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Abstract
With the evolution of quantum computing, researchers nowadays tend to incline to find solutions to NP-complete problems 
using quantum algorithms to gain asymptotic advantage. In this paper, we solve k-coloring problem (NP-complete problem) 
using Grover’s algorithm in any dimensional quantum system or any d-ary quantum system for the first time to the best of our 
knowledge, where d ≥ 2 . Till date, k-coloring problem has been implemented only in binary and ternary quantum systems, 
hence, we abide to d = 2 or d = 3 , that is for binary and ternary quantum systems for comparing our proposed work with 
the state-of-the-art techniques. Our comparator-based approach has reduced the qubit cost, compared to the state-of-the-art 
binary quantum systems (Saha et al. in IEEE Int Symp Smart Electron Syst 1:17–22, 2020). Further in this paper, with the 
help of newly proposed ternary comparator, a substantial reduction in quantum gate count for the ternary oracle circuit of the 
k-coloring problem than the previous approaches has been obtained. Later, this proposed comparator-based approach helps 
to generalize the implementation of the k-coloring problem in any dimensional quantum system. An end-to-end automated 
framework has been put forward for implementing the k-coloring problem for any undirected and unweighted graph on 
any available near-term quantum devices or Noisy Intermediate-Scale Quantum (NISQ) devices or multi-valued quantum 
simulator, which helps in generalizing our approach.

Keywords k-Coloring problem · Grover’s algorithm · NISQ · Multi-valued quantum circuit synthesis

Introduction

Modern day researchers have shown a startling interest 
for implementing quantum algorithms [2–4], which give a 
potential speedup over many of their classical counterparts 
as the advancement of quantum computer has achieved a 
phenomenal success in recent years [5]. There is an immense 
urge for the implementation of NP-complete problems on 
quantum computers with the thriving quantum wave [6]. 
According to the seminal work on computational complex-
ity by Karp [7], if a solution to any of the NP-complete 
problems can be obtained then any other NP-complete 

problem can be polynomially reducible to that problem. 
In this paper, we have focused on one of the well-known 
NP-complete problems i.e., k-coloring problem. Our main 
focus is to provide an end-to-end framework that automati-
cally implements an NP-complete problem i.e., k-coloring 
problem in any dimensional quantum system, so that if any-
one can map their computational problem to the k-coloring 
problem in polynomial time, will be able to implement fur-
ther, without prior knowledge of gate-based quantum circuit 
implementation.

An automatic circuit synthesis for k-coloring problem 
with the help of Grover’s algorithm [8] is presented in the 
context of multi-valued quantum system in this paper. 
Although physical systems in classical hardware are typi-
cally binary, but, common quantum hardware, such as in 
superconducting [9] and trapped ion computers [10], has an 
infinite spectrum of discrete energy levels. Quantum hard-
ware may be configured to manipulate the d energy levels by 
operating on d-ary quantum system. Qudit gates have 
already been successfully implemented [11–17] indicating 
it is possible to consider higher-level systems apart from 
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qubit only systems. Thus, the question of higher states, 
beyond the standard two being implemented and performed, 
no longer stands strong [18]. Therefore, we graduate to 
multi-valued quantum systems or qudits [19], which in the 
course reduce the circuit complexity and commend the effi-
ciency of quantum algorithms [20] to provide larger state 
space with simultaneous multiple control operations 
[21–23]. For instance, N qubits can be formulated as N

log2 d
 

qudits, which immediately gives log2 d-factor in run-time 
[24–26] for solving any computational problem using quan-
tum algorithm.

k-coloring problem is an NP-complete problem that 
assigns colors to every nodes or vertices of a given graph 
with the available k colors in such a way that every adjacent 
vertices connected by an edge have distinct colors. Suppose 
n is the number of nodes of a given graph, k is the num-
ber of colors, then to find an appropriate solution using a 
classical algorithm requires O(dn⋅logdk) number of steps in 
d-dimensional system [27, 28]. On the other hand, by using 
oracle and the diffusion operator of multi-valued Grover’s 
algorithm [29, 30], finding the exact solution needs O

√
N 

number of iterations where N is dn⋅logdk . Many research-
ers have already addressed the graph coloring problem for 
binary and ternary quantum systems. Earlier in [27, 31], 
graph coloring problem with the help of Grover’s algorithm 
is talked about with respect to the binary quantum systems. 
Again, in [32], SAT reduction technique, the state-of-the-
art approach, is used for solving 3-coloring problem and it 
gives an end-to-end framework for the implementation of 
it in the IBMQ quantum processor [33]. But, SAT reduc-
tion technique generates an immense qubit cost, resulting in 
inefficient circuit cost. Previously in [34] and [28], circuit 
synthesis for graph coloring problem using Grover’s algo-
rithm has been presented with respect to ternary quantum 
systems with the help of ternary comparators [35]. Albeit, in 
these works, the gate cost remains colossal. A space-efficient 
solution of graph coloring problem [36, 37] using QAOA 
(Quantum Approximate Optimization Algorithm) is also 
proposed in the literature, but we stick to Grover’s algorithm 
in this work.

In [1], we proposed a comparator-based approach for 
implementing the k-coloring problem in the binary quan-
tum structure using Grover’s search, which has less qubit 
cost as compared to the state-of-the-art approach [32] i.e., 
based on Grover’s algorithm. In this paper, we have gen-
eralized the comparator for d-ary quantum systems, which 
helps to overcome the engineering challenge of the imple-
mentation of k-coloring problem in d-ary quantum systems. 
We have proposed an automated end-to-end framework for 
any dimensional quantum system to implement k-coloring 
problem using a newly proposed generalized comparator to 
map the high-level description of the proposed circuit to any 

hardware-level quantum operations with an abstraction with 
better quantum cost in terms of quantum gate cost relative 
to the state-of-the-art works. In addition to this, we have 
claimed the following, for further establishing the novelty 
of the propose research work:

– We propose an automated end-to-end framework for 
k-coloring problem using quantum search algorithm in 
any dimensional quantum system for the first time, to the 
best of our knowledge.

– The design of the proposed framework is such that, the 
quantum solution of k-coloring problem can be mapped 
into any available near-term quantum devices or multi-
valued quantum technology, which makes our approach 
generalized in nature.

