels define the concepts to which 
the elements of an intermediate model for a LEMMA model 
conform. An intermediate model transformation is then 
responsible for the automated derivation of an intermediate 
model from a given input LEMMA model.

This approach to model processing yields several ben-
efits. First, intermediate metamodels decouple modeling 
languages from model processors. Consequently, languages 
can evolve independently from processors as long as the 
intermediate metamodels remain stable. For example, it 
becomes possible to introduce syntactic sugar in the form 
of additional shorthand notations for language constructs. 
Second, intermediate metamodels enable to incorporate 
language semantics into intermediate models so that model 
processors need not anticipate them. For instance, LEMMA 
allows modeling of default protocols for communication 
types within technology models. In case a service model 
does not explicitly determine a protocol, e.g., for a microser-
vice, the default protocol of the service’s technology model 
applies implicitly. The intermediate transformation, which 
converts a service model into its intermediate representation, 
makes the default protocol explicit. Thus, model processors 
can directly rely on this information and need not determine 
the effective protocol for a microservice themselves.

Next to intermediate model representations, LEMMA 
also provides a model processing framework,4 which facili-
tates the implementation of Java-based model processors, 
e.g., for microservice developers without a strong back-
ground in MDE. To this end, the framework leverages the 

4  https://​github.​com/​Seela​bFhdo/​lemma/​tree/​master/​de.​fhdo.​lemma.​
model_​proce​ssing.

https://github.com/SeelabFhdo/lemma/tree/master/de.fhdo.lemma.model_processing
https://github.com/SeelabFhdo/lemma/tree/master/de.fhdo.lemma.model_processing
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Inversion of Control (IoC) design approach [42], and its 
realization based on the Abstract Class pattern [72] and Java 
annotations [30]. In addition, the framework implements 
the Phased Construction model transformation design pat-
tern [47]. That is, the framework consists of several phases 
including phases for model validation and code generation. 
To implement a phase as part of a model processor, develop-
ers need to provide an implementation of a corresponding 
abstract framework class, e.g., AbstractCodeGener-
ationModule, and augment the implementation with a 
phase-specific annotation, e.g., @CodeGenerationMod-
ule. At runtime, model processors pass control over the 
program flow to the framework. The framework will then 
(i) parse all given intermediate LEMMA models; (ii) trans-
form them into object graphs, which abstract from a concrete 
modeling technology; and (iii) invoke the processor-specific 
phase implementations with the object graphs. As a result, 
the added complexities of MDE w.r.t. model parsing and 
the construction of Abstract Syntax Trees as instantiations 
of language metamodels [13] remain opaque for model pro-
cessor developers. Moreover, LEMMA’s model processing 
framework provides means to develop model processors as 
standalone executable Java applications. This characteristic 
is crucial for the integration of model processors into con-
tinuous integration pipelines [43], which constitute a com-
ponent in DevOps-based MSA engineering [6, 9].

Figure 2 illustrates the interplay of intermediate model 
transformations, and the implementation and execution of 
model processors with LEMMA.

Figure 2 comprises two compartments.

The first compartment shows the structure of intermediate 
model transformations with LEMMA based on the exam-
ple of a service model constructed with LEMMA’s Service 
Modeling Language. The service model imports a variety 
of domain models and technology models constructed with 
LEMMA’s Domain Data Modeling Language and Technol-
ogy Modeling Language, respectively. As a preparatory 
step, the service model is transformed into its intermediate 
representation by means of LEMMA’s Intermediate Service 
Model Transformation. Similarly, each imported domain 
model is transformed into a corresponding intermediate 
domain model leveraging LEMMA’s Intermediate Domain 
Model Transformation. To this end, the transformation algo-
rithm restores the existing import relationships between 
service models and domain models for their derived inter-
mediate representations. However, the algorithm does not 
invoke intermediate transformations on technology models 
imported by service models. Instead, the applied technology 
information becomes part of intermediate service models so 
that model processors can directly access them. Therefore, 
LEMMA treats technology models and model processors 
as conceptual unities. A model processor for a certain tech-
nology must be aware of the semantics of the elements in 
its technology model and be capable in interpreting their 
application, e.g., within service models.

The second compartment of Fig. 2 concerns model pro-
cessing. A LEMMA model processor constitutes an imple-
mentation conform to LEMMA’s model processing frame-
work, which thus provides the processor with capabilities for 
model parsing and phase-oriented model processing. Typical 

Fig. 2   Example for the interplay 
of LEMMA’s intermediate 
model transformations and 
model processors based on its 
model processing framework
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results from processing service models comprise (i) executa-
ble microservice code; (ii) shareable API specifications, e.g., 
based on OpenAPI;5 (iii) event schemata, e.g., for Apache 
Avro;6 and (iv) measures of static complexity and cohesion 
metrics applicable to MSA [3, 8, 24, 35, 37].

DevOps‑Related Challenges in Microservice 
Architecture Engineering of SMOs

In this section, we present an empirical analysis of micros-
ervice development processes (cf. Section “Organizational 
Aspects”) in SMOs with the goal of identifying SMO-spe-
cific challenges in microservice engineering. For this pur-
pose, we perform a secondary analysis [36] of transcribed 
qualitative interviews from one of our previous works [75]. 
Our analytical procedure specifically aims to identify chal-
lenges and obstacles during the development process.

Study Design

The study from which the dataset emerged is a compara-
tive multi-case study [84]. The aim of the study was to 
gain exploratory insights into the development processes 
of SMOs. To this end, in-depth interviews were conducted 
on-site in 2019 with five software architects, each from a 
different company, and afterwards transcribed. The inter-
views were conducted in a semi-structured manner and 
covered the areas of (i) applied development process; (ii) 
daily routines; (iii) meeting formats; (iv) tools; (v) documen-
tation; and (vi) knowledge management. Participants were 
recruited from existing contacts of our research group to 
SMOs. Furthermore, we constrained participant selection 
to the professional level or senior software architects, and 
SMOs that develop microservice systems with equal or less 
than 100 people.

Dataset

As depicted in Table 1, the dataset includes transcripts and 
derived paraphrases covering six different cases (Column C) 
of microservice development processes in SMOs. In total, 
we conducted five in-depth interviews (Column I) with soft-
ware architects whereby I4 covered two cases.

As shown in Table 1, we distinguish the cases into green-
field (new development from scratch), templated greenfield 
(new development based on legacy system), and migra-
tion (transformation of a monolithic legacy system into an 
MSA-based system) (Column Type). We further categorize 
each development process by the domain of the micros-
ervice application under development (Column Domain). 
The number of microservices present in the application 
at the time of the interview (Column #Services), number 
of people (Column #Ppl) and teams (Column #Teams) 
involved vary depending on the case. Case 3 is a special 
case. Although there are only two official teams, short-term 
teams are formed depending on the scope of customization 
needed per customer. This results in up to five teams work-
ing on the application simultaneously at certain points in 
time. In all cases the interviewees stated to apply the Scrum 
framework [68] for internal team organization. By contrast, 
the collaboration across teams was in all cases not follow-
ing a particular formal methodology or model (cf. Sec-
tion “Organizational Aspects”). In addition, all interviewees 
reported that they strive for a DevOps culture [21] in their 
SMOs. A detailed description of the cases can be found in 
our previous work [75].

Analytical Procedure

For the analysis of the dataset, we used the Constant Com-
parison method [70]. That is, we rescreened existing para-
phrases and marked challenges and/or solutions that our 
interviewees told us about with corresponding codes for 
challenges, obstacles, and solutions. We then used the coded 
statements across all cases to combine similar statements to 
higher-level challenges.

