
Vol.:(0123456789)

SN Computer Science (2021) 2:382
https://doi.org/10.1007/s42979-021-00761-y

SN Computer Science

ORIGINAL RESEARCH

Constant Time Algorithms for ROLLO‑I‑128

Carlos Aguilar‑Melchor1 · Nicolas Aragon2 · Emanuele Bellini3  · Florian Caullery3 · Rusydi H. Makarim3 · Chiara Marcolla3

Received: 26 February 2021 / Accepted: 28 June 2021 / Published online: 18 July 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
In this work, we propose different techniques that can be used to implement the rank-based key encapsulation methods and pub-
lic key encryption schemes of the ROLLO, and partially RQC, family of algorithms in a standalone, efficient and constant time
library. For simplicity, we focus our attention on one specific instance of this family, ROLLO-I-128. For each of these techniques,
we present explicit code (including intrinsics), or pseudo-code and performance measures to show their impact. More precisely,
we use a combination of original and known results and describe procedures for Gaussian reduction of binary matrices, genera-
tion of vectors of given rank, multiplication with lazy reduction and inversion of polynomials in a composite Galois field. We also
carry out a global performance analysis to show the impact of these improvements on ROLLO-I-128. Through the SUPERCOP
framework, we compare it to other 128-bit secure KEMs in the NIST competition. To our knowledge, this is the first optimized
full constant time implementation of ROLLO-I-128.

Keywords  Code-based cryptography · KEM · Post-quantum cryptography · Rank metric · Constant time

Introduction

Through the NIST Post-Quantum Cryptography (PQC) Stand-
ardization Process [34], the cryptographic community is evalu-
ating candidate KEM, PKE, and signature schemes potentially
secure against both quantum and classical attacks. One of the
requirements for these schemes to be secure is having a con-
stant time implementation to avoid leakage of secret informa-
tion through timing attacks. Furthermore, it is important to

understand how efficient these constant time implementations
are when running on real devices.

From an implementation perspective, while the crypto-
graphic community has mostly focused its efforts on improv-
ing some categories of cryptosystems such as those based on
lattices and codes on the Hamming metric, the same cannot
be claimed for rank-based cryptosystems. Compared to lat-
tice and code-based cryptography, rank-based cryptography
is a relatively new and less explored field. Although the first
rank-based cryptosystem, the Gabidulin-Paramonov-Tretjakov
(GPT) public key encryption scheme [23], was introduced in
1991, and many analyses were presented in the subsequent
years (such as [22, 25, 36, 37]), only recently new schemes
have been proposed, such as [5, 6, 11, 12, 20, 33], some of
which have also been submitted to the NIST PQC standardiza-
tion process. Up until the algebraic attack recently presented in
[10], these schemes seemed to provide appealing performance
levels and key and ciphertext sizes, which enabled ROLLO [2]
(merge of LAKE, LOCKER, and Rank-Ouroboros) and RQC
[3] to pass the first round of the NIST PQC standardization
process. Though, in its recent status report on the second round
[7], NIST did not select ROLLO and RQC to advance on with
the motivation that their security analysis needs more time to
mature. On the other hand, NIST encouraged the cryptographic
community to continue studying rank-based cryptosystems, as

 *	 Emanuele Bellini
	 emanuele.bellini@tii.ae

	 Carlos Aguilar‑Melchor
	 carlos.aguilar-melchor@isae-supaero.fr

	 Nicolas Aragon
	 nicolas.aragon@unilim.fr

	 Florian Caullery
	 florian.caullery@tii.ae

	 Rusydi H. Makarim
	 rusydi.makarim@tii.ae

	 Chiara Marcolla
	 chiara.marcolla@tii.ae

1	 ISAE‑SUPAERO, Université de Toulouse, Toulouse, France
2	 Université de Limoges, Limoges Cedex, France
3	 Cryptography Research Centre, Technology Innovation

Institute, Abu Dhabi, United Arab Emirates

http://orcid.org/0000-0002-2349-0247
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00761-y&domain=pdf

	 SN Computer Science (2021) 2:382382  Page 2 of 19

SN Computer Science

they offer a nice alternative to traditional Hamming metric
codes with comparable bandwidth.

There were still some open questions of practicality pertain-
ing to the most recently submitted NIST package for ROLLO
(dated 2020/04/21 and available at pqc-​rollo.​org). In June 2020,
a note was released [19], pointing out potential issues arising
from part of the currently submitted ROLLO and RQC code
not being constant time.

In this work, we present the first constant time implementa-
tion of the 128-bit secure rank-based KEM called ROLLO-
I-128. This work complements and improves the preliminary
results posted on the NIST website [4] on the implementation of
an earlier version of ROLLO-I-256. Other non-constant time-
independent implementations of ROLLO on other platforms
can be found for example in [1, 13], or [32], where a software
implementation on a Cortex M0 of the encapsulation routine,
and a hardware implementation on a microcontroller with a
crypto coprocessor, are presented, respectively.

Our Contribution

In this work, we propose different techniques that can be used to
implement ROLLO and part of the RQC family of algorithms
in a standalone, efficient and constant time library. Recall
that ROLLO-I-128, ROLLO-I-192, and ROLLO-I-256 have
decryption failure probability of 2−28 , 2−34 , and 2−33 , which,
cryptographically, are not considered small. We present, for
each of the proposed techniques, explicit code (with intrinsics
when required), or pseudo-code and performance measures to
show their impact.

As a theoretical contribution, we describe a new constant
time variant of Gaussian elimination that reduces any matrix
to its (not necessarily reduced) row echelon form. The only
previous constant time variant we are aware of [14], only
worked for full rank matrices, and returned a systematic form
of such matrices, terminating the algorithm if this was not pos-
sible. Furthermore, after analyzing current non-constant time
algorithms to generate a list of vectors with a given rank, we
describe a novel constant time probabilistic version of one of
these algorithms, and we present a procedure for reducing the
probability of failing to a desired value. We also present a vari-
ation of this method which returns the entire support of the vec-
tor list. This potentially allows trade-offs between the public key
size and the performance of the encapsulation step.

From an implementation perspective, we describe in detail
the process of implementing the underlying finite field arith-
metic with constant time operations, with and without the use
of vectorization techniques. We provide an explicit descrip-
tion of the application of the Zassenhaus algorithm in the Rank
Support Recovery algorithm described in the NIST submission
of ROLLO [2]. We show how efficient polynomial arithmetic
can be conducted by applying multiplication with lazy reduc-
tion and inversion of polynomials in a composite Galois field

defined by a pentanomial. All these are implemented using
reasonably optimized constant time algorithms. Finally, we
carry out a performance analysis to show the impact of these
improvements on our implementation of ROLLO-I-128 1, when
compared with its reference and optimized implementations.
We expect this work to shed light on the attainable performance
for constant time implementations of ROLLO and to help prac-
titioners to make educated choices when implementing it or
other constant time rank-based cryptographic algorithms.

Structure of the Paper

In “Preliminaries”, we introduce the basic concepts needed
to understand the scheme and the subsequent algorithms. In
“Description of the Scheme”, we describe ROLLO-I key encap-
sulation method. In “Proposed Algorithms”, we provide all the
details regarding the binary field, vector space, and composite
Galois field arithmetic, as well as the description of the Rank
Support Recovery algorithm used in the decapsulation phase. In
“Performance”, we compare the performance of our implemen-
tation of ROLLO-I-128 with the one of various KEM submis-
sions to the NIST PQC standardization process. In “Conclu-
sion”, we present the conclusions drawn from this study.