– We show that our newly proposed comparator helps to 
implement k-coloring problem with reduced quantum 
cost with respect to quantum gates as compared to the 
state-of-the-art approaches in ternary quantum domain.

– A generalized comparator for d-ary system is elaborated 
in this paper, which is a first of its kind approach.

The paper is structured as follows. In “Background”, the 
brief description of quantum circuits and graph coloring 
using Grover’s algorithm are described. The proposed meth-
odology is vividly explained in “General Flow of Proposed 
Automated Framework for Mapping k-coloring Problem to 
Quantum Computers ”. In “Proposed Methodology of Cir-
cuit Design for k-coloring Problem in d-dimensional Quan-
tum Systems ”, implementation of k-coloring problem has 
been shown. Experimental results are captured in “Experi-
mental Results” followed by concluding remarks.

Background

In this section, a few preliminaries of the quantum cir-
cuit and Grover’s algorithm are presented. We have also 
explicitly described the existing comparator-based k-color-
ing problem using Grover’s algorithm in binary quantum 
systems.

Quantum Circuit

Any quantum algorithm can be expressed or visualized in 
the form of a quantum circuit. Commonly for binary quan-
tum systems, logical qubits and quantum gates comprise 
these quantum circuits [38]. The number of gates present 
in a circuit is called gate count and the number of qubits 
present in a circuit is known as qubit cost. In this work, we 
mainly deal with qudits and generalized quantum gates.



SN Computer Science (2021) 2:427 Page 3 of 17 427

SN Computer Science

Qudits

Logical qudit that encodes input/output of a quantum algo-
rithm in multi-valued quantum systems is often referred 
to as data qudit. Ancilla qudit are another type of qudit 
used to store temporary results. In d-dimensional quantum 
systems qudit is the unit of quantum information. Qudit 
states can be manifested as a vector in the d dimensional 
Hilbert space Hd . The span of orthonormal basis vectors 
{�0⟩, �1⟩, �2⟩,… �d − 1⟩} is the vector space. In qudit system, 
the general form of quantum state can be expressed as

where |�0|2 + |�1|2 + |�2|2 +⋯ + |�d−1|2 = 1 and �
0
, �

1
,… ,

�
d−1 ∈ ℂ

d
.

Generalized Quantum Gates

In this subsection, an outline of generalized qudit gates [39, 
40] is conferred. The generalisation can be delineated as 
discrete quantum states of any arity. In a quantum algorithm, 
for modification of the quamtum state, unitary qudit gates 
are applied. For logic synthesis of Grover’s algorithm in 
d-dimensional quantum systems, it is necessary to take into 
account one-qudit generalized gates namely NOT gate ( Xd ), 
phase-shift gate ( Zd ), Hadamard gate ( Fd ), two-qudit gener-
alized CNOT gate ( CX,d ) and Generalized multi-controlled 
Toffoli gate ( Cn

X,d
 ). These gates are expressed in detail for a 

better understanding in the Appendix 1.

Generalized Grover’s Algorithm in d‑dimensional 
quantum systems

The generalized Grover’s algorithm in d-dimensional quan-
tum systems is presented here. There exists two sub-parts 
of the algorithm namely oracle and diffusion [30]. As per 
convention, Grover’s algorithm for searching in an unstruc-
tured database can be defined as follows: given a collection 

(1)

��⟩ = �0�0⟩ + �1�1⟩ + �2�2⟩ +⋯ + �d−1�d − 1⟩ =

⎛
⎜⎜⎜⎜⎜⎝

�0
�1
�2
⋮

�d−1

⎞
⎟⎟⎟⎟⎟⎠

of unstructured database elements x = 1, 2,… ,N  , and an 
oracle function f(x) that acts on a marked element s as fol-
lows [29],

perceive the marked element with as few calls to f(x) as pos-
sible [29, 30]. The database is encoded into a superposition 
of quantum states where each element is assigned to a corre-
sponding basis state. Grover’s algorithm searches over every 
possible outcome, which is put forward as a basis vector �x⟩ 
in an n-dimensional Hilbert space in d-dimensional quantum 
systems. Likewise, the marked element is encoded as �s⟩ . 
Thus, the search can be done in parallel, after application of 
unitary operations as an oracle function to the superposition 
of the different possible outcomes. The generalized diffusion 
operator, also known as inversion about the average opera-
tor, amplifies the amplitude of the marked state to increase 
its measurement probability using constructive interference, 
with simultaneous enfeeblement of all other amplitudes, and 
searches the marked element in O(

√
N) steps, where N = dn 

[29].
The circuit diagram for the generalized Grover’s algo-

rithm in a d-dimensional quantum systems is presented in 
Fig. 1, where at least n + 1 qudits are required. More elabo-
rately, the steps of the Grover’s algorithm are as follows:

Initialization: The algorithm starts with the uniform 
superposition of all the basis states on the n input qudits in 
�0⟩ by assimilating generalized Hadamard or quantum DFT 
gate. The last ancilla qudit is used as an output qudit, which 
is initialized to Fd�d − 1⟩ . Thus, we obtain the d-dimensional 
quantum state �a⟩:

Oracle query: The oracle ( Uf  ) of Grover’s search marks the 
marked state �s⟩ while keeping all the other states unchanged, 
and can be expressed as:

(2)f (x) =

{
1, x = s,

0, x ≠ s,

�a⟩ = F⊗n

d
�0d⟩ = 1√

dn

dn�
x=1

�x⟩

�x⟩ Uf

����������→ (−1)f (x)�x⟩

Fig. 1  Generalized circuit for 
Grover’s algorithm in d-dimen-
sional quantum systems
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The oracle block Uf  as shown in Fig. 1 is dependant on the 
problem instance. The oracle using Unitary transformation 
is needed to be designed as per requirement.

Diffusion: The diffusion operator of Grover’s search is 
generic, it doesn’t depend on specific problem . As shown 
in Fig. 1, the diffusion operator is initially assigned with 
generalized Hadamard (F⊗n

d
) , then by 2�0n⟩⟨0n� − Idn and 

generalized Hadamard (F⊗n

d
) again. The diffusion operator 

(D) can be expressed as:

The matrix representation of generalized diffusion operator 
[29] for d-dimensional quantum systems is shown below:

Figure 2 shows the generalized circuit for Grover’s diffusion 
operator in d-dimensional quantum systems. It can be con-
structed using generalized Hadamard gate, generalized NOT 
gate and generalized multi-controlled Toffoli gate.