Table 1   Overview of explored 
SMO cases [75]

C I Type Domain #Services #Ppl #Teams

C1 I1 Templated Greenfield Public Administration 60 ≈ 30 5
C2 I2 Migration B2B E-Commerce 8 10 3
C3 I3 Greenfield IoT 18 28 2 (up to 5)
C4 I4 Migration B2B E-Commerce 34 ≈ 10 2
C5 Migration B2C E-Commerce 8 ≈ 10 2
C6 I5 Templated Greenfield Logistics 15−20 75 ≈ 10

5  http://​spec.​opena​pis.​org/​oas/​v3.1.0.
6  https://​avro.​apache.​org.

http://spec.openapis.org/oas/v3.1.0
https://avro.apache.org
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Study Results and Challenges

Our analysis of the dataset resulted in the discovery of sev-
eral common challenges across all cases. Comparable to 
other empirical studies, e.g., [81] or [34], our participants 
reported about the high technical complexity and high 
training effort during a microservice development process 
compared to a monolithic approach. Other discovered chal-
lenges in line with existing literature, e.g., [29], concern 
the slicing of the business domain into individual micros-
ervices and the most suitable granularity of a microservice 
(cf. Section “Background”).

In the following, we elaborate on two challenge areas 
(CA) which we found to be of particular concern for SMOs 
adopting a DevOps culture in more detail.

CA1: Developing, Communicating, and Stabilizing 
a Common Architectural Understanding

Developing a common architectural understanding of the 
architecture components of an application is essential for 
developing a software in an organization which follows the 
DevOps paradigm [6]. In particular, this includes an under-
standing of the goals and communication relationships of 
architecture components. The interviewees also think that 
the development of a general understanding of architecture 
among those involved in development is an important pre-
requisite for granting teams autonomy and trust.

For cases C2, C4 and C5 (cf. Table 1), which each com-
prise approx. ten people and two to three teams, the prac-
tices to achieve this understanding are Scrum Dailies [68] 
and regular developer meetings about the current status of 
the architecture. However, in case of more involved people, 
achieving a common understanding is reported to be very 
challenging. For cases C1, C3, and C6, the system develop-
ment initially started with fewer people, and as the software 
product became successful, more people and teams were 
added. Regarding this development and the common archi-
tectural understanding I1 states that “From one agile team 
to multiple agile teams is a huge leap, you have to regularly 
adapt and question the organization. [...] you need a com-
mon understanding of the architecture and a shared vision 
of where we want to go [...], we are working on that every 
day and I don’t think we’ll ever be done.”

A strategy that we observed to create this common 
architectural understanding in C1, C3, and C6 is the crea-
tion of new meeting formats. However, a contradicting key 
aspect of the DevOps culture is to minimize coordination 
across teams as much as possible [6]. The arising problem 
is also experienced by our interviewees. The more people 
and teams involved in exchanging knowledge to develop an 
architectural understanding, the more time-consuming the 
exchange becomes. In the case of C6, this has led to the 

discontinuation of comprehensive knowledge exchanges due 
to the excessive time involved. They now only meet on the 
cross-team level to discuss technologies, e.g., a particular 
authentication framework or a new programming language. 
We interpret this development as a step towards the intro-
duction of horizontal knowledge exchange formats such as 
Guilds in the Spotify Model [71]. As a result, C6 is currently 
challenged with building a common understanding of the 
architecture only through these technology-focused discus-
sions. This is a problem area that is also evident in the data 
of other empirical studies. For example, Bogner et al. [9] 
report on the creation of numerous development guidelines 
by a large development organization to enforce a common 
architectural understanding. However, the development of 
guidelines requires that architecture decisions, technology 
choices, and use cases are documented [33], a practice we 
encountered only at C4 and C5.

In terms of technical documentation, the teams in all six 
cases use Swagger to document the microservices’ APIs. 
Other documentation, such as a wiki system or UML dia-
grams, either is not used or not kept up to date. In almost all 
cases, access to the API documentation is not regulated cen-
trally, but is instead provided by the respective team through 
explicit requests, e.g., by e-mail. Only C3 has extensive and 
organization-wide technical documentation as it is described 
by I3: “Swagger is a good tool, but of course this is not com-
pletely sufficient, which is why we have an area where the 
entire concept of the IT platform [...] is explained. We also 
have a few tutorials.”

Summarizing CA1, we suspect that SMOs are particu-
larly affected by the challenge of implementing a common 
architectural understanding as part of a successful DevOps 
culture. This may be due to a mostly volatile organization in 
which the number of developers and software features often 
grows as development progresses, as well as the reported 
hard transition from a single to multiple agile teams. Docu-
menting architecture decisions, deriving appropriate guide-
lines, and an accessible technical documentation are key fac-
tors for an efficient development process that become more 
relevant with more teams and developers involved [50] and 
is therefore often not considered by SMOs early in the devel-
opment process.

CA2: Complexity of Deployment Techniques and Tools

A recurrent challenge we identified is how to deal with the 
operation of microservice applications within the develop-
ment process. While cross-functional teams following the 
DevOps paradigm are mentioned in the literature, e.g., [53], 
as being recommended for the implementation of micros-
ervices architectures, in each of the researched cases we 
found specialized units for operating microservices instead 
of operators included as a part of a microservice team. In 
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C1, C2, and C6 we encountered entire teams solely dedi-
cated to operational aspects. In all cases, the development 
process included a handover of developed services to those 
specialized units for operating the microservice application. 
Although most interviewees were aware that this contradicts 
the ownership principle of microservices (cf. Section “Gen-
eral”) and they all stated to try to establish a pure DevOps 
without specialized teams, the effort to learn the basics of 
the necessary operational aspects is perceived as high. In this 
regard I2 comments “The complexity (note: of cloud-based 
deployment platforms) is already very, very high, you know. 
I would say that each of these functions in such a platform 
is a technology in itself that you have to learn.” In contrast 
to operations, the SMOs are successful in including other 
professions, such as UI/UX, as parts of their cross-functional 
teams. Our data indicates that this is due to two main rea-
sons. First, the inherently high complexity of the operational 
technologies and the associated high hurdle of learning and 
integrating them into the microservice development process. 
Second, the transfer of this knowledge not only into special 
units but into the individual microservice teams to do justice 
to a DevOps approach.

Summarizing CA2, deployment and operation in the 
SMOs studied is not in the responsibility of the teams to 
which the respective microservices belong. This seems to 
be due to the complexity of operation technologies and the 
associated learning effort. This might particularly be an 
issue for SMOs due to the challenging environment, where 
there are few resources to substitute, e.g., for a colleague 
who needs to learn an operation technology.

Case Study

In this section, we present a case study that we will use in 
the following sections to illustrate and validate our model-
driven workflow (cf. Section “A Model-Driven Workflow for 
Coping with DevOps-Related Challenges in Microservice 
Architecture Engineering”) to address the challenges in Sec-
tion “DevOps-Related Challenges in Microservice Architec-
ture Engineering of SMOs”. We decided on the usage of a 
case study to show the applicability of our approach because 
non-disclosure agreements prevent us from presenting our 
approach in the context of the explored SMO cases (cf. Sec-
tion “Dataset”). Therefore, we selected an open source case 
study microservice architecture, which maps to the design 
and implementation of the explored SMO cases w.r.t. the 
scope of our approach. More precisely, the case study (i) 
employs Swagger for API documentation (cf. Section “Study 
Results and Challenges”), (ii) uses synchronous and asyn-
chronous communication means, (iii) is mainly based on the 
Java programming language, and (iv) the number of software 

components matches the smaller SMOs in our qualitative 
analysis (cf. Section “Dataset”).