Preliminaries

In this section, we first present the rings, fields and vector
spaces we will work with as well as an associated metric,
namely the rank metric, and then we will define error-correcting
codes associated with this metric.

Structures and Representations

In the following, we let q be a prime power and m, n two posi-
tive integers. We will work with the finite fields of order q, qm
and qmn : �q, �qm , �qmn . Of course there are multiple isomorphic
fields of a given order, with multiple representations and lead-
ing to different algorithms.

�
q
 . In this paper, as in the ROLLO specification, q will

always be 2 and therefore elements and computations in �q are
associated to elements and computations in the modular ring
ℤ∕2ℤ.

�
qm

 . As usual, elements in extensions of the base field �q will
be represented using quotients over the polynomial ring �q[X] .
Thus, elements and computations in �qm are associated to poly-
nomial representations and computations over �q[X]∕⟨P0⟩ for
an irreducible polynomial P0 of degree m.

1  The full code of our implementation and of the tests we run for the
comparisons is available at https://​github.​com/​Crypto-​TII/​const​ant_​
time_​rollo.

http://pqc-rollo.org
https://github.com/Crypto-TII/constant_time_rollo
https://github.com/Crypto-TII/constant_time_rollo

SN Computer Science (2021) 2:382	 Page 3 of 19  382

SN Computer Science

�
qmn . Elements and computations in �qmn are similarly asso-

ciated to polynomial representations and computations over
�qm[X]∕⟨P⟩ for an irreducible polynomial P ∈ �q[X] of degree
n. Note that these polynomials have coefficients in �qm , so ele-
ments in �qmn are seen as polynomials (that live in �qm[X]∕⟨P⟩ )
with polynomial coefficients (that live in �q[X]∕⟨P0⟩).

It is also quite practical to use vectors and matrices to rep-
resent, and operate on, polynomials. For a field F, Mn,m(F)
represents the set of matrices with n rows and m columns of
elements in F. When n equals m this set, together with classical
matrix sum and product, forms a ring that we denote Mn(F) .
Of course we can map polynomials to vectors (of coefficients)
and inversely so we often consider an element of �qm as an ele-
ment of the vector space �m

q
 , and an element of �qmn as an ele-

ment of the vector space � n
qm

 . For a vector � , we note the asso-
ciated polynomial �(X) , and for a polynomial p, we note the
associated vector vec(p) . When using a polynomial in a setting
in which it is clear we have to use the vector representation
(e.g., a matrix line, or a matrix/vector multiplication) we will
not make the vec transformation explicit.

Vector additions are naturally defined in �m
q

 or � n
qm

 and cor-
respond to polynomial additions over �qm and �qmn . We define
the product of two vectors �, � by �� = vec(�(X)�(X)) , and the
inverse as �−1 = vec(�−1(X)).

It is also possible to define vector multiplication directly over
vector/matrices. To do this, we will first define ideal matrices.
As we will only describe explicitly multiplications in �qmn , we
will focus our definition on this specific setting.

Definition 1  (Ideal Matrices). Let P ∈ �q[X] be a polynomial
of degree n and � ∈ �

n
qm

 the vector representation of an ele-
ment of �qmn . The ideal matrix generated by � modulo P is the
matrix denoted IMP(�) ∈ Mn(�qm) with n rows of the form
Xi�(X) mod P , with i = 0,… , n − 1.

The multiplication of two vectors �, � ∈ �qmn can be then
computed with �� = �IMP(�) = (IMP(�)

TvT)T = �� . Note
that this definition is compatible with the previous one as we
have �IMP(�) = vec(u(X)v(X)).

Metric and Support

Let � = (e1,… , en) be an element of � n
qm

 . Denote by ei,j
the j-th component of ei , ei being seen as an element of �m

q
 .

Then the rank weight of e, denoted by ��(�) , is defined as
��(�) = ����

(
[ei,j]i=1,…,n,j=1,…,m

)
 The rank distance between

two vectors �, � ∈ �
n
qm

 is defined by ��(� − �) = ||� − � ||.
For � = (x1,… , xn) ∈ �

n
qm

 , the support E of � , denoted
����(�) , is the �q-subspace of �qm generated by the coordinates
of � : E = ⟨x1,… , xn⟩�q . Note that ���(E) = ��(�) and that any
� ∈ E can be written as � =

∑n

i=1
�ixi where �i ∈ �q.

Codes

We define a [n, k]qm code C over �qm as a vector subspace of
�
n
qm

 of dimension k, where n is called the length and k is the
dimension of the code. An element of a code C is called a code-
word. A generator matrix for an [n, k]qm code C is thus any k × n
matrix G whose rows form a basis for C. Note that the generator
matrix of a code is not unique.

As a linear code is a vector subspace, it is the kernel of some
linear transformation. In particular, there is an (n − k) × n
matrix H, called a parity check matrix for the [n, k]qm code
C, that verifies C = {x ∈ �

n
qm
|HxT = 0} . As for the generator

matrix, the parity check matrix of a code C is not unique.
We present now the definition of the ideal Low Rank Par-

ity Check (ideal LRPC) codes, codes on which all the variants
of ROLLO are based. Moreover, we introduce the underlying
problem on which relies the security of the schemes. We first
recall the definition of ideal codes and LRPC codes.

Definition 2  (Ideal Codes) . Let P ∈ �q[X] be a polynomial of
degree n and ��, �� ∈ �

n
qm

 . We define the [2n, n]qm ideal code
C defined by (��, ��) modulo P as the code with parity check
matrix

(
IMP(��)

T IMP(��)
T
)
.

If ��(X) = 1 (and thus IMP(��) = In ), we say C is defined
by �� modulo P. If ��(X) is invertible in �qmn , the code C defined
by (��, ��) modulo P is the same as the code defined by ��

−1��
modulo P.

Definition 3  (LRPC codes). Let H ∈ Mn−k,n(�qm) be a full rank
matrix such that its coefficients generate an �q-subspace
F = ⟨hi,j⟩�q of small dimension d. The [n, k]qm code C of parity
check matrix H is called an LRPC code of weight d.

A [2n, n]qm Ideal Code defined by (��, ��) modulo a polyno-
mial P can also be an LRPC code. Indeed, if ��, �� are vectors
in an �q-subspace of small dimension and P has its coefficients
in �q , this will be the case. Such a code is called an Ideal LRPC
code.

Definition 4  (Ideal LRPC codes). Let F be a �q-subspace of
dimension d of �qm , ��, �� two vectors of � n

qm
 with support in

F and P ∈ �q[X] a polynomial of degree n. The code C with
parity check matrix (IM(��)

T |IM(��)
T) is called an [2n, n]qm

ideal LRPC code.

The variant of ROLLO we focus on this paper, ROLLO-I,
has a security proof based on two problems. The first is a sup-
port recovery problem, which is proven equivalent to the rank-
metric version of the Syndrome Decoding problem (RSD) in
[2]. The second is an indistinguishability problem.

	 SN Computer Science (2021) 2:382382  Page 4 of 19

SN Computer Science

Problem 1  (r-Ideal Rank Support Recovery). Given a poly-
nomial P ∈ �q[X] of degree n, vectors �1,… , �r ∈ �

n
qm

 ,
a syndrome � and a weight w, it is hard to find a support
E = ⟨�0,… , �r−1⟩ of dimension lower than w such that
�0 + �1�1 +…+ �r−1�r−1 = � mod P.

Problem 2  (Ideal LRPC codes indistinguishability). Given a
polynomial P ∈ �q[X] of degree n and a vector � ∈ �

n
qm

 , it is
hard to distinguish whether the ideal code C with parity-check
matrix generated by � and P is a random ideal code or if it is an
ideal LRPC code of weight d.

