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Abstract
Best subset selection is NP-hard and expensive to solve exactly for problems with a large number of features. Practitioners 
often employ heuristics to quickly obtain approximate solutions without any accuracy guarantees. We investigate solving the 
best subset selection problem with backward stepwise elimination (BSE). We prove an approximation guarantee for BSE that 
bounds its performance by applying the concept of approximate supermodularity. This guarantee provides conditions that 
suggest the backward stepwise elimination algorithm will return a near-optimal solution, or when another technique should 
be used. To improve computational performance of the algorithm, we develop a graphics processing unit (GPU) parallel 
BSE that averages up to 5x faster than an efficient CPU implementation on a collection of over 1.8 million problems; larger 
problems resulted in the largest speedups. Finally, we demonstrate the benefit of BSE with empirical results, comparing 
against several state-of-the-art feature selection approaches. For certain classes of problems, BSE generates solutions with 
lower relative test error than the lasso, the relaxed lasso, and forward stepwise selection. BSE thus deserves a place in the 
data modeling toolset along with these other more popular methods. All codes and data used for computations in this paper 
can be obtained from https:// github. com/ bsauk/ Backw ardSt epwis eElim inati on.

Keywords Regression · Model selection/variable selection · Algorithms · GPU computing

Introduction

Feature selection is the problem of identifying a subset of 
features that succinctly and accurately relate a set of input 
observations to output measurements. A popular way to 
address the problem of feature selection is by solving, often 
approximately, the best subset selection problem, i.e., the 
problem of finding a small subset of features, so that the 
resulting linear model provides an accurate representation 
of the measurements [23].

The best subset selection problem is known to be NP-hard 
[1]. When solving with branch-and-bound [13], mixed-inte-
ger optimization [4, 8], or exhaustive enumeration, optimal 

subset selection can become intractable for problems with 
a large number of features. Instead, heuristics, such as for-
ward stepwise selection (FSS), backward stepwise elimina-
tion (BSE) [11], or the lasso [31], are commonly used to 
identify near-optimal subsets for large instances [19, 28]. 
Although heuristic approaches are significantly faster than 
exact methods, there are few studies that have investigated 
the accuracy of these methods.

Even when it is possible to solve the subset selection 
problem exactly, the mathematically optimal model may 
not be the best choice in practice. Hastie et al. [16] com-
pared the performance of FSS, the lasso [31], the relaxed 
lasso [22], and an exact mixed-integer formulation [4]. The 
comparisons did not consider BSE, thus leaving a gap in 
the understanding of this technique in comparison to other 
approaches.

We investigate the benefits of solving the best subset 
selection problem with a backward stepwise elimination 
algorithm. The contributions of this paper are: 

1. We obtain an approximation guarantee for BSE using 
the concept of supermodularity ratio. The derived guar-
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antee provides a bound on the worst-case performance 
of backward stepwise elimination.

2. We develop a GPU parallel batched BSE algorithm that 
is a factor of 5x faster than a CPU implementation of 
BSE for a range of problem sizes.

3. We compare the accuracy of BSE and other state-of-the-
art subset selection methodologies. We demonstrate that, 
for certain classes of problems, BSE generates models 
that are simpler and have less out-of-sample test error 
than the lasso or forward selection.

The remainder of this paper is organized as follows. In the 
next section, we review the literature related to best sub-
set selection, stepwise selection, approximate submodular-
ity, and supermodularity. In the third section, we rely on 
submodularity to prove an approximation guarantee for 
BSE. In the fourth section, we propose a batched GPU 
BSE algorithm, describe our implementation, and compare 
the performance of the proposed GPU algorithm against a 
CPU implementation. In the fifth section, we compare BSE 
against other popular subset selection techniques in terms of 
solution quality. We provide conclusions in the last section.

Literature Review

Best Subset Selection Problem Formulation

Given a response vector y ∈ ℝ
m , predictor matrix � ∈ Rm×n , 

whose rows correspond to measurements and columns cor-
respond to features, and a subset size k ≤ n , the best subset 
selection problem is defined as the following optimization 
model:

where x ∈ ℝ
n are the coefficients of a linear predictive 

model. The �0 norm limits the number of nonzero coef-
ficients and adds nonconvexity to an otherwise convex 
problem.