The case study is based on a fictional insurance com-
pany called Lakeside Mutual [76]. The application serves 
to exemplify different API patterns and DDD for MSA. 
The application comprises several micro-frontends [58], 
i.e., semi-independent frontends that invoke backend func-
tionality, and microservices centered around the insurance 
sector, e.g., customer administration, risk management, and 
customer self-administration functions. The application’s 
source code as well as documentation is publicly available 
on GitHub.7

Figure 3 depicts the architectural design of the Lakeside 
Mutual application. Overall it consists of five functional 
backend microservice. Each microservice is aligned with 
a micro-frontend.

Except for the Risk Management Server, all 
microservices are implemented in Java8 using the Spring 
framework.9 A micro-frontend communicates with its 
aligned microservice using RESTful HTTP [27]. Addition-
ally, the Risk Management Client and Risk Man-
agement Server communicate via gRPC. For internal 
service to service communication, the software system also 
relies on synchronous RESTful HTTP, but also on asyn-
chronous amqp messaging over an Active MQ message 
broker. The Customer Management Backend and 
the Customer Core services also provide generated API 
documentations based on Swagger.10

Besides the functional microservices, the Lakeside 
Mutual application also uses infrastructural microservices. 
The Eureka Server implements a Service Registry [64] 
to enable loose coupling between microservices and their 
different instances. For monitoring purposes, the Spring 
Boot Admin service provides a monitoring interface 
for the health status of individual services and the overall 
application.

A Model‑Driven Workflow for Coping 
with DevOps‑Related Challenges 
in Microservice Architecture Engineering

This section proposes a model-driven workflow based on 
LEMMA (cf.  Section  “Language Ecosystem for Mod-
eling Microservice Architecture”) to cope with the chal-
lenges identified in Section “DevOps-Related Challenges 
in Microservice Architecture Engineering of SMOs”. More 

7  https://​github.​com/​Micro​servi​ce-​API-​Patte​rns/​Lakes​ideMu​tual.
8  https://​www.​java.​com.
9  https://​spring.​io.
10  https://​swagg​er.​io/.

https://github.com/Microservice-API-Patterns/LakesideMutual
https://www.java.com
https://spring.io
https://swagger.io/
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precisely, the workflow provides a common architectural 
understanding of a microservice application (cf. Chal-
lenge CA1 in Section “Study Results and Challenges”), and 
reduces the complexity in deploying and operating micros-
ervice architectures (Challenge CA2).

In the following subsections, we present the design of 
the workflow (cf. Section LEMMA-Based Workflow for 
Coping with DevOps Challenges”). Next, we describe the 
components, which we have added to LEMMA, to support 
the workflow. These components include (i) interoperabil-
ity bridges between OpenAPI and LEMMA models (CA1; 
cf. Section “Derivation of Microservice Models from API 
Documentations”); (ii) an extension to the Service Mod-
eling Language to allow the import of remote models (CA1; 
cf. Section “Assembling a Common Architecture Model 
from Distributed Microservice Models”); (iii) a model 
processor to visualize microservice architectures (CA1; 
cf. “Visualization of Microservice Architecture Models”); 
(iv) enhancement of the Operation Modeling Language 
(cf. Section “Enhancing Distributed Microservice Models 
with Deployment Infrastructure Models”; and (v) code gen-
erators for microservice deployment and operation (CA2; 
cf. Section “Generating Code from Distributed Deployment 
Infrastructure Models”).

Furthermore, we present in detail prototypical compo-
nents that we have added to the LEMMA ecosystem to 

support the workflow. These include deriving models from 
API documentation (cf. Section “Derivation of Microser-
vice Models from API Documentations”) and assembling 
microservice models into an architecture model (cf. Sec-
tion  “Assembling a Common Architecture Model from 
Distributed Microservice Models”) as a means to build a 
common architectural understanding (CA1). The presented 
components also comprise means to enrich microservice 
models with deployment infrastructure models (cf. Sec-
tion “Enhancing Distributed Microservice Models with 
Deployment Infrastructure Models”) to more easily handle 
operational aspects for SMOs (CA2).

To ensure replicability of our results, we have provided 
a GitHub repository11 which contains documentation on 
how to setup LEMMA and its presented extensions. It fur-
ther contains all generated artifacts as well as sources and 
scripts to rerun the generations. Finally, it includes a manu-
ally constructed set of LEMMA models which represent all 
Java-based microservices of the Lakeside Mutual case study 
(cf. Section “Case Study”).
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Asynchronous Communication

Backend Microservice offering infrastructural functions for, e.g., service discovery or messaging. 

Microservice providing business functionalities via REST interfaces.

Micro-Frontend that provides UI components, e.g., service-specifix views.

«Infrastructure Microservice»
Microservice

«Functional Microservice»
Microservice

«Micro-Frontend»
Micro-Frontend
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Backend Microservice offering infrastructural functions for, e.g., service discovery or messaging. 
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Microservice
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«Micro-Frontend»
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Fig. 3   Structure of the case study Lakeside Mutual microservice application

11  https://​github.​com/​Seela​bFhdo/​SN2021.

https://github.com/SeelabFhdo/SN2021
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LEMMA‑Based Workflow for Coping with DevOps 
Challenges

Figue 4 shows the conceptual elements and their relation-
ships which underlie the design of our LEMMA-based 
workflow for coping with the DevOps challenge areas 
(cf. Section “DevOps-Related Challenges in Microservice 
Architecture Engineering of SMOs”).

An Organization  includes multiple DevOps 
Teams, each responsible for one or more Microser-
vices (cf. Section “Organizational Aspects”). The sum 
of all microservices forms the Microservice Appli-
cation that is developed by the organization. Associated 
with a microservice is a corresponding documentation of 
its interfaces (API Documentation). For each micros-
ervice owned by it, the team constructs a Set of LEMMA 
Views as a model representation (cf. Section “Language 
Ecosystem for Modeling Microservice Architecture”). 
The sum of all LEMMA models forms an Architec-
ture Model which describes the system’s architecture. 
This model can be used by the organization, e.g., to gain 
insight into existing dependencies between the microser-
vices involved.

Based on the conceptual elements and their relationships, 
Fig. 5 shows our model-driven workflow for DevOps-based 
microservices development in SMOs as a UML activity 
diagram [55].

We depict the workflow from the perspective of a single 
DevOps team including all steps required for the develop-
ment of a new microservice. When incremental changes are 
made to individual aspects of a microservice, only the steps 
affected by the changes need to be performed.

The process starts with the planning of the development. 
The team decides whether to follow a code-first or 
model-first approach. We support both variants to allow 
the teams autonomy according to the DevOps paradigm [6].

Code-First Approach Here, the team first implements the 
microservice consisting of structure and behavior. 
Based on the finished implementation, the team creates an 
API Documentation, which can be done manually or 
automatically with tools such as Swagger.12 Using the API 
documentation, a LEMMA domain model and a LEMMA 
service model are automatically derived (cf. Section “Deri-
vation of Microservice Models from APIDocumentations”) 
and, if necessary, refined by the team. In parallel, the team 
creates a LEMMA operation model, since the information 
required for this kind of model cannot be derived from the 
API documentation (cf. Section “Derivation of Microservice 
Models from APIDocumentations”).

Model-First Approach Alternatively, the team can decide 
to first model the structure and operation of the microservice 
using LEMMA. In the subsequent implementation activity, 
the structural aspects can be generated based on the previ-
ously constructed models and only the manual implemen-
tation of the behavior is necessary (cf. Section “Language 
Ecosystem for Modeling Microservice Architecture”).

Regardless of which of the two approaches was chosen, 
in the end LEMMA domain, service, and operation models 
are available and describe the Dev and Ops aspects of the 
microservice under development.

