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Abstract
In this work, we propose different techniques that can be used to implement the rank-based key encapsulation methods and pub-
lic key encryption schemes of the ROLLO, and partially RQC, family of algorithms in a standalone, efficient and constant time 
library. For simplicity, we focus our attention on one specific instance of this family, ROLLO-I-128. For each of these techniques, 
we present explicit code (including intrinsics), or pseudo-code and performance measures to show their impact. More precisely, 
we use a combination of original and known results and describe procedures for Gaussian reduction of binary matrices, genera-
tion of vectors of given rank, multiplication with lazy reduction and inversion of polynomials in a composite Galois field. We also 
carry out a global performance analysis to show the impact of these improvements on ROLLO-I-128. Through the SUPERCOP 
framework, we compare it to other 128-bit secure KEMs in the NIST competition. To our knowledge, this is the first optimized 
full constant time implementation of ROLLO-I-128.

Keywords  Code-based cryptography · KEM · Post-quantum cryptography · Rank metric · Constant time

Introduction

Through the NIST Post-Quantum Cryptography (PQC) Stand-
ardization Process [34], the cryptographic community is evalu-
ating candidate KEM, PKE, and signature schemes potentially 
secure against both quantum and classical attacks. One of the 
requirements for these schemes to be secure is having a con-
stant time implementation to avoid leakage of secret informa-
tion through timing attacks. Furthermore, it is important to 

understand how efficient these constant time implementations 
are when running on real devices.

From an implementation perspective, while the crypto-
graphic community has mostly focused its efforts on improv-
ing some categories of cryptosystems such as those based on 
lattices and codes on the Hamming metric, the same cannot 
be claimed for rank-based cryptosystems. Compared to lat-
tice and code-based cryptography, rank-based cryptography 
is a relatively new and less explored field. Although the first 
rank-based cryptosystem, the Gabidulin-Paramonov-Tretjakov 
(GPT) public key encryption scheme [23], was introduced in 
1991, and many analyses were presented in the subsequent 
years (such as [22, 25, 36, 37]), only recently new schemes 
have been proposed, such as [5, 6, 11, 12, 20, 33], some of 
which have also been submitted to the NIST PQC standardiza-
tion process. Up until the algebraic attack recently presented in 
[10], these schemes seemed to provide appealing performance 
levels and key and ciphertext sizes, which enabled ROLLO [2] 
(merge of LAKE, LOCKER, and Rank-Ouroboros) and RQC 
[3] to pass the first round of the NIST PQC standardization 
process. Though, in its recent status report on the second round 
[7], NIST did not select ROLLO and RQC to advance on with 
the motivation that their security analysis needs more time to 
mature. On the other hand, NIST encouraged the cryptographic 
community to continue studying rank-based cryptosystems, as 
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they offer a nice alternative to traditional Hamming metric 
codes with comparable bandwidth.

There were still some open questions of practicality pertain-
ing to the most recently submitted NIST package for ROLLO 
(dated 2020/04/21 and available at pqc-​rollo.​org). In June 2020, 
a note was released [19], pointing out potential issues arising 
from part of the currently submitted ROLLO and RQC code 
not being constant time.

In this work, we present the first constant time implementa-
tion of the 128-bit secure rank-based KEM called ROLLO-
I-128. This work complements and improves the preliminary 
results posted on the NIST website [4] on the implementation of 
an earlier version of ROLLO-I-256. Other non-constant time-
independent implementations of ROLLO on other platforms 
can be found for example in [1, 13], or [32], where a software 
implementation on a Cortex M0 of the encapsulation routine, 
and a hardware implementation on a microcontroller with a 
crypto coprocessor, are presented, respectively.

Our Contribution

In this work, we propose different techniques that can be used to 
implement ROLLO and part of the RQC family of algorithms 
in a standalone, efficient and constant time library. Recall 
that ROLLO-I-128, ROLLO-I-192, and ROLLO-I-256 have 
decryption failure probability of 2−28 , 2−34 , and 2−33 , which, 
cryptographically, are not considered small. We present, for 
each of the proposed techniques, explicit code (with intrinsics 
when required), or pseudo-code and performance measures to 
show their impact.

As a theoretical contribution, we describe a new constant 
time variant of Gaussian elimination that reduces any matrix 
to its (not necessarily reduced) row echelon form. The only 
previous constant time variant we are aware of [14], only 
worked for full rank matrices, and returned a systematic form 
of such matrices, terminating the algorithm if this was not pos-
sible. Furthermore, after analyzing current non-constant time 
algorithms to generate a list of vectors with a given rank, we 
describe a novel constant time probabilistic version of one of 
these algorithms, and we present a procedure for reducing the 
probability of failing to a desired value. We also present a vari-
ation of this method which returns the entire support of the vec-
tor list. This potentially allows trade-offs between the public key 
size and the performance of the encapsulation step.

From an implementation perspective, we describe in detail 
the process of implementing the underlying finite field arith-
metic with constant time operations, with and without the use 
of vectorization techniques. We provide an explicit descrip-
tion of the application of the Zassenhaus algorithm in the Rank 
Support Recovery algorithm described in the NIST submission 
of ROLLO [2]. We show how efficient polynomial arithmetic 
can be conducted by applying multiplication with lazy reduc-
tion and inversion of polynomials in a composite Galois field 

defined by a pentanomial. All these are implemented using 
reasonably optimized constant time algorithms. Finally, we 
carry out a performance analysis to show the impact of these 
improvements on our implementation of ROLLO-I-128 1, when 
compared with its reference and optimized implementations. 
We expect this work to shed light on the attainable performance 
for constant time implementations of ROLLO and to help prac-
titioners to make educated choices when implementing it or 
other constant time rank-based cryptographic algorithms.

Structure of the Paper

In “Preliminaries”, we introduce the basic concepts needed 
to understand the scheme and the subsequent algorithms. In 
“Description of the Scheme”, we describe ROLLO-I key encap-
sulation method. In “Proposed Algorithms”, we provide all the 
details regarding the binary field, vector space, and composite 
Galois field arithmetic, as well as the description of the Rank 
Support Recovery algorithm used in the decapsulation phase. In 
“Performance”, we compare the performance of our implemen-
tation of ROLLO-I-128 with the one of various KEM submis-
sions to the NIST PQC standardization process. In “Conclu-
sion”, we present the conclusions drawn from this study.

Preliminaries

In this section, we first present the rings, fields and vector 
spaces we will work with as well as an associated metric, 
namely the rank metric, and then we will define error-correcting 
codes associated with this metric.

Structures and Representations

In the following, we let q be a prime power and m, n two posi-
tive integers. We will work with the finite fields of order q, qm 
and qmn : �q, �qm , �qmn . Of course there are multiple isomorphic 
fields of a given order, with multiple representations and lead-
ing to different algorithms.

�
q
 . In this paper, as in the ROLLO specification, q will 

always be 2 and therefore elements and computations in �q are 
associated to elements and computations in the modular ring 
ℤ∕2ℤ.

�
qm

 . As usual, elements in extensions of the base field �q will 
be represented using quotients over the polynomial ring �q[X] . 
Thus, elements and computations in �qm are associated to poly-
nomial representations and computations over �q[X]∕⟨P0⟩ for 
an irreducible polynomial P0 of degree m.