We have already discussed that the diffusion operator is 
predefined for all problem instances, the oracle is specific to 
the given search problem. The combination of the oracle and 
the diffusion gives generalized Grover operator G,

We need to din the Grover’s operator O(
√
N) times to get the 

coefficient of the marked state �s⟩ large enough so that it can 
be obtained from measurement with probability close to 1. 
As we have considered every gate to be ideal in our proposed 
circuit design, and therefore, the success rate of the Grover’s 
algorithm remains same as for any other circuit design of a 
specific problem. In this paper, we start the algorithm with 
the equal superposition of all the basis states, and hence the 
success probability is ∼ 1 after 

√
N steps and thus round off 

the Grover’s algorithm.

D = F⊗n

d
[2�0n⟩⟨0n� − Idn]F

⊗n

d

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

2

dn
− 1

2

dn
2

dn
…

2

dn
2

dn
2

dn
− 1

2

dn
…

2

dn
2

dn
2

dn
2

dn
− 1 …

2

dn

⋮ ⋮ ⋮ ⋱ ⋮
2

dn
2

dn
2

dn
…

2

dn
− 1

⎞
⎟⎟⎟⎟⎟⎟⎠

G = DUf

Circuit Design and Implementation of k‑coloring 
Problem using Grover’s Algorithm in Qubit System

Graph coloring problem, as discussed in the introduction, 
Given a graph, we need to color it with the constraint that 
no two adjacent nodes will have the same color. In [32], a 
SAT reduction-based technique was introduced for solving 
3-coloring problem as an example of k-coloring problem 
in binary quantum systems. A SAT problem is defined as a 
function of OR and AND logical operations on input vari-
ables so as to reach to a solution. In [32], if n is the num-
ber of vertices in a given graph and k is the given number 
of color to solve the k-coloring problem, then it is shown 
that k-coloring problem can be solved as a Boolean sat-
isfiability problem using Grover’s algorithm. For that, all 
possible input variables of n ⋅ k are needed to be encoded 
as input data to implement Grover’s algorithm. Hence n ⋅ k 
data qubits are required to implement k-coloring problem 
by SAT reduction-based technique. In [1], we proposed a 
comparator-based approach for implementing the k-coloring 
problem in binary quantum structure using Grover’s search, 
which has less qubit cost i.e., n ⋅ ⌈log2k⌉ as compared to [32]. 
All possible combination of k colors to color the nodes of 
the given graph can be implemented with n ⋅ ⌈log2k⌉ input 
qudits. Instead of using OR and AND logical operation, our 
proposed comaparator helped us in achieving logarithmic 
reduction with respect to the input qubit cost. As we know 
in Grover’s algorithm, diffusion operator uses an MCT gate 
of the size of the number data qubits, thus as since we reduce 
the number of data qubits by our propose approach, hence 
the circuit depth will also be reduced [41].

Now, we have discussed about the proposed comparator 
in [1]. In Fig. 3, circuit synthesis for 2-qubit and 4-qubit 
comparator is shown, the functional description of which is 
given in Equation 3. The complete circuit synthesis for the 
binary comparator is designed using CNOT, NOT, Toffoli/
MCT gates.

(3)Binary_Comparator(a, b, f ) =

{
f = 0, if a = b;

f = 1, a ≠ b.

Fig. 2  Generalized circuit for 
Grover’s diffusion operator in 
d-dimensional quantum systems 
[29]
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Our proposed comparator-based oracle gives better result 
with respect to the data qubit and ancilla qubit as n ⋅ ⌈log2k⌉ 
and O(n) respectively, as compared to [32]. The comparative 
analysis is shown in Table 1.

In [1], we further showed that the mapping of generated 
comparator-based oracular circuit using Grover’s search to 
NISQ devices through MCT realization and qubit mapping 
algorithm. For mapping the logical synthesized circuit to 
quantum hardware or NISQ devices [5], the logical quan-
tum gates are needed to be realized to hardware-specific 
one and two-qubit gates for making it hardware compatible 
for implementation. The process of decomposition of MCT 
gate to NISQ compatible one-qubit and two-qubit gates is 
presented in [42]. At first, the MCT gate is to be decom-
posed to MCZ gate. After that, MCZ gate is realized to 
MCRx(�) . Lastly, without using any ancilla qubit, MCRx(�) 
is reduced to one-qubit and two-qubit gates. As the quantum 
circuit is logical, there is no constraint of qubit connectiv-
ity. There is a specific qubit topology or coupling graph for 
NISQ devices. The interaction between two physical qubits 
is defined by coupling graph. This is different for different 
NISQ devices. Hence, obviously mapping the logical cir-
cuit to the physical one is challenging. The solution to this 
problem is to insert SWAP gates between the two qubits to 
comply to the hardware constraint without compromising 
on the logic of the quantum circuit. The concept behind a 
good qubit mapping problem is to minimize the number of 
SWAP insertion gates as well as the depth of the circuit. Li 
et. al. proposed SWAP-based BidiREctional heuristic search 
algorithm (SABRE) in [43], which deals with any arbitrary 
qubit topology for any NISQ devices. Three main features 
make SABRE noticeable. Firstly, an exhaustive search is 
not performed on the entire circuit, but a SWAP-based 

heuristic search is performed keeping in mind the qubit 
dependency. Then, initial mapping is optimized with the 
use of a novel reverse traversal technique. Lastly, the decay 
effect being introduced to enable the trade-off between the 
depth and the number of gates of the entire algorithm. Tan 
et. al. formulated layout synthesis for quantum computing, 
which is a benchmark, as optimization problems [44]. They 
handed over two synthesizers: an exact layout synthesizer 
(OLSQ) and an approximate, transition-based synthesizer 
(TB-OLSQ). OLSQ is the first, that guarantees optimality 
and efficiency both in time and space for general quantum 
processors, as compared to previous exact approaches. 
This approach shows some promises of being beneficial 
for realistic applications for near-term quantum computers. 
The proposed circuit can easily be mapped to any arbitrary 
qubit topology by using one of these protocols. Apart from 
these protocols, we performed all our experiments on IBM 
quantum computer [33], specifically ibmq_16_melbourne 
(quantum volume is 8), which has a transpiler that automati-
cally maps the decomposed logical circuit into physical IBM 
hardware. The above-discussed methodology of mapping 
k-coloring problem to binary quantum computer is further 
extended to any dimensional quantum system in this paper.

