
Vol.:(0123456789)

SN Computer Science (2021) 2:395
https://doi.org/10.1007/s42979-021-00771-w

SN Computer Science

ORIGINAL RESEARCH

A Double Threshold‑Based Power‑Aware Honey Bee Cloud Load
Balancing Algorithm

Anindita Sarkar Mondal1 · Somnath Mukhopadhyay2 · Kartick Chandra Mondal1 · Samiran Chattopadhyay1

Received: 28 April 2021 / Accepted: 11 July 2021 / Published online: 30 July 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Present-day advancement in cloud computing provides ICT infrastructure as a service on a pay per use. Cloud computing
provides this infrastructure as a service and as service demand increases, service providers organize large-scale data centers
with a lot of resources, and cause of huge greenhouse gases’ emission. This data center’s huge power demand necessitates
the balancing of cloud load. To attain the optimum resource utilization, least processing time of CPU, minimal average
response time, and avoiding over-load, cloud load balancing algorithms distributes workload across virtual machines. The
key challenge here is to develop such a load balancing algorithm which consumes the least resources to fulfill the service
demands. In this paper, a double threshold-based power-aware honey bee load balancing algorithm is proposed for the fair
and even distribution of the incoming task requests to all the virtual machines. This paper compares the proposed algorithm
with five widely used existing load balancing algorithms. Moreover, we have done the performance analysis using the popular
CloudAnalyst simulation toolkit. Results of simulation showed that the proposed algorithm gives a note-worthy outcome
for average response time, CPU cost, storage cost, memory cost, and energy consumption in cloud computing to show the
resource utilization.

Keywords Cloud computing · Load balancing · CloudAnalyst · Performance comparison

Introduction

Cloud computing provides an information and technological
pay-per-use type services [3, 5, 16, 59]. According to the
demand of users, software applications, infrastructure, and

platforms are served using the Internet. Cloud computing’s
rudimentary requirement is sharing and providing compu-
tational resources such as virtual machines (VMs) based on
user demand. Efficient VM allocation for user’s request is
being carried out using different load balancing mechanisms
in cloud computing. It is necessary to attain cloud computa-
tions’ potentials using effective scheduling mechanisms for
minimizing the job execution time. As the number of users
increases, the job requests are to be scheduled to increase
equally, and the scheduling algorithms cannot achieve their
requirements.

Therefore, there is a need for more efficient task schedul-
ing algorithms to minimize the time of computation, energy
consumption, and the overall processing cost. A good algo-
rithm of task scheduling can influence the whole cloud sys-
tem directly. One best example can be a swarm intelligent
mechanism [19, 26], i.e., bee colony optimization algorithm
[31, 64] that is used in this paper for the development of
our new proposed algorithm. Moreover, load balancing and
management of cloud resources are crucial research areas
in the cloud environment to distribute the workload equally,
maximize the rate of resource utilization, and minimize task

“This article is part of the topical collection “Next-Generation
Digital Transformation through Intelligent Computing” guest
edited by PN Suganthan, Paramartha Dutta, Jyotsna Kumar
Mandal, and Somnath Mukhopadhyay”.

 * Anindita Sarkar Mondal
 sarkar.anindita5@gmail.com

 Somnath Mukhopadhyay
 som.cse@live.com

 Kartick Chandra Mondal
 kartickjgec@gmail.com

 Samiran Chattopadhyay
 samirancju@gmail.com

1 Department of Information Technology, Jadavpur University,
Kolkata, India

2 Department of Computer Science and Engineering, Assam
University Silchar, Silchar, Assam, India

http://orcid.org/0000-0002-3247-357X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00771-w&domain=pdf

 SN Computer Science (2021) 2:395395 Page 2 of 16

SN Computer Science

execution [6, 22, 49, 55]. Therefore, efficient and effective
use of optimized load balancing algorithms will provide
maximum usage of available resources and thus enhance
the system’s overall performance and throughput. The load
balancing mechanism’s primary goal is to distribute the load
equally among all nodes for optimizing the resource’s ser-
vice time and the application’s response time.

Cloud computing provides computing resources as a
utility based on Service Level Agreement (SLA) between
users and its cloud service provider. The Amazon EC2 [35],
Google App Engine [72], and Microsoft Azure1 are few
major cloud service providers that provide Platform, Infra-
structure, and Software-oriented services. Most IT organi-
zations are outsourcing their management to the cloud to
avoid the initial capital investment on infrastructure setup
and reduce software and hardware maintenance. Thus, the
necessity to increase computing services forced service pro-
viders to set up highly computational powered large-scale
data centers. A huge amount of electrical power is necessary
to keep these data centers always in up condition and func-
tioning correctly, resulting in operational cost increment.
Additionally, these data centers also produce and release
greenhouse gases like carbon dioxide. This appeared as a
significant challenge to the cloud service provider. Since idle
servers can also consume 50% of the fully utilized power
and 5–15% of these idle servers can be needlessly running
in data center [9, 11]. Hence, the management of power has
become a challenging issue. Virtualization technique is the
mainstay of cloud computing that helps for efficient resource
utilization by allocating VMs to a single host.

Due to the dynamic workload in a cloud environment,
there might exist some unnecessarily running hosts in the
cloud system. There can be some hosts that are underuti-
lized and some hosts that are over-utilized in a data center.
Therefore, to attain load balancing and to avoid needless
power consumption, and get efficient resource utilization,
the concept of the live VM migration [40] can be imple-
mented. The technique of migrating VM from one host to
another physical host keeps the user still connected, using
minimum down-time. Using this live VM migration tech-
nique, the VMs from the under-loaded and the over-*loaded
host can be allocated to the appropriate server. Therefore,
the needlessly running hosts can be switched off. The over
VM consolidation process using live VM migration results
in degradation of performance. This paper presents the com-
parative analysis of different provisioning mechanisms to
accomplish energy-performance trade-off maintaining the
service-level agreement.

Testing and analyzing various scheduling and alloca-
tion algorithms for developing applications in a real cloud

environment are a truly challenging issue. The main part
of the cloud environment is the cloud storage system, such
as Object-Based Schema-Oriented Data Storage System
(RSoS System), [47, 48] and Openstack Swift [4]. Since
most cloud manifest applications, changing a number of
requests incoming and testing algorithms in a real cloud
environment results in a lot of costs. The effectiveness of
testing an algorithm for implementation in the cloud needs a
simulation environment that can provide an environment that
is close to the real cloud and can produce results that help in
the analysis of the algorithms, so that they can be deployed
on real clouds. The CloudSim is a toolkit that supports the
modeling of systems and characteristics of cloud systems
like virtual machines (VMs), data centers, and resource
allocating algorithms. It implements generic application
provisioning mechanisms that can be easily extended with
minimum effort. It provides both modelings and simulation
in cloud environments and also it reveals custom interfaces
to implement the algorithms and provisioning mechanisms
for allocating VMs under the cloud computing environment.
Several researchers are using CloudSim in their experiment.
In absence of this type of simulation platforms, both cloud
customers and cloud providers have to rely either on theory
and evaluations lacking exactness and accuracy, or on try-
error techniques which results to ineffective performance
and creation of revenue.

There is an absence of tools for evaluating the needs of
large-scale applications in the cloud with respect to the geo-
graphical distribution of workloads for users and servers. For
filling this disadvantage in tools to evaluate and model appli-
cations and cloud environments, CloudAnalyst [70] had been
suggested. It was developed to simulate large-scale cloud
applications and study the functioning of these applications
with respect to several deployment configurations. Devel-
opers can get help from CloudAnalyst about the insights
of distribution of applications across the infrastructures of
cloud and performance optimization of applications and pro-
viders using Service Brokers. CloudAnalyst was extended
from CloudSim, and some of its abilities and characteris-
tics are extended. CloudAnalyst isolates the programming
process from the simulation process. It allows a modeler to
repeatedly perform simulations and perform a sequence of
simulations, taking little variations of parameters in a fast
and easy way. It is applied for inspecting characteristics of
large-scale applications of the cloud.