Many techniques have been developed to solve this prob-
lem, including branch-and-bound [13, 14], mixed-integer 
optimization [4, 8], and screening rules to reduce the size 
of the solution space [29]. Several heuristic approaches con-
sider relaxing the cardinality constraint, producing the fol-
lowing problem

which can be solved in closed form. A least squares estima-
tor of x can be found to solve y = �x + � , where � ∈ ℝ

m . 
For the remainder of the paper, we will assume that m ≥ n 
There are many techniques to solve the linear least squares 

(1)min
x

‖y − �x‖2
2
, subject to ‖x‖0 ≤ k,

(2)min
x

‖y − �x‖2
2
,

problem, with QR factorization being one of the most com-
monly used. QR factorization involves decomposing a 
matrix � ∈ Rm×n into the product of an orthogonal matrix 
� ∈ ℝ

m×m and an upper triangular matrix � ∈ ℝ
n×n:

Let

where y1 ∈ ℝ
n and w ∈ ℝ

m−n . The least squares estimator 
is obtained by solving the following optimization problem

From this, the residual sum of squares (RSS) can be calcu-
lated from

If QR factorization is used, the residual sum of squares is 
calculated from the Euclidean norm of �T

y for the vector of 
values from n + 1 to m.

Stepwise Selection and Elimination

A common technique for solving (1) involves selecting or 
eliminating variables, in a stepwise fashion. Forward step-
wise selection initially generates a model that minimizes 
RSS by selecting a single variable. Then, in each subsequent 
iteration, a new variable is included in the solution until 
‖x‖0 = k . In every iteration, a new model is obtained by 
identifying the variable that minimizes RSS when added to 
the previously obtained model. Forward stepwise selection 
(FSS) is a greedy selection algorithm, which has a prov-
able worst performance for certain classes of problems [24]. 
Forward selection can also be used for problems when the 
optimal subset size is not known a priori. Stopping rules 
for FSS aim to find a balance between accuracy and model 
complexity [3].

Backward stepwise elimination (BSE) starts from the 
standard least squares solution and removes one feature at 
a time until the cardinality constraint is satisfied. Given the 
initial least squares solution x0 , the error for the model after 
s iterations and the corresponding subset xs are obtained via 
factorization or QR downdating [6]. QR downdating refers 
to updating the solution to the linear least squares problem 
when a column or a row is removed from � . For subset 
selection, a model with k columns is selected, then RSS is 
calculated, where y2 ∈ ℝ

m−k . QR downdating reduces the 

(3)�T� =

(
�

�

)
.

(4)�T
y =

(
y1

w

)
,

(5)x̂ = argmin
x
‖y − �x‖2

2
= argmin

x

����
T (y − �x)

���
2

2
.

(6)RSS = ‖y − �x̂‖2
2
=
����

T(y − x̂)
���
2

2
= ‖w‖2

2
.
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number of floating point operations by removing a column 
from �s and updating � to maintain an upper triangular 
structure in �s−1 without having to perform a QR factori-
zation at every iteration. When a column is removed from 
�s−1 , the upper triangular structure is only destroyed in the 
columns to the right of the deleted column. As the computa-
tional complexity of QR factorization is O(2mn2) , in many 
cases, the complexity of the update is significantly less than 
the cost of factorizing �s−1 . The sum of squared errors is 
computed by left multiplying �T to restore the upper trian-
gular structure �s−1 with y2 . This procedure is repeated to 
calculate the best i = n,… , nmin models, where nmin ∈ [1, k] . 
In each iteration, after the best model has been identified, 
all suboptimal solutions are discarded, and the next iteration 
begins. This algorithm is outlined in Algorithm 1.

checking the conditions in [7] requires the solution of an 
NP-hard problem.

Submodularity and Supermodularity

A function f that maps a set to a real number is called sub-
modular if it satisfies the following property:

for S ⊂ T  and {v} ⊂ T ⧵ S . The results of Nemhauser et al. 
[24] prove that the greedy algorithm achieves a (1 − 1∕e)

-approximation for the maximization of any monotone, 
submodular set function over a cardinality constraint. Here, 
e is the base of the natural logarithm. This approximation 
result provides a lower bound on the performance of greedy 