The operation model is then used to Generate a 
Deployment Specification for a container-based 
environment which mitigates the complexity of the operation 
(cf. Section “Generating Code from Distributed Deployment 
Infrastructure Models”). The team refines this specification 
as needed and then deploys the microservice. In parallel, the 
models generated during the workflow are sent to a central 
model repository and made available to the entire organiza-
tion where they can be used by other teams to gain insight 

Fig. 4   Overview of the concepts 
within the workflow and their 
interrelationships represented as 
a UML class diagram [55]

12  https://​swagg​er.​io/.

https://swagger.io/
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and a common understanding of the application’s architec-
ture, e.g., by visualizing its structure.

Based on the use of model transformations and code gen-
eration steps, we argue that the application of the workflow 
is possible with almost the same resources as the current 
development processes in the individual DevOps teams 
that we were able to explore as cases in the empirical study 
(cf. Section “DevOps-Related Challenges in Microservice 
Architecture Engineering of SMOs”). This applies to both 
the code-first and model-first approaches. At its core, the 
code-first approach relies on the same development steps, 
i.e., implementing structure and behavior of a microser-
vice, as non-model-based processes in the individual teams, 
so that even teams without experience in MDE can adapt 
the flow in a non-invasive way. Besides the actual imple-
mentation, the workflow provides a service’s description 
in the form of LEMMA viewpoint models, which can be 
used as a communication basis and for knowledge trans-
fer to create a common architecture understanding (CA1; 

cf. Section “Study Results and Challenges”) in the organiza-
tion. This can be used to, e.g., accelerate verbal coordination 
processes between teams, improve the documentation, or 
identify microservice bad smells [78]. In addition, by using 
LEMMA operation models and generating deployment spec-
ifications, it is easier for teams of an SMO to address the Ops 
aspects themselves without passing on the responsibility for 
deployment to another unit (CA2; cf. Section “Study Results 
and Challenges”). This enables teams to foster the ownership 
principle of MSA (cf. Section “General”).

Derivation of Microservice Models from API 
Documentations

To enable the model-driven workflow with sophisticated 
modeling support by LEMMA, we extended the ecosystem 
with the ability to derive data and service models from API 
documentation into LEMMA modeling files. In particular, 
our extension targets API documentation that conforms to 
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Fig. 5   Proposed workflow for DevOps teams for model-driven microservices development represented as a UML activity diagram [55]
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the OpenAPI Specification13 (OAS) [56]. OAS defines a 
standardized interface to describe RESTful APIs. One of the 
most popular tools implementing OAS is Swagger, which 
was used by all SMOs in the qualitative study (cf. Sec-
tion “DevOps-Related Challenges in MicroserviceArchi-
tecture Engineering of SMOs”).

The transformation of OAS files into LEMMA files can 
be classified as an interoperability issue in which OAS mod-
els are to be converted into LEMMA models. We therefore 
applied the interoperability bridge process proposed by 
Brambilla et al. [10]. Figure 6 shows the applied interoper-
ability bridge process.

First, using the Swagger parsing framework,14 an OAS 
conform API model in the YAML [7] or JSON [22] format 

is converted into an in-memory API Model. We then 
perform three model transformations where the informa-
tion from the API Model is transformed into a Domain 
Data Model, Service Model, and a Technology 
Model which each correspond to their respective LEMMA 
metamodel (cf. Section “Language Ecosystem for Modeling-
Microservice Architecture”). Table 2 describes which OAS 
objects15 are mapped to which LEMMA model kind.

To be able to transform the in-memory LEMMA models 
as files, we extended LEMMA with extractors [10] for tech-
nology, service, and data models.

Listing 1 and Listing 2 illustrate the application of the 
process.

Fig. 6   Process to transform OAS conform API models into LEMMA models

Table 2   Applied mappings between OAS and LEMMA concepts

OAS Objects LEMMA model Description of mapping

Info Domain Data Name and version of the Domain and its Context
Schemas Domain Data DataStructures of the Context
Paths Domain Data Inline schemas are transformed to additional DataStructures and arrays are mapped to ListTypes
Info Service Name and commentary of the Microservice
Tag Service Used to derive a service’s Interfaces which cluster Operations
Paths Service Operations of an Interface comprising its Endpoints, Parameters, HTTP request method as 

Aspect, and Commentary
Media Types Technology All mentioned media types in a OAS model are transformed to DataFormats of the RESTful HTTP 

Protocol.
Data Types Technology Mapped to TechnologySpecificPrimitiveTypes.

13  Version 3.0.3.
14  https://​github.​com/​swagg​er-​api/​swagg​er-​parser. 15  https://​spec.​opena​pis.​org/​oas/​v3.0.​3#​opena​pi-​object.

https://github.com/swagger-api/swagger-parser
https://spec.openapis.org/oas/v3.0.3#openapi-object
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Listing 1 shows an excerpt of the API documentation 
file of the Customer Core microservice from the case study 
(cf. Section “Case Study”). In detail, the listing presents 
the OAS description for an HTTP GET request on the path 
cities/{postalCode} (Lines 2 and 3). This includes, 
e.g., the unique id getCitiesForPostalCodeUs-
ingGET (Line 6) of the operation, the incoming param-
eters (Lines 8–14), and the information that a response 
returns an object based on the CitiesResponseDto 
schema (Lines 15–20). The excerpt shows only the response 
for HTTP status code 200 (Line 16). OAS also offers the 
possibility to define responses for other status codes, e.g., 
HTTP status code 404, but these are currently not consid-
ered in the transformation to LEMMA in our prototypical 
implementation.

Listing 2 shows the LEMMA service model automati-
cally transformed from the CustomerCore OAS model in 

Listing 1. First, the results of the other transformations are 
imported into the service model. This includes the pre-
viously transformed LEMMA domain data model cus-
tomerCore.data resulting from the OAS schemas 
(Lines 1 and 2), which contains all data structures such 
as CitiesResponseDto, and the technology model 
OpenApi.technology (Line 3), which contains, e.g., 
the OpenAPI-specific primitive data types and the media 
types used in the CustomerCore OAS model. Line 5 ena-
bles the OpenApi technology for the com.lakesidemu-
tual.customercore.CustomerCore microservice, 
whose definition starts in Lines 6 and 7. The microservice 
comprises an interface named cityReferenceData-
Holder which was derived by the associated tags in the 
OAS model (Line 8). The interface consists of the opera-
tion getCitiesForPostalCodeUsingGET named 
after the OAS operationId (Lines 18–22). The opera-
tion commentary section (Lines 9–14) is populated using 
the summary information from OAS. The OAS path is 
added as an endpoint (Line 15) and the operation classi-
fied as an HTTP GET request (Line 17). The OAS response 
associated with the HTTP status code 200 is modeled as 
an OUT parameter and named returnValue (Lines 20 
and 21).

Assembling a Common Architecture Model 
from Distributed Microservice Models

Microservices can interact with and depend on each other to 
realize coarse-grained functionality [54]. In the case study 
(cf. Section “Case Study”), such a relationship is found 
between the microservices Customer Management 
Backend and Customer Core. Such dependencies can-
not be derived from an API documentation, since its purpose 
is to describe the provided interface of a service and not the 
invocation of functionality provided by other architecture 
components. However, these dependencies are essential to 
be able to assemble and assess an architecture model and to 
raise a common architectural understanding across the whole 
organization (cf. Section “Study Results and Challenges”). 
Therefore, within the workflow (cf. Section “LEMMA-
Based Workflow for Coping with DevOps Challenges”), 
the dependencies should be added manually by the teams in 
the LEMMA models. This can be done during the Model 
Services activity when using the model-first approach 
and during the Refine Generated Models activity 
when using the code-first approach.