In this paper, the performance of cloud load balanc-
ing is calculated for the distributed data centers using the
CloudSim toolkit program. The performance analysis and
simulation will be performed using the CloudAnalyst tool.
It provides an easy way to evaluate new algorithms in the
utilization of clouds, taking into consideration load bal-
ancing and scheduling algorithms. This can also be used
to evaluate algorithms’ competence from various aspects 1 https:// docs. micro soft. com/ en- us/ azure/ stora ge/.

https://docs.microsoft.com/en-us/azure/storage/

SN Computer Science (2021) 2:395 Page 3 of 16 395

SN Computer Science

such as cost, application response time, execution time, etc.
This also provides support for the evaluation of the Green IT
strategies [15, 67]. The user uses it as the blocks for building
a simulated environment and can add new algorithms for
scheduling and load balancing. Thus, it is reasonably flexible
for being used as a library by allowing writing the desired
scenario using the Java program.

This work’s specific contributions include a systematic
study of the proposed double threshold-based power-aware
approach of load balancing mechanism in a cloud environ-
ment. The flowcharts portraying its functional control struc-
tures show how power-aware strategies and bees foraging
behavior inspire load balancing for a distributed cloud sys-
tem; evaluation and comparative analysis of the performance
of the proposed load balancing technique with respect to
other load balancing mechanisms using CloudAnalyst simu-
lator toolkit based on various simulation parameters. The
key contributions of this article are presented below.

– To enhance the cloud computing performance in data
transfer cost, memory cost, storage cost, CPU cost,
response time, and processing time uniform distribution
of tasks within the available virtual machines of a data
center is made through the task scheduling approach.

– Also, shows how the reduction in power consumption of
the data center is handled through the task scheduling
approach.

The rest of this paper is organized as follows. Section “Issues
and Problems Related to Load Balancing in Cloud” dis-
cusses some issues that are related to the load balancing in
the cloud environment. This section also discusses various
parameters considered in the load balancing and provides
the problem formulation of this article. Next, in Section
“Related Work”, a brief study on the researched topic has
been presented here. After that, section “Existing Load Bal-
ancing Algorithms” gives a comparative study of existing
and proposed algorithms concerning their pros, cons, and
various load balancing metrics. Then, in section “Materials
and Methods”, we have presented the proposed load balanc-
ing algorithm’s flowcharts and modified the proposed load
balancing algorithm. The simulation configuration and result
analysis are presented in section “Simulation and Results
Analysis” which deals with the discussion about perfor-
mance analysis of the proposed algorithm along with other
considered load balancing algorithms. In the end, Section
“Conclusion” concluded with some future scope of the work.

Issues and Problems Related to Load
Balancing in Cloud

Necessity of Load Balancing

Load balancing in a cloud environment is a technique of
distributing the surplus local dynamic workload equally
among all the nodes and used to accomplish a high resource
utilization and satisfaction of user ratio. It also ensures that
no single node gets over-loaded and enhances the system’s
overall performance. Proper balancing of load helps to
optimally utilize the resources available, thus minimizing
the consumption of resources. Load balancing maximizes
throughput, enhances the system’s stability and reliability,
future modification is accommodated, and for small jobs
avoids prolonged starvation. This also helps for fail-over
implementation, scalability, avoidance of bottleneck condi-
tions and over-provisioning, reduction of waiting time and
response time, etc. Apart from these issues, a load balancing
mechanism in the cloud is also required to obtain the green
computing [1] that can be accomplished taking the help of
the below-mentioned factors:

– Reduction in consumption of energy.
– Reduction in emission of carbon.

Various Parameters Considered in Load Balancing

Various existing load balancing mechanisms [6, 19, 31, 63]
in cloud environment consider different types of metrics
such as throughput, response time, migration time, perfor-
mance, resource utilization, scalability, associated overhead,
and fault tolerance. These parameters are described about
the provided service quality in the cloud system. The detail
descriptions of these parameters are presented in Table 1.

The main goal of the proposed algorithm is to design
such a task scheduling approach which not only minimize
the response time but also make beneficial to the service
consumer by reducing the service cost. For this reason, some
more parameters are considered, as memory cost, CPU cost,
storage cost, and data cost these are described about the
amount of cost is needed to accomplish a task. The math-
ematical formulae of the load balancing parameters are pre-
sented in Listing 1.

 SN Computer Science (2021) 2:395395 Page 4 of 16

SN Computer Science

Data Transfer Cost (DTC) = (total_data / (1024 * 1024)) *
cost_per_data_GB ;

CPU Cost (CC) = (total_time_in_ms / (1000 * 3600)) *
cost_cpu_per_hour ;

Memory Cost (MC) = (total_time_in_ms / 1000) * cost_per_memory ;

Storage Cost (STC) = (total_time_in_ms / 1000) *
cost_per_storage ;

Total Cost (TC) = DTC + CC + MC + STC ;

Throughput= Total accomplished task / time duration

Resource Utilization = processing time/ (processing time+Idle time
)

Migration time=Total traverse time/(number of nodes * number of
tasks)

Energy Consumption= Energy consumption in idle time + Energy
consumption in processing time

Research Issues Related to Load Balancing

Various research issues should be taken into account in
developing a load balancing algorithm that can help obtain
an optimal solution. These are mentioned below.

– In implementing a load balancing algorithm, the distance
between the cloud nodes should be considered. The algo-
rithm developed should work effectively and efficiently
in case nodes are far away from such as the Internet and
for nodes close to each other such as the Intranet.

Table 1 Description of load balancing parameters involved in cloud environment

Parameter name Description Value to be

Overhead associated Specifies the amount of overhead associated with the execution of a load balanc-
ing algorithm

Minimized

Throughput Used for calculating the no. of tasks that completed execution successfully Maximized
Resource utilization Used for checking the amount of utilization of resources Optimally maximized
Scalability The capability to distribute the tasks of load balancing within a limited number

of resources
Improved for better performance

Response time The total time is needed to respond by a particular load balancing mechanism in
a system

Minimized

Fault tolerance The capability to achieve load balancing uniformly despite of arbitrary node or
link failure

Maximized

Migration time The time is taken for the migration of a task or resource from one node to another
node

Minimized

Performance Used for checking the efficiency of the system Maximized at a cost that is reasonable
Energy consumption The total amount of energy is taken by all the resources of a system. It helps to

avoid overheat generation and reduce consumption of energy
Minimized

Carbon emission Calculates the amount of carbon emission by all existing resources in the system Minimized

– Implementation mechanism and operational mechanism
of algorithm development should not be complicated,
since it may cause degradation in its performance.

– Single point of failure and deadlock condition should be
avoided in the proposed algorithm of load balancing.

– Algorithm should take care of all possible scenarios in
the cloud environment that can enhance the load balanc-
ing parameters as Table 1.

SN Computer Science (2021) 2:395 Page 5 of 16 395

SN Computer Science

Problem Formulation

The primary goal of the cloud computing system [10, 13,
14] is to provide the services in such way that it makes the
economic benefits of cloud service consumers by utilizing
the available resources in optimized manner. The resource
allocation and deallocation mechanism is needed for avoid-
ing underutilized or over-utilized conditions of the resources
which affects the cloud services. Random selection of the
resources for handling the load makes some resources are
over-loaded or under-loaded or idle. Evenly distribution of
load enhances performance by migrating load from over-
loaded server to under-loaded server. Thus, it leads to the
development of many algorithms for scheduling and load
balancing as mentioned next in Section “Related Work”.

Some authors just focused on the node’s accessibility,
and only a few factors are considered, such as the node’s
memory, the capacity of processing, etc. [6, 40]. Thus, some
more factors are added here, such as the bandwidth of VM,
VM computing capacity that is calculated concerning mil-
lions of instructions per second, count of processors in a
VM, and VM’s storage capacity. All these factors will be
used to quickly get the most relevant and available resources
for the considered task. Several research papers [25, 27, 29,
73] consider the concept of priority which could cause the
increment of the response time. Therefore, Shortest Job
Criteria are considered to minimize the average response
time of cloudlets. The honey bee foraging concept is to dis-
tribute the nodes’ workload and search for an optimal path
toward the most relevant resource in the cloud. In contrast,
the double threshold-based power-aware concept is applied
to reduce energy consumption. Performance of the system
is calculated based on efficient scheduling mechanism and
resource allocation characteristics of cloud computing.
These considered characteristics impact cost optimization
that can be achieved by enhanced response time and data
center processing time.