(7)f (S ∪ {v}) − f (S) ≥ f (T ∪ {v}) − f (T),

Algorithm 1 Generic backward stepwise elimination algorithm
1: Given a set of data points xij , yi for i = 1, ...,m, j = 1, ..., n
2: Generate a set of basis functions from input features A
3: procedure BackwardElimination(A)
4: QnRn ← A
5: for k = n− 1, ...,0 do
6: for h = 1, ..., k do
7: Ak,h ← Rk+1
8: Qk,hRk,h ← QR(Ak,h(h : m, h : n))
9: wk,h ← QT

k,hwk+1

10: RSSk,h wk,h(k + 1 : m) 2
2

11: end for
12: i ← argmaxh wk,h

13: wk ← wk,i

14: Ak ← Ak,i

15: end for
16: end procedure

Both stepwise techniques have been extensively used for 
the last 50 years [12]. In most cases, BSE requires more 
floating point operations than FSS. However, the accuracy 
of BSE has been observed to be better than FSS for certain 
classes of problems [7, 21]. While some have argued that 
neither approach should be used [26], for problems with 
millions of observations and thousands of features, step-
wise approaches quickly generate approximately accurate 
and sparse solutions.

FSS and BSE are heuristic hill climbing strategies that 
obtain locally optimal solutions to the subset selection prob-
lem. As both methods require fewer computations than exact 
strategies, researchers have investigated if any guarantees 
exist for these methods. Several authors have proven statisti-
cal bounds on the accuracy of FSS [9, 24]. Using the notion 
of the submodularity ratio, it is possible to obtain a worst-
case bound on the performance of FSS. Under certain condi-
tions, BSE identifies an optimal subset [7]. Unfortunately, 

algorithms for solving NP-hard problems subject to cardinal-
ity constraints. However, subset selection does not involve a 
submodular objective function. To develop an approximation 
guarantee for subset selection, the work of [9] defines the 
submodularity ratio as a way to measure how close a func-
tion is to being submodular:

where f is a set function, L ⊂ U and S ∩ L = � . The sub-
modularity ratio is a function of the maximum subset size 
k, and the set U. It reflects how much the value of f increases 
by adding any subset S of size k to L, compared to the benefit 
of f (S ∪ L) . If the function f is submodular, then the sub-
modularity ratio is defined to be 1, otherwise if 𝛾 < 1 , the 
function is defined as weakly submodular. Das and Kempe 
[9] prove that FSS has a worst-case approximation guarantee 

(8)𝛾U,k(f ) = min
L⊂U,S∶�S�≤k,S∩L=�

∑
x∈S f (L ∪ {x}) − f (L)

f (L ∪ S) − f (L)
,
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of 1 − exp(−�) ⋅ OPT  , where OPT is the R2 of the optimal 
best subset solution. For � = 1 , the guarantee in [9] recovers 
the guarantee of Nemhauser et al.; the bound is loose as � 
approaches zero.

A function f is supermodular if −f  is submodular. Several 
authors have defined a supermodularity ratio [18, 20, 27]. 
Inspired by the work of Sakaue [27], we define the following 
supermodularity ratio:

where �U,k ∈ [1, k] is selected as the maximum value for 
each combination of S, L ⊆ U . Like the submodularity ratio, 
the supermodularity ratio captures how close a function is 
to being supermodular.

Algorithmic Analysis of BSE

While there exist approximation guarantees for forward 
selection, no such bound is currently known for backward 
stepwise elimination. To determine such a bound, we use the 
concept of the supermodularity ratio.

Let f be a nonnegative monotonically increasing set func-
tion. The problem we seek to solve is

Our theoretical contribution is an approximation guarantee 
on the performance of backward stepwise elimination.

Theorem 1 Let f be a nonnegative, monotonically increasing 
set function, OPT be the maximum value of f possible for a 
set of size k, and k∗ be the size of the subset for OPT. Then, 
the set selected by BSE, SBSE

n−k
 , has the following approxima-

tion guarantee:

Proof Let SB
0
 be the initial set of all variables considered, and 

S∗
n−k

 be an optimal set of k variables that has a value of OPT. 
Let SB

i
 be the set of variables that remain in S after i itera-

tions of BSE. We begin by rearranging the supermodularity 
ratio to ensure that the numerator and denominator in (9) 
are both positive:

In every iteration of BSE, x̂ is selected to minimize 
f (SB

i
) − f (SB

i
⧵ {x̂}) . As the minimum size of SB

i
 is |SB

i
| ≥ k 

and 
∑n

i
x ≥ n ⋅ xmin , we have

(9)�U,k(f ) ≥

∑
x∈S f (L ⧵ {x}) − f (L)

f (L ⧵ S) − f (L)
,

(10)max
S

f (S), subject to ‖S‖0 ≤ k.