In other words, it is hard to distinguish if � was sampled
uniformly at random or as �−1� mod P where the vectors �
and � have the same support of small dimension d.

Description of the Scheme

As stated by the submission documentation all ROLLO vari-
ants follow the approach inaugurated by the public key encryp-
tion protocol NTRU in 1998 [28]. As pointed out in the previ-
ous section, ROLLO is a variation of the LRPC rank metric
approach and its security is proven assuming that the Ideal
LRPC indistinguishability and the 2-Ideal Rank Support Recov-
ery [2, Theorem 4.2] problems are hard.

We now describe ROLLO-I in detail. The ROLLO-I Key-
Encapsulation Mechanism (KEM) is a triple of probabilistic
algorithms (������;������;������) . ������ : randomly
sample (�, �) from a vector subspace F of �qm of dimension d,
such that ��(�) = ��(�) = d . Set �� = � = �−1� mod P and
�� = (�, �) . ������ : randomly sample (�1, �2) from a vector sub-
space E of �qm of dimension r, such that ��(�1) = ��(�2) = r .
Compute � = �1 + �2� mod P . Compute K = G(E) where
G is a hash function. Output (�,K) . ������ : Compute
� = �� = ��1 + ��2 mod P . Use the Rank Support Recovery
(RSR) algorithm (algorithm 13) to recover E. The RSR algo-
rithm takes as input F = ����(�, �) and � (see “Rank Syndrome
Recovery Algorithm and Decapsulation” for more detail). If
the RSR algorithm succeeds return K = G(E) , else return ⟂.

We refer to Table 1 for the actual set of ROLLO-I param-
eters. Note that the private key can be obtained from a seed, and
in the official NIST submission the seed expander was initial-
ized with 40 bytes long seeds.

As the last column of the table shows, the decapsulation
algorithm has a non-zero failure probability. This probability is
however well understood and made low enough to fit the NIST
call for proposals (for more detail see Section 1.4.2 of [2]).

Proposed Algorithms

We redefined ROLLO starting from the following building
blocks: the binary field arithmetic corresponding to opera-
tions in �qm ; the vector space arithmetic, including the Gauss-
ian reduction algorithm for binary matrices, the Zassenhaus
algorithm for binary matrices, and the generation of elements
of �qm[X]∕P(X) of a given rank; the arithmetic in the composite
Galois field �qm[X]∕P(X) where P(X) is the irreducible poly-
nomial given in the parameters; the Rank Support Recovery
algorithm (RSR) used in the decapsulation phase. The key
generation, encapsulation and decapsulation (or encryption
and decryption) of all the variants of ROLLO are based only
on the above blocks. Hence, we focused on optimizing every
operations included in those layers as well as insuring the fact
that they are constant time.

Target We target processors with 64-bit carryless multiplica-
tions (2010 and onward for Intel) and provided a faster alterna-
tive if they also have AVX2 instructions (2013 and onward for
Intel). The code examples assume GCC’s __uint128_t type
is available and uses GCC X86 intrinsics.

Notation Given �, � two binary vectors, in what follows, we
denote with �⊕ � the bit-wise XOR of � and � , and with �⊗ �
the bit-wise AND of � and � . With � ≪ h and � ≫ h with indi-
cate, respectively, the left and right shift of � by h positions.

Binary Field Arithmetic

In this section, we present the constant time vectorized opera-
tions we propose for �qm . As shown in Table 1, all variants of
ROLLO-I have q = 2 and different values for m. Our algorithms
work for all the values of m submitted to the NIST competition,
but have to be slightly adapted for each value. To avoid repeti-
tions, we will focus on the field used by ROLLO-I-128, and
note what changes need to be done to adapt the algorithms for
other values of m.

We implemented finite field arithmetic for the binary
field �2m , with m = 67 , representing elements as binary

Table 1   ROLLO-I parameters

Instance q m n d r P �� size �� size c size Security Failure rate

ROLLO-I-128 2 67 83 8 7 X
83 + X

7
X
4 + X

2 + 1 40B 696B 696B 128b 2−28

ROLLO-I-192 2 79 97 8 8 X
97 + X

6 + 1 40B 958B 958B 192b 2−34

ROLLO-I-256 2 97 113 9 9 X
113 + X

9 + X
2 + X + 1 40B 1371B 1371B 256b 2−33

SN Computer Science (2021) 2:382	 Page 5 of 19  382

SN Computer Science

polynomials of degree m − 1 modulo an irreducible poly-
nomial of degree m. We used the irreducible pentanomial
P0(X) = X67 + X5 + X2 + X + 1 provided by the Allan Steel
database incorporated in Magma software [18] and also sug-
gested by the authors of ROLLO. This pentanomial has also
lowest possible intermediate degree, allowing the shortest shift
during the reduction operations. No trinomial exists for m = 67.

To represent an element of the field, we use 128-bit unsigned
integer, using the type __uint128_t, and sometimes cast-
ing it to __m128i, with unused bits set to zero. Addition and
subtraction of two elements are a simple bit-wise XOR opera-
tion. The multiplication of two field elements is performed in
two steps: a carryless multiplication of the two elements seen as
polynomials (“Binary Field Arithmetic”, or a carryless squar-
ing of a single element in “Binary Field Arithmetic”) and a
polynomial reduction (“Binary Field Arithmetic”). Inversion
is performed using an addition chain (see “Binary field arith-
metic”). As noted before, all operations in the binary field layer
are executed in constant time, assuming the intrinsics (and in
particular carry-less multiplications) are constant time.

Carryless multiplication: plain C implementation The car-
ryless multiplication has been implemented using recursive
Karatsuba multiplication [31]. More specifically, we borrowed
from NTL2 an implementation of a constant time carryless
Karatsuba multiplication of two 64 bit register (which we
call ntlclmul64 in algorithm 14) using only bit manipula-
tion, and then added an extra level of Karatsuba method over
this function. The full carryless multiplication �����K(a, b) is
described in “Appendix A”, algorithm 14.

In Table 2, we compare this implementation with ROLLO’s
polynomial multiplications. The initial NTL-based ROLLO
(submission date 2019/04/10) used NTL’s generic carryless
multiplication function3. As it is generic, this function goes
through a set of tests and function calls before calling exactly
the same code we used for ntlclmul64. The overhead (5
function calls, 6 if statements with two boolean tests for most
of them, and a switch/case) is significant w.r.t. the final code of
ntlclmul64 (78 instructions). As a result, specializing the
code by removing calls, conditional branches, and extracting
only the instructions needed for ROLLO we get a 15% speedup
on polynomial multiplication with respect to NTL-ROLLO
which called the generic function. The Karatsuba function
implemented in the NTL-free version of ROLLO (submission
date 2019/08/24), called NoNTL-ROLLO in the table, is 30%
slower than NTL’s generic function. It seems thus that, in gen-
eral, implementations of Karatsuba using NTL may obtain a
nice performance upgrade just by importing/adapting the spe-
cialised code of NTL for this operation, as we did. We also

notice that the latest ROLLO implementation dated 2020/04/21,
is not NTL-dependent anymore.

Carryless multiplication: AVX2 optimization When possi-
ble, the carryless multiplication step has been performed using
Intel Advanced Vector Extensions 2 instructions (AVX2)
[29]. In particular, the core of this function uses the _mm_
clmulepi64_si128 instruction (see also [27]) to perform
64 times 64 bit binary polynomial multiplication.