However, LEMMA service models originally were only 
able to depend on other LEMMA service models if they are 
accessible in the local file system. Therefore, to allow teams 
the expression of interaction dependencies with the microser-
vices of other teams, we have extended LEMMA to allow exter-
nal service imports. Listing 3 shows the service model of the 
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Customer Management Backend microservice from 
the case study. The microservice imports show the two alterna-
tives. The syntax for importing locally accessible service files is 
shown in Lines 3 and 4. Alternatively, the import in Lines Lines 
6–8 exemplifies the mechanism for external imports.

As soon as the Eclipse IDE detects such an external 
import in the model, it offers a quickfix that automatically 
downloads the referenced file and, if it is OAS-compliant 
API documentation, starts a corresponding transformation 
to LEMMA (see Section “Microservice Architecture Model 
Processing”). This also makes it possible to model a depend-
ency to a service of another team, even if this team does not 
yet provide its own model but only API documentation.

Since LEMMA models are textual  [63] and with the 
extension it is possible to import external sources, the model 
files of the different teams can be managed centrally as an 
architecture model by a version management system such as 
Git and thus integrated into CI/CD pipelines, e.g., by a Git 
hook16 that copies the models to a central model repository 
with each release of the microservice.

Visualization of Microservice Architecture Models

To enable visualization of the architecture using LEMMA 
(cf. Section LEMMA-Based Workflow for Coping with 
DevOps Challenges”), we have developed the LEMMA 
Visualizer.17 It is able to transform several LEMMA 

intermediate service models (cf. Section “Microservice 
Architecture Model Processing”) into a single graphical 
representation using a model-to-text transformation [13]. In 
its current form, the visualizer is a standalone executable Jar 
file. The Jar file can be passed the paths to several service 
models, which serve as input, and a target path for generat-
ing the visualization as arguments through the command 
line. The steps of the transformation are depicted in Fig. 7.

First, one or more intermediate service model files 
are passed to the LEMMA Model Processor (cf.  Sec-
tion “Microservice Architecture Model Processing"). These 
are converted to their in-memory representation and then 
processed. Using the JGraphT framework [51], we create a 
directed graph that we populate with microservices found 
during the processing of the intermediate models as verti-
ces and any existing imports from other services as edges. 
Microservices that are neither imported nor import another 
service and are thus without an edge are added as isolated 
vertices. Then we use JGraphT’s DOTExporter to convert 
the graph into a textual representation of the graph based on 
the DOT language.18 During the export, we enrich the DOT 
representation with attributes which describe the appear-
ance of the vertices and edges for the later visualization, 
e.g., we add coloring and describe vertex shapes. Finally, 
we use GraphViz [23] to generate an image of the graph’s 
DOT representation that represents the system architecture 
in the form of a box-and-line diagram as a Portable Network 
Graphics (.png) file. The visualizer supports the setting 
of different levels of detail of the display in relation to the 
attributes of microservice vertices. A resulting architecture 
image which shows the functional microservices from the 
case study is shown in Fig. 8. To generate the image, the 
visualizer was configured to render with a detail level which 
shows interfaces but not operations.

Enhancing Distributed Microservice Models 
with Deployment Infrastructure Models

In this subsection, we elaborate on the creation of an opera-
tion model (cf. Section “Case Study”) that complements 
the previously created data and service models to form a 
complete set of LEMMA views describing a microservice 

Fig. 7   Model-to-Text trans-
formation to generate a visual 
representation of a microservice 
application’s architecture

16  https://​git-​scm.​com/​book/​en/​v2/​Custo​mizing-​Git-​Git-​Hooks.
17  https://​github.​com/​Seela​bFhdo/​SN2021/​blob/​master/​de.​fhdo.​
lemma.​visua​lizer-0.​8.0-​SNAPS​HOT-​stand​alone.​jar. 18  https://​graph​viz.​org/​doc/​info/​lang.​html.

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://github.com/SeelabFhdo/SN2021/blob/master/de.fhdo.lemma.visualizer-0.8.0-SNAPSHOT-standalone.jar
https://github.com/SeelabFhdo/SN2021/blob/master/de.fhdo.lemma.visualizer-0.8.0-SNAPSHOT-standalone.jar
https://graphviz.org/doc/info/lang.html
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(cf. Section “LEMMA-Based Workflow for Coping with 
DevOps Challenges”). The operation model is constructed 
using LEMMAs Operation Modeling Language (OML) Sec-
tion “Microservice Architecture Model Construction”). This 
approach specifically addresses the Operation and Deploy-
ment Stages of MSA (cf. Sections “Operation Stage” and 
“Development Stage“) and therefore addresses CA2 (cf. Sec-
tion “Study Results and Challenges”) by providing function-
alities for describing the microservice models’ deployment, 
including their dependencies to infrastructural services, e.g., 
API gateways, services discoveries, and databases. Addi-
tionally, OML abstracts from concrete technology-specific 
deployment configurations and reduces the overall complex-
ity of deploying a microservice application.

To enable DevOps teams in SMOs to take full owner-
ship of their respective services, which mitigates the need 
to apply specialized teams dedicated to operating the 
whole microservice application (cf.  Section  “DevOps-
Related Challenges in Microservice Architecture Engineer-
ing of SMOs”), we have extended the OML with means 
to import other operation models as nodes and, therefore, 
nest operation specifications with each other. I.e. teams do 
not have to maintain individual models for infrastructure 
microservices, but can use the new mechanism to import 
the operation model, e.g., for a Eureka service discovery 

(cf. Section “Case Study”), from a central model repository 
(cf. Section “Assembling a Common Architecture Model 
from Distributed Microservice Models”).

OML now enables the DevOps Team to describe the 
deployment of a microservice and all necessary depend-
encies. Listing 4 shows an excerpt of the operation model 
for the deployment of the CustomerCore microservice. 
Lines 1 and 2 of the listing import the customerCore.
services model derived from the services’ Open API 
specification (cf. Section “Derivation of Microservice Mod-
els from API Documentations”). The following Lines 3–6 
deal with the import of the technology for service deploy-
ment. The Container_base technology model uses 
Docker19 and Kubernetes20 for service deployment. Lines 7 
and 8 illustrate the new possibility to import other operation 
models as nodes by importing the eureka.operation 
model that describes the deployment of a service discovery 
by the Eureka21 technology.

Fig. 8   Generated visualization of the architecture of the case study (cf. Section 5)

19  https://​www.​docker.​com.
20  https://​kuber​netes.​io/.
21  https://​github.​com/​Netfl​ix/​eureka.

https://www.docker.com
https://kubernetes.io/
https://github.com/Netflix/eureka


SN Computer Science (2021) 2:459	 Page 17 of 25  459

SN Computer Science

Lines 10 and 11 assign the technology to the Cus-
tomerCoreContainer (Line 12). The container 
runs the deployed microservices and clusters deployment-
relevant information, e.g., dependencies to infrastructural 
components such as databases, service-specific configura-
tions, and protocol-specific endpoints. For this purpose, 
Lines 12–14 create the CustomerCoreContainer and 
assign the Kubernetes deployment technology which is 
imported from the container_base technology model. 
The deployment of the CustomerCore microservice via 
the container is shown in Lines 15 and 16. The following 
Lines 17–25, show the dependency to the ServiceDis-
covery imported from the eureka.operation model. 
In detail, Line 19 starts the service-specific configuration 
of the CustomerCore microservice by specifying the 
eurekaUri responsible for configuring the dependency 
to the ServiceDiscovery. The CustomerCore 
microservice exposes its functionality via a rest endpoint 
(Lines 21–23).