Related Work

In this section, we describe different cloud load balanc-
ing algorithms. Here, the primary focus of this study is on
allocating all incoming requests across the available virtual
machines that have a minimum response time. Extensive
research works will develop the power-aware data center by
keeping energy-performance trade-off in the cloud environ-
ment. Different studies show that the load balancing is main
objectives of optimized scheduling compared to the emission
of CO

2
 , processing power, usage of the fan, and others. The

optimization of tasks consists of only the initial allocation
of a VM to a host in most studies. Few more research works
have been aimed at the issue of rescheduling VMs running

on an over-loaded host. There are different algorithms and
techniques for the efficient and effective utilization of cloud
resources by the consolidation of servers.

The static consolidation process [46] is not a feasible
option at the time of VMs live migration. At the initial
static mapping, the server consolidation is not done for an
extended period of time. Thus, a dynamic VM consolidation
is a better option, as shown in article [12]. Live migration of
VMs helps switch off hosts when they are under-loaded or
over-loaded or both and thus minimize power consumption.
DRSQ [49] properly utilizes the resources by assigning tasks
to the corresponding practical resource. First work on energy
management for the virtualized data center was proposed
[50]. Here, the proposed architecture to the data center is the
separation of resources at local and global levels. However,
the author does not properly mention about the automatic
resource allocation mechanism at a global level.

The authors of the article [42] considered the load and
suggested a power-aware load balancing algorithm applied
to the VM with an upper and lower threshold. Migration
occurs when the load crosses the threshold boundary. Here,
authors did not consider the CPU utilization and real data
center data to run their experiment. Similar work has been
done in [20] using a K-nearest neighbor regression mecha-
nism for predicting resource usage of each host. Here, the
authors do not describe the no. of VM migration sat the
algorithm which is a crucial part for deciding the residual
bandwidth availability in a data center. Another work in the
same domain was done in [43] where authors mainly con-
centrated on a lower and upper threshold for minimizing
power consumption at a data center and VM migrations.
Since a static value is used here, it is not the right solution
for increasing CPU utilization and dynamic workload within
the data center.

VMware Vsphere distributed energy management [68]
operates on an upper and lower threshold that is set at 81%
and 45%. It is not acceptable as the utilization may vary
differently for various data centers. A mechanism was pro-
posed in [8] that deals with the power and efficient dynamic
VM migration problem. Here, the authors proposed several
algorithms to detect host over-loading but only a general
algorithm for detecting the host under-loading. The consoli-
dation of VM and Shingo can make a reduction of power
consumption, and Toshhinori proposed a rank-based method
for VM consolidation [62] for this. Here, the VM migration
to a suitable destination host is based on host rank.

In [65], authors use backfilling with first-come-first-
serve mechanism a combination of runtime and kill times,
scheduled shorter tasks before their time if determined not to
interfere with other tasks deadlines. Errors exist in run time,
and kill times are estimated, which were found to be effec-
tive. Suresh et al. in [61] enhanced a backfilling mechanism
that places similar length next to each other tasks to ensure

 SN Computer Science (2021) 2:395395 Page 6 of 16

SN Computer Science

that they complete approximately simultaneously and make
free the computation power which larger sized jobs will uti-
lize. These kinds of scheduling mechanisms optimize the
make-span. Garg et al. [25] suggested several techniques to
find appropriate task placements across the heterogeneous
type of hosts with different workloads for minimizing energy
consumption. Voltage scaled dynamically was emerged as
adjusting the host’s voltage for saving energy depending on
load [38]. Another power-aware approach like [39] is con-
solidating VMs to the server for turning off others that had
been freed off.

Heuristics attempt for learning some characteristics of
a solution for being able to generate better solutions later
on. Ant Colony Optimization (ACO) is used a no. of times
for scheduling purposes in the cloud. Zhu et al. [73] pro-
posed an ACO-based algorithm in which tasks have metrics
of quality of service related to bandwidth, task completion
time, cost, and reliability. These properties help for choos-
ing placement among heterogeneous resources. Similarly,
Feller et al. [21] modified ACO for a problem of workload
balancing. The system allows the same tasks overtime to
record the maximum requirements of resource for each job,
making their deployment easier once the system has learned
the near-optimal solution. Similarly, minimizing both wast-
ages of resource and energy consumption using ACO was
proposed in [23].

Various researchers focus on designing distinct algorithm
that minimize the energy consumption at task execution
time. Some of them are described here. Genetic Algorithms
(GA) have also been used in formulations with multi-objec-
tives, as shown in [71]. Here, the authors proposed an algo-
rithm where resource wastage is optimized, consumption
of power, and thermal dissipation costs are also optimized.
Among other rescheduling techniques, Mi et al. [44] used
GA for adjusting the data center as per dynamically changing
requests to minimize power consumption. Kusic et al. in [37]
suggested an algorithm for minimizing energy consumption
by handling the small clusters’ applications of servers to
ensure SLA levels. This algorithm considered the expected
request demand at the time of application allocation and
the hosts for VM allocation to avoid the later switching and
dynamically adjusts of the no. of VMs. Chaotic Darwin-
ian Chicken Swarm Optimization (CDCSO) algorithm [33]
assigned tasks to the virtual machine based on certain multi-
objective parameters, namely energy, cost, task completion
time, response time, throughput, and load balancing index.
This technique reduces the cost, energy consumption, and
make-span. Our proposed approach points out another direc-
tion for reducing the energy consumption of the data center
by shutting down the unallocated or idle VMs.

Additionally, setting rules without any flexibility to
learn may not give a response to system changes or require-
ments of tasks. An adaptive mechanism of rescheduling that

minimizes energy without depending on previous knowledge
of resource requirements is required to dynamically solve
the power efficiency issue. Such a technique can learn and
respond to changes in an adaptive way. Sran et al. proposed
a load balancer in [60] which controls the payload flow
based on static or dynamic thresholds. The author analyzed
the existing algorithms like throttled, round-robin, biased
random sampling, and equally spread and proposed a new
algorithm that increases the performance while decreasing
the overall time of requesting and processing. Another load
balancing mechanism is presented in [57] for balancing load
and task’s priorities which are removed from over-loaded
VMs. This is based on honey bee foraging behavior which
reduces response time and enhances the overall throughput,
but the power consumption is not investigated here.

Authors in [69] suggested a green scheduling algorithm
in a cloud environment that can optimize the power con-
sumption. Here, for rescheduling of the services an adapted
bee colony algorithm and managing of power consumption
an ant colony algorithm are used. Contrary, this work use
modified bee colony algorithm and other double threshold-
based power-aware mechanism for detecting over-utilized
hosts, and VM selection. Similarly, in [17], an architectural
principle for managing clouds in an energy-aware way was
proposed. They also proposed power-efficient resource allo-
cation and scheduling strategies. However, since they used
static thresholds of utilization, this technique may not be
effective and efficient in cloud environments.

Recent work in [27] presented an adaptive approach for
dynamic load balancing of VMs based on analytical, heuris-
tics, and historical data about VM’s usage of the resource.
Authors proposed mechanisms like Interquartile Range
(IQR), Robust Local Regression (RLR), Median Abso-
lute Deviation (MAD), and Local Regression (LR) for the
arrangement change over-loading detection host. Addition-
ally, to select the VM, one of the Minimum Migration Time
technique [53], Random Choice technique [7], and Maxi-
mum correlation technique [32] is used.

Nature inspired in designing the efficient load balancing
algorithm in cloud domain. Yao et al. [24] suggested a load
balancing technique by concerning an artificial bee colony
(ABC) algorithm and presented an enhanced artificial bee
colony algorithm for increasing the system’s throughput. A
load balancing technique using modified PSO task sched-
uling (LBMPSO) [54] considered the execution time, and
starting time variation of the tasks and assigned them to
the ideal VMs. It minimized the make-span and maximized
the resource utilization value. LBMM [58] designed a task
scheduling approach to overcome the load imbalance draw-
back of the max–min algorithm. As a result, it increased the
turnaround and throughput of the system. Binary bird Swarm
Optimization-Based Load Balancing (BSO-LB) algorithm
[45] applied the concept of the mimicking behavior of a

SN Computer Science (2021) 2:395 Page 7 of 16 395

SN Computer Science

flock of birds in cloud domain for load balancing and task
scheduling purpose in such a way that minimized the make-
span and maximized the resource utilization and throughput
value of the system. However, the authors did not consider
the energy consumption issue or the SLA violation issue
which is considered in our proposed approach.