(11)f (SBSE
n−k

) ≥

(
1 −

�

k∗

)n−k∗

⋅ OPT.

(12)

∑

xj∈S
B
i

(
f
(
SB
i

)
− f

(
SB
i
⧵ {xj}

))
≤ �

(
f
(
SB
i

)
− f

(
SB
i
⧵ SB

i

))
.

Letting A( i)  be the loss in f  in i teration i , 
A(i) = f (SB

i−1
) − f (SB

i
) . Let f (SB

0
) be the value of f 

when all variables in the set are included. Then, ∑i

j=1
A(j) = f (SB

0
) − f (SB

i
) extends from the definition of A(i). 

Rewriting (13) in terms of A(⋅) , we get

Using the inequality above, we will prove by induction that

For t = 0 , the inequality is trivial. Assume that the inequality 
holds for t iterations. Then, for iteration t + 1:

where  t + 1 i s  less  than or  equal  to  n − k  . 
Finally, f (SB

0
) ≥ OPT  and from the definition of 

f (SBSE
n−k∗

) = f (SB
0
) −

∑n−k

j=1
A(j):

This completes the proof for the approximation guarantee.  
 ◻

We apply this theorem to the best subset selection prob-
lem by defining f (S) = R2

S
 . When � = 1 , our approximation 

is the tightest, and deteriorates until � = k . This implies that 
the proposed guarantee is stronger for functions that are 
closer to supermodular, similar to the submodularity ratio 
for submodular functions. In addition, the proposed bound 
is stronger as k approaches n, where in the case that k = n , 
BSE returns the linear least squares solution.

(13)k∗
(
f (SB

i
) − f (SB

i+1
)
)
≤ |SB

i
|
(
f (SB

i
) − f (SB

i+1
)
)
≤ �f (SB

i
).

(14)A(i + 1) ≤
�

k

(
f
(
SB
0

)
−

i∑

j=1

A(j)

)
.

(15)

f (SB
0
) −

t∑

j=1

A(j) ≥ f
(
SB
0

)(
1 −

�

k

)n−k

≥

(
1 −

�

k

)n−k

⋅ OPT

f
(
SB
0

)
−

t+1∑

j=1

A(j) = f
(
SB
0

)
−

t∑

j=1

A(j) − A(t + 1)

≥ f
(
SB
0

)
−

t∑

j=1

(
A(j) −

�

k

(
f
(
SB
0

)
−

t∑

j=1

A(j)

))

≥

(
f
(
SB
0

)
−

t∑

j=1

A(j)

)(
1 −

�

k

)

≥ f
(
SB
0

)(
1 −

�

k

)t+1

≥
(
SB
0

)(
1 −

�

k

)n−k

(16)f (SBSE
n−k

) ≥

(
1 −

�

k

)n−k

⋅ OPT.
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A Batched GPU Algorithm for BSE

One major criticism against BSE is that it is computation-
ally expensive. To address this shortcoming, in this section, 
we develop a parallel BSE algorithm using batched GPU 
computing.

Background

To reduce the computational time of BSE, we parallelized 
the QR downdate operations in each iteration of Algo-
rithm 1. Unfortunately, in every iteration, each downdate 
task is unique. As a result, it cannot be accelerated with a 
data-parallel framework. In particular, the problem size and 
batch size decrease in each iteration, and every downdate 
requires a different number of matrix update operations. 
Instead of a data-parallel approach, we parallelized tasks 
with batched GPU computing.

GPUs are powerful accelerators that are designed for 
single instruction multiple data parallelism—not task-level 
parallelism. GPU hardware is designed for rendering graph-
ics and performing the same set of operations on different 
sets of data. There are many cases where thousands of small, 
independent problems need to be solved. To take advantage 
of GPU hardware for scientific computing, “batching” is a 
technique that solves groups of problems in parallel [15, 
25]. While algorithms designed for batched computing do 
not fully utilize the hardware, batched methods have been 
observed to be a factor of 2x faster than optimized CPU 
kernels for performing the same set of instructions [10].