The multiplication of two m bit binary polynomials is per-
formed in a schoolbook fashion, by dividing the input in two 64
bit registers (one containing only m − 64 bits) and then apply-
ing four times the function _mm_clmulepi64_si128,
which acts on 64 bits registers. The results is stored in a __
m256i type (4 registers), but only the 2m − 2 least significant
bits are used, while the remaining ones are set to zero. We refer
to this algorithm as the �����S(a, b) algorithm, and we present
our C implementation in “Appendix A”, algorithm 15. When
irrelevant in the context, we will indicate with �����(a, b) (with
no subscript) the algorithm performing carryless multiplication,
either using Karatsuba method in plain C or with schoolbook
method and AVX instructions.

Let us remark that using Karatsuba multiplication [31] in
this case would not give any advantage, as the cost of multi-
plication and addition with AVX2 instruction is very close. In
practice, we show it even performs worse, due to alignment
problems.

In Table 3, we show that, when comparing figures for NTL-
ROLLO and others, specializing code for ROLLO’s setting has
an even greater impact on performance when using AVX2, with
no surprise. It also shows that alignment issues in Karatsuba
have a very noticeable impact on performance and highlights
the fact that ROLLO developers did the right choice opting for
schoolbook multiplication in the NTL-free version of ROLLO.
Our implementation has a little advantage on performance.

This difference is explained by the fact that the permuta-
tion done in our algorithm with _mm256_permute4x64_
epi64 allows us to avoid the cost of the load and store instruc-
tions, which are present at the beginning and end of each
recursive call in the NIST submitted code.

Carryless squaring For squaring, which will be used in the inver-
sion algorithm, we can use the fact that this operation actually consists

Table 2   Cycles per plain C carryless multiplication of polynomials
of degree m = 67 (averaged over 4 s of execution on a Macbook Pro
2017 with an 2.9 GHz Quad-Core Intel Core i7, I7-7820HQ)

NTL-ROLLO is the NTL function mul defined in GF2E.h used ini-
tially by ROLLO, and NoNTL-ROLLO is the Karatsuba implementa-
tion in the NTL-free version of ROLLO. Polynomials are not reduced
(output is of degree 2m − 2 = 132)

Algorithm NTL-ROLLO NoNTL-ROLLO algorithm 14

Poly. Multiplica-
tion

187 cycles/op 243 cycles/op 157 cycles/op

2  The code is available in the file mach_desc.h of the library NTL
[39], under the method NTL_ALT1_BB_MUL_CODE0.
3  The mul function in GF2E.h.

	 SN Computer Science (2021) 2:382382  Page 6 of 19

SN Computer Science

of interleaving zeros to the current representation of the polynomial.
Indeed, for a ∈ �2m , a2 =

�∑m−1

i=0
aix

i
�2

=
∑m−1

i=0
aix

2i . For exam-
ple, if the current representation of a was 11100101, then �����(a)
will be 1010100000100010. To perform this operation, we decided
to use a small modification of the method Interleave bits with 64-bit
multiply given by Sean Eron Anderson on his web page Bit Twiddling
Hacks [21]. The pseudocode is given in “Appendix A”,
algorithm 16.

The squaring method is straightforward from there and its
pseudocode is given in “Appendix A”, algorithm 17. For the
AVX2 version, a look-up table based on the instruction _mm_
shuffle_epi8 is implemented both in the submission and
our work. The AVX2 performance are reported in Table 4.

We would like to remark that, although simple and perhaps
even trivial in retrospect, the mentioned approaches for squaring
have been proposed before in the literature. Precisely, [9] and [17]
for the shuffle-based squaring and [35] for the CLMUL squaring.

Reduction The 2m − 2 bits result provided by the carryless
multiplication is reduced back modulo P0 to a m bit field element,
using standard techniques. The pseudocode of the algorithm for
reduction is presented in “Appendix A”, algorithm 18. The AVX2
performances of the reduction are reported in Table 7.

Inversion The inversion of an element x ∈ �2m , described in
“Appendix A”, algorithm 19, has been derived using Fermat’s
little Theorem stating that x2m−2 = x−1 . The fixed exponentia-
tion is achieved by the strategy presented in [38, Section 6.2]
using the following addition chain of length 9:

The AVX2 performances of the binary field inversion are
reported in Table 7.

Binary Vector Space Arithmetic

In this section, we describe the main algorithms used to manip-
ulate vector spaces, i.e., Gaussian reduction, Zassenhaus algo-
rithm, and the generation of vectors of given rank.

1 → 2 → 4 → 8 → 16 → 32 → 33 → 66 → 67 .

In our implementation, a binary matrix M, usually indi-
cated with uppercase letters, of size m × l is an array of
__uint128_t of length l, where each element of the array is
a matrix row mi . Similarly, a vector space, or the support of a
set of vectors is represented with uppercase letters and stored
in arrays of __uint128_t.

Gaussian Elimination Algorithm

We introduce an original algorithm to perform a constant time
Gaussian elimination to convert any binary matrix to a (not nec-
essarily reduced) row echelon form and its extension to convert
it to reduced row echelon form. This algorithm is somehow a
generalization of the one presented in [14], where Gaussian
elimination was used to convert the binary matrix to a system-
atic form. In [14], if the matrix is not systematic, the algorithm
breaks. Otherwise, for each column, the algorithm first sets to
1 the bits of the diagonal, by scanning the rows of the matrix
from below the current pivot to the bottom of the matrix, then
sets to 0 the bits in the current column, except the diagonal, by
scanning the full set of rows again. This is done in a constant
time manner, due to the fact that, being the matrix systematic,
the number of rows under the pivot are always the same for each
column step. Though, in [14], it is not defined how one could
force the algorithm to continue when it is not possible to fix a 1
in the diagonal, i.e., when the matrix is not systematic. We solve
the problem by always scanning all rows for each column, and
by keeping track of the current pivot position, not necessarily
in the diagonal. Let r̃ be the current pivot row position, i is the
current scanned row and j the current scanned column. Then,
we perform

where ����� is set to 1 if the current row is above the pivot
( i > r ), ����� is set to 1 if the the bit mi,j is 0, and ����� is set to
1 if the bit mr̃,j in the intersection of the current scanned row and
column is 1. The steps above have the effect to leave the rows
unchanged either when the current row is above the pivot row
mr̃ or, otherwise, when the bit mi,j is 0. On the other hand, when
mi,j is 1, if the pivot bit mr̃,j is 0, then the current row is swapped

mr̃ = mr̃ ⊕����� ⋅����� ⋅����� ⋅ mi

mi = ����� ⋅����� ⋅ mr̃ ⊕ mi

Table 3   Average cycles per AVX2 carryless multiplication of poly-
nomials of degree m = 66 (averaged over 4 s of execution on a Mac-
Book Pro 2017 with a 2.9 GHz Quad-Core Intel Core i7, I7-7820HQ)

Karatsuba clmulepi64 and Schoolbook clmulepi64 are the
AVX2 implementations discussed in this section, NTL-ROLLO is the
NTL function mul defined in GF2E.h used initially by ROLLO with
AVX2 improvements, and NoNTL-ROLLO is the AVX2 Schoolbook
implementation in the NTL-free version of ROLLO. Polynomials are
not reduced (output is of degree 2m − 2 = 132)

Algorithm clmulepi64
Schoolbook

clmulepi64
Karatsuba

NTL-
ROLLO

NoNTL-
ROLLO

Poly. Mul. 5.53 cycles/
op

7.04 cycles/
op

28 cycles/op 6.73 cycles/
op

Table 4   Average cycles per carryless squaring of polynomials of
degree m = 66 (averaged over 4 s of execution on a MacBook Pro
2017 with a 2.9 GHz Quad-Core Intel Core i7, I7-7820HQ)

NoNTL-ROLLO (reference impl.) is the lookup table in the reference
NTL-free version of ROLLO. Polynomials are not reduced (output is
of degree 2m − 2 = 132 ). All implementation are AVX2

Algorithm This work NoNTL-ROLLO
reference impl.