Besides modeling the deployment of microservice-spe-
cific configurations, OML also enables the DevOps team 
to specify infrastructural components’ deployment, e.g., 
service discoveries and databases. Listing 5 describes the 
deployment of the ServiceDiscovery. Lines 1–3 
import the containerbase.technology  and 
eureka.technology models. The models include the 
specification of the technology used for the deployment 
of the ServiceDiscovery. Lines 4 and 5 import the 
CustomerCore operation model (cf. Listing 4) because 
the CustomerCore microservice uses the service discov-
ery. Lines 7 and 8 assign the imported technology to the 
ServiceDiscovery.

Line 9 starts the actual specification of the Service-
Discovery, which uses the imported Eureka technol-
ogy. The following Line 10 contains the dependency to the 
CustomerCoreContainer, specified in Listing 4. The 
service-specific configuration of the ServiceDiscov-
ery is set via the assignment of default values in 
Lines 12–16. Lines 13 and 14 set the actual hostname and 
port of the service.

Overall, LEMMA’s OML enables the DevOps team to 
construct operation models which specify the deployment 
of microservices and their dependencies on the microser-
vice application’s infrastructural components. The opera-
tion models consist of the concepts of containers and 
infrastructure nodes. Containers (cf. Listing 4) specify the 
deployment of microservice, whereby infrastructure nodes 
contain the configuration for infrastructural components, 
e.g., API gateways, databases, and service discoveries 
(cf. Listing 5).
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Generating Code from Distributed Deployment 
Infrastructure Models

In Section “Enhancing Distributed Microservice Models 
with Deployment Infrastructure Models” we introduced 
OML as a methodology to describe the deployment of a ser-
vice-based software system. In this subsection, we contribute 
a code generation pipeline for creating deployment-related 
artifacts based on the operation models using LEMMA’s 
Model Processor (cf. Section “Microservice Architecture 
Model Processing”). As depicted in Fig. 9, the code genera-
tion pipeline consists of two consecutive stages.

The first stage of the code generation pipeline consists 
of a model-to-model transformation [13] transforming an 
operation model into an intermediate operation model in the 
sense of LEMMA’s intermediate model processing (cf. Sec-
tion “Microservice Architecture Model Processing”).

The second stage of the code generation pipeline deals 
with the creation of the deployment-relevant artifacts. Based 
on an intermediate operation model, the code generators 
already included in LEMMA (cf. Section “Language Eco-
system for Modeling Microservice Architecture”) provide a 
variety of different functionalities that are usually bound to 
a specific technology model. As already shown in Listing 4 
and Listing 5, the described operation models both use the 
container_base technology model.

The container_base model clusters a technology 
stack suited for a service-based software system with focus-
ing on container technologies [44] such as Docker, Docker-
Compose, and Kubernetes. Listing 6 shows an excerpt of 
this specific technology model. Line 1 specifies the actual 
name of the model. Lines 2–7 describe the deployment 
technologies of the model, in this particular case 
Kubernetes. Additionally, Kubernetes supports the 
operation environments golang, python3, and 
openjdk as its default.

The second part of Listing 6 contains the definition of 
operation aspects for further service deployment specifica-
tion from Lines 8 to 13. Lines 10 and 11 define the Dock-
erfile aspect, which can be applied to containers in 
operation models. The aspect consists of a single attribute 
named content containing the actual content of the Dock-
erfile. Furthermore, the content attribute has the property 
mandatory to it, so it can only be configured a single time 
per container.

The Container Base Code Generator (CBCG)22 supports 
the container_base technology model (cf. Listing 6) 
to derive a set of deployment-related artifacts such as build 
scripts, Dockerfiles, and Kubernetes configurations. Fur-
thermore, the CBCG integrates with existing microservice 
configuration files by extending them with operation-specific 
entries, e.g., service discovery addresses, as necessary.

Listing 7 shows a Dockerfile generated by the CBCG 
from the operation model in Listing 4. The Dockerfile con-
tains a basic configuration consisting of a Docker image 
deduced from the modeled operation environment. In Lines 

Fig. 9   Code generation pipeline for creating deployment relevant artifacts from LEMMAs operation models

22  https://​github.​com/​Seela​bFhdo/​lemma/​tree/​master/​code%​20gen​
erato​rs/​de.​fhdo.​lemma.​model_​proce​ssing.​code_​gener​ation.​conta​iner_​
base.

https://github.com/SeelabFhdo/lemma/tree/master/code%20generators/de.fhdo.lemma.model_processing.code_generation.container_base
https://github.com/SeelabFhdo/lemma/tree/master/code%20generators/de.fhdo.lemma.model_processing.code_generation.container_base
https://github.com/SeelabFhdo/lemma/tree/master/code%20generators/de.fhdo.lemma.model_processing.code_generation.container_base
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2–15 several artifacts are copied into the image. Line 17 con-
figures the port 8110 on which the microservice is started. 
Finally, Lines 18–20 define the entrypoint of the Docker 
image to compile and run the microservice.

While the CBCG is able to create a basic Dockerfile, 
the OML also integrates with LEMMA’s aspect mechanism 
so that it becomes possible to leverage the Dockerfile 
aspect from the container_base technology model (cf. 
Listing 6) to customize Dockerfile generation.

In addition to Dockerfiles, the CBCG may also gener-
ate Kubernetes deployment files. In general, a derived 
Kubernetes file consists of parts that concern deployment 
and service configuration. The deployment part shown 
in Listing 8 clusters the configuration of the Kubernetes 
pod23 to which a microservice gets deployed. Line  1 
defines the apiVersion  the Kubernetes file uses. 
Line 2 contains the definition of the configuration kind: 
deployment. Lines 5–7 assign a name to the deploy-
ment, i.e., customercorecontainer. Line 8 deter-
mines the configuration of the Kubernetes deployment, 
specifically the set of replicas that shall be created 
for the deployment.

Listing 9 contains the service part of the Kubernetes 
deployment and the configuration on how the microservices 

application is exposed. Lines 1 and 2 cluster information 
about the apiVersion and configuration type of the 
Kubernetes file, i.e., kind: Service, followed by the 
name assignment in Lines 4–6. Additionally, the listing 
defines the exposure of the microservice via port 8110 in 
Lines 9–11.

In addition to the deployment-related generated artifacts, 
LEMMA’s code generation pipeline also supports the exten-
sion of existing service configurations. For this purpose, we 
implemented additional code generators for technologies 
like MongoDB,24 MariaDB,25 Zuul, and Eureka.

Listing 10 contains a variety of configuration options for 
Spring-based microservice implementations. The spring.
application.name and server.port options in 
Lines 1 and 2 are derived from the modeled microservice’s 
name and its specified endpoint in the LEMMA models. 
Lines 3–7 result from the Eureka configuration shown in 
Listing 4. They configure the endpoints for connecting to 
the eureka service discovery.

Validation

In this section, we validate the present LEMMA extensions 
that implement the workflow (cf. Section “A Model-Driven 
Workflow for Coping with DevOps-Related Challenges in 
Microservice Architecture Engineering”). To enable repli-
cability of our results, we provide a validation package on 
GitHub.26 To make the validation feasible, we first manu-
ally reconstructed the functional backend and infrastruc-
ture microservices of Lakeside Mutual (cf. Section “Case 
Study”) using a systematic process [62]. This step was nec-
essary because the backend and infrastructure microservices 
of Lakeside Mutual are implemented in Java and not mod-
eled with LEMMA. In detail, our reconstruction includes all 
four Java-based functional microservices and the infrastruc-
tural microservices Eureka Server and Spring Boot 
Admin (cf. Section “Case Study”).

23  https://​kuber​netes.​io/​docs/​conce​pts/​workl​oads/​pods/.