Despite the clear need to solve problems in batches, 
developing software to execute task-level parallelism on a 
GPU efficiently is challenging. To fill this gap, two batched 
dense linear algebra libraries have been developed. In CUB-
LAS, NVIDIA developers have created a set of batched basic 
linear algebra subroutines (BLAS) and batched kernels for 
QR factorization, LU factorization, and matrix-matrix multi-
plication [25]. The Innovative Computing Laboratory devel-
oped MAGMA, and implemented efficient batched BLAS 
routines to accelerate batched linear algebra kernels [15]. 
MAGMA has demonstrated that, with proper algorithm-
specific optimizations, it is possible to develop algorithms 
that are twice as fast as CUBLAS, for problems with a large 
batch size. In addition, for small- to medium-sized problems, 
batched BLAS approaches are reported as 2–3x faster for 
batched matrix multiplication compared to traditional GPU 
code [15].

Batched BSE

We employed the batched QR factorization routine avail-
able in the MAGMA 2.5.0 library [17]. While batched QR 

factorization is the most time consuming portion of the 
backwards stepwise algorithm, a BSE algorithm also needs 
to perform downdates on the output y to calculate the sum 
of squared errors for every problem in a batch. Unfortu-
nately, MAGMA does not have a batched implementation 
to perform QR downdates. In LAPACK, this functionality 
corresponds to the routine DORMQR, which uses � gener-
ated from DGEQRF and calculates �T

y.
We augmented the DGEQRF routine to include the 

update operation on y . We modified the batched routine to 
update y when the rest of the matrix � is updated. When y 
was a vector, updating y added a negligible amount of time. 
We conducted experiments, and observed that the computa-
tional time of the modified code did not increase compared 
to that of the original batched DGEQRF code.

The batched BSE algorithm computes a solution to the 
linear least squares problem. Then, in parallel, the algo-
rithm removes different single features from the linear least 
squares solution. Each task then downdates y to calculate 
the updated sum of squared errors. After factorizing and 
updating y for the removal of each candidate variable, the 
column with the smallest change in SSE is removed. This 
process is repeated until terminating at a predefined mini-
mum matrix size.

The backwards selection algorithm relies on the QR fac-
torization kernel in MAGMA for tall and skinny matrices. 
To optimize the performance of this routine, we performed 
parameter tuning on the block size parameter in MAGMA. 
From previous work [30], it was observed that varying the 
block size parameter in MAGMA has a significant impact on 
performance. We discovered that changing the block size to 
16, from a default value of 32 improved the performance of 
the batched kernel for problem sizes of interest.

By definition, a batch is made up of problems of the same 
size. In each iteration, we perform matrix updates that oper-
ate on a different number of columns ranging from zero to 
n − si columns, where n is the number of columns in the 
matrix and si is the current iteration. As a result, for every 
task in the same iteration, the number of operations in each 
downdate operation is different, depending on which column 
is removed. If the feature removed from � is the furthest to 
the right, no work is needed to downdate the solution. How-
ever, if the first column is removed, the entire matrix needs 
to be downdated to restore the upper triangular structure of 
� . This uneven distribution of work creates a batch size of 
one, where all jobs require different computations. To make 
BSE amenable to batched computing, we decided to per-
form downdate operations for every feature as if the entire 
matrix is to be downdated. By assuming that all problems 
are the same size, we greatly increase the total number of 
computations in every batch. This design choice allows us 
to set the batch size equivalent to the number of features 
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that are candidates to remove in each iteration, i.e., n − si . 
Even though doing so increases the total count of operations, 
our early computational experimentation demonstrated that 
the proposed batch methodology is a reasonable option. In 
particular, the proposed algorithm is faster than a sequential 
CPU BSE implementation and a GPU BSE implementa-
tion. An outline of the algorithm listed above is detailed in 
Algorithm 2

For each problem size, we generated 10 instances and 
calculated the average execution time. In all, over 1.8 mil-
lion instances were solved in these experiments. We utilized 
the MAGMA-2.5.0 [17] library to perform batched least 
squares calculations, with the modification to the DGEQRF 
routine that we detailed above to perform QR downdating. 
We compared the proposed batched GPU algorithm against 
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stepwise selection algorithm for a problem with 1000 rows and 600 
columns with a variable batch size between one and 600