NoNTL-ROLLO
optimized impl.

Poly. Sqr 5.38 cycles/op 16.35 cycles/op 5.80 cycles/op

SN Computer Science (2021) 2:382	 Page 7 of 19  382

SN Computer Science

with the pivot row, and if the pivot bit mr̃,j is 1, then the 1 in
position (i, j) is flipped. Notice that, at the end of the algorithm,
the pivot position is also the rank of the matrix. Compared to
[14], for each scan of the full set of rows, we perform fewer
XOR operations, but we need to compute more masks. We also
have to scan all columns, while for the method from [14] it is
sufficient to scan the minimum between the number of rows and
the number of columns. This makes the method of [14] much
faster for matrices with a small number of rows. We stress again
that the method of [14] only computes the systematic form of a
matrix, and for this reason is, in general, faster.

Our method can be easily extended to compute the reduced
row echelon form, by storing the pivot positions and then scan-
ning all the rows � times, where � is the number of rows, to
remove the 1’s above the pivots.

The differences between our method and the one in [14] are
summarized in Tables 5, 6.

The pseudocode of the three algorithms can be found in
algorithm 1 ([14]), algorithm 2, and algorithm 3, where M rep-
resents a binary matrix with � rows and � columns, mi is the
binary vector representing the i-th row of the matrix M, and mi,j
is the bit entry of the matrix M at position i, j.

In our C implementation, we store one line �[�] of the binary
matrix in a variable of type __uint128_t. We can perform

Steps 3–4 of algorithm 1 in a constant number of operations
as follows:

Similarly, also the other if statements of both algorithms can be
easily executed in constant time.

Finally, note that algorithm 2 and algorithm 3 access mr̃ .
Using memory indices depending on r̃ can leak information
on ̃r through timing attacks on machines with caches. To avoid
this types of attacks, one would have to scan all the rows of the
matrix and access the desired row using another mask.

mask = -(((m[i] ^ m[k]) >> j) & 1);
m[i] = m[i] ^ (m[k] & mask);

Table 5   Comparison of our proposed Gaussian elimination algorithm and the one from Bernstein et al. [14], for a matrix with � rows and � col-
umns

Algorithm #loops #XOR #masks Output form Input matrix

[14] �(� + (� − 1)∕2) �(� + (� − 1)∕2) �(� + (� − 1)∕2) Systematic Systematic
This work: ref �� �� 3�� Row echelon form Any rank
This work: rref �� + �2 �� + �2 3�� + 2�2 Reduced row echelon form Any rank

Table 6   Clock cycle comparison of our proposed Gaussian elimina-
tion algorithm and the one from Bernstein et al. [14], for a matrix
with � = 10, 20, 30, 100 rows and � = 67 columns

Algorithm 10 rows 20 rows 30 rows 100 rows

[14] 2241.31 9547.64 21,030.64 230,444.41
This work: ref 33,358.83 61,325.96 90,379.98 296,578.26
This work: rref 35,669.20 74,649.81 117,940.18 590,984.32

	 SN Computer Science (2021) 2:382382  Page 8 of 19

SN Computer Science

Table 7   Average cycles
per operation for the main
algorithms presented in this
work

Measurements have been taken enabling AVX2 instructions and averaging over 4 s of execution on a Mac-
Book Pro 2017 with a 2.9 GHz Quad-Core Intel Core i7 (I7-7820HQ)

Algorithm �����(a, b) ����(a) ���
�
267
(a) ���

�
267
(a)

Clock cycles 6.36 5.29 15.26 1,656.30
Algorithm ����_���(a, b) ����_���(a) ���

Clock cycles 9,513,722.01 79,288.56 11,472,218.86
Algorithm ������ ������ ������

Clock cycles 12,729,075.41 1,385,871.94 9,981,462.15

SN Computer Science (2021) 2:382	 Page 9 of 19  382

SN Computer Science

Zassenhaus Algorithm

The Zassenhaus algorithm is a method to compute a basis for
the intersection and sum of two vector subspaces U, V of a vec-
tor space W of length m. Let us consider the two sets of genera-
tors of U and V, i.e., U = ⟨u0,… , ul1⟩ and V = ⟨v0,… , vl2⟩ .
The algorithm creates the block matrix (1) of size (l1 + l2) × 2m

:

After application of the Gauss elimination, the matrix has
the form (2), reduced in row echelon form. In (2), ⋆ stands
for arbitrary numbers, (a0,… , al3) is a basis of V + U and
(b0,… , bl4) is a basis of V ∩ U . The pseudocode can be found
in algorithm 4.

(1)

⎡
⎢⎢⎢⎢⎢⎢⎣

u0,0 … u0,m−1 u0 … u0,m−1
⋮ ⋮ ⋮ ⋮

ul1,0 … ul1,m−1 ul1,0 … ul1,m−1
v0,0 … v0,m−1 0 … 0

⋮ ⋮ ⋮ ⋮

vl2,0 … vl1,m−1 0 … 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0 … a0,m−1 ⋆ … ⋆

⋮ ⋮ ⋮ ⋮

al3,0 … al3,m−1 ⋆ … ⋆

0 … 0 b0,0 … b0,m−1
⋮ ⋮ ⋮ ⋮

0 … 0 bl4,0 … bl4,m−1
0 … 0 0 … 0

⋮ ⋮ ⋮ ⋮

0 … 0 0 … 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Generation of Vectors of Given Rank

The generation of a vector � ∈ �
n
qm

 of a given rank, say r is prob-
ably the most delicate part of the key generation and encapsula-
tion routines. We are not aware of any constant time algorithm
performing this task. In this section, we analyze the two non-
constant time strategies adopted in the current NIST submis-
sion (dated 2020/04/21) and in [5, Sect. 5.2]. Then we derive a
constant time version of the latter, with a probability of failure
that can be set as small as desired, at the cost of increasing the
complexity of the algorithm. Lastly, we also propose an alterna-
tive method that, while generating a vector of a given rank, also

constructs the full support of the vector. This last method could
turn to be useful in the case a user could store a larger public key
in memory, so to have the advantage of not reconstructing the
support from its basis during the encapsulation phase.

The strategy from [5] or from the NIST submission are based
on the same idea: generating a basis of r random elements of �qm
until they are linearly independent and then generate a random
linear combination of those vectors. In the NIST submission,
the r elements are randomly inserted in the error components,
thus guaranteeing that the error will have rank r. The remaining
n − r positions are filled with random linear combinations of
the basis elements. This algorithm is detailed in algorithm 5. On
the other hand, in [5], the components of the error are all filled
with random linear combinations of the basis elements, until
the error has rank r. This algorithm is detailed in algorithm 6.
It is clear that both strategies are non-constant time. Notice also
that, in [19], the authors describe how the NIST submission
implementation leaks the memory access pattern.