In the recent era, researchers focused on hybrid algo-
rithms to handle the huge workload in the cloud comput-
ing system. Some of them are discussed below. Hybrid
Max–Min Genetic Algorithm (HMMGA) [34] combination
of max–min algorithm and the genetic algorithm used to
balance the load of the available VMs and scheduled the task
in such a manner that it reduced the task completion time in
between heterogeneous VMs. Authors of the article [18] pro-
posed a load balancing method consists of two approaches,
namely autonomous technique for avoiding the assignment

of extra request to the VM which creates load redundancy,
and prediction technique for predicting the future state of the
VMs to minimize the request transfer cost from over-loaded
VM to under-loaded VM for reducing the inter-VM com-
munication overhead. Nowadays, the cloud domain faces a
big challenge that is huge energy consumption with a huge
workload.

Existing Load Balancing Algorithms

In this section, we present five well-known load balancing
algorithms of cloud environments that are used for compari-
son with the proposed load balancing algorithm. However,
in this section, we have also done theoretical comparisons
on these five load balancing algorithms in terms of their

Table 2 Parametric comparison
of a list of parameters, viz., 1 ->
fault tolerance, 2 -> migration
time, 3 -> overhead, 4 ->
performance, 5 -> resource
utilization, 6 -> response time,
7 -> scalability, 8 -> throughput

Algorithm Mechanism Parameters

1 2 3 4 5 6 7 8

RR [29] Static and centralized X X ✓ ✓ ✓ ✓ ✓ ✓

ESCE [63] Dynamic and distributed ✓ ✓ X ✓ ✓ ✓ ✓ X
TLB [66] Dynamic and distributed X ✓ X ✓ ✓ X ✓ X
HBF [56] Dynamic and distributed X X X X ✓ X X X
ACO [51] Dynamic and distributed ✓ ✓ X ✓ ✓ X ✓ X
DTPAHBF (proposed) Dynamic and distributed ✓ X X ✓ ✓ ✓ ✓ X

Table 3 Comparison of pros and cons of different algorithms considered for performance comparison

Algorithm Pros Cons

RR [29] Process of allocation of job, Response time, Resource
utilization

No earlier information about any process

Equal distribution of workload Job processing time is not considered
ESCE [63] Enhanced response time No fault tolerance for the presence of a single point of

failureMaximum throughput
Minimized data transfer cost

TLB [66] Distributes the load equally across the VMs Does not consider the present load on VM that can result in
the increased response time for a task

The load balancer maintains VMs and their corresponding
states (Available or Busy)

Higher maintenance is needed for VMs

HBF [56] VM’s waiting time and response time are reduced Throughput does not increment with the size of the system
Without VM, high-priority tasks cannot work here

ACO [51] Under-loaded nodes are identified in the best case Network overhead is created
Decentralized A number of ants and points of beginning can not be per-

ceived easily
Ensures availability and provides efficient resource utiliza-

tion
After visiting by ants, status changing of nodes is not

considered
Increases the no. of requests processed and decreases the

multiple requests’ processing time
Availability of node is only taken into consideration

Throughput is maximized
DTPAHBF (proposed) Efficient This may initiate unnecessary migration of VMs

Minimal power consumption

 SN Computer Science (2021) 2:395395 Page 8 of 16

SN Computer Science

implementation environment, parameters, and their pros and
cons, as shown in Tables 2 and 3, along with the proposed
algorithm of this article.

There are various mechanisms that exist for balancing
the load in multiple situations. Static mechanisms [6, 46,
55] are very efficient in the case of a stable environment.
Whereas the dynamic algorithms uninterruptedly observe
the resources during runtime [2, 36, 60]. The dynamic algo-
rithm provides a much better solution to adjust the workload
dynamically at runtime. Tables 2 and 3 and a short explana-
tion of each of the algorithms in this section give a better
understanding of these algorithms.

Round Robin (RR) Load Balancing Algorithm This algo-
rithm is considered the most fundamental and the least
complicated scheduling algorithm. Here, on the concept of
time quantum is used, where a quantum of time is assigned
for each processor. This technique is distributed among all
processors. Moreover, each process is allocated in the pro-
cessor in the way of rounded ordering. This mechanism of
load balancing uses the round-robin concept [29]. If any pro-
cess does not finish its execution within a given time, then
the process will be put at the waiting queue’s end position.
Round Robin Algorithm [29] selects the load randomly, thus
resulting in a condition where some nodes are over-loaded
and others are under-loaded, which is the main drawback of
the approach. Also, there is an extra load to the scheduler
for deciding the quantum size. This technique has a larger
average waiting time, longer turnaround time, longer context
switches, and lower throughput.

Equally Spread Current Execution (ESCE) Load Balanc-
ing Algorithm This algorithm [63] considers the allocation
size and distributes the load randomly. After that, the task
load is transferred to that VM that is loaded lesser or will
handle the task efficiently; taking less time gives maximum
throughput. This is the spread spectrum mechanism where
the load balancer spreads the job load to multiple VMs. In
this technique, the load balancer keeps a VMs table and the
currently allocated request numbers to the corresponding
VMs. In this Equally Spread Current Execution mechanism,
there is a communication between the DataCenterController
and the load balancer for keeping the index table updated,
leading to overhead. Moreover, this overhead creates a delay
to respond to the incoming requests [63].

Throttled Load Balancing (TLB) Algorithm TLB [66]
keeps the index table of all the VMs with the maintaining
of each VM’s state (available or busy). At the algorithm’s
starting point, all the VM’s state is available. The Throttled
VM load balancer analyzes the VM allocation table from
start to end till the currently accessible VM is identified. The
table must be searched entirely.

Honey Bee Foraging (HBF) Load Balancing Algorithm
Effective and efficient implementation of load balancing
mechanism will construct cloud computing more empirical
and jointly enhances user satisfaction. Among the mecha-
nisms, a honey bee forage mechanism [41] is utilized for task
allocation and load balancing. When tasks get allocated to
the VMs, current load has been calculated. Whenever the
VM gets over-loaded, then the VM migration is done among
of those VMs whose load is below the threshold value [73].
Honey Bee forage mechanism uses task migration and
sub-urbanized load balancing technique in this circle. This
mechanism ensures system performance and avoidance of
system imbalance.

Ant Colony Optimization (ACO) Load Balancing Algorithm
ACO [21] derives from the natural behavior of the real
ants. In this load balancing, algorithm [51], the head node
is selected randomly that is responsible for generating the
ants. The task of these ants is to identify the positions of the
under-loaded or over-loaded nodes in the cloud system by
traveling the entire cloud network. At the time of traversing,
ants update a pheromone table by that each cloud system
node can monitor the utilization of resources.

Materials and Methods

The proposed work aims to make an effective and efficient
scheduling and uniform workload distribution across the
resources of cloud with an excellent performance rate. This
paper is based on the classical swarm intelligent technique
[52], i.e., a metaheuristic algorithm, honey bee foraging load
balancing algorithm [30] along with double threshold-based
power-aware load distribution concept to reduce energy con-
sumption. We implemented the scheduling and load balanc-
ing algorithms within a cloud scenario to determine which
virtual resource is over-loaded or under-loaded.

There exist several data centers and virtual machines.
These virtual machines have their ID, CPUs, bandwidth
capacity, memory, and processing power. VM’s over-loading
and under-loading situations are determined by the number
of active tasks in the VM. It decides by a threshold value.
When the active task is above 90%, then an over-loading
situation occurs, and when it is below 20%, then an under-
loading situation occurs. Here, these 90% and 20% are called
threshold values for deciding over-loading and under-load-
ing situations of VMs, respectively. These threshold values
are considered in our approach for experiment as input. It is
decentralized to avoid the bottlenecks situation and single
point of failure. It uses the following parameters to execute:

– Maximum number of job allocation in VMs.
– Number of currently allocated job in VMs.