1  The full code of our implementation and of the tests we run for the 
comparisons is available at https://​github.​com/​Crypto-​TII/​const​ant_​
time_​rollo.

http://pqc-rollo.org
https://github.com/Crypto-TII/constant_time_rollo
https://github.com/Crypto-TII/constant_time_rollo
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�
qmn . Elements and computations in �qmn are similarly asso-

ciated to polynomial representations and computations over 
�qm[X]∕⟨P⟩ for an irreducible polynomial P ∈ �q[X] of degree 
n. Note that these polynomials have coefficients in �qm , so ele-
ments in �qmn are seen as polynomials (that live in �qm[X]∕⟨P⟩ ) 
with polynomial coefficients (that live in �q[X]∕⟨P0⟩).

It is also quite practical to use vectors and matrices to rep-
resent, and operate on, polynomials. For a field F, Mn,m(F) 
represents the set of matrices with n rows and m columns of 
elements in F. When n equals m this set, together with classical 
matrix sum and product, forms a ring that we denote Mn(F) . 
Of course we can map polynomials to vectors (of coefficients) 
and inversely so we often consider an element of �qm as an ele-
ment of the vector space �m

q
 , and an element of �qmn as an ele-

ment of the vector space � n
qm

 . For a vector � , we note the asso-
ciated polynomial �(X) , and for a polynomial p, we note the 
associated vector vec(p) . When using a polynomial in a setting 
in which it is clear we have to use the vector representation 
(e.g., a matrix line, or a matrix/vector multiplication) we will 
not make the vec transformation explicit.

Vector additions are naturally defined in �m
q

 or � n
qm

 and cor-
respond to polynomial additions over �qm and �qmn . We define 
the product of two vectors �, � by �� = vec(�(X)�(X)) , and the 
inverse as �−1 = vec(�−1(X)).

It is also possible to define vector multiplication directly over 
vector/matrices. To do this, we will first define ideal matrices. 
As we will only describe explicitly multiplications in �qmn , we 
will focus our definition on this specific setting.

Definition 1  (Ideal Matrices). Let P ∈ �q[X] be a polynomial 
of degree n and � ∈ �

n
qm

 the vector representation of an ele-
ment of �qmn . The ideal matrix generated by � modulo P is the 
matrix denoted IMP(�) ∈ Mn(�qm) with n rows of the form 
Xi�(X) mod P , with i = 0,… , n − 1.

The multiplication of two vectors �, � ∈ �qmn can be then 
computed with �� = �IMP(�) = (IMP(�)

TvT )T = �� . Note 
that this definition is compatible with the previous one as we 
have �IMP(�) = vec(u(X)v(X)).

Metric and Support

Let � = (e1,… , en) be an element of � n
qm

 . Denote by ei,j 
the j-th component of ei , ei being seen as an element of �m

q
 . 

Then the rank weight of e, denoted by ��(�) , is defined as 
��(�) = ����

(
[ei,j]i=1,…,n,j=1,…,m

)
 The rank distance between 

two vectors �, � ∈ �
n
qm

 is defined by ��(� − � ) = ||� − � ||.
For � = (x1,… , xn) ∈ �

n
qm

 , the support E of � , denoted 
����(�) , is the �q-subspace of �qm generated by the coordinates 
of � : E = ⟨x1,… , xn⟩�q . Note that ���(E) = ��(�) and that any 
� ∈ E can be written as � =

∑n

i=1
�ixi where �i ∈ �q.

Codes

We define a [n, k]qm code C over �qm as a vector subspace of 
�
n
qm

 of dimension k, where n is called the length and k is the 
dimension of the code. An element of a code C is called a code-
word. A generator matrix for an [n, k]qm code C is thus any k × n 
matrix G whose rows form a basis for C. Note that the generator 
matrix of a code is not unique.

As a linear code is a vector subspace, it is the kernel of some 
linear transformation. In particular, there is an (n − k) × n 
matrix H, called a parity check matrix for the [n, k]qm code 
C, that verifies C = {x ∈ �

n
qm
|HxT = 0} . As for the generator 

matrix, the parity check matrix of a code C is not unique.
We present now the definition of the ideal Low Rank Par-

ity Check (ideal LRPC) codes, codes on which all the variants 
of ROLLO are based. Moreover, we introduce the underlying 
problem on which relies the security of the schemes. We first 
recall the definition of ideal codes and LRPC codes.

Definition 2  (Ideal Codes) . Let P ∈ �q[X] be a polynomial of 
degree n and ��, �� ∈ �

n
qm

 . We define the [2n, n]qm ideal code 
C defined by (��, ��) modulo P as the code with parity check 
matrix 

(
IMP(��)

T IMP(��)
T
)
.

If ��(X) = 1 (and thus IMP(��) = In ), we say C is defined 
by �� modulo P. If ��(X) is invertible in �qmn , the code C defined 
by (��, ��) modulo P is the same as the code defined by ��

−1�� 
modulo P.

Definition 3  (LRPC codes). Let H ∈ Mn−k,n(�qm) be a full rank 
matrix such that its coefficients generate an �q-subspace 
F = ⟨hi,j⟩�q of small dimension d. The [n, k]qm code C of parity 
check matrix H is called an LRPC code of weight d.

A [2n, n]qm Ideal Code defined by (��, ��) modulo a polyno-
mial P can also be an LRPC code. Indeed, if ��, �� are vectors 
in an �q-subspace of small dimension and P has its coefficients 
in �q , this will be the case. Such a code is called an Ideal LRPC 
code.

Definition 4  (Ideal LRPC codes). Let F be a �q-subspace of 
dimension d of �qm , ��, �� two vectors of � n

qm
 with support in 

F and P ∈ �q[X] a polynomial of degree n. The code C with 
parity check matrix (IM(��)

T |IM(��)
T ) is called an [2n, n]qm 

ideal LRPC code.

The variant of ROLLO we focus on this paper, ROLLO-I, 
has a security proof based on two problems. The first is a sup-
port recovery problem, which is proven equivalent to the rank-
metric version of the Syndrome Decoding problem (RSD) in 
[2]. The second is an indistinguishability problem.
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Problem 1  (r-Ideal Rank Support Recovery). Given a poly-
nomial P ∈ �q[X] of degree n, vectors �1,… , �r ∈ �

n
qm

 , 
a syndrome � and a weight w, it is hard to find a support 
E = ⟨�0,… , �r−1⟩ of dimension lower than w such that 
�0 + �1�1 +…+ �r−1�r−1 = � mod P.

Problem 2  (Ideal LRPC codes indistinguishability). Given a 
polynomial P ∈ �q[X] of degree n and a vector � ∈ �

n
qm

 , it is 
hard to distinguish whether the ideal code C with parity-check 
matrix generated by � and P is a random ideal code or if it is an 
ideal LRPC code of weight d.

In other words, it is hard to distinguish if � was sampled 
uniformly at random or as �−1� mod P where the vectors � 
and � have the same support of small dimension d.

Description of the Scheme

As stated by the submission documentation all ROLLO vari-
ants follow the approach inaugurated by the public key encryp-
tion protocol NTRU in 1998 [28]. As pointed out in the previ-
ous section, ROLLO is a variation of the LRPC rank metric 
approach and its security is proven assuming that the Ideal 
LRPC indistinguishability and the 2-Ideal Rank Support Recov-
ery [2, Theorem 4.2] problems are hard.