General Flow of Proposed Automated 
Framework for Mapping k‑Coloring Problem 
to Quantum Computers

The flowchart in Fig. 4 depicts the complete flow of our 
proposed automated end-to-end framework. Mainly three 
algorithms: AutoGenOracle_K-color, MCT_Reali-
zation and Qubit Mapping (binary) are the basis of our 
framework. At first, AutoGenOracle_K-color algo-
rithm, which is based on the proposed comparator, is imple-
mented with inputs: graph information i.e, adjacency matrix 
of the given graph and the number of colors (k) to get the 
output, quantum circuit netlist in the form QASM. Now, 
MCT_Realization algorithm takes as input, generated 
circuit netlist and MCT gates to NISQ hardware compatible 
1-qubit and 2-qubit gates [42] and multi-valued quantum 

Fig. 3  Example binary com-
parator: a 2-qubit; b 4-qubit

Table 1  Comparative analysis of binary oracle

Parameters Hu et al. [32] Proposed work

Data qubit cost n ⋅ k n ⋅ ⌈log2k⌉
Ancilla qubit cost O((n ⋅ k)2) O(n)
Processor IBMQ Any NISQ Device
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technology compatible 1-qudit and 2-qudit gates are real-
ised. These MCT_Realization and qubit mapping algo-
rithm are well-defined in the literature. We have just adopted 
them as a support in our framework.

Due to multi-valued quantum technology constraint, 
implementation of multi-valued circuit netlist on multi-
valued quantum hardware is technologically infeasible till 
date, rather we have simulated and verified the multi-valued 

circuit netlist on multi-valued simulator. As the proposed 
framework works for any dimensional quantum system, 
hence it must work for binary quantum systems as well. We 
have already discussed about that in the previous subsec-
tion, therefore, we stick to multi-valued quantum systems 
from here on.

Fig. 4  General flow of proposed 
automated framework for map-
ping k-coloring problem to any 
dimensional quantum system

Input : Graph and Number of Color

Algorithm : AutoGenOracle_K-color

Circuit Netlist (QASM)

Algorithm : MCT_Realization

Circuit Netlist (QASM)

Binary Quantum System
Muli-valued Quantum System

Qubit Topology Algorithm : Qubit Mapping

Circuit Netlist (QASM)

NISQ Devices

Implementation Results

Multi-valued Quantum Simulator

Simulation Results
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Proposed Methodology of Circuit Design 
for k‑Coloring Problem in d‑dimensional 
Quantum Systems

This section outlines the proposed methodology for the circuit 
synthesis of the k-coloring problem using Grover’s algorithm. 
k-coloring problem takes an adjacency matrix of a graph and k 
number of colors as input and determines that the graph is prop-
erly colored or not. As mentioned in the previous section, there 
are two parts of the Grover’s search algorithm, where only the 
oracle is specific to the given search problem. Hence, this paper 
proposes the design of an oracle circuit that takes a graph and 
k number of colors as input. The oracle then marks those states 
that determine the properly colored nodes of the given graph 
before the diffusion operator is applied to them. Let’s start with 
the proposed oracle for k-coloring problem.

Proposed Oracle for k‑Coloring Problem 
in d‑Dimensional Quantum Systems

The proposed oracle of the k-coloring problem in any dimen-
sional quantum system as an application of the Grover’s 
search algorithm is sketched in this subsection. Figure 5 
shows the quantum circuit block of oracle for the k-color-
ing problem in d-dimensional quantum systems. The con-
struction of oracle for k-coloring problem is divided into 
four parts. It starts with initialization, which is essentially 
required in Grover’s Algorithm.

Initialization

Let there be a graph which has n vertices and e edges, k is 
the given number of colors, then the total number of data 
qudits that are required for representing all the colored ver-
tices are n ⋅ ⌈logdk⌉ . The oracle performs a check to find 

all possible right combination of properly colored verti-
ces with k/fewer colors from a combination of all possible 
colored vertices. A superposition of m = n ⋅ ⌈logdk⌉ qudits 
thus generates all possible combination of colored vertices. 
The initial data qudits in Fig. 5 include m qudits prepared in 
the ground state �𝜓⟩ = �0⟩⊗m , due to the re-usability prop-
erty of ancilla qudits, r = n ancilla qudits in the exited state 
�𝜃⟩ = �d − 1⟩⊗r (These r ancilla qudits are required to pre-
pare Invalid_Color detector block and comparator block that 
are thoroughly explained in the next subsection), one ancilla 
qudit in the ground state ��⟩ = �0⟩ (1 ancilla is required if 
invalid color exists), and one output qudit in the excited state 
��⟩ = �d − 1⟩ is required to perform generalized CNOT/Tof-
foli/MCT operation of the oracle. This entire initialization 
can be mathematically depicted as:

Generalized Hadamard Transformation

The next step after the initialization is Hadamard transforma-
tion. The genralized Hadamard transform Fd

⊗m on data qudits 
and Fd on output qudit is performed, hence all possible states 
are superposed as �𝜓0⟩⊗ �𝜃0⟩⊗ �𝜁0⟩⊗ �𝜙0⟩ , where

�𝜓⟩⊗ �𝜃⟩⊗ �𝜁⟩⊗ �𝜙⟩ = �0⟩⊗m ⊗ �d − 1⟩⊗r ⊗ �0⟩⊗ �d − 1⟩

��0⟩ = 1√
dm

dm−1�
i=0

�i⟩

��0⟩ =�(d − 1)(d − 1)(d − 1)(d − 1).....r(times)⟩
��0⟩ =�0⟩
��0⟩ = 1√

d

��0⟩ + �d−1�1⟩ + �2(d−1)�2⟩ + .....

+�(d−1)(d−1)�d − 1⟩�

Qudit

Activation

Invalid
 Color
Detector

Comparator Comparator

Qudit

Activation
Qudit

Activation

Invalid
 Color
Detector

Qudit

Activation

O

.

.

I

I

I

A

A

A

A

1

2

n

1

2

r

r+1

A r-1

F Xd

Fd

Fd

Fig. 5  Block diagram of generalized oracular circuit for k-coloring problem in any dimensional quantum system
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Proposed Uf  Transformation for d‑dimensional quantum 
systems:

The proposed unitary Uf  transformation is distinctly divided 
into two parts.