24  https://​www.​mongo​db.​com/.
25  https://​maria​db.​org/.
26  https://​github.​com/​Seela​bFhdo/​SN2021.

https://kubernetes.io/docs/concepts/workloads/pods/
https://www.mongodb.com/
https://mariadb.org/
https://github.com/SeelabFhdo/SN2021


	 SN Computer Science (2021) 2:459459  Page 20 of 25

SN Computer Science

In addition, we retrieved the current API documentation 
of Lakeside Mutual by putting the architecture into operation 
and triggering the generation of the documentation using 
prepared REST requests. At the end of this process, we could 
refer to the current API documentations of Lakeside Mutu-
al’s Customer Core and Customer Management 
Backend (cf. Fig. 3 in Section “Case Study”), which are 
the two components for which the application provides API 
documentation.

We then performed the individual generation steps of our 
workflow (cf. Section “A Model-Driven Workflow for Cop-
ing with DevOps-Related Challenges in Microservice Archi-
tecture Engineering”) based on our reconstructed LEMMA 
models and the case study’s API documentation. We illus-
trate the results of the application of our workflow as shown 
in Table 3 using the Lines of Code (LoC) metric.

As Table 3 shows, using the OAS-conform API docu-
mentation, we were able to generate 171 and 174 LoC of 
LEMMA Domain Data and Service files for the Customer 
Core and the Customer Management Backend micros-
ervices, respectively. Although the same operations and 
parameters for interfaces are present in the models generated 
by our workflow and the reconstructed LEMMA models, the 
LoC are higher in our reconstructed models. This is due to 
the fact that, e.g., the operation-related portion of LoC or 
technology-related annotations for databases are present in 
the manual models, but not in the generated ones, since no 
information on this is available from the API documentation.

Regarding the generation of deployment specifications, 
we were able to generate 285 lines of infrastructure code 
for Docker and Kubernetes from the reconstructed operation 
models of the functional microservices. Teams can abstract 
from technology-specific infrastructure code and, in combi-
nation with LEMMA’s source code generators such as the 

Java Base Generator [61], generate directly executable and 
deployable stubs of their services.

Discussion

The model-based workflow presented in Section  “A 
Model-Driven Workflow for Coping with DevOps-Related 
Challenges in Microservice Architecture Engineering” 
addresses the previously identified challenge areas (cf. Sec-
tion “DevOps-Related Challenges in Microservice Archi-
tecture Engineering of SMOs”). In detail, the workflow 
provides means to establish a common understanding of 
architecture in an organization scaling to the level of mul-
tiple teams for the first time (CA1) and the complexity of 
operational aspects in microservice engineering (CA2).

We argue that by documenting the architecture in a cen-
tralized manner (cf. Sections “Derivation of Microservice 
Models from API Documentations” and  “Assembling a 
Common Architecture Model from Distributed Microservice 
Models”), combined with the ability to visualize it (cf. Sec-
tion “Visualization of Microservice Architecture Models”), 
teams and higher-level stakeholders, such as project spon-
sors, have a good basis for sharing knowledge and gaining 
insight into each other’s development artifacts through the 
inherent abstraction property of the models [48]. Box-and-
line diagrams, in particular, have the advantage that people 
can more easily grasp relations between concepts [13].

Another added value of our approach is the ability to 
seamlessly integrate deployment specifications into archi-
tecture models as a LEMMA operation model with the pos-
sibility to derive deployment configurations for heteroge-
neous deployment technologies, i.e., to generate them for 
Docker and Kubernetes (cf. Section “Generating Code from 
Distributed Deployment Infrastructure Models”). To this 

Table 3   Overview of the 
number of LoC of the different 
model artifacts involved in the 
LEMMA-based workflow

Service Type Viewpoint LoC

Manually built models
 All Services LEMMA All 3702
 All Services LEMMA Operation 311
 Customer Core LEMMA All 588
 Customer Core LEMMA Operation 50
 Customer Management Backend LEMMA All 458
 Customer Management Backend LEMMA Operation 49

API documentation
 Customer Core OAS/JSON Domain Data & Service 534
 Customer Core LEMMA Domain Data & Service 171
 Customer Management Backend OAS/JSON Domain Data & Service 496
 Customer Management Backend LEMMA Domain Data & Service 174

Deployment specification
 All Services Docker Kubernetes Operation 285
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regard, Combemale et al. [13] underline the added value of 
models to abstract complexity in the deployment process 
making the process more manageable. However, deployment 
technologies supported by our workflow constitute de-facto 
standards [69], LEMMA does limited justice to the hetero-
geneous technology landscape concerning cloud providers. 
In particular, we do not specifically address cloud-based 
deployment platforms such as AWS27 or Azure.28 Presum-
ably, LEMMA is able to support such technologies through 
specific technology models (cf.  Section  “Microservice 
Architecture Model Construction”). In the future, we plan 
to address this limitation by providing LEMMA technol-
ogy models and code generators for languages targeting the 
Infrastructure as Code [52] paradigm, e.g., Terraform [11]. 
As a result, LEMMA would support model-based deploy-
ment to a variety of cloud-based deployment platforms.

To implement and take advantage of the LEMMA-based 
workflow, team members need to learn and use a new tech-
nology with LEMMA. As the validation (cf. Section “Vali-
dation”) shows, teams can significantly increase efficiency 
through the available generation facilities of LEMMA. 
However, we need further empirical evaluation in practice 
(cf. Section “Conclusion and Future Work”) to more accu-
rately assess in which cases the efficiency gains from better 
documentation, accessible architectural understanding, and 
generation of deployment specifications outweigh the effort 
required to learn LEMMA and in which cases they do not.

An important aspect on which the efficiency of the 
workflow depends is the organization-wide agreement on 
the level of detail of the models shared between teams. For 
example, if a very high level of detail is agreed upon, i.e., 
including as much information as possible from the source 
code in the models, as we applied to the reconstruction of 
the case study (cf. Table 3), generated artifacts must be 
more refined by the DevOps teams. This results in a higher 
effort. This can exemplified by the Customer Core Service 
(cf. “Validation”). The reconstructed model contains consid-
erably more LoC, e.g., regarding technologies, than the gen-
erated model. In contrast, if the organization agrees on a low 
level of detail that, e.g., only considers technology-agnostic 
domain, service, and operation models (cf. Section “Lan-
guage Ecosystem for Modeling Microservice Architecture”), 
very few adjustments to the generated models are necessary. 
This fact is also evident from our experience in performing 
the validation (cf. “Validation”). Although we were famil-
iar with both LEMMA and the source code from the case 
study, the manual reconstruction was a tedious and time-
consuming task of several hours compared to the automatic 
generation of the models.

A technical limitation within the LEMMA-based work-
flow is the unidirectional artifact creation. Changes to the 
models currently have to be made by the team owning the 
corresponding microservice. However, to further extend a 
shared understanding of the architecture as well as to follow 
DevOps’ minimize communication efforts characteristic [21], 
it would be beneficial if other teams or stakeholders could 
request editing of services of other teams directly using 
the shared models, e.g., to add an attribute to an interface 
operation.

Related Work

In the following, we describe related work from the areas 
of service and operation modeling, comparable qualitative 
studies, and workflows for DevOps-oriented development 
of microservice architectures in the context of model-driven 
software engineering.