We now describe ROLLO-I in detail. The ROLLO-I Key-
Encapsulation Mechanism (KEM) is a triple of probabilistic 
algorithms (������;������;������) . ������ : randomly 
sample (�, �) from a vector subspace F of �qm of dimension d, 
such that ��(�) = ��(�) = d . Set �� = � = �−1� mod P and 
�� = (�, �) . ������ : randomly sample (�1, �2) from a vector sub-
space E of �qm of dimension r, such that ��(�1) = ��(�2) = r . 
Compute � = �1 + �2� mod P . Compute K = G(E) where 
G is a hash function. Output (�,K) . ������ : Compute 
� = �� = ��1 + ��2 mod P . Use the Rank Support Recovery 
(RSR) algorithm (algorithm 13) to recover E. The RSR algo-
rithm takes as input F = ����(�, �) and � (see “Rank Syndrome 
Recovery Algorithm and Decapsulation” for more detail). If 
the RSR algorithm succeeds return K = G(E) , else return ⟂.

We refer to Table 1 for the actual set of ROLLO-I param-
eters. Note that the private key can be obtained from a seed, and 
in the official NIST submission the seed expander was initial-
ized with 40 bytes long seeds.

As the last column of the table shows, the decapsulation 
algorithm has a non-zero failure probability. This probability is 
however well understood and made low enough to fit the NIST 
call for proposals (for more detail see Section 1.4.2 of [2]).

Proposed Algorithms

We redefined ROLLO starting from the following building 
blocks: the binary field arithmetic corresponding to opera-
tions in �qm ; the vector space arithmetic, including the Gauss-
ian reduction algorithm for binary matrices, the Zassenhaus 
algorithm for binary matrices, and the generation of elements 
of �qm[X]∕P(X) of a given rank; the arithmetic in the composite 
Galois field �qm[X]∕P(X) where P(X) is the irreducible poly-
nomial given in the parameters; the Rank Support Recovery 
algorithm (RSR) used in the decapsulation phase. The key 
generation, encapsulation and decapsulation (or encryption 
and decryption) of all the variants of ROLLO are based only 
on the above blocks. Hence, we focused on optimizing every 
operations included in those layers as well as insuring the fact 
that they are constant time.

Target We target processors with 64-bit carryless multiplica-
tions (2010 and onward for Intel) and provided a faster alterna-
tive if they also have AVX2 instructions (2013 and onward for 
Intel). The code examples assume GCC’s __uint128_t type 
is available and uses GCC X86 intrinsics.

Notation Given �, � two binary vectors, in what follows, we 
denote with �⊕ � the bit-wise XOR of � and � , and with �⊗ � 
the bit-wise AND of � and � . With � ≪ h and � ≫ h with indi-
cate, respectively, the left and right shift of � by h positions.

Binary Field Arithmetic

In this section, we present the constant time vectorized opera-
tions we propose for �qm . As shown in Table 1, all variants of 
ROLLO-I have q = 2 and different values for m. Our algorithms 
work for all the values of m submitted to the NIST competition, 
but have to be slightly adapted for each value. To avoid repeti-
tions, we will focus on the field used by ROLLO-I-128, and 
note what changes need to be done to adapt the algorithms for 
other values of m.

We implemented finite field arithmetic for the binary 
field �2m , with m = 67 , representing elements as binary 

Table 1   ROLLO-I parameters

Instance q m n d r P �� size �� size c size Security Failure rate

ROLLO-I-128 2 67 83 8 7 X
83 + X

7
X
4 + X

2 + 1 40B 696B 696B 128b 2−28

ROLLO-I-192 2 79 97 8 8 X
97 + X

6 + 1 40B 958B 958B 192b 2−34

ROLLO-I-256 2 97 113 9 9 X
113 + X

9 + X
2 + X + 1 40B 1371B 1371B 256b 2−33
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polynomials of degree m − 1 modulo an irreducible poly-
nomial of degree m. We used the irreducible pentanomial 
P0(X) = X67 + X5 + X2 + X + 1 provided by the Allan Steel 
database incorporated in Magma software [18] and also sug-
gested by the authors of ROLLO. This pentanomial has also 
lowest possible intermediate degree, allowing the shortest shift 
during the reduction operations. No trinomial exists for m = 67.

To represent an element of the field, we use 128-bit unsigned 
integer, using the type __uint128_t, and sometimes cast-
ing it to __m128i, with unused bits set to zero. Addition and 
subtraction of two elements are a simple bit-wise XOR opera-
tion. The multiplication of two field elements is performed in 
two steps: a carryless multiplication of the two elements seen as 
polynomials (“Binary Field Arithmetic”, or a carryless squar-
ing of a single element in “Binary Field Arithmetic”) and a 
polynomial reduction (“Binary Field Arithmetic” ). Inversion 
is performed using an addition chain (see “Binary field arith-
metic”). As noted before, all operations in the binary field layer 
are executed in constant time, assuming the intrinsics (and in 
particular carry-less multiplications) are constant time.

Carryless multiplication: plain C implementation The car-
ryless multiplication has been implemented using recursive 
Karatsuba multiplication [31]. More specifically, we borrowed 
from NTL2 an implementation of a constant time carryless 
Karatsuba multiplication of two 64 bit register (which we 
call ntlclmul64 in algorithm 14) using only bit manipula-
tion, and then added an extra level of Karatsuba method over 
this function. The full carryless multiplication �����K(a, b) is 
described in “Appendix A”, algorithm 14.

In Table 2, we compare this implementation with ROLLO’s 
polynomial multiplications. The initial NTL-based ROLLO 
(submission date 2019/04/10) used NTL’s generic carryless 
multiplication function3. As it is generic, this function goes 
through a set of tests and function calls before calling exactly 
the same code we used for ntlclmul64. The overhead (5 
function calls, 6 if statements with two boolean tests for most 
of them, and a switch/case) is significant w.r.t. the final code of 
ntlclmul64 (78 instructions). As a result, specializing the 
code by removing calls, conditional branches, and extracting 
only the instructions needed for ROLLO we get a 15% speedup 
on polynomial multiplication with respect to NTL-ROLLO 
which called the generic function. The Karatsuba function 
implemented in the NTL-free version of ROLLO (submission 
date 2019/08/24), called NoNTL-ROLLO in the table, is 30% 
slower than NTL’s generic function. It seems thus that, in gen-
eral, implementations of Karatsuba using NTL may obtain a 
nice performance upgrade just by importing/adapting the spe-
cialised code of NTL for this operation, as we did. We also 

notice that the latest ROLLO implementation dated 2020/04/21, 
is not NTL-dependent anymore.

Carryless multiplication: AVX2 optimization When possi-
ble, the carryless multiplication step has been performed using 
Intel Advanced Vector Extensions 2 instructions (AVX2) 
[29]. In particular, the core of this function uses the _mm_
clmulepi64_si128 instruction (see also [27]) to perform 
64 times 64 bit binary polynomial multiplication.