(1) Reduction of Invalid Colors: As color, c = ⌈logdk⌉ , 
so maximum dc colors are considered. If dc = k , then all 
colors are valid colors, else there exists a set of dc − k inva-
lid colors. The valid colors are used to optimize the search 
space. Using the following steps this can be executed:

Qudit Activation: Colors should be numbered sequen-
tially as {0, 1, 2....dc − 1} . After the generalized Hadamard 
transformation, the input data qudit lines act as the d-dimen-
sional representation of combination of all possible colored 
vertices. The oracle performs a check for only k, which is 
the combination of valid colors. All the input qudit lines 
should be in the excited state �d − 1⟩ for those particular 
combinations of invalid colors by making input qudit lines 
suitable as control lines for Generalized CNOT/Toffoli/MCT 
operation to be assured that the oracle is checking only the 
k-colored combination of vertices. A number of generalized 
NOT gates must be imposed on the input qudit lines, that 
are in the ground state �0⟩ accompanied by the application of 
’Invalid Color Detector’. Again after ’Invalid Color Detec-
tor’, this ’Qudit Activation’ is to be applied to roll back to 
the initial superposed quantum state.

Invalid Color Detector: In any combination of colored 
vertices if any invalid color is noticed then that combination 
is rejected with the use of the function ICD (Invalid Color 
Detector) as:

As an instance, the circuit synthesis of ’Invalid Color Detec-
tor’ for ternary quantum systems is described in Fig. 6. This 
is functionally shown in Equation 5 for n vertices, where 
I1, I2,… , I

n
 are the data qutrits.

(2) Comparator: A newly proposed generalized com-
parator circuit for d-dimensional quantum systems can be 
defined as:

(4)

Generalized_ICD(I1, I2,… , I
n
, f )

=

{
f = 0, if I1 or I2 or… I

n
= Invalid color;

f = d − 1, No invalid color.

(5)

Ternary_ICD(I1, I2,… , In, f )

=

{
f = 0, if I1 or I2 or … In = Invalid color ;

f = 2, No invalid color .

(6)

Generalized_Comparator(a, b, f )

=

{
f = 0, if a = b;

f = d − 1, a ≠ b.

where a and b are the comparing inputs representing the 
colored vertices of the given graph and the ancilla qudit is f .

Induced from the above, a newly proposed ternary com-
parator can be defined as:

Circuit synthesis for 2-qutrit ternary comparator is shown 
in Fig. 7. 1-qutrit and 2-qutrit permutative gate are used to 
design the complete circuit synthesis for a ternary compara-
tor. Initially, the total number of gate count of our newly 
proposed comparator is reduced by one as compared to the 
comparator proposed in [35]. But, gate count can be reduced 
further at the time of oracular circuit synthesis as one of the 
outputs of our comparator is ′2′ instead of ′1′ [35].

(7)Ternary_Comparator(a, b, f ) =

{
f = 0, if a = b;

f = 2, a ≠ b.
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Fig. 6  Ternary invalid color detector
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As everything has to be mirrored at the time of circuit 
synthesis in order to eliminate the cost of wires, there is a 
need to design an inverse comparator. Our newly proposed 
2-qutrit ternary inverse comparator is shown in Fig. 8. This 
newly proposed ternary inverse comparator has a reduced 
gate count compared to the work in [35].

Generalized MCT Operation

The ��0⟩ , output qudit state, is initialized as:

Applying a Generalized MCT gate on the output line with 
ancilla qudits as control, an eigenvalue kickback �(d−1)(d−1) 
occurs as a result. This causes a phase shift for the respective 

1√
d

��0⟩ + �d−1�1⟩ + �2(d−1)�2⟩ + ..... + �(d−1)(d−1)�d − 1⟩�

input state(s), which in turn helps in finding out all the com-
binations of a properly colored set of vertices. The algorithm 
that causes the gate level synthesis of the proposed method 
is discussed in the next subsection.

Proposed Generalized Algorithm for Oracle Circuit 
Synthesis of k‑Coloring Problem in Any Dimensional 
Quantum System

T h e  p r o p o s e d  a l g o r i t h m  A l g o r i t h m   1 
(AutoGenOracle_K-Coloring) of automated oracular 
circuit synthesis for the k-coloring problem in any dimen-
sional quantum system is illustrated in this subsection. The 
algorithm accepts the adjacency matrix of the given graph 
and the number of colors k as input parameters. A circuit 
netlist in the form of QASM is the output of the algorithm.

ALGORITHM 1: (G(V,E))
1: INPUT : Adjacency matrix adj(n, n) of graph(G) G(V,E), V = n and E = e where, V is the

set of nodes and E is the set of edges, Number of input data qudit lines required
Ir = n · �logd k�(input lines for n nodes and k colors, d = d-dimensional quantum systems)+
ancilla lines required= n +1 (ancila line for reduction of invalid colors(if required)) +1(output
line(O)), Ar represents ancilla line where, 1 ≤ r ≤ n, Ar+1 represents ancilla line for invalid
color (if required).

2: OUTPUT : Circuit netlist (QASM)
3: Initialize Ir input lines with |0〉 followed by generalized Hadamard gate (Fd), ancilla lines Ar

with |d− 1〉, Ar+1 with |0〉, and output line O with |d− 1〉 followed by a generalized
Hadamard gate (Fd).

4: Apply generalized ’Invalid Color Detector’ (if required) for all possible invalid colors with
suitable Qudit Activation with Ir, Ar as control and Ar+1 as target.