MSA Service Modeling Terzić et al. [82] present Micro-
Builder, a tool that enables the modeling and generation 
of microservices. At its core, MicroBuilder comprises the 
MicroDSL modeling language. Like LEMMA, MicroDSL is 
based on the Eclipse Modeling Framework. Unlike LEMMA, 
however, MicroBuilder is closely linked to Java and Spring 
as specific technologies, so that the MicroDSL metamodel 
would have to be adapted for new technologies. MicroBuilder 
also addresses only the role of the developer and neglects 
stakeholders such as domain experts or operators. In addi-
tion, MicroBuilder does not address MSA’s characteristic of 
having multiple teams involved in the development process. 
Another model-based approach called MicroART [31] is pro-
vided by Granchelli et al. MicroART contains a DSL called 
MicroARTDSL which aims to capture architecture informa-
tion. The purpose of MicroART is to recover microservice 
architectures through static and dynamic analysis. As such, 
MicroART can support organizations in raising a common 
architectural understanding similar to the visualization we 
proposed in Section “Visualization of Microservice Architec-
ture Models”. However, MicroART does not provide a model-
based workflow for the teams and lacks the rich ecosystem 
of LEMMA comprising means to also model and generate 
domain data, operational aspects, and different technologies. 
Alshuqayran et al. [1] present MiSAR an empirically derived 
approach for generating architectural models of microservice 
applications. Like LEMMA, MiSAR also leverages MDE 
and provides a metamodel centered around the microservice 
concept. It includes concepts for, e.g., interfaces, operations, 
and service types. However, MiSAR primarily focuses on 
reconstructing models from existing source code and does 
not provide a concrete syntax aligned with the metamodel like 
LEMMA’s textual notation. In addition, MiSAR has a cohe-
sive metamodel for operation and service modeling. LEMMA, 

27  https://​aws.​amazon.​com/.
28  https://​azure.​micro​soft.​com/.

https://aws.amazon.com/
https://azure.microsoft.com/
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on the other hand, supports separate model kinds derived from 
the roles in the MSA engineering process and also includes 
means for modeling domain data.

Qualitative Study Bogner et al. [9] describe a study related 
to our qualitative empirical analysis (cf. Section “DevOps-
Related Challenges in Microservice Architecture Engineering 
of SMOs”) that includes 14 interviews with software archi-
tects. In contrast to our analysis, Bogner et al. do not focus on 
the challenges in the workflow of the organizations, but on the 
technologies used and software quality aspects. Another inter-
view study was conducted by Haselböck et al. [34] focusing 
on software design aspects such as the sizing of microservices. 
A questionnaire based study on Bad Smells in MSA was con-
ducted by Taibi et al. [78]. The study touches on organizational 
aspects and is included in our argumentation of the challenges 
(cf. Section “Study Results and Challenges”, but due to the 
study design as a questionnaire, the development process as a 
whole was not considered.

Development Workflows In the context of our proposed 
workflow (cf. Section “LEMMA-Based Workflow for Cop-
ing with DevOps Challenges”), there are several large-scale 
agile process models or methodologies that can foster the 
development of MSA by multiple DevOps teams. Exam-
ples include Scrum at Scale [77], the Spotify Model [71], 
or SAFe [66] (cf. Section  Organizational Aspects). How-
ever, these approaches generally only become viable 
when an organization has at least 50 or more developers 
involved [18], and are therefore not suitable for SMOs fac-
ing the challenge of initially scaling their small organization 
from one to two or three teams. In addition, the aforemen-
tioned approaches address development at an organizational 
level and do not address development practices. Therefore, 
we expect our proposed workflow (cf. Section “LEMMA-
Based Workflow for Coping with DevOps Challenges”) to 
integrate well with the stated large-scale approaches.

MSA Operation Modeling The essential deployment 
metamodel (EDMM) [83] is an approach that combines 
existential components of the deployment of a software 
system in a metamodel, taking into account concepts such 
as configuration management  [16] and infrastructure as 
code [52]. EDMM makes a specific mapping concerning 
the technology used for the software system’s provisioning 
process based on the metamodel. For deploying the micros-
ervice application, EDMM supports technologies like Pup-
pet,29 Terraform,30 AWS Cloud Formation,31 and Cloudify.32 
Unlike EDMM, LEMMA addresses the deployment of 

service-based systems and their data structures and service 
composition. Besides, EDMM provides mapping concerning 
specific cloud providers. On the other hand, LEMMA pro-
vides technology-specific provisioning artifacts that can be 
used with different cloud providers. DICER [2] represents an 
approach based on technology-independent models for the 
generation of infrastructure as code and is used to deploy the 
software system. DICER models encapsulate monitoring, 
self-adaptation, configuration management, server deploy-
ment, and software system deployment. Also, DICER fos-
ters the transformation of models into artifacts for service 
deployment using TOSCA33 and other technologies. The 
functional scope of DICER relates exclusively to the provi-
sioning or operation of the software system. Furthermore, 
DICER does not support the modeling of data structures or 
service composition. Like LEMMA, DICER also provides 
technology-specific artifacts that can be used for the deploy-
ment process. Additionally, it also provides a graphical rep-
resentation in the form of UML deployment diagrams, which 
LEMMA does not provide on an operational view.

Conclusion and Future Work

In this paper, we have identified two key challenge areas for 
SMOs through an empirical analysis of an interview study 
(cf. Section 4). First, it is challenging for SMOs to develop 
and maintain a common understanding of architecture in an 
organization that is scaling to multiple teams for the first 
time through the application of MSA. Second, deployment 
in particular seems challenging due to its complexity, so 
SMOs tend to constitute special operation teams contrary to 
the microservice ownership principle (cf. Section “Organi-
zational Aspects”). This is detrimental to the implementa-
tion of DevOps practices and the benefits hoped for within 
the teams.

To address these two challenge areas, we have presented 
a model-driven workflow based on LEMMA (cf.  Sec-
tion  “Language Ecosystem for Modeling Microservice 
Architecture”) for developing microservice architectures 
(cf. Section “A Model-Driven Workflow for Coping with 
DevOps-Related Challenges in Microservice Architec-
ture Engineering”) and elaborated on the components we 
have added to LEMMA to support this workflow. The 
components comprise (i) interoperability bridges between 
OpenAPI and LEMMA models (cf. Section “Derivation of 
Microservice Models from API Documentations”); (ii) an 
extension to the Service Modeling Language to allow the 
import of remote models (cf. Section “Assembling a Com-
mon Architecture Model from Distributed Microservice 
Models”); (iii) a model processor to visualize microservice 

29  https://​puppet.​com/.
30  https://​www.​terra​form.​io/.
31  https://​aws.​amazon.​com/.
32  https://​cloud​ify.​co/. 33  https://​cloud​ify.​co/​tosca/.

https://puppet.com/
https://www.terraform.io/
https://aws.amazon.com/
https://cloudify.co/
https://cloudify.co/tosca/


SN Computer Science (2021) 2:459	 Page 23 of 25  459

SN Computer Science

architectures (cf. Section“ Visualization of Microservice 
Architecture Models”); (iv) enhancing the Operation Mod-
eling Language through the ability to import infrastructural 
nodes (cf. Section “Enhancing Distributed Microservice 
Models with Deployment Infrastructure Models”); and (v) 
code generators for microservice deployment and operation 
(cf. Section “Generating Code from Distributed Deployment 
Infrastructure Models”).

For future work we plan to conduct a qualitative observa-
tion and interview study which aims to evaluate the proposed 
workflow in practice. In particular, we plan to evaluate the 
integrability into CI/CD pipelines as well as the adoption of 
our proposed mixture of manual and automatic steps within 
the workflow. Furthermore, we are also currently exploring 
the possibility of automating our reconstruction process for 
LEMMA models [61]. Finally, we would like to investigate 
whether our proposed approach can be applied to other soft-
ware architectures.

Regarding the presented LEMMA extensions, we are 
going to mature the prototypical development and improve 
accessibility for users, e.g., by providing a web-based dash-
board to trigger the visualizer and access the generated 
images. Furthermore, we would like to develop LEMMA’s 
means to support a common architectural understanding in 
an organization not only through the presented visualization 
but also through analytical means such as code metrics.
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