Algorithm 2 Batched backward stepwise elimination algorithm
1: Given a set of data points xij , yi for i = 1, ...,m, j = 1, ...n
2: Generate a set of basis functions from input features A
3: procedure BatchBackwardElimination(A)
4: QnRn ← A
5: for k = n− 1, ...,0 do
6: Ak ← Rk+1
7: QkRk ← QR(Ak)
8: wk ← QT

k wk+1
9: RSSk wk(k + 1 : m) 2

2
10: i ← argmaxk wk

11: wk ← wk,i

12: Ak ← Ak,i

13: end for
14: end procedure

Computational Results

We conducted experiments on a machine running CentOS7, 
with an Intel Xeon E5-1630 at 3.7 GHz and 8 GB of RAM. 
The machine was equipped with a NVIDIA Tesla K40 GPU 
with 15 streaming multiprocessors, 12 GB of RAM, and a 
peak memory bandwidth of 288 GB/s. The algorithms were 
compiled with the NVCC CUDA 9.1 compiler, using the 
-03 optimization flag. We generated subset selection prob-
lems with randomly generated values between zero and one. 
We compare the computational time to solve the best subset 
selection problem for problems with m = 500–1000 over 
a range of n = 200–600. We consider problems where the 
number of rows is larger than the number of columns.

a CPU implementation of BSE that relies on LAPACK [2] 
to perform factorization and QR downdating.

As seen in Fig. 1, the parallel backward elimination algo-
rithm is 2–5x faster than the CPU implementation. In the 
figure, we report the GPU speedup as a function of the num-
ber of columns, for three matrix sizes. We observe that the 
speedup levels off as the number of columns, or equivalently 
the batch size, increases. A leveling off of performance is 
indicative that the computing resources are completely 
saturated.

The speedup obtained when the number of rows is 
increased is not as significant as when the number of col-
umns is increased. As the computational complexity of 
QR factorization scales with the square of the number of 
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columns and linearly with the number of rows, our speedups 
are in line with the computational complexity of the underly-
ing algorithm.

To reinforce the observation that the speedup for BSE 
was limited by computational efficiency of the computing 
resources, we investigated the performance of the algorithm 
as a function of the batch size. Figure 2 displays the execu-
tion time of the CPU and GPU BSE algorithms as a func-
tion of batch size. In every iteration of BSE, the batch size 
was decreased by one. From Fig. 2, we see that the benefits 
of batched GPU computing decrease as the problem size 
decreases. For batch sizes of 600, the GPU outperforms the 
CPU by a factor of 5x. For large batch sizes, above 300, 
the execution time increases linearly as the problem size 
increases. A linear relationship between execution time and 
problem size suggests that performance is limited by a com-
putational bottleneck. Even though the GPU outperforms 
the CPU for large batch sizes, the speedup decreases to one 
around a batch size of 50. The CPU is faster than the batched 
GPU algorithm for small problems. For small problems, the 
overhead of transferring data to the GPU outweighs the ben-
efits of batched computing.

The astute reader must have noticed that, for problems 
such as those shown in Fig. 2, the proposed GPU algorithm 
reduces computational time from 7 to 1.4 s. Obviously, 
this reduction in computational time is uninteresting in the 
context of a single problem. The GPU algorithm becomes 
practically relevant when a large number of problems must 
be solved. For instance, in the next section, we conduct a 
comprehensive experiment that relies on the results from 
2,020,000 BSE runs.

Accuracy of Backward Stepwise Elimination

Background

Recently, several articles have been published on the topic 
of best subset selection. With advances in integer program-
ming solvers, researchers have investigated this problem 
with mixed-integer programming techniques [4, 8]. How-
ever, in the statistics community, several have postulated 
that it may not be worthwhile to solve this problem to opti-
mality on training data [16, 32]. Instead, the use of heuristic 
approaches like the lasso and forward selection have been 
investigated and found to perform well for various problems 
[16]. There also has been work to solve this problem with 
penalized L1-regression methodologies [5]. In the work of 
Hastie et al. [16], both the execution time and several out-
of-sample statistical metrics are used to compare the lasso, a 
mixed-integer programming formulation, forward selection, 
and the relaxed lasso. They discovered that each of the meth-
ods obtained the best solution under different problem sizes 

and data characteristics. In terms of computational time, the 
mixed-integer programming formulation was the most com-
putationally expensive for all problems considered.

The work of Hastie et al. raised two questions that we 
investigate in this paper. First, the examples formulated in 
their work sought to identify a sparse algebraic representa-
tion for models with five variables in the true model. How-
ever, in practice, modeling complex systems may require 
complex non-linear equations with more terms. Second, 
while forward and backward selection have been compared 
empirically in the literature, we are interested in determining 
when BSE should be used for subset selection. To facilitate 
a comparison between these methods, we performed experi-
ments with four techniques: 

1. the proposed batched BSE algorithm,
2. forward selection in the R best subset package,
3. the lasso in the R best subset package,
4. the relaxed lasso in the R best subset package.