Both approaches can be turned to be constant time by remov-
ing the repeat and while loops, and iterating the algorithm enough
times so that the probability of generating a vector list of the
wrong rank becomes negligible. Our proposed constant time
solution is based on this idea. Precisely, we first sample r inde-
pended elements of �qm randomly. In Proposition 1, we derive the
probability for those vectors to be linearly independent over �2 .
Second, we generate the components of the vector using masked
linear combinations of the basis. Note that this algorithm also has
the advantage to hide the memory access pattern. We show also
that it is sufficient to repeat the full procedure once to reach a

probability of failing equal to 2−60 , which is already way smaller
than the ROLLO Decryption Failure Rate. However, if this is still
a concern (for example when adapting this work to ROLLO-II),
repeating the procedure twice leads to a probability of failing of
2−120 , and so on. The full algorithm is described in algorithm 7.
Note that this is the algorithm used in our implementation.

Proposition 1  The probability that r randomly sampled elements
in �m

2
 have rank r is p = (1 − q−m) ⋅ (1 − q1−m)⋯ (1 − qr−1−m).

Proof  The first element e1 ∈ �qm is independent if and only if
it is different from zero. Since it is a vector in �qm , we have

	 SN Computer Science (2021) 2:382382  Page 10 of 19

SN Computer Science

Pr(e1 = 0) = 1∕qm . Then e1, e2 are linearly dependent if and
only if e2 = ke1 , where k ∈ �q . So Pr(e2 = ke1) = q∕qm . We
can continue this way for all the vectors until the last one,
where we have that er is a linear combination of the previ-
ous ones if and only if er =

∑r−1

i=1
kiei where ki ∈ �q . So

Pr(er =
∑r−1

i=1
kiei) = qr−1∕qm . 	� ◻

For ROLLO-I-128 parameters, where r = 7 and m = 67 , the
probability to have a linear combination between r random vec-
tors is 2−60 . Computing the probability that a random support is
of the required dimension is only the first step of the evaluation
of the failure probability of our algorithm. Assuming that a ran-
dom support F of dimension r is available, we now have to com-
pute the probability for a vector � ∈ Fn to be of rank strictly less
than r. Let f1,… , fr be a basis of F. The components e1,… , en
can be written with coordinates in f1,… , fr : ei =

r∑
j=0

(ei)jfj where

(ei)j ∈ Fq . Let M be the r × n matrix over Fq such that
Mj,i = (ei)j . Then, the fact that ��(�) < r is equivalent to the fact
that the matrix M is of rank < r . Since the coordinates of M are
sampled randomly, this probability can be approximated by
q−(1+n−r).

For ROLLO-I-128 parameters, where r = 7 and n = 83 , the
probability to obtain a vector with rank less than r is 2−77 , hence
the probability that this process generates an error of weight r − 1
is 2−60 + 2−77 which can be approximated by 2−60.

Now, one might generate multiple samples and if the cycle is
repeated h times, the probability to fail becomes 2−120 for h = 2 ,
and 2−180 for h = 3 and so on. To make this approach constant
time, one can repeat the sampling as many times needed to
reach the desired probability, each time computing the rank of
the vector with the constant time Gaussian elimination algo-
rithm proposed in “Gaussian elimination algorithm” and store
the sampled vector space when it has the desired rank.

SN Computer Science (2021) 2:382	 Page 11 of 19  382

SN Computer Science

Now, we describe how to generate the entire support of the vec-
tor rather than just the basis. This approach takes advantage of the
fact that r is usually small (maximum 9 for ROLLO-I). We start by
initializing a list with the zero vector and a random vector. We then
generate a second random vector, check if it is already in the list. If
so, we discard it and generate another one, else we add its addition
with all the previous vectors already in the list to the list. We end up
generating a vector subspace F of �qm of dimension r. One can then
draw randomly the coordinates of � from this list. The only caveat
of this method is that the vector � can be of rank less than r as its
coordinates could be in a vector subspace of F. We, therefore, have to
check the rank of � before outputting the result, or run the algorithm
twice to reach a probability of failing of 2−120 (as proved above). We
also notice that an implementation of such method needs to take care
of hiding the memory access pattern when randomly drawing the
elements from the vector space. The method is detailed in its non-
constant time version in algorithm 8, and in its constant time version
in algorithm 9. Note that the mask operation in line 9 of algorithm 9
should be done using an AND mask rather than a multiplication.

4  When it is clear from the context, with abuse of notation we indi-
cate � × � as � ⋅ � or �� , also for matrix multiplications.

Composite Galois Field Arithmetic

An element in the composite Galois field �(2m)n can be repre-
sented as a polynomial �(x) = a0 + a1x +…+ an−1x

n−1 in
�2m[x]∕P(x) , with P(x) ∈ �2[x] irreducible of degree n, or,
equivalently, as an array � = (a0, a1,… , an−1) of length n of
elements in �2m . In our implementation, an element of �(2m)n is

an array of __uint128_t of length n, and we usually refer to
it in the pseudocode with bold lowercase letters.

Matrix Multiplication with Lazy Reduction

The multiplication � × �4 in �(2m)n , algorithm 10, is performed
as the following vector by matrix multiplication

 where (b̂i,0,⋯ , b̂i,n−1) are the coeff icients of
�(x) ⋅ xi mod P(x).

I n RO L L O - I - 1 2 8 , we h ave n = 83 , s o
(bi,0 + bi,1x +…+ bi,82x

82) ⋅ x mod P(x) = bi,82 + bi,0x + (bi,1 + bi,82)x
2

+bi,2x
3
+ (bi,3 + bi,82)x

4
+ bi,4x

5
+ bi,5x

6
+ (bi,6 + bi,82)x

7
+… , bi,81x

82  ,
since x82 = X7 + X4 + X2 + 1.

(a0, a1,… , an−1) ×

⎡
⎢⎢⎢⎣

b̂0,0 ⋯ b̂0,n−1
b̂1,0 ⋯ b̂1,n−1
⋮ ⋱ ⋮

b̂n−1,0 ⋯ b̂n−1,n−1

⎤
⎥⎥⎥⎦
,

This allows us to reduce the number of reduc-
tion in �2m , since when we compute the field ele-
m e n t (a0, a1,… , a

n−1) × (b̂
i,0,⋯ , b̂

i,n−1)

= (a0b̂i,0 +…+ an−1b̂i,n−1) =
∑n−1

j=0
ajb̂i,j , each ajb̂i,j can be

computed using the carryless multiplication algorithm ����� ,
and the reduction ���

�
267

 is applied only at the end of the sum-
mation. The pseudo-code of the algorithm is presented in
algorithm 10.

	 SN Computer Science (2021) 2:382382  Page 12 of 19

SN Computer Science

The AVX2 performances of the polynomial multiplication
are reported in Table 7.

Polynomial Inversion

For the inversion in the composite Galois field
�(2m)n ≅ �2m[x]∕P(x) , we use the technique presented
in [26] in 1998, which improves the Itoh-Tsujii algo-
rithm with pre-computed powers [30]. The idea is to
c o m p u t e �−1 = (�r)−1�r−1, � ∈ �(2m)n , � ≠ 0  , w h e r e
r = (2mn − 1)∕(2m − 1) . It is easy to prove that �r ∈ �2m as
(�r)2

m

= (�1+2
m+22m+…+2(n−1)m)2

m

= �1+2
m+22m+…+2(n−1)m = �r   .

This reduces inversion in the Galois field �(2m)n to one inversion
in the ground field �2m , the computation of �r−1 and n multipli-
cations in �2m.