5: l ← n, f ← 1
6: for i ← 0 to n− 2 do
7: r ← f ,m ← f
8: for j ← i+ 1 to n− 1 do
9: if adj(i, j) ← 1 (i and j are connected by an edge(e)) then
10: Use a generalized comparator circuit with the input lines (Ii, Ij ) corresponding (i, j)

as control and the ancilla line Ar as target.
11: r ← r + 1
12: end if
13: end for
14: if r > f + 1 then
15: Use a generalized Toffoli/MCT gate with all ancilla lines Ar as control and Al as target
16: l ← l − 1
17: form ← n− 1 to i+ 1 do
18: if adj(i,m) ← 1 (i and m are connected by an edge(e)) then
19: Use a generalized inverse comparator circuit with the input lines (Ii, Im)

corresponding (i,m) as control and the ancilla line Am as target.
20: m ← m+ 1
21: end if
22: end for
23: else if r = f + 1 then
24: f ← f + 1
25: end if
26: end for
27: Use a generalized MCT gate with all the ancilla lines A1, A2, . . . Ar+1 as control and O as

output.
28: Repeat step 5-26.
29: Repeat step 4.
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The total number of qudit lines that are required for the 
generation of the oracle circuit can be easily evaluated from 
the details of the adjacency matrix and the number of given 
colors. All the input data qudits are initialized with �0⟩ fol-
lowed by generalized Hadamard, ancilla lines ( Ar ) are ini-
tialized with �d − 1⟩ , ancilla line Ar+1 is initialized with �0⟩ 
and the output line is initialized with �d − 1⟩ followed by 
generalized Hadamard. First of all, ’Invalid Color Detector’ 
is applied with suitable Qudit Activation (if invalid color 
exists) with Ir,Ar as control and Ar+1 as the target. After that, 
between two adjacent vertices(i, j), a generalized compara-
tor circuit is used with two input lines(i, j) as control and 
the ancilla line(Ar ) as output. They perform the same task 
for all the adjacent vertices. Following this, a generalized 
MCT gate is used with all the ancilla lines Ar and Ar+1 as 
control and the output line as output for the flip operation 
of the Grover’s oracle. To achieve the mirror of the ora-
cle circuit, we have repeated the previous steps as shown in 
Algorithm 1.

 Generation of Proposed Oracle Circuit 
for k‑Coloring Problem for an Exemplified Graph

As an example, the circuit synthesis of the 3-coloring prob-
lem for a graph of three vertices with three connected edges 
( K3 ) in ternary quantum systems is illustrated in Fig. 9. 
For a 3-vertex graph, adjacency matrix is represented by 
adj(3, 3) and vertices are indexed as 0, 1, 2. As we are solv-
ing 3-coloring problem, the value of k is 3. Hence, the total 
3 ⋅ ⌈log33⌉ = 3 qudit lines are required for inputs. As per 
Algorithm 1, input qudit lines are represented as Ir , where 
1 ≤ r ≤ 3 . These input qudit lines are initialized with �0⟩ fol-
lowed by Chrestenson gate (Generalized Hadamard gate in 
ternary quantum systems) as we have considered ternary 

quantum systems. The above three input qudit lines represent 
three vertices of the given graph. In order to store compara-
tor information, three ancilla lines Ar are initialized with 
�2⟩ , where 1 ≤ r ≤ 3 . One ancilla line Ar+1 is not required 
as there is no invalid color in this case. One output line O 
initialized with �2⟩ followed by Chrestenson gate is required 
to store the output of the circuit. Hence, a total of 7 qudit 
lines are required for the simulation.

– At first the algorithm considers to apply ’Inva-
lid Color Detector’, if it is required. As the number 
of color is 3 in this example, So the color c becomes 
c = ⌈logdk⌉ = ⌈log33⌉ = 1 and dc = 31 = 3 . Therefore, 
we can conclude that dc = k , hence, all the given colors 
are valid colors. So, there is no need of ’Invalid Color 
Detector’. Let’s assume the number of color be given 2, 
then we had to apply ’Invalid Color Detector’ as dc ≠ k.

– The algorithm now initializes variable l as 3 and variable 
f as 1.

– Thereafter, for every possible vertex pair (0, 1), (0, 2), 
and (1, 2), the algorithm checks that they are connected 
by an edge or not by accessing the information of adja-
cency matrix.

– At first for vertex pair (0, 1), adj(0, 1) = 1 , insert a ternary 
comparator circuit with I1 , I2 and A1 qudit lines.

– In case of vertex pair (0, 2), adj(0, 2) = 1 , insert an ter-
nary comparator circuit with I1 , I3 and A2 qudit lines.

– Again to make two A1 and A2 ancilla lines reusable, insert 
a ternary Toffoli gate with A1 and A2 as control and A3 
as target by accessing the value of the variables r and f 
followed by inserting two inverse comparator circuit for 
vertex pairs (0, 1) and (0, 2) by accessing the value of the 
variables l and m.
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Fig. 9  Oracle circuit for k-coloring problem of a graph with three vertices in ternary quantum systems
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– Similarly, for vertex pair (1, 2), the entry for the adja-
cency matrix adj(1, 2) is 1, so insert a ternary comparator 
circuit with I2 , I3 and A2 qudit lines after re-initializing 
the value of the variables r and m to f.

– Thereafter, Insert a ternary three-controlled Toffoli gate 
with each of the three A1 , A2 , and A3 ancilla lines as con-
trol and O ancilla as target.

– The remaining steps of the algorithm generate the mirror 
for the original circuit in order to keep the overall circuit 
netlist reversible.

After optimizing the gate-cost, the circuit synthesis of the 
3-coloring problem for above-mentioned example graph is 
presented in Fig. 10.

Circuit Cost Estimation

The design of generalized oracle for our proposed algo-
rithm has already been described. Now, in this subsection, 
we furnish the circuit cost analysis of the oracular circuit 
in Table 2.

n ⋅ ⌈logdk⌉ data qudits are required for n-vertices graph 
and k given color. At most n + 1 number of ancilla and at 
most O(n2 ⋅ logdk) gates are required to design the oracular 
circuit for n-vertices graph.

Comparative Analysis

The new ternary oracle circuit for 3-vertex graph has 
achieved 41% reduction in the quantum gate cost as com-
pared to the most recent related work [28] and 85% reduc-
tion in the quantum gate cost as compared to the work [34]. 
Table 3 shows that the comparative analysis for higher 

vertices graphs as well. We show that for 4-vertex and 5-ver-
tex graph, it can reach to 43% reduction of gate cost.

Experimental Results

In this section, we have vividly discuss about the implemen-
tation results of k-coloring problem in multi-valued quantum 
systems.

Simulation Results of k‑Coloring Problem in Ternary 
Quantum Domain

Our ternary circuit instance is verified through simulation 
with the help of MATLAB simulator [45]. Unfortunately, 
MATLAB has some limitations of memory constraints. For 
that, the verification of our circuit needs to be restricted 
with at most seven qutrits. Therefore, a complete graph of 
three vertices i.e., a triangle is taken as an example case for 
simulating the k-coloring problem. The number of color k 
is given as 3. As per Algorithm 1, three qutrits ( n ⋅ ⌈log3k⌉ ) 
are required to represent the vertices of the given graph. As 
the example graph have three vertices, three ancilla qutrits 
are required to perform the comparator circuit synthesis and 
one final qutrit as output. Three colors are given, which are 
encoded as �0⟩, �1⟩ and �2⟩ . Generally, a graph with three ver-
tices can be colored with the help of three colors in 33 = 27 
different ways, that can be represented in the ternary quan-
tum system as �000⟩… �222⟩ . Thus, our database contains 
27 elements. In Fig. 11, the gate level representation of the 
Grover’s circuit is shown.

The simulation steps of Fig. 11 are:
Step 1: At first, all the qutrits of the 3-qutrit data register 

are initialized with �0⟩.
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Fig. 10  Gate-optimized oracle circuit for k-coloring problem of a graph with three vertices in ternary quantum systems
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Step 2: Then, the CH gate is applied to create the all 
possible 27 states (�000⟩ … �222⟩) , which is portrayed in 
Fig. 12a.

Step 3: The ternary oracle compares the colors of every 
adjacent vertices and inverts the amplitude of the solution 
elements, which are �012⟩, �021⟩, �102⟩, �120⟩, �201⟩, �210⟩ , 
illustrated in Fig. 12b.

Step 4: The output of ternary oracle is acted upon by the 
ternary diffusion operator. This diffusion operator amplifies 
the amplitudes of the marked states of step 3.

Step 5: Steps 3 and 4 are repeated for 
√
N∕M times (For 

the multiple solution of Grover’s operator having N = num-
ber of elements in the database and M = number of marked 
states), where the value of N is dn∗logdk for this k-coloring 
problem.

The probability distribution of quantum states after two 
iterations of Grover’s operator is shown in Fig. 12c, where 
the amplitude amplification is performed using diffusion 
operator to amplify the amplitudes of marked states. It can 
be verified that the location of the searched states (output 
of step 5) by converting its index values to its equivalent 
ternary value, having higher probability from all the index 
values of Fig. 12c. For example, if index value is taken as 
five form Fig. 12c, after converting it to ternary, we get the 
string �012⟩ , which is one of the searched states. Analysis of 
the simulation result confirms that our oracle successfully 
verifies that any set of vertices of a graph, is properly colored 
by the given set of colors.

Mapping of k‑Coloring Problem to Multi‑valued 
Quantum Systems

Multi-valued quantum hardware is not presently publicly 
available for common users. But, in this section, we discuss 
about a few works which guide us to map a multi-valued 
quantum algorithm to quantum hardware in future. As in 
binary quantum systems, for this mapping, generalized 

multi-controlled Toffoli gates are needed to be decomposed 
into one and two-qudit gates followed by a qudit mapping 
algorithm. In [41], Saha et. al. have shown the decompo-
sition of multi-controlled Toffoli gate in d-dimensional 
quantum systems. A generalized Toffoli decomposition in 
d-dimensional system using �d⟩ state is shown in Fig. 13. An 
akin construction for the Toffoli gate in binary using qutrit is 
evident from a previous work [46]; Saha et. al. have extended 
it for d-dimensional quantum systems. The idea is to execute 
an Xd operation on the target qudit (third qudit) if and only 
if the two control qudits, are both �d − 1⟩ . Firstly, a �d − 1⟩
-controlled X+1

d+1
 , where +1 and d + 1 are used to denote that 

the target qudit is incremented by 1 (mod d + 1) , is imple-
mented on the first and the second qudits. This eventually 
upgrades the second qudit to �d⟩ as long as the first and the 
second qudits were both �d − 1⟩ . Then, a �d⟩-controlled Xd 
gate is applied to the target qudit. Therefore, Xd is executed 
only when both the first and the second qudits were �d − 1⟩ , 
as expected. The controls are rolled back to their original 
states by a �d − 1⟩-controlled X−1

d+1
 gate, which reverses the 

effect of the first gate. The most important aspect in this 
decomposition is that the �d⟩ state from d + 1-dimensional 
quantum systems can be used instead of ancilla to store tem-
porary information.

For further decomposition of the Toffoli for simulation 
purpose, the d + 1-dimensional Toffoli gate has been decom-
posed into d + 2-dimensional CNOT gates. A generalized 
CNOT gate for d + 2-dimensional quantum system as C+1

X,d+2
 , 

where +1 and d + 2 denote that the target qudit is incre-
mented by 1 (mod d + 2) only when the control qudit value 
is d + 1 . The ((d + 2)2 × (d + 2)2) matrix representation of 
the C+1

X,d+2
 gate is as follows:

where X+1
d+2

 and 0d+2 are both (d + 2) × (d + 2) matrices as 
shown below:

C+1
X,d+2

=

⎛
⎜⎜⎜⎜⎜⎝

Id+2 0d+2 0d+2 … 0d+2
0d+2 Id+2 0d+2 … 0d+2
0d+2 0d+2 Id+2 … 0d+2
⋮ ⋮ ⋮ ⋱ ⋮

0d+2 0d+2 0d+2 … X+1
d+2

⎞⎟⎟⎟⎟⎟⎠

Table 2  Circuit cost analysis of oracle

No. of 
vertex

No. of color Data qudits 
required

Maximum 
ancilla 
required

Maximum 
gate count

n k n ⋅ ⌈logdk⌉ O(n) O(n2 ⋅ logdk)

Table 3  Comparative analysis 
of ternary oracle

No. of vertex Proposed 
gate cost

Gate cost [28] Reduction(%) Gate cost [34] Reduction(%)

3 62 106 41% 343 85%

4 170 298 43% < 1000 86%

5 282 494 43% < 2700 86%
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Fig. 12  Simulation results: (a) the amplitude of the quantum states after applying CH gate to input qutrits (b) The amplitude of the quantum 
states after applying oracle (c) The probability distribution of the quantum states after two iterations of Grover’s operator
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As an example, a 8-qudit Toffoli gate is shown in 
Fig. 14a. First, we need to decompose it as in [46] as shown 
in Fig. 14b. Further, we need to decompose all the d + 1

-dimensional Toffoli gates into (d + 2)-dimensional CNOT 
gates as shown in Fig. 14c with the help of the Saha et. 
al. decomposition of the generalized Toffoli in any dimen-
sional quantum system [41]. All the d − 1-controlled Toffoli 
gates are decomposed into d − 1-controlled and d-controlled 
CNOT gates as shown in Fig. 14c. Likewise, all the d-con-
trolled Toffoli gates are decomposed into d-controlled and 
d + 1-controlled CNOT gates. Consequently, with the help of 
�d⟩ and �d + 1⟩ quantum state of (d + 2)-dimensional system, 
Xd is carried out effectively if all the controlled qudits are in 

X+1
d+2

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 … 0 1

1 0 … 0 0

0 1 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 1 0

⎞
⎟⎟⎟⎟⎟⎠

and, 0d+2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 … 0 0

0 0 … 0 0

0 0 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 0 0

⎞
⎟⎟⎟⎟⎟⎠

�d − 1⟩ state. In this way, any dimensional multi-controlled 
Toffoli gate can be decomposed. In [18], the authors have 
exhibited that how quantum states could be moved without 
using SWAP gate in any dimensional quantum system. Thus, 
it paves the path for future qudit mapping problem to be 
implemented, in a cost-effective manner.

Conclusion

Here, in this paper, we have proposed an end-to-end frame-
work, which includes mapping of k-coloring problem to any 
NISQ devices/multi-valued quantum technology through 
automatic generation of oracle circuit using Grover’s search 
followed by MCT realization for any dimensional quantum 
system. This proposed approach for any dimensional quan-
tum system is applicable for any undirected and unweighted 
given graph, which makes our approach generalized. We 
exhibited that our comparator-based approach requires 
n ⋅ ⌈logdk⌉ data qudits, which leads to a query complexity 
O(

√
n ⋅ logd k) to solve k-coloring problem using Grover’s 

algorithm. Further, we have shown that our newly proposed 
ternary comparator is a key component in designing the cir-
cuit for the k-coloring problem using quantum search algo-
rithm. Our new ternary oracle circuit achieved an at least 
41% reduction in the quantum gate cost as compared to the 
most recent related work [28] and an at least 85% reduction 
in the quantum gate cost as compared to the work [34]. In 
the future, with the evolution of qudit-supported quantum 
hardware, we would like to validate our designs.

Fig. 13  Generalized Toffoli in d-dimensional quantum systems [41]

Fig. 14  Decomposition of 8-qudit Toffoli gate : (a) 8-qudit Toffoli gate (b) decomposed into generalized Toffoli gates (c) decomposed into one 
and two-qudit Generalized CNOT gates [41]
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Appendix 1

Here, we thoroughly discuss about generalized quantum gate 
along with binary and ternary gates that are used in this 
paper for designing the proposed circuit.

Generalized NOT Gate: Xd , the generalized NOT or 
increment gate, for a (d × d) matrix is as follows:

Generalized Phase-Shift Gate: Zd , the generalized phase-
shift gate of a (d × d) matrix is as follows, with � = e

2�i

d ;

Generalized Hadamard Gate: Fd , the generalized quantum 
Fourier transform or generalized Hadamard gate, produces 
the superposition of the input basis states. The (d × d) matrix 
representation of it is as shown below :

Generalized CNOT Gate: Quantum entanglement is a 
unparalleled property of quantum mechanics, and can be 
attained by a controlled NOT (CNOT) gate in a binary quan-
tum system. For d-dimensional quantum systems, the binary 
2-qubit CNOT gate is generalised to the INCREMENT gate:

INCREMENT�x⟩�y⟩ = �x⟩�(x + y) mod d⟩ , if x = d − 1 , 
and = �x⟩�y⟩ , otherwise.

The (d2 × d2) matrix representation of the generalized 
CNOT CX,d gate is as follows:

Xd =

⎛
⎜⎜⎜⎜⎜⎝

0 0 … 0 1

1 0 … 0 0

0 1 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 1 0

⎞
⎟⎟⎟⎟⎟⎠

Zd =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 … 0

0 � 0 … 0

0 0 �2 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … �d−1

⎞⎟⎟⎟⎟⎟⎠

Fd =
1√
d

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 … 1

1 � �2 … �d−1

1 �2 �4 … �2(d−1)

⋮ ⋮ ⋮ ⋱ ⋮

1 �d−1 �2(d−1) … �(d−1)(d−1)

⎞⎟⎟⎟⎟⎟⎠

where Id and 0d are both d × d matrices as shown below:

Generalized Multi-controlled Toffoli Gate: We extend 
the generalized CNOT or INCREMENT further to oper-
ate over n qudits as a generalized Multi-controlled Toffoli 
Gate or n-qudit Toffoli gate Cn

X,d
 . For Cn

X,d
 , the target qudit 

is increased by 1 (mod d) only when all n − 1 control qudits 
have the value d − 1 . The (dn × dn) matrix representation 
of generalized Multi-controlled Toffoli (MCT) gate is as 
follows:

Owing to technology constraints, a multi-controlled Toffoli 
gate can be substituted by an equivalent circuit comprising 
one-qudit and/ two-qudit gates, although at first the multi-
controlled Toffoli must be decomposed into a set of Tof-
foli gates for any dimensional quantum system. The binary 
[38] and ternary gate [19, 40] representation of all the above 
mentioned generalized quantum gates are portrayed as fol-
lows (Fig. 15):

CX,d =

⎛
⎜⎜⎜⎜⎜⎝

Id 0d 0d … 0d
0d Id 0d … 0d
0d 0d Id … 0d
⋮ ⋮ ⋮ ⋱ ⋮

0d 0d 0d … Xd

⎞
⎟⎟⎟⎟⎟⎠

Id =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 … 0

0 1 0 … 0

0 0 1 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 1

⎞
⎟⎟⎟⎟⎟⎠

and, 0d =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 … 0

0 0 0 … 0

0 0 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 0

⎞
⎟⎟⎟⎟⎟⎠

Cn
X,d

=

⎛
⎜⎜⎜⎜⎜⎝

Id 0d 0d … 0d
0d Id 0d … 0d
0d 0d Id … 0d
⋮ ⋮ ⋮ ⋱ ⋮

0d 0d 0d … Xd

⎞⎟⎟⎟⎟⎟⎠
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