Despite recent advances in solving mixed-integer problems, 
for problems of sufficient size, solving the best subset selec-
tion problem exactly is still costly. We do not include results 
for the mixed-integer formulation as the approximate best 
subset solutions obtained from preliminary experiments 
were comparable to forward selection.

Experimental Setup

In this section, we make use of the notation proposed in [16]. 
Our experiments followed a similar procedure to those pre-
sented in the Hastie et al. paper, and were conducted on the 
same machine as in the previous section. Data in our experi-
ments were drawn from distributions that were defined by 
several parameters. Our matrices were generated by defin-
ing a problem size (m, n), a sparsity level s, to indicate the 
number of nonzeros in the model, and a beta-type, to create 
a sparsity pattern. In addition, � is used to control the cor-
relation level between variables when generating input data, 
and a signal-to-noise-ratio (SNR) term was used to control 
the level of noise in the data. Matrices were generated from 
a true model parameterized by � and s. A response vector 
y was also drawn by sampling points from the true model 
while adding noise that satisfied a specified SNR.

To compare approaches, several test metrics were evalu-
ated: relative risk, relative test error, proportion of variance 
explained, and the number of nonzeros in the chosen model. 
As studied in Hastie et al., relative risk (RR) is a measure of 
predictive performance:

(17)RR(𝛽) =
(𝛽 − 𝛽0)

TΣ(𝛽 − 𝛽0)

𝛽T
0
Σ𝛽0

.
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Here, 𝛽  is the vector of coefficients selected from regression, 
�0 is the vector of true coefficients that are used to generate 
the data, and Σ represents the correlation between the pre-
dictor variables. A perfect RR score for relative risk is zero, 
corresponding to 𝛽 = 𝛽0 . A bad score corresponds to one. 
Relative test error (RTE) is an out-of-sample procedure for 
measuring accuracy, which measures the expected test error 
relative to the Bayes error rate:

A perfect RTE score is one, while a score of zero corre-
sponds to 𝛽 = 0 . In this formula, �2 is the variance used to 
generate the matrices while satisfying a predetermined SNR. 

(18)RTE =
(𝛽 − 𝛽0)

TΣ(𝛽 − 𝛽0) + 𝜎2

𝜎2

Proportion of variance explained is the amount of variance 
explained by the proposed model in the output variable y0:

If the true model is selected, PVE equals SNR

1+SNR
 , while a null 

model has a score of zero. The last metric considered is the 
number of nonzero coefficients selected. In general, sparser 
models generalize better to validation data.

To compare BSE against other subset selection strategies, 
we conducted experiments with matrices of size m = 500 , 
n = 100 , and s = 5 . We were also interested in determining 
which methods are better suited for developing more complex 
models. We consider s over a range of 10–70 in multiples of 

(19)PVE = 1 −
(𝛽 − 𝛽0)

TΣ(𝛽 − 𝛽0) + 𝜎2

𝛽T
0
Σ𝛽0 + 𝜎2

.
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Fig. 3  Four accuracy metrics for the performance of different subset selection techniques for � = 0
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20. Experiments for all problem types were conducted over 
SNR ∈ [0.05, 0.09, 0.14, 0.25, 0.42, 0.71, 1.22, 2.07, 3.52, 6].

In the work of Hastie et al., multiple methods were used 
to generate matrices. We used beta-type 2, where �0 has the 
first s parameters equivalent to one, with the rest set to zero. 
Experiments were conducted with � equivalent to either 0 
or 0.35. All values reported below are an average over five 
repetitions. For each technique, a solution path was gener-
ated for every SNR considered. The results reported below 
are from the models that minimized the desired test metric 
from each solution path.

Computational Results

Figures 3 and 4 relate SNR to the accuracy metrics for dif-
ferent correlation levels. The uncorrelated case was unique 
from the other cases that were observed. BSE and FSS per-
forms differently when SNR< 0.16 . In particular, BSE in the 
low SNR cases outperforms all other methods in regards to 
RR and RTE. For SNR> 0.16 , all the methods except for 
the lasso converge to low error solutions. The lasso selects 
denser models than all of the other methods, selecting a 
25-term model as opposed to a five-term model.
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The results suggest that BSE outperforms the other meth-
ods at SNR< 0.16 . The relaxed lasso and lasso both select 
denser solutions than BSE for these problems. BSE outper-
forms FSS because FSS selects several variables in early 
iterations that hinder its overall performance as k increases. 
For this case of noisy data with no correlation, BSE selects 
a sparser model than the relaxed lasso, leading to a smaller 
RTE.