The multiplication of two m bit binary polynomials is per-
formed in a schoolbook fashion, by dividing the input in two 64 
bit registers (one containing only m − 64 bits) and then apply-
ing four times the function _mm_clmulepi64_si128, 
which acts on 64 bits registers. The results is stored in a __
m256i type (4 registers), but only the 2m − 2 least significant 
bits are used, while the remaining ones are set to zero. We refer 
to this algorithm as the �����S(a, b) algorithm, and we present 
our C implementation in “Appendix A”, algorithm 15. When 
irrelevant in the context, we will indicate with �����(a, b) (with 
no subscript) the algorithm performing carryless multiplication, 
either using Karatsuba method in plain C or with schoolbook 
method and AVX instructions.

Let us remark that using Karatsuba multiplication [31] in 
this case would not give any advantage, as the cost of multi-
plication and addition with AVX2 instruction is very close. In 
practice, we show it even performs worse, due to alignment 
problems.

In Table 3, we show that, when comparing figures for NTL-
ROLLO and others, specializing code for ROLLO’s setting has 
an even greater impact on performance when using AVX2, with 
no surprise. It also shows that alignment issues in Karatsuba 
have a very noticeable impact on performance and highlights 
the fact that ROLLO developers did the right choice opting for 
schoolbook multiplication in the NTL-free version of ROLLO. 
Our implementation has a little advantage on performance.

This difference is explained by the fact that the permuta-
tion done in our algorithm with _mm256_permute4x64_
epi64 allows us to avoid the cost of the load and store instruc-
tions, which are present at the beginning and end of each 
recursive call in the NIST submitted code.

Carryless squaring For squaring, which will be used in the inver-
sion algorithm, we can use the fact that this operation actually consists 

Table 2   Cycles per plain C carryless multiplication of polynomials 
of degree m = 67 (averaged over 4 s of execution on a Macbook Pro 
2017 with an 2.9 GHz Quad-Core Intel Core i7, I7-7820HQ)

NTL-ROLLO is the NTL function mul defined in GF2E.h used ini-
tially by ROLLO, and NoNTL-ROLLO is the Karatsuba implementa-
tion in the NTL-free version of ROLLO. Polynomials are not reduced 
(output is of degree 2m − 2 = 132)

Algorithm NTL-ROLLO NoNTL-ROLLO algorithm 14

Poly. Multiplica-
tion

187 cycles/op 243 cycles/op 157 cycles/op

2  The code is available in the file mach_desc.h of the library NTL 
[39], under the method NTL_ALT1_BB_MUL_CODE0.
3  The mul function in GF2E.h.
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of interleaving zeros to the current representation of the polynomial. 
Indeed, for a ∈ �2m , a2 =

�∑m−1

i=0
aix

i
�2

=
∑m−1

i=0
aix

2i . For exam-
ple, if the current representation of a was 11100101, then �����(a) 
will be 1010100000100010. To perform this operation, we decided 
to use a small modification of the method Interleave bits with 64-bit 
multiply given by Sean Eron Anderson on his web page Bit Twiddling 
Hacks [21]. The pseudocode is given in “Appendix A”, 
algorithm 16.

The squaring method is straightforward from there and its 
pseudocode is given in “Appendix A”, algorithm 17. For the 
AVX2 version, a look-up table based on the instruction _mm_
shuffle_epi8 is implemented both in the submission and 
our work. The AVX2 performance are reported in Table 4.

We would like to remark that, although simple and perhaps 
even trivial in retrospect, the mentioned approaches for squaring 
have been proposed before in the literature. Precisely, [9] and [17] 
for the shuffle-based squaring and [35] for the CLMUL squaring.

Reduction The 2m − 2 bits result provided by the carryless 
multiplication is reduced back modulo P0 to a m bit field element, 
using standard techniques. The pseudocode of the algorithm for 
reduction is presented in “Appendix A”, algorithm 18. The AVX2 
performances of the reduction are reported in Table 7.

Inversion The inversion of an element x ∈ �2m , described in 
“Appendix A”, algorithm 19, has been derived using Fermat’s 
little Theorem stating that x2m−2 = x−1 . The fixed exponentia-
tion is achieved by the strategy presented in [38, Section 6.2] 
using the following addition chain of length 9:

The AVX2 performances of the binary field inversion are 
reported in Table 7.

Binary Vector Space Arithmetic

In this section, we describe the main algorithms used to manip-
ulate vector spaces, i.e., Gaussian reduction, Zassenhaus algo-
rithm, and the generation of vectors of given rank.

1 → 2 → 4 → 8 → 16 → 32 → 33 → 66 → 67 .

In our implementation, a binary matrix M, usually indi-
cated with uppercase letters, of size m × l is an array of 
__uint128_t of length l, where each element of the array is 
a matrix row mi . Similarly, a vector space, or the support of a 
set of vectors is represented with uppercase letters and stored 
in arrays of __uint128_t.

Gaussian Elimination Algorithm

We introduce an original algorithm to perform a constant time 
Gaussian elimination to convert any binary matrix to a (not nec-
essarily reduced) row echelon form and its extension to convert 
it to reduced row echelon form. This algorithm is somehow a 
generalization of the one presented in [14], where Gaussian 
elimination was used to convert the binary matrix to a system-
atic form. In [14], if the matrix is not systematic, the algorithm 
breaks. Otherwise, for each column, the algorithm first sets to 
1 the bits of the diagonal, by scanning the rows of the matrix 
from below the current pivot to the bottom of the matrix, then 
sets to 0 the bits in the current column, except the diagonal, by 
scanning the full set of rows again. This is done in a constant 
time manner, due to the fact that, being the matrix systematic, 
the number of rows under the pivot are always the same for each 
column step. Though, in [14], it is not defined how one could 
force the algorithm to continue when it is not possible to fix a 1 
in the diagonal, i.e., when the matrix is not systematic. We solve 
the problem by always scanning all rows for each column, and 
by keeping track of the current pivot position, not necessarily 
in the diagonal. Let r̃ be the current pivot row position, i is the 
current scanned row and j the current scanned column. Then, 
we perform

where ����� is set to 1 if the current row is above the pivot 
( i > r ), ����� is set to 1 if the the bit mi,j is 0, and ����� is set to 
1 if the bit mr̃,j in the intersection of the current scanned row and 
column is 1. The steps above have the effect to leave the rows 
unchanged either when the current row is above the pivot row 
mr̃ or, otherwise, when the bit mi,j is 0. On the other hand, when 
mi,j is 1, if the pivot bit mr̃,j is 0, then the current row is swapped 

mr̃ = mr̃ ⊕����� ⋅����� ⋅����� ⋅ mi

mi = ����� ⋅����� ⋅ mr̃ ⊕ mi

Table 3   Average cycles per AVX2 carryless multiplication of poly-
nomials of degree m = 66 (averaged over 4 s of execution on a Mac-
Book Pro 2017 with a 2.9 GHz Quad-Core Intel Core i7, I7-7820HQ)

Karatsuba clmulepi64 and Schoolbook clmulepi64 are the 
AVX2 implementations discussed in this section, NTL-ROLLO is the 
NTL function mul defined in GF2E.h used initially by ROLLO with 
AVX2 improvements, and NoNTL-ROLLO is the AVX2 Schoolbook 
implementation in the NTL-free version of ROLLO. Polynomials are 
not reduced (output is of degree 2m − 2 = 132)

Algorithm clmulepi64 
Schoolbook

clmulepi64 
Karatsuba

NTL-
ROLLO

NoNTL-
ROLLO

Poly. Mul. 5.53 cycles/
op

7.04 cycles/
op

28 cycles/op 6.73 cycles/
op

Table 4   Average cycles per carryless squaring of polynomials of 
degree m = 66 (averaged over 4 s of execution on a MacBook Pro 
2017 with a 2.9 GHz Quad-Core Intel Core i7, I7-7820HQ)

NoNTL-ROLLO (reference impl.) is the lookup table in the reference 
NTL-free version of ROLLO. Polynomials are not reduced (output is 
of degree 2m − 2 = 132 ). All implementation are AVX2

Algorithm This work NoNTL-ROLLO 
reference impl.