To c o mp u t e �2
m  , o n e c a n n o t i c e t h a t

�2
m

=
�∑

i=0 aix
i
�2m

mod P =
∑n

i=0
aix

i2m mod P a s
ai ∈ �qm∀i = 0,… , n − 1 . It is then sufficient to pre-compute
the values of si = xi2

m

mod P,∀i = 0,… , n − 1 . Therefore,
the computation of �2m can be seen as a matrix multiplication
as follow:

 In addition, if P has only binary coefficients (which is the case
for all variants of ROLLO), the pre-computed values also have
binary coefficients meaning that the previous matrix multiplica-
tion can be performed using only XORs. The last step is to remark
that �2km = Sk ⋅ �T and we end up with an algorithm performing n
polynomial multiplications and binary matrix multiplications, one
inversion in �2m followed by n multiplications in �2m.

In algorithm 12 we summarize how the inversion is performed. It
uses algorithm 11 to compute �2km . The matrix S in algorithm 11 is a
pre-computed matrix depending only on P and n.

Notice that both algorithm 11 and algorithm 12 can be coded
such that they execute a constant number of operations. In particu-
lar, Steps 4-5 of algorithm 11, can be performed in a constant time
fashion by using a mask, as follows: compute ���� = 0 − Si,j , so
that ���� is 0 if Si,j = 0 or a binary vector of 1’s otherwise; then
compute t = aj ⊗ ���� and finally bi = bi + t .

S ⋅ �T =

⎛⎜⎜⎜⎝

1 s1,0 s2,0 … sn−1,0
0 s1,1 s2,1 … sn−1,1
⋮ … … ⋮

0 s1,n−1 s2,n−1 … sn−1,n−1

⎞⎟⎟⎟⎠
×

⎛⎜⎜⎜⎝

a0
a1
⋮

an−1

⎞⎟⎟⎟⎠

SN Computer Science (2021) 2:382	 Page 13 of 19  382

SN Computer Science

Table 8   The number of
cycles to perform key
generation, encapsulation, and
decapsulation of other KEMs
available in SUPERCOP with
128-bit security

Bold values indicate the results of this study

Algorithm Key Generation Encapsulation Decapsulation

CT_rollo_secure/avx2 11,034,623 984,432 9,775,241
CT_rollo_fast/avx2 11,204,649 320,835 9,744,693
 bikel1/avx2 800, 814 137, 295 2, 227, 101
 frodokem640/optimized 1, 254, 121 1, 972, 512 2, 050, 790
 frodokem640aes/optimized 1, 872, 924 2, 301, 509 2, 291, 485
 frodokem640shake/x64 4, 552, 208 4, 924, 284 4, 880, 325
 hqc128/avx 895, 079 1, 002, 802 1, 406, 262
 hqcrmrs128/avx 777, 538 904, 170 1, 241, 698
 kyber512/avx2 31, 812 52, 151 40, 953
 kyber90s512/avx2 19, 355 28, 815 22, 685
 ledakem1264/portableopt 3, 967, 977 253, 374 2, 731, 123
 ledakem12sl/portableopt 6, 814, 222 312, 572 2, 610, 232
 ledakem1364/portableopt 3, 486, 752 268, 002 2, 015, 586
 ledakem13sl/portableopt 5, 858, 734 345, 372 2, 771, 222
 ledakem1464/portableopt 2, 621, 831 247, 425 2, 217, 174
 ledakem14sl/portableopt 5, 209, 246 377, 816 2, 841, 172
 ledakemcpa12/portableopt 1, 052, 889 137, 843 843, 255
 ledakemcpa13/portableopt 828, 052 107, 064 783, 340
 ledakemcpa14/portableopt 711, 261 107, 995 927, 117
 lightsaber2/avx2 56, 314 75, 549 72, 500
 lotus128/avx2 10, 697, 399 136, 846 193, 228
 mceliece348864/vec 348, 055, 578 93, 702 613, 623
 mceliece348864f/vec 275, 194, 978 80, 356 558, 679
 newhope512cca/ref 126, 527 196, 300 224, 699
 ntruhrss701/ref 15, 772, 963 836, 280 2, 492, 160
 ntskem1264/avx2 46, 274, 216 102, 050 300, 127
 rolloi128/avx (not CT) 1, 151, 479 158, 417 1, 198, 809
 rolloii128/avx (not CT) 4, 385, 668 611, 519 2, 010, 480
 rqc128/avx (not CT) 1, 277, 266 1, 531, 786 4, 582, 519
 sikep503/opt 87, 103, 004 141, 395, 561 151, 837, 798
 threebears624r2cca/vec 54, 681 77, 370 137, 336
 threebears624r2ccax/vec 57, 809 75, 771 102, 596
 threebears624r2cpa/vec 54, 033 78, 162 33, 299
 threebears624r2cpax/vec 54, 846 77, 376 16, 092
 titaniumccastd/avx2 1, 747, 766 1, 695, 331 1, 945, 030

	 SN Computer Science (2021) 2:382382  Page 14 of 19

SN Computer Science

It is also possible to pre-compute all the matrices
S, S2, S3,… , Sn−1 to avoid the steps 2 and 3 of algorithm 11.
This, for example, results in 70.6 KB of pre-computed matrices
for ROLLO-I-128, and a speed improvement of about 17%.

As an alternative method to compute the inverse of a poly-
nomial, one might consider a constant time variant of Euclid’s
algorithm, as the one proposed in [16]. Though, this type of
algorithm is usually more efficient for generic moduli, where
the modular reductions in Fermat’s method are considerably
more expensive. After a comparison in the favor of a Sagemath
[40] implementation of the method described above against
the script recipx provided in [16], we decided to discard
this option.

The AVX2 performances of the reduction are reported in
Table 7.

Rank Syndrome Recovery Algorithm
and Decapsulation

In this section, we describe the core of the decapsulation phase:
the Rank Support Recovery (RSR) algorithm which was intro-
duced in [24] and made constant time in [8].

Let E, F be two �q-subspaces of �qm and let (e1,… , er) be
a basis of E and (f1,… , fd) be a basis of F. So ���(E) = r
and ���(F) = d . We denote by EF the subspace gen-
erated by the product of the elements of E and F, i.e.,
EF = ⟨{ef � e ∈ E and f ∈ F}⟩. Note that (eifj)1≤i≤r,1≤j≤d is a
generator family of EF. Thus, ���(EF) ≤ rd and the equality
holds with an overwhelming probability [2]. For that reason,
we assume that ���(EF) = rd.

Let C be a LRPC code with parity check matrix H ∈ �
2n×n
qm

and let � = (s1,… , sn) be a syndrome of the error vector
� = (e1,… , e2n) , that is, H�T = �T . Let E be the support of �
and S be the support of � . Since S is a subspace of EF, its dimen-
sion is at most rd. Finally, we denote by Bi = f −1

i
S.

The RSR algorithm (algorithm 13) takes as input the base of
the vector space F, the syndrome � and the dimension of E i.e.,

r; and its output is (probably) E, i.e., the support of the error � .
The goal of this algorithm is to recover the vector space E (see
[8] for more details).

Let us explain how the algorithm recovers the support E of
the error vector � . Since the coordinates of the syndrome can
be seen as elements in EF, the idea is to compute the support of
the error as E = B1 ∩ B2 ∩… ∩ Bd, where Bi = f −1

i
S. In fact,

Bi = {f −1
i

f1e1, f
−1
i

f2e1,… , f −1
i

fder} = {e1,… er, f
−1
i

fjet}1≤j≤d,i≠j,1≤t≤r .
Note that this method fails to recover E when the syndrome
space S is different from EF and when the intersection contains
others elements besides the ej ’s [2].