SN Computer Science (2021) 2:395 Page 9 of 16 395

SN Computer Science

– Number of currently active VMs.
– Virtual machine states list.
– Lower and upper cut-off value of modified honey bee

algorithm.

In this work, specific intelligent behavior of a honey bee
swarm called foraging behavior is considered. Through the
foraging mechanism, bees are continuously searches for the
food sources with food quality, quantity, and direction [28].
Also, bees are communicated with each other through the
waggle dance. In such way, it reduces the chance of occur-
ring over-loading and under-loading situation of VMs and
increases the resource utilization.

A new Double Threshold-based Power-Aware Honey
Bee (DTPAHB) Load Balancing algorithm simulates this
behavior of real honey bees is discussed for solving opti-
mization problems. The flowchart of the proposed double
threshold-based power-aware honey bee (DTPAHBF) load
balancing algorithm is shown in Fig. 1 and pseudo-code of
the proposed approach is given as a supplementary mate-
rial. This honey bee-inspired load balancing is based on a
dynamic approach on double threshold values depending on
the maximum number of virtual machine counts. The upper
threshold value is 90% of the maximum count, and the lower
threshold value is 20% of the maximum count. Once the
tasks are allotted to the VMs, the current load is calculated.
If the VM becomes over-loaded, the task is transferred to the
VM based on the currently active VM count with respect to
the lower and upper threshold. Suppose the currently active
VM count is less than the lower threshold value. In that case,
the least allocated VM is chosen for task allocation instead
of using a modified honey bee algorithm to reduce migration
time and cost, storage cost, CPU cost, and memory cost and
thus save energy. If the currently active VM count is greater

Fig. 1 Flowchart of proposed double threshold-based power-aware
honey bee (DTPAHBF) load balancing algorithm

Fig. 2 Flowchart of the modi-
fied double threshold honey bee
foraging algorithm

 SN Computer Science (2021) 2:395395 Page 10 of 16

SN Computer Science

than the upper threshold value and an unallocated VM is
available, choose that VM; otherwise, choose the least allo-
cated VM instead of using the modified honey bee algorithm
to save time, cost, and energy.

When currently active VM count is within the lower and
upper threshold value, i.e., within the normal range, then
a double threshold-based modified honey bee algorithm is
followed to get the optimized VM allocation of the task.
The flowchart of the modified double threshold honey bee
foraging algorithm is shown in Fig. 2. In the modified honey
bee algorithm, if the number of VM allocation is within the
normal range, i.e., within 20–90% of the maximum alloca-
tion count, then scout bees will not be sent further searching
food source; otherwise, it will go for it. After the VM for
task allocation is chosen, all unallocated or idle VMs are
detected and removed from the host to reduce unnecessary
energy consumption. If any host contains VMs that are all
unallocated or idle, then the host must be shut down or sent
to sleep mode for reducing colossal energy consumption.
An idle VM consumes about 70% of energy concerning a
fully utilized VM. Honey Bee forage technique hires sub-
urbanized load balancing methodology, and task transfer is
blow on the fly.

Simulation and Results Analysis

The experimental setup, results, and discussions of the
experiment for this research work are presented in this sec-
tion. The CloudAnalyst simulator is used for this experiment
presented in this section. The results are obtained by com-
paring the proposed algorithm with five existing load bal-
ancing algorithms (Round Robin, ESCE, Throttled, Honey
Bee Foraging, and ACO).

Simulation Configuration

We have performed the simulation followed by performance
analysis using the specific configuration in the CloudAnalyst
toolkit [70]. CloudAnalyst is designed to model the resource
scheduling algorithm, cloud service brokers, and cloud data
centers. vmLoadBalancer component of the CloudAnalyst
is used to implement the load balancing mechanism. This
simulator provides an user-friendly GUI to remove all

complexities for the programming aspect. It allows parame-
ter sweep to do the experiments by users. This CloudAnalyst
framework can allow users to set the regions for cloud-based
user bases and data centers. Several other parameters can
also be configured like: number of requests generated by per
user per hour, number of user bases, number of VMs and
number of CPUs, amount of storage and bandwidth of the
network, and some other significant parameters, as shown
in Table 4.

Based on the parameters mentioned in Table 4, cloud
analyst judges the simulation and its results are presented in
a graphical format. Following are some statistical metrics
based on which we have derived the output of the simulation
and compare the performance

1. Average response time of the system.
2. Average processing time of the data center.
3. CPU cost of the virtual machine.
4. Storage cost of the system.
5. Memory cost of the system
6. Total data transfer cost.
7. Energy consumption of the overall process.

The CloudAnalyst enables to repeatedly do the simulation
experiments with parameter variations quickly and easily.
This is a tool using which testing and simulation are done
with different metrics. It is used to examine the behavior of
huge applications, present in cloud.

Experimental Setup

The parameters for the configuration of User Bases, Applica-
tion Deployment, Data center, and Physical Hardware details
of any Data Center are defined as given in Tables 5, 6, 7,
and 8, respectively.

Table 5 shows that the six distinct regions of the cloud
are selected to set up the user bases’ locations. The service
requests of these user bases are handled by the four data
centers. The data centers are located in such way, first one
in region 0, second one in region 2, third one in region 1,
and fourth one in region 5. The number of allocated VMs is
presented in data centers (DC) like, 2 VMs in DC1, 5 VMs
in DC2, 10 VMs in DC3, and 4 VMs in DC4. The user bases
select the optimized response time-based data center for the
application execution purpose under the applied load bal-
ancing policy that considers the Optimized Response Time
broker policy.

The different no. of virtual machines are defined in the
data center. Virtual machines have 512 Mb of RAM memo-
ries and 10 Mb bandwidth. Simulated hosts have Xen as
virtual machine monitor, Linux operating system, and x86
architecture. The hosts have 100 GB storage, and 2 GB
RAM. Others, each machine has the same number CPUs

Table 4 Parameter settings for CloudAnalyst simulation

Sl No. Parameter Value

1. VM Memory 512 MB
2. Data Center OS Linux
3. Data Center VM Xen
4. Data Center Architecture x86

SN Computer Science (2021) 2:395 Page 11 of 16 395

SN Computer Science

and speed. The grouping is done in such way, users by a
factor of 10, and requests by a factor of 10. 100 instruc-
tions corresponding of each user request are executed. CPU
takes nearly 45 watts and other units take nearly 28 watts to
process each request. The simulation duration took 10 min.
Used the response time and processing time metrics and also
CPU cost, storage cost, memory cost, data transfer cost, and
energy consumption to compare the proposed algorithm with
other existing algorithms.

Table 5 Configuration of user
bases used in the experiment

Name Region Requests/
User/Hr.

Data Size/
Req. (Bytes)

Peak Hours
Start (GMT)

Peak Hours
End (GMT)

Avg. Peak Users Avg. Off
Peak
Users

UB1 2 60 100 3 9 1000 100
UB2 0 60 100 3 9 1000 100
UB3 1 60 100 3 9 1000 100
UB4 3 60 100 3 9 1000 100
UB5 4 60 100 3 9 1000 100
UB6 1 60 100 3 9 1000 100
UB7 3 60 100 3 9 1000 100
UB8 5 60 100 3 9 1000 100
UB9 4 60 100 3 9 1000 100
UB10 0 60 100 3 9 1000 100
UB11 1 60 100 3 9 1000 100
UB12 4 60 100 3 9 1000 100
UB13 5 60 100 3 9 1000 100
UB14 2 60 100 3 9 1000 100
UB15 0 60 100 3 9 1000 100
UB16 3 60 100 3 9 1000 100

Table 6 Configuration of application deployment used in experiment

Data center # VMs Image size Memory BW

DC1 2 10000 512 1000
DC2 5 10000 512 1000
DC3 10 10000 512 1000
DC4 4 10000 512 1000

Table 7 Configuration of data
center used in the experiment

Name Region Arch. OS VMM Cost /
VM ($/
Hr)

Memory
Cost ($/s)

Storage
cost ($/s)

Data Transfer
Cost ($/GB)

Physi-
cal HW
units

DC1 0 x86 Linux Xen 0.1 0.005 0.01 0.1 2
DC2 2 x86 Linux Xen 0.1 0.005 0.01 0.1 5
DC3 1 x86 Linux Xen 0.1 0.005 0.01 0.1 10
DC4 5 x86 Linux Xen 0.1 0.005 0.01 0.1 4

Table 8 Configuration of
physical hardware details of one
data center (e.g., DC2) used in
the experiment

Id Memory (MB) Storage (MB) Available BW # Processors Processor speed VM policy

0 204800 100000000 1000000 4 10000 TIME_SHARED
1 204800 100000000 1000000 4 10000 TIME_SHARED
2 204800 100000000 1000000 4 10000 TIME_SHARED
3 204800 100000000 1000000 4 10000 TIME_SHARED
4 204800 100000000 1000000 4 10000 TIME_SHARED

 SN Computer Science (2021) 2:395395 Page 12 of 16

SN Computer Science

Results and Discussion

The obtained result set from our experiments are displayed
in Tables 9 and 10. Also, the corresponding graphs are
shown in Figs. 3, 4, 5, 6, and 7.

The results shown in Table 9 and graphs presented in
Figs. 3 and 4 showed that the proposed algorithm has the
same results with respect to overall response and processing
time with the other existing algorithms when considering
Optimized Response Time Service Broker policy. Also, it
can be seen that Round Robin, HBF, and ACO are better
than ESCE, TLB, and the proposed algorithm considering
the maximum response time. Whereas, Round Robin, ESCE,
TLB, and ACO have better maximum processing time than
HBF and the proposed algorithm. However, if one considers
the other cost measures like CPU cost, data transfer cost,
storage cost, and memory cost, then the proposed algorithm
is giving better results, as shown in Figs. 5 and 6. Also, as
per the energy consumption shows in Fig 7, our proposed
algorithm consumes less energy compared to other consid-
ered algorithms.

Table 9 Results of response time (RT) and processing time (pt) con-
sidering optimized response time service broker policy

Algorithms Avg. (ms) Min (ms) Max (ms)

RR [29]
 RT 148.29 37.60 381.13
 PT 0.42 0.01 0.88

ESCE [63]
 RT 148.46 37.60 520.10
 PT 0.42 0.01 0.88

TLB [66]
 RT 148.47 37.60 520.10
 PT 0.43 0.01 0.86

HBF [56]
 RT 148.41 37.62 367.63
 PT 0.47 0.01 3.51

ACO [51]
 RT 148.30 37.60 367.61
 PT 0.43 0.01 0.95

DTPAHBF
 RT 148.22 37.48 520.10
 PT 0.46 0.01 3.51

Table 10 CPU cost, storage
cost, memory cost, data transfer
cost, and energy consumption
results considering dynamic
service broker policy

Algorithms CPU cost (/$) Storage cost (/$) Memory cost (/$) Data trans-
fer cost
(/$)

Energy con-
sumption (/
Watts)

RR [29] 0.50 181.80 90.90 0.18 4.15926
ESCE [63] 0.53 191.40 95.70 0.18 4.16402
TLB [66] 0.48 174.60 87.30 0.18 4.16447
HBF [56] 0.48 174.60 87.30 0.18 4.16347
ACO [51] 0.50 179.40 89.70 0.18 4.15971
DTPAHBF (proposed) 0.48 173.40 86.70 0.18 4.15798

Fig. 3 Performance compari-
son of minimum, average, and
maximum response time

SN Computer Science (2021) 2:395 Page 13 of 16 395

SN Computer Science

Conclusion

Cloud computing becomes an extensively adopted IT ser-
vice. Although, there exist several challenges, such as load
balancing, virtual machines migration, etc. Load balancing

is a mechanism for distributing the workload efficiently and
effectively. All existing algorithms in the literature focus
mainly on overhead reduction, migration time reduction,
performance enhancement, etc. The response time is a chal-
lenging issue to create the application that would maximize

Fig. 4 Performance compari-
son of minimum, average, and
maximum processing time

Fig. 5 Comparison of CPU
and data transfer cost by each
algorithm

Fig. 6 Comparison of storage
and memory cost requirements
by each algorithm

 SN Computer Science (2021) 2:395395 Page 14 of 16

SN Computer Science

the system’s overall throughput in a cloud environment.
The proposed algorithm in this work provides balancing the
workload in the cloud environment. Also, the CloudAnalyst
simulator is used to reduce the response time for a given
number of cloud requests. The generated simulation results
show that the proposed algorithm DTPAHBF performs bet-
ter than the other widely known existing algorithms namely,
RR, ESCE, TLB, HBF, and ACO to different aspects.

This proposed double threshold-based power-aware
mechanism has notable enhancements comparing the tra-
ditional load balancing algorithms with respect to average
data center processing time, average overall response time,
energy consumption, and total cost. With respect to the data
center processing time, DTPAHBF is less efficient compared
to RR, ESCE, TLB, and ACO, but presents better result than
HBF. In future, our target is to make DTPAHBF efficient in
the data center processing task. Our proposed algorithm may
initiate unnecessary migration of VMs and this should also
be resolved in the future. In the future, considering various
load parameters and user requirements, we can also perform
this proposed implementation over a real-time cloud setup.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42979- 021- 00771-w.

Author Contributions Not applicable.

Funding Not applicable.

Declarations

Conflicts of interest We wish to confirm that there are no known con-
flicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its
outcome. We confirm that the manuscript has been read and approved
by all named authors and that there are no other persons who satisfied
the criteria for authorship but are not listed. We further confirm that the
order of authors listed in the manuscript has been approved by all of

us. On behalf of all authors, the corresponding author states that there
is no conflict of interest.

Availability of data and materials Not applicable.

Code availability Code and experiment if available in YouTube as
video material and will be made available for the public after the
acceptance of the article, if required.

References

 1. Ajit M, Vidya G. VM level load balancing in cloud environment.
2013 Fourth International Conference on Computing, Communi-
cations and Networking Technologies (ICCCNT), 2013, pp. 1–5,
https:// doi. org/ 10. 1109/ ICCCNT. 2013. 67267 05.

 2. Alakeel AM. A guide to dynamic load balancing in distributed
computer systems. Int J Comput Sci Inf Secur. 2010;10(6):153–60.

 3. Armbrust M, Fox A, Griffith R, Joseph AD, Randy K, Andy K,
Gunho L, David P, Ariel R, Ion S, Matei Z. A view of cloud com-
puting. Commun ACM. 2010;53(4):50–8.

 4. Arnold J. Openstack swift: using, administering, and developing
for swift object storage. O’Reilly Media Inc; 2014.

 5. Bahrami M, Singhal M. The Role of Cloud Computing Archi-
tecture in Big Data. In: Pedrycz W., Chen SM. (eds) Information
Granularity, Big Data, and Computational Intelligence. Studies in
Big Data, vol 8. Cham: Springer; 2015. https:// doi. org/ 10. 1007/
978-3- 319- 08254-7_ 13.

 6. Bakde KG, Pati BM. Survey of techniques and challenges for load
balancing in public cloud. Int J Tech Res Appl. 2016;4(2):279–90.

 7. Bala A, Chana I. Prediction-based proactive load balancing
approach through vm migration. Eng Comput. 2016;32(4):581–92.

 8. Beloglazov A, Buyya R. Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers.
Concurr Comput Pract Exp. 2012;24(13):1397–420.

 9. Beloglazov A, Buyya R. Energy Efficient Resource Management
in Virtualized Cloud Data Centers. 2010 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing, 2010,
pp. 826–831. https:// doi. org/ 10. 1109/ CCGRID. 2010. 46.

 10. Bhathiya W. Cloudanalyst: a cloudsim-based tool for modelling
and analysis of large scale cloud computing environments. Project
report, University of Melbourne, 2009.

Fig. 7 Comparison between
algorithms with respect to
energy consumption per request

https://doi.org/10.1007/s42979-021-00771-w
https://doi.org/10.1109/ICCCNT.2013.6726705
https://doi.org/10.1007/978-3-319-08254-7_13
https://doi.org/10.1007/978-3-319-08254-7_13
https://doi.org/10.1109/CCGRID.2010.46

SN Computer Science (2021) 2:395 Page 15 of 16 395

SN Computer Science

 11. Bilal K, Ur Rehman Malik S, Khan SU, Zomaya AY. Trends and
challenges in cloud datacenters. Cloud Comput. 2014;1(1):10–20.

 12. Bobroff N, Kochut A, Beaty K. Dynamic Placement of Virtual
Machines for Managing SLA Violations. 2007 10th IFIP/IEEE
International Symposium on Integrated Network Management,
2007, pp. 119–28. https:// doi. org/ 10. 1109/ INM. 2007. 374776.

 13. Calheiros RN, Ranjan R, Beloglazov A, Rose CAFD, Buyya R.
Cloudsim: a toolkit for modeling and simulation of cloud comput-
ing environments and evaluation of resource provisioning algo-
rithms. Softw Pract Exp. 2011;41(1):23–50.

 14. Calheiros RN, Ranjan R, De Rose CAF, Buyya R. Cloudsim: a
novel framework for modeling and simulation of cloud computing
infrastructures and services. Preprint arXiv: 0903. 2525.

 15. Choi Y, Bone C, Zhang N. Sustainable policies and strategies in
Asia: challenges for green growth. Technol Forecast Soc Change.
2016;112:134–7.

 16. Collins E. Big data in the public cloud. IEEE Cloud Comput.
2014;1(2):13–5.

 17. Dhinesh BLD, Krishna PV. Honey bee behavior inspired load
balancing of tasks in cloud computing environments. Appl Soft
Comput. 2013;13(5):2292–303.

 18. Ebadifard F, Babamir SM. Autonomic task scheduling algorithm
for dynamic workloads through a load balancing technique for the
cloud-computing environment. Cluster Comput. 2021;24:1075–
101. https:// doi. org/ 10. 1007/ s10586- 020- 03177-0.

 19. Elhady GF, Tawfeek MA. A comparative study into swarm intel-
ligence algorithms for dynamic tasks scheduling in cloud comput-
ing. 2015 IEEE Seventh International Conference on Intelligent
Computing and Information Systems (ICICIS), 2015, pp. 362–69.
https:// doi. org/ 10. 1109/ Intel CIS. 2015. 73972 46.

 20. Farahnakian F, Pahikkala T, Liljeberg P, Plosila J. Energy aware
consolidation algorithm based on k-nearest neighbor regression
for cloud data centers. In: IEEE/ACM 6th International Confer-
ence on utility and cloud computing. IEEE, 2013; p. 256–9.

 21. Feller E, Rilling L, Morin C. Energy-aware ant colony based
workload placement in clouds. In: Proceedings of the 2011 IEEE/
ACM 12th International Conference on grid computing. IEEE
Computer Society, 2011; p. 26–33.

 22. Fernández V, Méndez V, Pena TF. Federated big data for resource
aggregation and load balancing with dirac. Proc Comput Sci.
2015;51:2769–73.

 23. Gao Y, Guan H, Qi Z, Hou Y, Liu L. A multi-objective ant colony
system algorithm for virtual machine placement in cloud comput-
ing. J Comput Syst Sci. 2013;79(8):1230–42.

 24. Garala K, Goswami N, Maheta PD. A performance analysis of
load balancing algorithms in cloud environment. In: 2015 Inter-
national Conference on computer communication and informatics
(ICCCI), 2015, pp. 1–6.

 25. Garg S, Yeo CS, Anandasivam A, Buyya R. Energy-efficient
scheduling of hpc applications in cloud computing environments.
2009. Preprint ArXiv arXiv: 0909. 1146.

 26. Garnier S, Gautrais J, Theraulaz G. The biological principles of
swarm intelligence. Swarm Intell. 2007;1(1):3–31.

 27. Gupta P, Ghrera SP. Load and fault aware honey bee scheduling
algorithm for cloud infrastructure. In: Proceedings of Interna-
tional Conference on frontiers of intelligent computing: theory
and applications (FICTA), 2015; volume 328, p. 135–43.

 28. Gupta T, Handa SS, Panda S. A survey on honey bee foraging
behavior and its improvised load balancing technique. Int J Res
Appl Sci Eng Technol (IJRASET). 2017;5:2039–49.

 29. Hahne EL. Round-robin scheduling for max-min fairness in data
networks. IEEE J Sel Areas Commun. 1991;9(7):1024–39.

 30. Hashem W, Nashaat H, Rizk R. Honey bee based load bal-
ancing in cloud computing. KSII Trans Internet Inf Syst.
2017;11(12):5694–711.

 31. Karaboga D, Akay B. A comparative study of artificial bee colony
algorithm. Appl Math Comput. 2009;214(1):108–32.

 32. Khichar GS, Gupta G, Singh R, Rathi R. Maximum correlation
with migration control based on modified knapsack (mc_mc)
approach for vm selection for green cloud computing. In: 2018
8th International Conference on Cloud computing, data science
& engineering (Confluence). IEEE, 2018; p. 1–6.

 33. Kiruthiga G, Mary Vennila S. Energy efficient load balancing
aware task scheduling in cloud computing using multi-objective
chaotic Darwinian chicken swarm optimization. Int J Comput
Netw Appl (IJCNA). 2020;7:82–92.

 34. Kodli S, Terdal S. Hybrid max-min genetic algorithm for load
balancing and task scheduling in cloud environment. Int J Intell
Eng Syst. 2021;14(1):63–71.

 35. Kulkarni G, Sutar R, Gambhir J. Cloud computing-infrastructure
as service-amazon ec2. Int J Eng Res Appl. 2012;2:117–25.

 36. Kumar M, Sharma SC. Dynamic load balancing algorithm for
balancing the workload among virtual machine in cloud comput-
ing. Proc Comput Sci. 2017;115:322–9.

 37. Kusic D, Kephart JO, Hanson JE, Kandasamy N, Jiang G. Power
and performance management of virtualized computing environ-
ments via look ahead control. In: International Conference on
autonomic computing, 2008, p. 3–12.

 38. Lee YC, Zomaya AY. Minimizing energy consumption for prece-
dence-constrained applications using dynamic voltage scaling. In:
9th IEEE/ACM International Symposium on cluster computing
and the grid. IEEE, 2009; pp. 92–9.

 39. Lee YC, Zomaya AY. Energy efficient utilization of resources in
cloud computing systems. J Super Comput. 2012;60(2):268–80.

 40. Leelipushpam GJP, Sharmila J. Live vm migration techniques in
cloud environment—-a survey. In: IEEE Conference on Informa-
tion & Communication Technologies, IEEE, 2013, pp. 408–13.

 41. Li L, Liu F, Li WF, SongKun S, et al. Characterization and
mechanism of honeybee foraging behavior. Chin J App Entomol.
2012;49(5):1354–9.

 42. Maurya K, Sinha R. Energy conscious dynamic provisioning of
virtual machines using adaptive migration thresholds in cloud data
center. Int J Comput Sci Mob Comput. 2013;2(3):74–82.

 43. Metkar G, Agrawal S, Singh DS. A live migration of virtual
machine based on the dynamic threshold at cloud data centres.
Int J Adv Res Comput Sci Softw Eng. 2013;3(10):401–5.

 44. Mi H, Wang H, Yin G, Zhou Y, Shi D, Yuan L. Online self-
reconfiguration with performance guarantee for energy-efficient
large-scale cloud computing data centers. In: IEEE International
Conference on services computing, 2010; p. 514–21.

 45. Mishra K, Majhi SK. A binary bird swarm optimization based
load balancing algorithm for cloud computing environment. Open
Comput Sci. 2021;11(1):146–60.

 46. Mishra SK, Sahoo B, Parida PP. Load balancing in cloud
computing: a big picture. J King Saud Univ Comput Inf Sci.
2020;32(2):149–58.

 47. Mondal AS, Chattopadhyay S, Neogy S, Mukherjee N. Object
based schema oriented data storage system for supporting hetero-
geneous data. In: International Conference on advances in com-
puting, communications and informatics, 2016; p. 1025–32.