NoNTL-ROLLO 
optimized impl.

Poly. Sqr 5.38 cycles/op 16.35 cycles/op 5.80 cycles/op
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with the pivot row, and if the pivot bit mr̃,j is 1, then the 1 in 
position (i, j) is flipped. Notice that, at the end of the algorithm, 
the pivot position is also the rank of the matrix. Compared to 
[14], for each scan of the full set of rows, we perform fewer 
XOR operations, but we need to compute more masks. We also 
have to scan all columns, while for the method from [14] it is 
sufficient to scan the minimum between the number of rows and 
the number of columns. This makes the method of [14] much 
faster for matrices with a small number of rows. We stress again 
that the method of [14] only computes the systematic form of a 
matrix, and for this reason is, in general, faster.

Our method can be easily extended to compute the reduced 
row echelon form, by storing the pivot positions and then scan-
ning all the rows � times, where � is the number of rows, to 
remove the 1’s above the pivots.

The differences between our method and the one in [14] are 
summarized in Tables 5, 6.

The pseudocode of the three algorithms can be found in 
algorithm 1 ([14]), algorithm 2, and algorithm 3, where M rep-
resents a binary matrix with � rows and � columns, mi is the 
binary vector representing the i-th row of the matrix M, and mi,j 
is the bit entry of the matrix M at position i, j.

In our C implementation, we store one line �[�] of the binary 
matrix in a variable of type __uint128_t. We can perform 

Steps 3–4 of algorithm 1 in a constant number of operations 
as follows:

Similarly, also the other if statements of both algorithms can be 
easily executed in constant time.

Finally, note that algorithm 2 and algorithm 3 access mr̃ . 
Using memory indices depending on r̃ can leak information 
on ̃r through timing attacks on machines with caches. To avoid 
this types of attacks, one would have to scan all the rows of the 
matrix and access the desired row using another mask. 

mask = -(((m[i] ^ m[k]) >> j) & 1);
m[i] = m[i] ^ (m[k] & mask);

Table 5   Comparison of our proposed Gaussian elimination algorithm and the one from Bernstein et al. [14], for a matrix with � rows and � col-
umns

Algorithm #loops #XOR #masks Output form Input matrix

[14] �(� + (� − 1)∕2) �(� + (� − 1)∕2) �(� + (� − 1)∕2) Systematic Systematic
This work: ref �� �� 3�� Row echelon form Any rank
This work: rref �� + �2 �� + �2 3�� + 2�2 Reduced row echelon form Any rank

Table 6   Clock cycle comparison of our proposed Gaussian elimina-
tion algorithm and the one from Bernstein et  al. [14], for a matrix 
with � = 10, 20, 30, 100 rows and � = 67 columns

Algorithm 10 rows 20 rows 30 rows 100 rows

[14] 2241.31 9547.64 21,030.64 230,444.41
This work: ref 33,358.83 61,325.96 90,379.98 296,578.26
This work: rref 35,669.20 74,649.81 117,940.18 590,984.32
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Table 7   Average cycles 
per operation for the main 
algorithms presented in this 
work

Measurements have been taken enabling AVX2 instructions and averaging over 4 s of execution on a Mac-
Book Pro 2017 with a 2.9 GHz Quad-Core Intel Core i7 (I7-7820HQ)

Algorithm �����(a, b) ����(a) ���
�
267
(a) ���

�
267
(a)

Clock cycles 6.36 5.29 15.26 1,656.30
Algorithm ����_���(a, b) ����_���(a) ���

Clock cycles 9,513,722.01 79,288.56 11,472,218.86
Algorithm ������ ������ ������

Clock cycles 12,729,075.41 1,385,871.94 9,981,462.15
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Zassenhaus Algorithm

The Zassenhaus algorithm is a method to compute a basis for 
the intersection and sum of two vector subspaces U, V of a vec-
tor space W of length m. Let us consider the two sets of genera-
tors of U and V, i.e., U = ⟨u0,… , ul1⟩ and V = ⟨v0,… , vl2⟩ . 
The algorithm creates the block matrix (1) of size (l1 + l2) × 2m

:

After application of the Gauss elimination, the matrix has 
the form (2), reduced in row echelon form. In (2), ⋆ stands 
for arbitrary numbers, (a0,… , al3 ) is a basis of V + U and 
(b0,… , bl4 ) is a basis of V ∩ U . The pseudocode can be found 
in algorithm 4. 

(1)

⎡
⎢⎢⎢⎢⎢⎢⎣

u0,0 … u0,m−1 u0 … u0,m−1
⋮ ⋮ ⋮ ⋮

ul1,0 … ul1,m−1 ul1,0 … ul1,m−1
v0,0 … v0,m−1 0 … 0

⋮ ⋮ ⋮ ⋮

vl2,0 … vl1,m−1 0 … 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0 … a0,m−1 ⋆ … ⋆

⋮ ⋮ ⋮ ⋮

al3,0 … al3,m−1 ⋆ … ⋆

0 … 0 b0,0 … b0,m−1
⋮ ⋮ ⋮ ⋮

0 … 0 bl4,0 … bl4,m−1
0 … 0 0 … 0

⋮ ⋮ ⋮ ⋮

0 … 0 0 … 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Generation of Vectors of Given Rank

The generation of a vector � ∈ �
n
qm

 of a given rank, say r is prob-
ably the most delicate part of the key generation and encapsula-
tion routines. We are not aware of any constant time algorithm 
performing this task. In this section, we analyze the two non-
constant time strategies adopted in the current NIST submis-
sion (dated 2020/04/21) and in [5, Sect. 5.2]. Then we derive a 
constant time version of the latter, with a probability of failure 
that can be set as small as desired, at the cost of increasing the 
complexity of the algorithm. Lastly, we also propose an alterna-
tive method that, while generating a vector of a given rank, also 

constructs the full support of the vector. This last method could 
turn to be useful in the case a user could store a larger public key 
in memory, so to have the advantage of not reconstructing the 
support from its basis during the encapsulation phase.

The strategy from [5] or from the NIST submission are based 
on the same idea: generating a basis of r random elements of �qm 
until they are linearly independent and then generate a random 
linear combination of those vectors. In the NIST submission, 
the r elements are randomly inserted in the error components, 
thus guaranteeing that the error will have rank r. The remaining 
n − r positions are filled with random linear combinations of 
the basis elements. This algorithm is detailed in algorithm 5. On 
the other hand, in [5], the components of the error are all filled 
with random linear combinations of the basis elements, until 
the error has rank r. This algorithm is detailed in algorithm 6. 
It is clear that both strategies are non-constant time. Notice also 
that, in [19], the authors describe how the NIST submission 
implementation leaks the memory access pattern.

Both approaches can be turned to be constant time by remov-
ing the repeat and while loops, and iterating the algorithm enough 
times so that the probability of generating a vector list of the 
wrong rank becomes negligible. Our proposed constant time 
solution is based on this idea. Precisely, we first sample r inde-
pended elements of �qm randomly. In Proposition 1, we derive the 
probability for those vectors to be linearly independent over �2 . 
Second, we generate the components of the vector using masked 
linear combinations of the basis. Note that this algorithm also has 
the advantage to hide the memory access pattern. We show also 
that it is sufficient to repeat the full procedure once to reach a 

probability of failing equal to 2−60 , which is already way smaller 
than the ROLLO Decryption Failure Rate. However, if this is still 
a concern (for example when adapting this work to ROLLO-II), 
repeating the procedure twice leads to a probability of failing of 
2−120 , and so on. The full algorithm is described in algorithm 7. 
Note that this is the algorithm used in our implementation.

Proposition 1  The probability that r randomly sampled elements 
in �m

2
 have rank r is p = (1 − q−m) ⋅ (1 − q1−m)⋯ (1 − qr−1−m).

Proof  The first element e1 ∈ �qm is independent if and only if 
it is different from zero. Since it is a vector in �qm , we have 
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Pr(e1 = 0) = 1∕qm . Then e1, e2 are linearly dependent if and 
only if e2 = ke1 , where k ∈ �q . So Pr(e2 = ke1) = q∕qm . We 
can continue this way for all the vectors until the last one, 
where we have that er is a linear combination of the previ-
ous ones if and only if er =

∑r−1

i=1
kiei where ki ∈ �q . So 

Pr(er =
∑r−1

i=1
kiei) = qr−1∕qm . 	�  ◻

For ROLLO-I-128 parameters, where r = 7 and m = 67 , the 
probability to have a linear combination between r random vec-
tors is 2−60 . Computing the probability that a random support is 
of the required dimension is only the first step of the evaluation 
of the failure probability of our algorithm. Assuming that a ran-
dom support F of dimension r is available, we now have to com-
pute the probability for a vector � ∈ Fn to be of rank strictly less 
than r. Let f1,… , fr be a basis of F. The components e1,… , en 
can be written with coordinates in f1,… , fr : ei =

r∑
j=0

(ei)jfj where 

(ei)j ∈ Fq . Let M be the r × n matrix over Fq such that 
Mj,i = (ei)j . Then, the fact that ��(�) < r is equivalent to the fact 
that the matrix M is of rank < r . Since the coordinates of M are 
sampled randomly, this probability can be approximated by 
q−(1+n−r).

For ROLLO-I-128 parameters, where r = 7 and n = 83 , the 
probability to obtain a vector with rank less than r is 2−77 , hence 
the probability that this process generates an error of weight r − 1 
is 2−60 + 2−77 which can be approximated by 2−60.

Now, one might generate multiple samples and if the cycle is 
repeated h times, the probability to fail becomes 2−120 for h = 2 , 
and 2−180 for h = 3 and so on. To make this approach constant 
time, one can repeat the sampling as many times needed to 
reach the desired probability, each time computing the rank of 
the vector with the constant time Gaussian elimination algo-
rithm proposed in “Gaussian elimination algorithm” and store 
the sampled vector space when it has the desired rank. 
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Now, we describe how to generate the entire support of the vec-
tor rather than just the basis. This approach takes advantage of the 
fact that r is usually small (maximum 9 for ROLLO-I). We start by 
initializing a list with the zero vector and a random vector. We then 
generate a second random vector, check if it is already in the list. If 
so, we discard it and generate another one, else we add its addition 
with all the previous vectors already in the list to the list. We end up 
generating a vector subspace F of �qm of dimension r. One can then 
draw randomly the coordinates of � from this list. The only caveat 
of this method is that the vector � can be of rank less than r as its 
coordinates could be in a vector subspace of F. We, therefore, have to 
check the rank of � before outputting the result, or run the algorithm 
twice to reach a probability of failing of 2−120 (as proved above). We 
also notice that an implementation of such method needs to take care 
of hiding the memory access pattern when randomly drawing the 
elements from the vector space. The method is detailed in its non-
constant time version in algorithm 8, and in its constant time version 
in algorithm 9. Note that the mask operation in line 9 of algorithm 9 
should be done using an AND mask rather than a multiplication. 

4  When it is clear from the context, with abuse of notation we indi-
cate � × � as � ⋅ � or �� , also for matrix multiplications.

Composite Galois Field Arithmetic

An element in the composite Galois field �(2m)n can be repre-
sented as a polynomial �(x) = a0 + a1x +…+ an−1x

n−1 in 
�2m[x]∕P(x) , with P(x) ∈ �2[x] irreducible of degree n, or, 
equivalently, as an array � = (a0, a1,… , an−1) of length n of 
elements in �2m . In our implementation, an element of �(2m)n is 

an array of __uint128_t of length n, and we usually refer to 
it in the pseudocode with bold lowercase letters.

Matrix Multiplication with Lazy Reduction

The multiplication � × �4 in �(2m)n , algorithm 10, is performed 
as the following vector by matrix multiplication

 where (b̂i,0,⋯ , b̂i,n−1) are the coeff icients of 
�(x) ⋅ xi mod P(x).

I n  RO L L O - I - 1 2 8 ,  we  h ave  n = 83 ,  s o 
(bi,0 + bi,1x +…+ bi,82x

82) ⋅ x mod P(x) = bi,82 + bi,0x + (bi,1 + bi,82)x
2

+bi,2x
3
+ (bi,3 + bi,82)x

4
+ bi,4x

5
+ bi,5x

6
+ (bi,6 + bi,82)x

7
+… , bi,81x

82  , 
since x82 = X7 + X4 + X2 + 1.

(a0, a1,… , an−1) ×

⎡
⎢⎢⎢⎣

b̂0,0 ⋯ b̂0,n−1
b̂1,0 ⋯ b̂1,n−1
⋮ ⋱ ⋮

b̂n−1,0 ⋯ b̂n−1,n−1

⎤
⎥⎥⎥⎦
,

This allows us to reduce the number of reduc-
tion in �2m , since when we compute the field ele-
m e n t  (a0, a1,… , a

n−1) × (b̂
i,0,⋯ , b̂

i,n−1)

= (a0b̂i,0 +…+ an−1b̂i,n−1) =
∑n−1

j=0
ajb̂i,j , each ajb̂i,j can be 

computed using the carryless multiplication algorithm ����� , 
and the reduction ���

�
267

 is applied only at the end of the sum-
mation. The pseudo-code of the algorithm is presented in 
algorithm 10. 
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The AVX2 performances of the polynomial multiplication 
are reported in Table 7.