In algorithm 13, we use capital letter both for the output of
Zassenhaus algorithm (section 4.2 p. 12) and the matrices with
elements in �qm . In this last case, we denote by J{i} the i-th row
of the matrix J. We also indicate by T , _ = ����������(Bi,Bj)
the first element of the Zassenhaus algorithm output, i.e.,
Bi + Bj and with _ , T = ����������(Bi,Bj) the second element
of the output, that is, Bi ∩ Bj . With T we indicate a temporary
value. The i-th element of T is denoted by ti

There are three conditions that need to be fulfilled for this algo-
rithm to run in constant time: (1) the size of the inputs to the Zas-
senhaus algorithm have to be constant. Here we always input a basis
of length rd for both vector spaces; (2) for inputs of the same size,
the Zassenhaus algorithm needs to run in constant time. This was
taken care of in section 4.2; (3) operations involving elements of �qm
(addition, multiplication, etc.) need to run in constant time. This was
taken care in section 4.1.

Notice that Step 3 of the algorithm would work if, instead of
the reduced row echelon form of the basis, one computes the
entire vector space E and then sorts it with respect to any order.
For this particular choice of parameters, this second option is
slower. It could become more efficient for a much larger m and
a smaller base.

SN Computer Science (2021) 2:382	 Page 15 of 19  382

SN Computer Science

Performance

We benchmark our implementation of ROLLO-I-128 on
a 2017 MacBook Pro equipped with 2.9GHz Intel Core i7
(I7-7820HQ). To measure the performance of the single opera-
tions presented in this work, we use our own testing platform,
and the results are reported in Table 7.

We use SUPERCOP version 20200618 [15] to compare
our implementation with other existing KEMs by disabling
Intel Hyper-Threading and Turbo Boost. In the key generation
function and the encryption function we use the random-num-
ber generator randombytes() provided by SUPERCOP.
Note that our implementation uses a stand-alone implementa-
tion of SHA256, but for a fair comparison, we have switched to
OpenSSL’s SHA256 implementation, which is also used in the
implementation of ROLLO-I. All primitives are compiled using
clang with parameters -march=native -O3 -fomit-
frame-pointer -fwrapv -Qunused-arguments
-Wl,-no_pie. For non-vectorized implementation, we dis-
able the flag -march=native.

According to our profiler: about 85% of the key generation
is taken by the polynomial inversion; 5% of the encapsulation
time is occupied by the polynomial multiplication, while 91%
of the time is spent in generating a basis and two polynomials
whose list of coefficients has given rank r. About 70% of this
last step (63% of the full encapsulation time) is taken by com-
puting the rank of the list, to make sure it has the proper rank,
while about 15% is taken from the randombyte() calls.

about 75% of the decapsulation is taken by the Gaussian
elimination step in the Zassenhaus algorithm. In the official
ROLLO specification [2], the following number (in thousands)
of clock cycles are reported for, respectively, key generation,
encapsulation and decapsulation: 3537, 395, 1754. Our loss in

the key generation is explained by the fact that ROLLO’s team
used a not constant-time GCD algorithm for the polynomial
inversion. Our loss in the encapsulation is explained by the
fact that ROLLO’s team used a not constant-time generation
of vectors with given rank, and in particular they did not have
to check the rank of �1 and �2 two times. The not constant-time
implementation of Gaussian elimination also explains the dif-
ference in the decapsulation step.

In Table 8, we report the performance results of our imple-
mentation of ROLLO-I-128 with one cycle in the generation
of vectors of given rank (CT_rollo_fast)5, and with two
cycles (CT_rollo_secure). We also report the perfor-
mances of the other Category 1 KEMs available in SUPERCOP.

Conclusion

In this work, we have presented several algorithms which shed
some light on the potential performance of a fully optimized
constant time implementation of ROLLO-I-128. It highlights
that this proposal can be quite interesting from a computational
point of view both with AVX2 and without. Future work will
consist in porting these algorithms to other variants of ROLLO
as well as some parts of RQC which might benefit from those
improvements.

Pseudocode for the binary field arithmetic

The plain C carryless multiplication algorithm �����K(a, b) is
described in algorithm 14. Notice that algorithm 14 works for
64 < m < 129 .

5  With this option, there is a 2−60 probability that an error of weight
less than d, or, respectively, less then r, is generated during the key-
gen or, respectively, the encapsulation. Furthermore, in this case, the
protocol will not fail.

	 SN Computer Science (2021) 2:382382  Page 16 of 19

SN Computer Science

The AVX2 carryless multiplication algorithm �����S(a, b)

is described in algorithm 15. Note that, as algorithm 14, algo-
rithm 15 is suitable for fields �2m with 64 < m < 129 , which
include all ROLLO-I and ROLLO-II variants. Let us recall that
using Karatsuba multiplication [31] in algorithm 15 instead of
steps 3-6 would not give any advantage, as the cost of mul-
tiplication and addition with AVX2 instruction is very close.
In practice, as we will show, it even performs worse, due to
alignment problems.

The algorithm to inverleave zeros used for the squaring algo-
rithm is a small modification of the method Interleave bits with
64-bit multiply given by Sean Eron Anderson on his web page
Bit Twiddling Hacks [21] which is given in algorithm 16.

SN Computer Science (2021) 2:382	 Page 17 of 19  382

SN Computer Science

The squaring method is given in algorithm 17. For the
AVX2 version, a look-up table based on the instruction _mm_
shuffle_epi8 is implemented both in the submission and
our work.

The algorithm for reduction is presented in algorithm 18,
where the symbols ≪,≫ denote field multiplication and divi-
sion by x respectively (left and right shift operators), ⊕ is the
field addition (bit-wise XOR operator), ⊗ the bit-wise AND
operator. As for algorithm 15, algorithm 18 is suitable for fields
of size up to 2128 up to the modification of the values of the
masks, the amount of shifts and their width.

The inversion of an element x ∈ �2m
 is described in algo-

rithm 19. This has been derived using Fermat’s little Theorem

stating that x2m−2 = x−1 . The fixed exponentiation is achieved
by the strategy presented in [38, Section 6.2] using the follow-
ing addition chain of length 9:

1 → 2 → 4 → 8 → 16 → 32 → 33 → 66 → 67 .

	 SN Computer Science (2021) 2:382382  Page 18 of 19

SN Computer Science

Author contributions  Conceptualization: FB, JAP, AMP. Methodology:
NR, FB, JAP, AP. Data analysis and interpretation: FB, JAP, AMP. Inves-
tigation: SL, IPF, NR. Data Curation: SL, NR. Writing and editing: : FB,
JAP, AMP. Revision and final approval: All authors

Declarations 

Conflict of interest  Nicolas Aragon has received research grants from
French DGA, thus this work was partially funded by French DGA. The
remaining authors declare that they have no conflict of interest.

Ethical standards  This article does not contain any studies with human
participants or animals, as ruled by the Directive 2010/63/EU, performed
by any of the authors.

References

	 1.	 Abdouli Aa, Bellini E, Caullery F, Manzano M, Mateu V. Rank-metric
Encryption on Arm-Cortex M0: Porting code-based cryptography to
lightweight devices. In: Proceedings of the 6th on ASIA Public-Key
Cryptography Workshop, 2019; pp. 23–30.

	 2.	 Aguilar-Melchor C, Aragon N, Bettaieb S, Bidoux L, Blazy O,
Deneuville JC, Gaborit P, Hauteville A, Ruatta O, Tillich JP, et al.
ROLLO - Rank-Ouroboros, LAKE & LOCKER. 2018. Available at:
https://​pqc-​rollo.​org/​doc/​rollo-​speci​ficat​ion_​2020-​04-​21.​pdf.

	 3.	 Aguilar-Melchor C, Aragon N, Bettaieb S, