
Vol.:(0123456789)

SN Computer Science (2021) 2:396
https://doi.org/10.1007/s42979-021-00788-1

SN Computer Science

ORIGINAL RESEARCH

Backward Stepwise Elimination: Approximation Guarantee, a Batched
GPU Algorithm, and Empirical Investigation

Benjamin Sauk1 · Nikolaos V. Sahinidis2

Received: 17 February 2021 / Accepted: 19 July 2021 / Published online: 31 July 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Best subset selection is NP-hard and expensive to solve exactly for problems with a large number of features. Practitioners
often employ heuristics to quickly obtain approximate solutions without any accuracy guarantees. We investigate solving the
best subset selection problem with backward stepwise elimination (BSE). We prove an approximation guarantee for BSE that
bounds its performance by applying the concept of approximate supermodularity. This guarantee provides conditions that
suggest the backward stepwise elimination algorithm will return a near-optimal solution, or when another technique should
be used. To improve computational performance of the algorithm, we develop a graphics processing unit (GPU) parallel
BSE that averages up to 5x faster than an efficient CPU implementation on a collection of over 1.8 million problems; larger
problems resulted in the largest speedups. Finally, we demonstrate the benefit of BSE with empirical results, comparing
against several state-of-the-art feature selection approaches. For certain classes of problems, BSE generates solutions with
lower relative test error than the lasso, the relaxed lasso, and forward stepwise selection. BSE thus deserves a place in the
data modeling toolset along with these other more popular methods. All codes and data used for computations in this paper
can be obtained from https:// github. com/ bsauk/ Backw ardSt epwis eElim inati on.

Keywords Regression · Model selection/variable selection · Algorithms · GPU computing

Introduction

Feature selection is the problem of identifying a subset of
features that succinctly and accurately relate a set of input
observations to output measurements. A popular way to
address the problem of feature selection is by solving, often
approximately, the best subset selection problem, i.e., the
problem of finding a small subset of features, so that the
resulting linear model provides an accurate representation
of the measurements [23].

The best subset selection problem is known to be NP-hard
[1]. When solving with branch-and-bound [13], mixed-inte-
ger optimization [4, 8], or exhaustive enumeration, optimal

subset selection can become intractable for problems with
a large number of features. Instead, heuristics, such as for-
ward stepwise selection (FSS), backward stepwise elimina-
tion (BSE) [11], or the lasso [31], are commonly used to
identify near-optimal subsets for large instances [19, 28].
Although heuristic approaches are significantly faster than
exact methods, there are few studies that have investigated
the accuracy of these methods.

Even when it is possible to solve the subset selection
problem exactly, the mathematically optimal model may
not be the best choice in practice. Hastie et al. [16] com-
pared the performance of FSS, the lasso [31], the relaxed
lasso [22], and an exact mixed-integer formulation [4]. The
comparisons did not consider BSE, thus leaving a gap in
the understanding of this technique in comparison to other
approaches.

We investigate the benefits of solving the best subset
selection problem with a backward stepwise elimination
algorithm. The contributions of this paper are:

1. We obtain an approximation guarantee for BSE using
the concept of supermodularity ratio. The derived guar-

 * Nikolaos V. Sahinidis
 nikos@gatech.edu

1 Department of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, PA, USA

2 H. Milton Stewart School of Industrial & Systems
Engineering and School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, Atlanta,
GA 30332, USA

http://orcid.org/0000-0003-2087-9131
https://github.com/bsauk/BackwardStepwiseElimination
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00788-1&domain=pdf

 SN Computer Science (2021) 2:396396 Page 2 of 12

SN Computer Science

antee provides a bound on the worst-case performance
of backward stepwise elimination.

2. We develop a GPU parallel batched BSE algorithm that
is a factor of 5x faster than a CPU implementation of
BSE for a range of problem sizes.

3. We compare the accuracy of BSE and other state-of-the-
art subset selection methodologies. We demonstrate that,
for certain classes of problems, BSE generates models
that are simpler and have less out-of-sample test error
than the lasso or forward selection.

The remainder of this paper is organized as follows. In the
next section, we review the literature related to best sub-
set selection, stepwise selection, approximate submodular-
ity, and supermodularity. In the third section, we rely on
submodularity to prove an approximation guarantee for
BSE. In the fourth section, we propose a batched GPU
BSE algorithm, describe our implementation, and compare
the performance of the proposed GPU algorithm against a
CPU implementation. In the fifth section, we compare BSE
against other popular subset selection techniques in terms of
solution quality. We provide conclusions in the last section.

Literature Review

Best Subset Selection Problem Formulation

Given a response vector y ∈ ℝ
m , predictor matrix � ∈ Rm×n ,

whose rows correspond to measurements and columns cor-
respond to features, and a subset size k ≤ n , the best subset
selection problem is defined as the following optimization
model:

where x ∈ ℝ
n are the coefficients of a linear predictive

model. The �0 norm limits the number of nonzero coef-
ficients and adds nonconvexity to an otherwise convex
problem.

Many techniques have been developed to solve this prob-
lem, including branch-and-bound [13, 14], mixed-integer
optimization [4, 8], and screening rules to reduce the size
of the solution space [29]. Several heuristic approaches con-
sider relaxing the cardinality constraint, producing the fol-
lowing problem

which can be solved in closed form. A least squares estima-
tor of x can be found to solve y = �x + � , where � ∈ ℝ

m .
For the remainder of the paper, we will assume that m ≥ n
There are many techniques to solve the linear least squares

(1)min
x

‖y − �x‖2
2
, subject to ‖x‖0 ≤ k,

(2)min
x

‖y − �x‖2
2
,

problem, with QR factorization being one of the most com-
monly used. QR factorization involves decomposing a
matrix � ∈ Rm×n into the product of an orthogonal matrix
� ∈ ℝ

m×m and an upper triangular matrix � ∈ ℝ
n×n:

Let

where y1 ∈ ℝ
n and w ∈ ℝ

m−n . The least squares estimator
is obtained by solving the following optimization problem

From this, the residual sum of squares (RSS) can be calcu-
lated from

If QR factorization is used, the residual sum of squares is
calculated from the Euclidean norm of �T

y for the vector of
values from n + 1 to m.

Stepwise Selection and Elimination

A common technique for solving (1) involves selecting or
eliminating variables, in a stepwise fashion. Forward step-
wise selection initially generates a model that minimizes
RSS by selecting a single variable. Then, in each subsequent
iteration, a new variable is included in the solution until
‖x‖0 = k . In every iteration, a new model is obtained by
identifying the variable that minimizes RSS when added to
the previously obtained model. Forward stepwise selection
(FSS) is a greedy selection algorithm, which has a prov-
able worst performance for certain classes of problems [24].
Forward selection can also be used for problems when the
optimal subset size is not known a priori. Stopping rules
for FSS aim to find a balance between accuracy and model
complexity [3].

Backward stepwise elimination (BSE) starts from the
standard least squares solution and removes one feature at
a time until the cardinality constraint is satisfied. Given the
initial least squares solution x0 , the error for the model after
s iterations and the corresponding subset xs are obtained via
factorization or QR downdating [6]. QR downdating refers
to updating the solution to the linear least squares problem
when a column or a row is removed from � . For subset
selection, a model with k columns is selected, then RSS is
calculated, where y2 ∈ ℝ

m−k . QR downdating reduces the

(3)�T� =

(
�

�

)
.

(4)�T
y =

(
y1

w

)
,

(5)x̂ = argmin
x
‖y − �x‖2

2
= argmin

x

����
T (y − �x)

���
2

2
.

(6)RSS = ‖y − �x̂‖2
2
=
����

T(y − x̂)
���
2

2
= ‖w‖2

2
.

SN Computer Science (2021) 2:396 Page 3 of 12 396

SN Computer Science

number of floating point operations by removing a column
from �s and updating � to maintain an upper triangular
structure in �s−1 without having to perform a QR factori-
zation at every iteration. When a column is removed from
�s−1 , the upper triangular structure is only destroyed in the
columns to the right of the deleted column. As the computa-
tional complexity of QR factorization is O(2mn2) , in many
cases, the complexity of the update is significantly less than
the cost of factorizing �s−1 . The sum of squared errors is
computed by left multiplying �T to restore the upper trian-
gular structure �s−1 with y2 . This procedure is repeated to
calculate the best i = n,… , nmin models, where nmin ∈ [1, k] .
In each iteration, after the best model has been identified,
all suboptimal solutions are discarded, and the next iteration
begins. This algorithm is outlined in Algorithm 1.

checking the conditions in [7] requires the solution of an
NP-hard problem.

Submodularity and Supermodularity

A function f that maps a set to a real number is called sub-
modular if it satisfies the following property:

for S ⊂ T and {v} ⊂ T ⧵ S . The results of Nemhauser et al.
[24] prove that the greedy algorithm achieves a (1 − 1∕e)

-approximation for the maximization of any monotone,
submodular set function over a cardinality constraint. Here,
e is the base of the natural logarithm. This approximation
result provides a lower bound on the performance of greedy

(7)f (S ∪ {v}) − f (S) ≥ f (T ∪ {v}) − f (T),

Algorithm 1 Generic backward stepwise elimination algorithm
1: Given a set of data points xij , yi for i = 1, ...,m, j = 1, ..., n
2: Generate a set of basis functions from input features A
3: procedure BackwardElimination(A)
4: QnRn ← A
5: for k = n− 1, ...,0 do
6: for h = 1, ..., k do
7: Ak,h ← Rk+1
8: Qk,hRk,h ← QR(Ak,h(h : m, h : n))
9: wk,h ← QT

k,hwk+1

10: RSSk,h wk,h(k + 1 : m) 2
2

11: end for
12: i ← argmaxh wk,h

13: wk ← wk,i

14: Ak ← Ak,i

15: end for
16: end procedure

Both stepwise techniques have been extensively used for
the last 50 years [12]. In most cases, BSE requires more
floating point operations than FSS. However, the accuracy
of BSE has been observed to be better than FSS for certain
classes of problems [7, 21]. While some have argued that
neither approach should be used [26], for problems with
millions of observations and thousands of features, step-
wise approaches quickly generate approximately accurate
and sparse solutions.

FSS and BSE are heuristic hill climbing strategies that
obtain locally optimal solutions to the subset selection prob-
lem. As both methods require fewer computations than exact
strategies, researchers have investigated if any guarantees
exist for these methods. Several authors have proven statisti-
cal bounds on the accuracy of FSS [9, 24]. Using the notion
of the submodularity ratio, it is possible to obtain a worst-
case bound on the performance of FSS. Under certain condi-
tions, BSE identifies an optimal subset [7]. Unfortunately,

algorithms for solving NP-hard problems subject to cardinal-
ity constraints. However, subset selection does not involve a
submodular objective function. To develop an approximation
guarantee for subset selection, the work of [9] defines the
submodularity ratio as a way to measure how close a func-
tion is to being submodular:

where f is a set function, L ⊂ U and S ∩ L = � . The sub-
modularity ratio is a function of the maximum subset size
k, and the set U. It reflects how much the value of f increases
by adding any subset S of size k to L, compared to the benefit
of f (S ∪ L) . If the function f is submodular, then the sub-
modularity ratio is defined to be 1, otherwise if 𝛾 < 1 , the
function is defined as weakly submodular. Das and Kempe
[9] prove that FSS has a worst-case approximation guarantee

(8)𝛾U,k(f) = min
L⊂U,S∶�S�≤k,S∩L=�

∑
x∈S f (L ∪ {x}) − f (L)

f (L ∪ S) − f (L)
,

 SN Computer Science (2021) 2:396396 Page 4 of 12

SN Computer Science

of 1 − exp(−�) ⋅ OPT , where OPT is the R2 of the optimal
best subset solution. For � = 1 , the guarantee in [9] recovers
the guarantee of Nemhauser et al.; the bound is loose as �
approaches zero.

A function f is supermodular if −f is submodular. Several
authors have defined a supermodularity ratio [18, 20, 27].
Inspired by the work of Sakaue [27], we define the following
supermodularity ratio:

where �U,k ∈ [1, k] is selected as the maximum value for
each combination of S, L ⊆ U . Like the submodularity ratio,
the supermodularity ratio captures how close a function is
to being supermodular.

Algorithmic Analysis of BSE

While there exist approximation guarantees for forward
selection, no such bound is currently known for backward
stepwise elimination. To determine such a bound, we use the
concept of the supermodularity ratio.

Let f be a nonnegative monotonically increasing set func-
tion. The problem we seek to solve is

Our theoretical contribution is an approximation guarantee
on the performance of backward stepwise elimination.

Theorem 1 Let f be a nonnegative, monotonically increasing
set function, OPT be the maximum value of f possible for a
set of size k, and k∗ be the size of the subset for OPT. Then,
the set selected by BSE, SBSE

n−k
 , has the following approxima-

tion guarantee:

Proof Let SB
0
 be the initial set of all variables considered, and

S∗
n−k

 be an optimal set of k variables that has a value of OPT.
Let SB

i
 be the set of variables that remain in S after i itera-

tions of BSE. We begin by rearranging the supermodularity
ratio to ensure that the numerator and denominator in (9)
are both positive:

In every iteration of BSE, x̂ is selected to minimize
f (SB

i
) − f (SB

i
⧵ {x̂}) . As the minimum size of SB

i
 is |SB

i
| ≥ k

and
∑n

i
x ≥ n ⋅ xmin , we have

(9)�U,k(f) ≥

∑
x∈S f (L ⧵ {x}) − f (L)

f (L ⧵ S) − f (L)
,

(10)max
S

f (S), subject to ‖S‖0 ≤ k.

(11)f (SBSE
n−k

) ≥

(
1 −

�

k∗

)n−k∗

⋅ OPT.

(12)

∑

xj∈S
B
i

(
f
(
SB
i

)
− f

(
SB
i
⧵ {xj}

))
≤ �

(
f
(
SB
i

)
− f

(
SB
i
⧵ SB

i

))
.

Letting A(i) be the loss in f in i teration i ,
A(i) = f (SB

i−1
) − f (SB

i
) . Let f (SB

0
) be the value of f

when all variables in the set are included. Then, ∑i

j=1
A(j) = f (SB

0
) − f (SB

i
) extends from the definition of A(i).

Rewriting (13) in terms of A(⋅) , we get

Using the inequality above, we will prove by induction that

For t = 0 , the inequality is trivial. Assume that the inequality
holds for t iterations. Then, for iteration t + 1:

where t + 1 i s less than or equal to n − k .
Finally, f (SB

0
) ≥ OPT and from the definition of

f (SBSE
n−k∗

) = f (SB
0
) −

∑n−k

j=1
A(j):

This completes the proof for the approximation guarantee.
 ◻

We apply this theorem to the best subset selection prob-
lem by defining f (S) = R2

S
 . When � = 1 , our approximation

is the tightest, and deteriorates until � = k . This implies that
the proposed guarantee is stronger for functions that are
closer to supermodular, similar to the submodularity ratio
for submodular functions. In addition, the proposed bound
is stronger as k approaches n, where in the case that k = n ,
BSE returns the linear least squares solution.

(13)k∗
(
f (SB

i
) − f (SB

i+1
)
)
≤ |SB

i
|
(
f (SB

i
) − f (SB

i+1
)
)
≤ �f (SB

i
).

(14)A(i + 1) ≤
�

k

(
f
(
SB
0

)
−

i∑

j=1

A(j)

)
.

(15)

f (SB
0
) −

t∑

j=1

A(j) ≥ f
(
SB
0

)(
1 −

�

k

)n−k

≥

(
1 −

�

k

)n−k

⋅ OPT

f
(
SB
0

)
−

t+1∑

j=1

A(j) = f
(
SB
0

)
−

t∑

j=1

A(j) − A(t + 1)

≥ f
(
SB
0

)
−

t∑

j=1

(
A(j) −

�

k

(
f
(
SB
0

)
−

t∑

j=1

A(j)

))

≥

(
f
(
SB
0

)
−

t∑

j=1

A(j)

)(
1 −

�

k

)

≥ f
(
SB
0

)(
1 −

�

k

)t+1

≥
(
SB
0

)(
1 −

�

k

)n−k

(16)f (SBSE
n−k

) ≥

(
1 −

�

k

)n−k

⋅ OPT.

SN Computer Science (2021) 2:396 Page 5 of 12 396

SN Computer Science

A Batched GPU Algorithm for BSE

One major criticism against BSE is that it is computation-
ally expensive. To address this shortcoming, in this section,
we develop a parallel BSE algorithm using batched GPU
computing.

Background

To reduce the computational time of BSE, we parallelized
the QR downdate operations in each iteration of Algo-
rithm 1. Unfortunately, in every iteration, each downdate
task is unique. As a result, it cannot be accelerated with a
data-parallel framework. In particular, the problem size and
batch size decrease in each iteration, and every downdate
requires a different number of matrix update operations.
Instead of a data-parallel approach, we parallelized tasks
with batched GPU computing.

GPUs are powerful accelerators that are designed for
single instruction multiple data parallelism—not task-level
parallelism. GPU hardware is designed for rendering graph-
ics and performing the same set of operations on different
sets of data. There are many cases where thousands of small,
independent problems need to be solved. To take advantage
of GPU hardware for scientific computing, “batching” is a
technique that solves groups of problems in parallel [15,
25]. While algorithms designed for batched computing do
not fully utilize the hardware, batched methods have been
observed to be a factor of 2x faster than optimized CPU
kernels for performing the same set of instructions [10].

Despite the clear need to solve problems in batches,
developing software to execute task-level parallelism on a
GPU efficiently is challenging. To fill this gap, two batched
dense linear algebra libraries have been developed. In CUB-
LAS, NVIDIA developers have created a set of batched basic
linear algebra subroutines (BLAS) and batched kernels for
QR factorization, LU factorization, and matrix-matrix multi-
plication [25]. The Innovative Computing Laboratory devel-
oped MAGMA, and implemented efficient batched BLAS
routines to accelerate batched linear algebra kernels [15].
MAGMA has demonstrated that, with proper algorithm-
specific optimizations, it is possible to develop algorithms
that are twice as fast as CUBLAS, for problems with a large
batch size. In addition, for small- to medium-sized problems,
batched BLAS approaches are reported as 2–3x faster for
batched matrix multiplication compared to traditional GPU
code [15].

Batched BSE

We employed the batched QR factorization routine avail-
able in the MAGMA 2.5.0 library [17]. While batched QR

factorization is the most time consuming portion of the
backwards stepwise algorithm, a BSE algorithm also needs
to perform downdates on the output y to calculate the sum
of squared errors for every problem in a batch. Unfortu-
nately, MAGMA does not have a batched implementation
to perform QR downdates. In LAPACK, this functionality
corresponds to the routine DORMQR, which uses � gener-
ated from DGEQRF and calculates �T

y.
We augmented the DGEQRF routine to include the

update operation on y . We modified the batched routine to
update y when the rest of the matrix � is updated. When y
was a vector, updating y added a negligible amount of time.
We conducted experiments, and observed that the computa-
tional time of the modified code did not increase compared
to that of the original batched DGEQRF code.

The batched BSE algorithm computes a solution to the
linear least squares problem. Then, in parallel, the algo-
rithm removes different single features from the linear least
squares solution. Each task then downdates y to calculate
the updated sum of squared errors. After factorizing and
updating y for the removal of each candidate variable, the
column with the smallest change in SSE is removed. This
process is repeated until terminating at a predefined mini-
mum matrix size.

The backwards selection algorithm relies on the QR fac-
torization kernel in MAGMA for tall and skinny matrices.
To optimize the performance of this routine, we performed
parameter tuning on the block size parameter in MAGMA.
From previous work [30], it was observed that varying the
block size parameter in MAGMA has a significant impact on
performance. We discovered that changing the block size to
16, from a default value of 32 improved the performance of
the batched kernel for problem sizes of interest.

By definition, a batch is made up of problems of the same
size. In each iteration, we perform matrix updates that oper-
ate on a different number of columns ranging from zero to
n − si columns, where n is the number of columns in the
matrix and si is the current iteration. As a result, for every
task in the same iteration, the number of operations in each
downdate operation is different, depending on which column
is removed. If the feature removed from � is the furthest to
the right, no work is needed to downdate the solution. How-
ever, if the first column is removed, the entire matrix needs
to be downdated to restore the upper triangular structure of
� . This uneven distribution of work creates a batch size of
one, where all jobs require different computations. To make
BSE amenable to batched computing, we decided to per-
form downdate operations for every feature as if the entire
matrix is to be downdated. By assuming that all problems
are the same size, we greatly increase the total number of
computations in every batch. This design choice allows us
to set the batch size equivalent to the number of features

 SN Computer Science (2021) 2:396396 Page 6 of 12

SN Computer Science

that are candidates to remove in each iteration, i.e., n − si .
Even though doing so increases the total count of operations,
our early computational experimentation demonstrated that
the proposed batch methodology is a reasonable option. In
particular, the proposed algorithm is faster than a sequential
CPU BSE implementation and a GPU BSE implementa-
tion. An outline of the algorithm listed above is detailed in
Algorithm 2

For each problem size, we generated 10 instances and
calculated the average execution time. In all, over 1.8 mil-
lion instances were solved in these experiments. We utilized
the MAGMA-2.5.0 [17] library to perform batched least
squares calculations, with the modification to the DGEQRF
routine that we detailed above to perform QR downdating.
We compared the proposed batched GPU algorithm against

0 100 200 300 400 500 600 700 800
Number of columns

0

2

4

6

8

10

G
PU

 s
pe

ed
up

 o
ve

r C
PU

Speedup for 500 rows
Speedup for 750 rows
Speedup for 1000 rows

Fig. 1 Speedup as a function of problem size for the backward step-
wise elimination algorithm

0 100 200 300 400 500 600
Batch size

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(s
)

GPU BSS
CPU BSS

Fig. 2 Execution time as a function of batch size for the backward
stepwise selection algorithm for a problem with 1000 rows and 600
columns with a variable batch size between one and 600

Algorithm 2 Batched backward stepwise elimination algorithm
1: Given a set of data points xij , yi for i = 1, ...,m, j = 1, ...n
2: Generate a set of basis functions from input features A
3: procedure BatchBackwardElimination(A)
4: QnRn ← A
5: for k = n− 1, ...,0 do
6: Ak ← Rk+1
7: QkRk ← QR(Ak)
8: wk ← QT

k wk+1
9: RSSk wk(k + 1 : m) 2

2
10: i ← argmaxk wk

11: wk ← wk,i

12: Ak ← Ak,i

13: end for
14: end procedure

Computational Results

We conducted experiments on a machine running CentOS7,
with an Intel Xeon E5-1630 at 3.7 GHz and 8 GB of RAM.
The machine was equipped with a NVIDIA Tesla K40 GPU
with 15 streaming multiprocessors, 12 GB of RAM, and a
peak memory bandwidth of 288 GB/s. The algorithms were
compiled with the NVCC CUDA 9.1 compiler, using the
-03 optimization flag. We generated subset selection prob-
lems with randomly generated values between zero and one.
We compare the computational time to solve the best subset
selection problem for problems with m = 500–1000 over
a range of n = 200–600. We consider problems where the
number of rows is larger than the number of columns.

a CPU implementation of BSE that relies on LAPACK [2]
to perform factorization and QR downdating.

As seen in Fig. 1, the parallel backward elimination algo-
rithm is 2–5x faster than the CPU implementation. In the
figure, we report the GPU speedup as a function of the num-
ber of columns, for three matrix sizes. We observe that the
speedup levels off as the number of columns, or equivalently
the batch size, increases. A leveling off of performance is
indicative that the computing resources are completely
saturated.

The speedup obtained when the number of rows is
increased is not as significant as when the number of col-
umns is increased. As the computational complexity of
QR factorization scales with the square of the number of

SN Computer Science (2021) 2:396 Page 7 of 12 396

SN Computer Science

columns and linearly with the number of rows, our speedups
are in line with the computational complexity of the underly-
ing algorithm.

To reinforce the observation that the speedup for BSE
was limited by computational efficiency of the computing
resources, we investigated the performance of the algorithm
as a function of the batch size. Figure 2 displays the execu-
tion time of the CPU and GPU BSE algorithms as a func-
tion of batch size. In every iteration of BSE, the batch size
was decreased by one. From Fig. 2, we see that the benefits
of batched GPU computing decrease as the problem size
decreases. For batch sizes of 600, the GPU outperforms the
CPU by a factor of 5x. For large batch sizes, above 300,
the execution time increases linearly as the problem size
increases. A linear relationship between execution time and
problem size suggests that performance is limited by a com-
putational bottleneck. Even though the GPU outperforms
the CPU for large batch sizes, the speedup decreases to one
around a batch size of 50. The CPU is faster than the batched
GPU algorithm for small problems. For small problems, the
overhead of transferring data to the GPU outweighs the ben-
efits of batched computing.

The astute reader must have noticed that, for problems
such as those shown in Fig. 2, the proposed GPU algorithm
reduces computational time from 7 to 1.4 s. Obviously,
this reduction in computational time is uninteresting in the
context of a single problem. The GPU algorithm becomes
practically relevant when a large number of problems must
be solved. For instance, in the next section, we conduct a
comprehensive experiment that relies on the results from
2,020,000 BSE runs.

Accuracy of Backward Stepwise Elimination

Background

Recently, several articles have been published on the topic
of best subset selection. With advances in integer program-
ming solvers, researchers have investigated this problem
with mixed-integer programming techniques [4, 8]. How-
ever, in the statistics community, several have postulated
that it may not be worthwhile to solve this problem to opti-
mality on training data [16, 32]. Instead, the use of heuristic
approaches like the lasso and forward selection have been
investigated and found to perform well for various problems
[16]. There also has been work to solve this problem with
penalized L1-regression methodologies [5]. In the work of
Hastie et al. [16], both the execution time and several out-
of-sample statistical metrics are used to compare the lasso, a
mixed-integer programming formulation, forward selection,
and the relaxed lasso. They discovered that each of the meth-
ods obtained the best solution under different problem sizes

and data characteristics. In terms of computational time, the
mixed-integer programming formulation was the most com-
putationally expensive for all problems considered.

The work of Hastie et al. raised two questions that we
investigate in this paper. First, the examples formulated in
their work sought to identify a sparse algebraic representa-
tion for models with five variables in the true model. How-
ever, in practice, modeling complex systems may require
complex non-linear equations with more terms. Second,
while forward and backward selection have been compared
empirically in the literature, we are interested in determining
when BSE should be used for subset selection. To facilitate
a comparison between these methods, we performed experi-
ments with four techniques:

1. the proposed batched BSE algorithm,
2. forward selection in the R best subset package,
3. the lasso in the R best subset package,
4. the relaxed lasso in the R best subset package.

Despite recent advances in solving mixed-integer problems,
for problems of sufficient size, solving the best subset selec-
tion problem exactly is still costly. We do not include results
for the mixed-integer formulation as the approximate best
subset solutions obtained from preliminary experiments
were comparable to forward selection.

Experimental Setup

In this section, we make use of the notation proposed in [16].
Our experiments followed a similar procedure to those pre-
sented in the Hastie et al. paper, and were conducted on the
same machine as in the previous section. Data in our experi-
ments were drawn from distributions that were defined by
several parameters. Our matrices were generated by defin-
ing a problem size (m, n), a sparsity level s, to indicate the
number of nonzeros in the model, and a beta-type, to create
a sparsity pattern. In addition, � is used to control the cor-
relation level between variables when generating input data,
and a signal-to-noise-ratio (SNR) term was used to control
the level of noise in the data. Matrices were generated from
a true model parameterized by � and s. A response vector
y was also drawn by sampling points from the true model
while adding noise that satisfied a specified SNR.

To compare approaches, several test metrics were evalu-
ated: relative risk, relative test error, proportion of variance
explained, and the number of nonzeros in the chosen model.
As studied in Hastie et al., relative risk (RR) is a measure of
predictive performance:

(17)RR(𝛽) =
(𝛽 − 𝛽0)

TΣ(𝛽 − 𝛽0)

𝛽T
0
Σ𝛽0

.

 SN Computer Science (2021) 2:396396 Page 8 of 12

SN Computer Science

Here, 𝛽 is the vector of coefficients selected from regression,
�0 is the vector of true coefficients that are used to generate
the data, and Σ represents the correlation between the pre-
dictor variables. A perfect RR score for relative risk is zero,
corresponding to 𝛽 = 𝛽0 . A bad score corresponds to one.
Relative test error (RTE) is an out-of-sample procedure for
measuring accuracy, which measures the expected test error
relative to the Bayes error rate:

A perfect RTE score is one, while a score of zero corre-
sponds to 𝛽 = 0 . In this formula, �2 is the variance used to
generate the matrices while satisfying a predetermined SNR.

(18)RTE =
(𝛽 − 𝛽0)

TΣ(𝛽 − 𝛽0) + 𝜎2

𝜎2

Proportion of variance explained is the amount of variance
explained by the proposed model in the output variable y0:

If the true model is selected, PVE equals SNR

1+SNR
 , while a null

model has a score of zero. The last metric considered is the
number of nonzero coefficients selected. In general, sparser
models generalize better to validation data.

To compare BSE against other subset selection strategies,
we conducted experiments with matrices of size m = 500 ,
n = 100 , and s = 5 . We were also interested in determining
which methods are better suited for developing more complex
models. We consider s over a range of 10–70 in multiples of

(19)PVE = 1 −
(𝛽 − 𝛽0)

TΣ(𝛽 − 𝛽0) + 𝜎2

𝛽T
0
Σ𝛽0 + 𝜎2

.

Signal to noise ratio
11.0

R
el

at
iv

e
R

is
k

0

0.2

0.4

0.6

0.8

1
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(a) Relative risk as a function of SNR
Signal to noise ratio

11.0

R
el

at
iv

e
Te

st
 E

rr
or

1

1.05

1.1

1.15
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(b) Relative test error as a function of SNR

Signal to noise ratio
11.0Pr

op
or

tio
n

of
 V

ar
ia

nc
e

Ex
pl

ai
ne

d

0

0.2

0.4

0.6

0.8

1
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(c) Proportion of variance explained as a

function of SNR

Signal to noise ratio
11.0

N
um

be
r o

f b
as

is
 fu

nc
tio

ns

0

5

10

15

20

25

30

35

40
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(d) Number of nonzero coefficients as a

function of SNR

Fig. 3 Four accuracy metrics for the performance of different subset selection techniques for � = 0

SN Computer Science (2021) 2:396 Page 9 of 12 396

SN Computer Science

20. Experiments for all problem types were conducted over
SNR ∈ [0.05, 0.09, 0.14, 0.25, 0.42, 0.71, 1.22, 2.07, 3.52, 6].

In the work of Hastie et al., multiple methods were used
to generate matrices. We used beta-type 2, where �0 has the
first s parameters equivalent to one, with the rest set to zero.
Experiments were conducted with � equivalent to either 0
or 0.35. All values reported below are an average over five
repetitions. For each technique, a solution path was gener-
ated for every SNR considered. The results reported below
are from the models that minimized the desired test metric
from each solution path.

Computational Results

Figures 3 and 4 relate SNR to the accuracy metrics for dif-
ferent correlation levels. The uncorrelated case was unique
from the other cases that were observed. BSE and FSS per-
forms differently when SNR< 0.16 . In particular, BSE in the
low SNR cases outperforms all other methods in regards to
RR and RTE. For SNR> 0.16 , all the methods except for
the lasso converge to low error solutions. The lasso selects
denser models than all of the other methods, selecting a
25-term model as opposed to a five-term model.

Signal to noise ratio
 11.0

R
el

at
iv

e
R

is
k

0

0.2

0.4

0.6

0.8

1
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(a) Relative risk as a function of SNR

Signal to noise ratio
 11.0

R
el

at
iv

e
Te

st
 E

rr
or

1

1.05

1.1

1.15
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(b) Relative test error as a function of SNR

Signal to noise ratio
 11.0Pr

op
or

tio
n

of
 V

ar
ia

nc
e

Ex
pl

ai
ne

d

0

0.2

0.4

0.6

0.8

1
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(c) Proportion of variance explained as a

function of SNR

Signal to noise ratio
 11.0

N
um

be
r o

f b
as

is
 fu

nc
tio

ns

0

5

10

15

20

25

30

35

40
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(d) Number of nonzero coefficients as a

function of SNR

Fig. 4 Four accuracy metrics for the performance of different subset selection techniques for � = 0.35

 SN Computer Science (2021) 2:396396 Page 10 of 12

SN Computer Science

The results suggest that BSE outperforms the other meth-
ods at SNR< 0.16 . The relaxed lasso and lasso both select
denser solutions than BSE for these problems. BSE outper-
forms FSS because FSS selects several variables in early
iterations that hinder its overall performance as k increases.
For this case of noisy data with no correlation, BSE selects
a sparser model than the relaxed lasso, leading to a smaller
RTE.

At a larger correlation of � = 0.35 , the advantage dem-
onstrated by BSE at the low SNR regime vanishes. BSE
and FSS perform similarly except for small deviations in
RTE observed at SNR= 0.42 . All the methods converge to
a similar RTE around SNR= 0.71 , except for the lasso. The
lasso selects a denser solution than all of the other methods,
and does not converge to the RTE obtained by the other
methods. The relaxed lasso does not have this problem as

it manipulates a second tuning parameter � to control the
aggressiveness of the relaxed lasso to shift its performance
from that of the lasso to that of best subset and forward
selection. The results demonstrate that either BSE or the
relaxed lasso are the best methods for problems of this size.
The choice of which method to select depends on the corre-
lation in the underlying data. The correlation of the features
affects the critical transition value after which BSE, best
subset, and FSS outperform the lasso and are competitive
with the relaxed lasso method. BSE has a lower RTE than
the relaxed lasso only in the case of � = 0.

In Fig. 5, we report results relating RTE to s. RTE is
affected most by a change in the number of nonzeros in
the model. Similar to the results of Hastie et al., models
generated have a critical transition value at which point the
RTE of BSE and FSS decreases below that of the lasso.

Signal to noise ratio
 11.0

R
el

at
iv

e
Te

st
 E

rr
or

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(a) RTE as a function of SNR for s = 10

Signal to noise ratio
 11.0

R
el

at
iv

e
Te

st
 E

rr
or

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(b) RTE as a function of SNR for s = 30

Signal to noise ratio
 11.0

R
el

at
iv

e
Te

st
 E

rr
or

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(c) RTE as a function of SNR for s = 50

Signal to noise ratio
 11.0

R
el

at
iv

e
Te

st
 E

rr
or

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
Lasso
Forward Stepwise Selection
Backwards Stepwise Elimination
Relaxed Lasso

(d) RTE as a function of SNR for s = 70

Fig. 5 Four accuracy metrics for the performance of different subset selection techniques when the number of nonzero coefficients in the real
model changes for problems with � = 0

SN Computer Science (2021) 2:396 Page 11 of 12 396

SN Computer Science

The performance of the lasso is worse than all of the other
methods above the critical transition value, while that of
the relaxed lasso is similar to that of the stepwise methods.
Unlike in the s = 5 case, in all of the results, the relaxed
lasso outperforms BSE for SNR less than the critical transi-
tion value. The most notable result from this study is that,
in certain cases above the critical transition value, BSE and
FSS outperform the relaxed lasso. For s = 30 , BSE outper-
forms FSS and the relaxed lasso for SNR= 1.22 . We also
investigated whether the RTE converges for all methods
if the SNR value is increased beyond six. At larger SNR
values approaching 20, BSE still outperforms FSS and the
relaxed lasso. From this comparison, it appears that, in the
case of low correlation in the input data and regardless of
how large the underlying model is, BSE is competitive with
other methods at any SNR. The relaxed lasso and FSS also
generate accurate models for problems of this size.

Depending on the problem structure, different subset
selection strategies are optimal. We expected that BSE
would outperform forward selection when the number of
terms in the true model approaches n as suggested by the
proposed approximation guarantee in Section “Algorithmic
Analysis of BSE”. This trend was observed for � = 0 . Over-
all, the best technique to use depends on the underlying data.
For certain classes of problems, especially those that are
uncorrelated, BSE produces an accurate and sparse model.

Conclusions

We investigated using backward stepwise elimination to
solve the subset selection problem. Our main theoretical
result is the proof of the existence of a bound on the accu-
racy of a solution selected by backward stepwise elimination
related to how close the function is to being supermodular.
Using the concept of the supermodularity ratio, we obtained
an approximation guarantee for backward stepwise elimina-
tion. Our computational results demonstrate that the perfor-
mance of backward stepwise elimination is dependent on
the difference between n and k, and more unexpectedly, the
supermodularity ratio. We developed a GPU parallel batched
BSE algorithm. This algorithm reduces the execution time of
solving the subset selection problem for matrices with 1000
rows and 600 columns by a factor of 5x.

We demonstrated that BSE performs as well as other
state-of-the-art subset selection strategies that are commonly
employed in practice. For certain problems at SNR below
0.5, BSE generated sparser models and achieved a lower rel-
ative test error than forward selection and the lasso. Results
demonstrated that BSE also achieved a lower relative test
error than the relaxed lasso, the lasso, or forward stepwise
selection for problems with no correlation and for signal to
noise ratios above zero.

Our primary conclusion is that BSE is a technique that
should be considered by practitioners who want to develop
sparse and accurate models.

Funding This work was conducted as part of the Institute for the
Design of Advanced Energy Systems (IDAES) with funding from the
Office of Fossil Energy, Cross-Cutting Research, U.S. Department of
Energy. We also gratefully acknowledge the support of the NVIDIA
Corporation with the donation of the NVIDIA Tesla K40 GPU used
for this research.

Availability of Data All data used for computations in this paper can be
obtained from https:// github. com/ bsauk/ Backw ardSt epwis eElim inati on

Code Availability All codes used for computations in this paper can
be obtained from https:// github. com/ bsauk/ Backw ardSt epwis eElim
inati on. This repository includes all scripts necessary to reproduce the
results of this article.

Declarations

Conflict of Interest None.

References

 1. Amaldi, E., Kann, V.: On the approximability of minimizing
nonzero variables or unsatisfied relations in linear systems. Theo-
retical Computer Science 209, 237–260 (1998).

 2. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J.,
Dongarra, J., Croz, J.D., Hammarling, S., Greenbaum, A., McK-
enney, A., Sorensen, D.: LAPACK Users’ Guide (Third ed.). Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA,
USA (1999).

 3. Bendel, R., Afifi, A.: Comparison of stopping rules in forward
“stepwise” regression. Journal of the American Statistical Asso-
ciation 72, 46–53 (1977).

 4. Bertsimas, D., King, A., Mazumder, R.: Best subset selection via
a modern optimization lens. The Annals of Statistics 44, 813–852
(2016).

 5. Bertsimas, D., Pauphilet, J., Parys, B.V.: Sparse regression: Scal-
able algorithms and empirical performance. Statistical Science
35, 555–578 (2020).

 6. Björck, A., Park, H., Eldén, L.: Accurate downdating of least
squares solutions. SIAM Journal Matrix Analysis and Applica-
tions 15, 549–568 (1994).