Polynomial Inversion

For the inversion in the composite Galois field 
�(2m)n ≅ �2m[x]∕P(x) , we use the technique presented 
in [26] in 1998, which improves the Itoh-Tsujii algo-
rithm with pre-computed powers [30]. The idea is to 
c o m p u t e  �−1 = (�r)−1�r−1, � ∈ �(2m)n , � ≠ 0  ,  w h e r e 
r = (2mn − 1)∕(2m − 1) . It is easy to prove that �r ∈ �2m as 
(�r)2

m

= (�1+2
m+22m+…+2(n−1)m)2

m

= �1+2
m+22m+…+2(n−1)m = �r   . 

This reduces inversion in the Galois field �(2m)n to one inversion 
in the ground field �2m , the computation of �r−1 and n multipli-
cations in �2m.

To  c o mp u t e  �2
m  ,  o n e  c a n  n o t i c e  t h a t 

�2
m

=
�∑

i=0 aix
i
�2m

mod P =
∑n

i=0
aix

i2m mod P  a s 
ai ∈ �qm∀i = 0,… , n − 1 . It is then sufficient to pre-compute 
the values of si = xi2

m

mod P,∀i = 0,… , n − 1 . Therefore, 
the computation of �2m can be seen as a matrix multiplication 
as follow:

 In addition, if P has only binary coefficients (which is the case 
for all variants of ROLLO), the pre-computed values also have 
binary coefficients meaning that the previous matrix multiplica-
tion can be performed using only XORs. The last step is to remark 
that �2km = Sk ⋅ �T and we end up with an algorithm performing n 
polynomial multiplications and binary matrix multiplications, one 
inversion in �2m followed by n multiplications in �2m.

In algorithm 12 we summarize how the inversion is performed. It 
uses algorithm 11 to compute �2km . The matrix S in algorithm 11 is a 
pre-computed matrix depending only on P and n.

Notice that both algorithm 11 and algorithm 12 can be coded 
such that they execute a constant number of operations. In particu-
lar, Steps 4-5 of algorithm 11, can be performed in a constant time 
fashion by using a mask, as follows: compute ���� = 0 − Si,j , so 
that ���� is 0 if Si,j = 0 or a binary vector of 1’s otherwise; then 
compute t = aj ⊗ ���� and finally bi = bi + t . 

S ⋅ �T =

⎛⎜⎜⎜⎝

1 s1,0 s2,0 … sn−1,0
0 s1,1 s2,1 … sn−1,1
⋮ … … ⋮

0 s1,n−1 s2,n−1 … sn−1,n−1

⎞⎟⎟⎟⎠
×

⎛⎜⎜⎜⎝

a0
a1
⋮

an−1

⎞⎟⎟⎟⎠
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Table 8   The number of 
cycles to perform key 
generation, encapsulation, and 
decapsulation of other KEMs 
available in SUPERCOP with 
128-bit security

Bold values indicate the results of this study

Algorithm Key Generation Encapsulation Decapsulation

CT_rollo_secure/avx2 11,034,623 984,432 9,775,241
CT_rollo_fast/avx2 11,204,649 320,835 9,744,693
 bikel1/avx2 800, 814 137, 295 2, 227, 101
 frodokem640/optimized 1, 254, 121 1, 972, 512 2, 050, 790
 frodokem640aes/optimized 1, 872, 924 2, 301, 509 2, 291, 485
 frodokem640shake/x64 4, 552, 208 4, 924, 284 4, 880, 325
 hqc128/avx 895, 079 1, 002, 802 1, 406, 262
 hqcrmrs128/avx 777, 538 904, 170 1, 241, 698
 kyber512/avx2 31, 812 52, 151 40, 953
 kyber90s512/avx2 19, 355 28, 815 22, 685
 ledakem1264/portableopt 3, 967, 977 253, 374 2, 731, 123
 ledakem12sl/portableopt 6, 814, 222 312, 572 2, 610, 232
 ledakem1364/portableopt 3, 486, 752 268, 002 2, 015, 586
 ledakem13sl/portableopt 5, 858, 734 345, 372 2, 771, 222
 ledakem1464/portableopt 2, 621, 831 247, 425 2, 217, 174
 ledakem14sl/portableopt 5, 209, 246 377, 816 2, 841, 172
 ledakemcpa12/portableopt 1, 052, 889 137, 843 843, 255
 ledakemcpa13/portableopt 828, 052 107, 064 783, 340
 ledakemcpa14/portableopt 711, 261 107, 995 927, 117
 lightsaber2/avx2 56, 314 75, 549 72, 500
 lotus128/avx2 10, 697, 399 136, 846 193, 228
 mceliece348864/vec 348, 055, 578 93, 702 613, 623
 mceliece348864f/vec 275, 194, 978 80, 356 558, 679
 newhope512cca/ref 126, 527 196, 300 224, 699
 ntruhrss701/ref 15, 772, 963 836, 280 2, 492, 160
 ntskem1264/avx2 46, 274, 216 102, 050 300, 127
 rolloi128/avx  (not CT) 1, 151, 479 158, 417 1, 198, 809
 rolloii128/avx  (not CT) 4, 385, 668 611, 519 2, 010, 480
 rqc128/avx  (not CT) 1, 277, 266 1, 531, 786 4, 582, 519
 sikep503/opt 87, 103, 004 141, 395, 561 151, 837, 798
 threebears624r2cca/vec 54, 681 77, 370 137, 336
 threebears624r2ccax/vec 57, 809 75, 771 102, 596
 threebears624r2cpa/vec 54, 033 78, 162 33, 299
 threebears624r2cpax/vec 54, 846 77, 376 16, 092
 titaniumccastd/avx2 1, 747, 766 1, 695, 331 1, 945, 030
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It is also possible to pre-compute all the matrices 
S, S2, S3,… , Sn−1 to avoid the steps 2 and 3 of algorithm 11. 
This, for example, results in 70.6 KB of pre-computed matrices 
for ROLLO-I-128, and a speed improvement of about 17%.

As an alternative method to compute the inverse of a poly-
nomial, one might consider a constant time variant of Euclid’s 
algorithm, as the one proposed in [16]. Though, this type of 
algorithm is usually more efficient for generic moduli, where 
the modular reductions in Fermat’s method are considerably 
more expensive. After a comparison in the favor of a Sagemath 
[40] implementation of the method described above against 
the script recipx provided in [16], we decided to discard 
this option.

The AVX2 performances of the reduction are reported in 
Table 7.

Rank Syndrome Recovery Algorithm 
and Decapsulation

In this section, we describe the core of the decapsulation phase: 
the Rank Support Recovery (RSR) algorithm which was intro-
duced in [24] and made constant time in [8].

Let E, F be two �q-subspaces of �qm and let (e1,… , er) be 
a basis of E and (f1,… , fd) be a basis of F. So ���(E) = r 
and ���(F) = d . We denote by EF the subspace gen-
erated by the product of the elements of E and  F, i.e., 
EF = ⟨{ef � e ∈ E and f ∈ F}⟩. Note that (eifj)1≤i≤r,1≤j≤d is a 
generator family of EF. Thus, ���(EF) ≤ rd and the equality 
holds with an overwhelming probability [2]. For that reason, 
we assume that ���(EF) = rd.

Let C be a LRPC code with parity check matrix H ∈ �
2n×n
qm

 
and let � = (s1,… , sn) be a syndrome of the error vector 
� = (e1,… , e2n) , that is, H�T = �T . Let E be the support of � 
and S be the support of � . Since S is a subspace of EF, its dimen-
sion is at most rd. Finally, we denote by Bi = f −1

i
S.

The RSR algorithm (algorithm 13) takes as input the base of 
the vector space F, the syndrome � and the dimension of E i.e., 

r; and its output is (probably) E, i.e., the support of the error � . 
The goal of this algorithm is to recover the vector space E (see 
[8] for more details).

Let us explain how the algorithm recovers the support E of 
the error vector � . Since the coordinates of the syndrome can 
be seen as elements in EF, the idea is to compute the support of 
the error as E = B1 ∩ B2 ∩… ∩ Bd, where Bi = f −1

i
S. In fact, 

Bi = {f −1
i

f1e1, f
−1
i

f2e1,… , f −1
i

fder} = {e1,… er, f
−1
i

fjet}1≤j≤d,i≠j,1≤t≤r . 
Note that this method fails to recover E when the syndrome 
space S is different from EF and when the intersection contains 
others elements besides the ej ’s [2].

In algorithm 13, we use capital letter both for the output of 
Zassenhaus algorithm (section 4.2 p. 12) and the matrices with 
elements in �qm . In this last case, we denote by J{i} the i-th row 
of the matrix J. We also indicate by T , _ = ����������(Bi,Bj) 
the first element of the Zassenhaus algorithm output, i.e., 
Bi + Bj and with _ , T = ����������(Bi,Bj) the second element 
of the output, that is, Bi ∩ Bj . With T we indicate a temporary 
value. The i-th element of T is denoted by ti

There are three conditions that need to be fulfilled for this algo-
rithm to run in constant time: (1) the size of the inputs to the Zas-
senhaus algorithm have to be constant. Here we always input a basis 
of length rd for both vector spaces; (2) for inputs of the same size, 
the Zassenhaus algorithm needs to run in constant time. This was 
taken care of in section 4.2; (3) operations involving elements of �qm 
(addition, multiplication, etc.) need to run in constant time. This was 
taken care in section 4.1.

Notice that Step 3 of the algorithm would work if, instead of 
the reduced row echelon form of the basis, one computes the 
entire vector space E and then sorts it with respect to any order. 
For this particular choice of parameters, this second option is 
slower. It could become more efficient for a much larger m and 
a smaller base. 
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Performance

We benchmark our implementation of ROLLO-I-128 on 
a 2017 MacBook Pro equipped with 2.9GHz Intel Core i7 
(I7-7820HQ). To measure the performance of the single opera-
tions presented in this work, we use our own testing platform, 
and the results are reported in Table 7.

We use SUPERCOP version 20200618 [15] to compare 
our implementation with other existing KEMs by disabling 
Intel Hyper-Threading and Turbo Boost. In the key generation 
function and the encryption function we use the random-num-
ber generator randombytes() provided by SUPERCOP. 
Note that our implementation uses a stand-alone implementa-
tion of SHA256, but for a fair comparison, we have switched to 
OpenSSL’s SHA256 implementation, which is also used in the 
implementation of ROLLO-I. All primitives are compiled using 
clang with parameters -march=native -O3 -fomit-
frame-pointer -fwrapv -Qunused-arguments 
-Wl,-no_pie. For non-vectorized implementation, we dis-
able the flag -march=native.

According to our profiler: about 85% of the key generation 
is taken by the polynomial inversion; 5% of the encapsulation 
time is occupied by the polynomial multiplication, while 91% 
of the time is spent in generating a basis and two polynomials 
whose list of coefficients has given rank r. About 70% of this 
last step (63% of the full encapsulation time) is taken by com-
puting the rank of the list, to make sure it has the proper rank, 
while about 15% is taken from the randombyte() calls.

about 75% of the decapsulation is taken by the Gaussian 
elimination step in the Zassenhaus algorithm. In the official 
ROLLO specification [2], the following number (in thousands) 
of clock cycles are reported for, respectively, key generation, 
encapsulation and decapsulation: 3537, 395, 1754. Our loss in 

the key generation is explained by the fact that ROLLO’s team 
used a not constant-time GCD algorithm for the polynomial 
inversion. Our loss in the encapsulation is explained by the 
fact that ROLLO’s team used a not constant-time generation 
of vectors with given rank, and in particular they did not have 
to check the rank of �1 and �2 two times. The not constant-time 
implementation of Gaussian elimination also explains the dif-
ference in the decapsulation step.

In Table 8, we report the performance results of our imple-
mentation of ROLLO-I-128 with one cycle in the generation 
of vectors of given rank (CT_rollo_fast)5, and with two 
cycles (CT_rollo_secure). We also report the perfor-
mances of the other Category 1 KEMs available in SUPERCOP.

Conclusion

In this work, we have presented several algorithms which shed 
some light on the potential performance of a fully optimized 
constant time implementation of ROLLO-I-128. It highlights 
that this proposal can be quite interesting from a computational 
point of view both with AVX2 and without. Future work will 
consist in porting these algorithms to other variants of ROLLO 
as well as some parts of RQC which might benefit from those 
improvements.

Pseudocode for the binary field arithmetic

The plain C carryless multiplication algorithm �����K(a, b) is 
described in algorithm 14. Notice that algorithm 14 works for 
64 < m < 129 . 

5  With this option, there is a 2−60 probability that an error of weight 
less than d, or, respectively, less then r, is generated during the key-
gen or, respectively, the encapsulation. Furthermore, in this case, the 
protocol will not fail.
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The AVX2 carryless multiplication algorithm �����S(a, b)
 

is described in algorithm 15. Note that, as algorithm 14, algo-
rithm 15 is suitable for fields �2m with 64 < m < 129 , which 
include all ROLLO-I and ROLLO-II variants. Let us recall that 
using Karatsuba multiplication [31] in algorithm 15 instead of 
steps 3-6 would not give any advantage, as the cost of mul-
tiplication and addition with AVX2 instruction is very close. 
In practice, as we will show, it even performs worse, due to 
alignment problems. 

The algorithm to inverleave zeros used for the squaring algo-
rithm is a small modification of the method Interleave bits with 
64-bit multiply given by Sean Eron Anderson on his web page 
Bit Twiddling Hacks [21] which is given in algorithm 16. 
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The squaring method is given in algorithm 17. For the 
AVX2 version, a look-up table based on the instruction _mm_
shuffle_epi8 is implemented both in the submission and 
our work. 

The algorithm for reduction is presented in algorithm 18, 
where the symbols ≪,≫ denote field multiplication and divi-
sion by x respectively (left and right shift operators), ⊕ is the 
field addition (bit-wise XOR operator), ⊗ the bit-wise AND 
operator. As for algorithm 15, algorithm 18 is suitable for fields 
of size up to 2128 up to the modification of the values of the 
masks, the amount of shifts and their width. 

The inversion of an element x ∈ �2m
 is described in algo-

rithm 19. This has been derived using Fermat’s little Theorem 

stating that x2m−2 = x−1 . The fixed exponentiation is achieved 
by the strategy presented in [38, Section 6.2] using the follow-
ing addition chain of length 9:

 

1 → 2 → 4 → 8 → 16 → 32 → 33 → 66 → 67 .
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