At a larger correlation of � = 0.35 , the advantage dem-
onstrated by BSE at the low SNR regime vanishes. BSE 
and FSS perform similarly except for small deviations in 
RTE observed at SNR= 0.42 . All the methods converge to 
a similar RTE around SNR= 0.71 , except for the lasso. The 
lasso selects a denser solution than all of the other methods, 
and does not converge to the RTE obtained by the other 
methods. The relaxed lasso does not have this problem as 

it manipulates a second tuning parameter � to control the 
aggressiveness of the relaxed lasso to shift its performance 
from that of the lasso to that of best subset and forward 
selection. The results demonstrate that either BSE or the 
relaxed lasso are the best methods for problems of this size. 
The choice of which method to select depends on the corre-
lation in the underlying data. The correlation of the features 
affects the critical transition value after which BSE, best 
subset, and FSS outperform the lasso and are competitive 
with the relaxed lasso method. BSE has a lower RTE than 
the relaxed lasso only in the case of � = 0.

In Fig. 5, we report results relating RTE to s. RTE is 
affected most by a change in the number of nonzeros in 
the model. Similar to the results of Hastie et al., models 
generated have a critical transition value at which point the 
RTE of BSE and FSS decreases below that of the lasso. 
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Fig. 5  Four accuracy metrics for the performance of different subset selection techniques when the number of nonzero coefficients in the real 
model changes for problems with � = 0
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The performance of the lasso is worse than all of the other 
methods above the critical transition value, while that of 
the relaxed lasso is similar to that of the stepwise methods. 
Unlike in the s = 5 case, in all of the results, the relaxed 
lasso outperforms BSE for SNR less than the critical transi-
tion value. The most notable result from this study is that, 
in certain cases above the critical transition value, BSE and 
FSS outperform the relaxed lasso. For s = 30 , BSE outper-
forms FSS and the relaxed lasso for SNR= 1.22 . We also 
investigated whether the RTE converges for all methods 
if the SNR value is increased beyond six. At larger SNR 
values approaching 20, BSE still outperforms FSS and the 
relaxed lasso. From this comparison, it appears that, in the 
case of low correlation in the input data and regardless of 
how large the underlying model is, BSE is competitive with 
other methods at any SNR. The relaxed lasso and FSS also 
generate accurate models for problems of this size.

Depending on the problem structure, different subset 
selection strategies are optimal. We expected that BSE 
would outperform forward selection when the number of 
terms in the true model approaches n as suggested by the 
proposed approximation guarantee in Section “Algorithmic 
Analysis of BSE”. This trend was observed for � = 0 . Over-
all, the best technique to use depends on the underlying data. 
For certain classes of problems, especially those that are 
uncorrelated, BSE produces an accurate and sparse model.

Conclusions

We investigated using backward stepwise elimination to 
solve the subset selection problem. Our main theoretical 
result is the proof of the existence of a bound on the accu-
racy of a solution selected by backward stepwise elimination 
related to how close the function is to being supermodular. 
Using the concept of the supermodularity ratio, we obtained 
an approximation guarantee for backward stepwise elimina-
tion. Our computational results demonstrate that the perfor-
mance of backward stepwise elimination is dependent on 
the difference between n and k, and more unexpectedly, the 
supermodularity ratio. We developed a GPU parallel batched 
BSE algorithm. This algorithm reduces the execution time of 
solving the subset selection problem for matrices with 1000 
rows and 600 columns by a factor of 5x.

We demonstrated that BSE performs as well as other 
state-of-the-art subset selection strategies that are commonly 
employed in practice. For certain problems at SNR below 
0.5, BSE generated sparser models and achieved a lower rel-
ative test error than forward selection and the lasso. Results 
demonstrated that BSE also achieved a lower relative test 
error than the relaxed lasso, the lasso, or forward stepwise 
selection for problems with no correlation and for signal to 
noise ratios above zero.

Our primary conclusion is that BSE is a technique that 
should be considered by practitioners who want to develop 
sparse and accurate models.
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