 48. Mondal SA, Neogy S, Mukherjee N, Chattopadhyay S. Perfor-
mance analysis of an efficient object-based schema oriented
data storage system handling health data. Innov Syst Softw Eng.
2019;16:1–15.

 49. Sarkar A, Pant K, Chattopadhyay S. DRSQ - A Dynamic Resource
Service Quality Based Load Balancing Algorithm. In: Mandal J.,
Mukhopadhyay S., Dutta P., Dasgupta K. (eds) Computational
Intelligence, Communications, and Business Analytics. CICBA
2018. Communications in Computer and Information Science,
vol. 1031. Singapore: Springer; 2019. https:// doi. org/ 10. 1007/
978- 981- 13- 8581-0_8.

https://doi.org/10.1109/INM.2007.374776
https://arxiv.org/abs/0903.2525
https://doi.org/10.1007/s10586-020-03177-0
https://doi.org/10.1109/IntelCIS.2015.7397246
http://arxiv.org/abs/0909.1146
https://doi.org/10.1007/978-981-13-8581-0_8
https://doi.org/10.1007/978-981-13-8581-0_8

 SN Computer Science (2021) 2:395395 Page 16 of 16

SN Computer Science

 50. Nathuji R, Schwan K. Virtualpower: coordinated power manage-
ment in virtualized enterprise systems. SIGOPS Oper Syst Rev.
2007;41(6):265–78.

 51. Nishant K, et al. Load Balancing of Nodes in Cloud Using Ant
Colony Optimization. 2012 UKSim 14th International Conference
on Computer Modelling and Simulation, 2012, pp. 3–8. https://
doi. org/ 10. 1109/ UKSim. 2012. 11.

 52. Panigrahi BK, Shi Y, Lim M-H. Handbook of swarm intelligence:
concepts, principles and applications, 1st edn. Springer; 2011. pp.
0-544.

 53. Pooja Tandel JS, Parmar Abhijit S. Vm migration using mini-
mum migration time selection policy on virtual machines. J Emerg
Technol Innov Res (JETIR). 2019;6:298–301.

 54. Pradhan A, Bisoy SK. A novel load balancing technique for cloud
computing platform based on pso. J King Saud Univ Comput Inf
Sci. 2020.

 55. Rastogi D, Bansal A, Hasteer N. Techniques of load balancing
in cloud computing: a survey. In: International Conference on
computer science and engineering (CSE), 2013.

 56. Senthilkumar S, Brindha K, Rathi R, Angulakshmi J, Thirani YV.
Honey-bee foraging algorithm for load balancing in cloud comput-
ing optimization. Int J Engg Sci Comput. 2017;7(12):2292–303.

 57. Sheeja YS, Jayalekshmi S. Cost effective load balancing based
on honey bee behaviour in cloud environment. 2014 First Inter-
national Conference on Computational Systems and Commu-
nications (ICCSC), 2014, pp. 214–9. https:// doi. org/ 10. 1109/
COMPSC. 2014. 70326 50.

 58. Shi Y, Qian K. Lbmm: a load balancing based task scheduling
algorithm for cloud. In: Advances in information and communica-
tion. Springer International Publishing; 2020, p. 706–12.

 59. Skourletopoulos G et al. Big Data and Cloud Computing: A Sur-
vey of the State-of-the-Art and Research Challenges. In: Mavro-
moustakis C., Mastorakis G., Dobre C. (eds) Advances in Mobile
Cloud Computing and Big Data in the 5G Era. Studies in Big
Data, vol 22. Cham: Springer; 2017. https:// doi. org/ 10. 1007/
978-3- 319- 45145-9_2.

 60. Sran N, Kaur N. Zero proof authentication and efficient load bal-
ancing algorithm for dynamic cloud environment. Int J Adv Res
Comput Sci Softw Eng. 2013:7;2277–3218.

 61. Suresh A, Vijayakarthick P. Improving scheduling of backfill
algorithms using balanced spiral method for cloud metascheduler.
2011 International Conference on Recent Trends in Information
Technology (ICRTIT), 2011, pp. 624–7. https:// doi. org/ 10. 1109/
ICRTIT. 2011. 59722 55.

 62. Takeda S, Takemura T. A rank-based vm consolidation
method for power saving in data centers. Inf Media Technol.
2010;5(3):994–1002.

 63. Tangang, Zhan R, Shibo, Xindi. Comparative Analysis and Simu-
lation of Load Balancing Scheduling Algorithm Based on Cloud
Resource. In: Patnaik S., Li X. (eds). Proceedings of International
Conference on Computer Science and Information Technology.
Advances in Intelligent Systems and Computing, vol 255. New
Delhi: Springer; 2014. pp: 449–56. https:// doi. org/ 10. 1007/ 978-
81- 322- 1759-6_ 52.

 64. Teodorović D. Bee Colony Optimization (BCO). In: Lim C.P.,
Jain L.C., Dehuri S. (eds). Innovations in Swarm Intelligence.
Studies in Computational Intelligence, vol 248. Springer, Ber-
lin, Heidelberg, 2009. pp: 39–60. https:// doi. org/ 10. 1007/
978-3- 642- 04225-6_3.

 65. Tsafrir D, Etsion Y, Feitelson DG. Backfilling using system-gen-
erated predictions rather than user run-time estimates. IEEE Trans
Parallel Distrib Syst. 2007;18(6):789–803.

 66. Tyagi V, Kumar T. Ort broker policy: reduce cost and response
time using throttled load balancing algorithm. Proc Comput Sci.
2015;48:217–21.

 67. Unhelkar B. Green IT strategies and applications: using environ-
mental intelligence. CRC Press; 2016.

 68. VMware. Vmware distributed power management: Concepts and
usage. White Paper VMW_10Q1_WP_VSPHERE_DPM_
EN_P18_R3, VMware, Inc., 3401 Hillview Avenue Palo Alto
CA 94304 USA, 2010.

 69. Venkata Krishna PV, Dhinesh Babua LD. Honey bee behaviour
inspired load balancing of tasks in cloud computing environments.
Elseiver; 2013. p. 120–31.

 70. Wickremasinghe B, Buyya R. Cloudanalyst: a cloudsim-based
tool for modelling and analysis of large scale cloud computing
environments. Distributed Computing Project, CSSE Dept., Uni-
versity of Melbourne, 2009; p. 433–659.

 71. Xu J, Fortes JAB. Multi-objective virtual machine placement in
virtualized data center environments. In: IEEE/ACM Conference
on cyber, physical and social computing (CPSCom), IEEE/ACM,
2010; p. 179–88.

 72. Zahariev A. Google app engine. Helsinki University of Technol-
ogy; 2009. p. 1–5.

 73. Zhu L, Li Q, He L. Study on cloud computing resource schedul-
ing strategy based on the ant colony optimization algorithm. Int J
Comput Sci Issues. 2012;9(5):1694–0814.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/UKSim.2012.11
https://doi.org/10.1109/UKSim.2012.11
https://doi.org/10.1109/COMPSC.2014.7032650
https://doi.org/10.1109/COMPSC.2014.7032650
https://doi.org/10.1007/978-3-319-45145-9_2
https://doi.org/10.1007/978-3-319-45145-9_2
https://doi.org/10.1109/ICRTIT.2011.5972255
https://doi.org/10.1109/ICRTIT.2011.5972255
https://doi.org/10.1007/978-81-322-1759-6_52
https://doi.org/10.1007/978-81-322-1759-6_52
https://doi.org/10.1007/978-3-642-04225-6_3
https://doi.org/10.1007/978-3-642-04225-6_3

	A Double Threshold-Based Power-Aware Honey Bee Cloud Load Balancing Algorithm
	Abstract
	Introduction
	Issues and Problems Related to Load Balancing in Cloud
	Necessity of Load Balancing
	Various Parameters Considered in Load Balancing
	Research Issues Related to Load Balancing
	Problem Formulation

	Related Work
	Existing Load Balancing Algorithms
	Materials and Methods
	Simulation and Results Analysis
	Simulation Configuration
	Experimental Setup

	Results and Discussion

	Conclusion
	References