 7. Couvreur, C., Bresler, Y.: On the optimality of the backward
greedy algorithm for the subset selection problem. SIAM Journal
on Matrix Analysis and Applications 21, 797–808 (2000).

 8. Cozad, A., Sahinidis, N.V., Miller, D.C.: Automatic learning of
algebraic models for optimization. AIChE Journal 60, 2211–2227
(2014).

 9. Das, A., Kempe, D.: Approximate submodularity and its appli-
cations: subset selection, sparse approximation and dictionary
selection. The Journal of Machine Learning Research 19, 74–107
(2018).

 10. Dong T, Haidar A, Luszczek P, Tomov S, Abdelfattah A, Don-
garra J. MAGMA batched: a batched BLAS approach for small
matrix factorizations and applications on GPUs. Tech. rep., Tech-
nical Report (2016).

https://github.com/bsauk/BackwardStepwiseElimination
https://github.com/bsauk/BackwardStepwiseElimination
https://github.com/bsauk/BackwardStepwiseElimination

 SN Computer Science (2021) 2:396396 Page 12 of 12

SN Computer Science

 11. Efroymson, M.: Multiple regression analysis. In A. Ralston and
H.S. Wilf (eds.), Mathematical Methods for Digital Computers,
Wiley, New York pp. 191–203 (1960).

 12. Furnival, G., Wilson, R.: Regressions by leaps and bounds. Tech-
nometrics 16, 499–511 (1974).

 13. Gatu, C., Kontoghiorghes, E.J.: Branch-and-bound algorithms for
computing the best-subset regression models. Journal of Compu-
tational and Graphical Statistics 15, 139–156 (2006).

 14. Gatu, C., Kontoghiorghes, E.J.: A fast algorithm for non-negativ-
ity model selection. Statistics and Computing 23, 403–411 (2013).

 15. Haidar, A., Dong, T., Luszczek, P., Tomov, S., Dongarra, J.:
Batched matrix computations on hardware accelerators based on
GPUs. The International Journal of High Performance Computing
Applications 29, 193–208 (2015).

 16. Hastie, T., Tibshirani, R., Tibshirani, R.J.: Best subset, forward
stepwise or lasso? Analysis and recommendations based on exten-
sive comparisons. Statistical Science 35, 579–592 (2020).

 17. ICL. MAGMA. 2020. http:// icl. cs. utk. edu/ proje ctsfi les/ magma/
doxyg en/. Accessed Feb 2020.

 18. Karaca O, Kamgarpour M. Exploiting weak supermodularity for
coalition-proof mechanisms. In: Proceedings 2018 IEEE Confer-
ence on decision and control (CDC), IEEE, Miami Beach, FL,
2018; p. 1118–123.

 19. Kohavi, R., John, G.: Wrappers for feature subset selection. Arti-
ficial intelligence 97, 273–324 (1997).

 20. Liberty, E., Sviridenko, M.: Greedy minimization of weakly
supermodular set functions. In: Jansen, K., Rolim, J., Williamson,
D., Vempala, S. (eds.) Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (APPROX/
RANDOM 2017). Leibniz International Proceedings in Informat-
ics (LIPIcs), pp. 19:1–19:11 (2017).

 21. Mantel, N.: Why stepdown procedures in variable selection. Tech-
nometrics 12, 621–625 (1970).

 22. Meinshausen, N.: Relaxed lasso. Computational Statistics & Data
Analysis 52, 374–393 (2007).

 23. Miller, A.: Subset selection in regression. CRC Press, Boca Roton
(2002).

 24. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approxima-
tions for maximizing submodular set functions-I. Mathematical
Programming 14, 265–294 (1978).

 25. NVIDIA Corporation: cuBLAS. 2020. https:// docs. nvidia. com/
cuda/ cublas/ index. html. Accessed Feb 2020.

 26. Ratner, B.: Variable selection methods in regression: Ignorable
problem, outing notable solution. Journal of Targeting, Measure-
ment and Analysis for Marketing 18, 65–75 (2010).

 27. Sakaue S. Weak supermodularity assists submodularity-based
approaches to non-convex constrained optimization. Arxiv pre-
print arXiv pp. 1–26 (2019).

 28. Sarwar, O., Sauk, B., Sahinidis, N.V.: A discussion on practical
considerations with sparse regression methodologies. Statistical
Science 35, 593–601 (2020).

 29. Sauerbrei, W., Holländer, N., Buchholz, A.: Investigation about a
screening step in model selection. Statistics and Computing 18,
195–208 (2008).

 30. Sauk, B., Ploskas, N., Sahinidis, N.V.: GPU paramter tuning for
tall and skinny dense linear least squares problems. Optimization
Methods and Software 35, 638–660 (2020).

 31. Tibshirani, R.: Regression shrinkage and selection via the lasso.
Royal Statistical Society 58, 267–288 (1996).

 32. Tibshirani, R.: Degrees of freedom and model search. Statistica
Sinica 25, 1265–1296 (2015).

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://icl.cs.utk.edu/projectsfiles/magma/doxygen/
http://icl.cs.utk.edu/projectsfiles/magma/doxygen/
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html

	Backward Stepwise Elimination: Approximation Guarantee, a Batched GPU Algorithm, and Empirical Investigation
	Abstract
	Introduction
	Literature Review
	Best Subset Selection Problem Formulation
	Stepwise Selection and Elimination
	Submodularity and Supermodularity

	Algorithmic Analysis of BSE
	A Batched GPU Algorithm for BSE
	Background
	Batched BSE
	Computational Results

	Accuracy of Backward Stepwise Elimination
	Background
	Experimental Setup
	Computational Results

	Conclusions
	References

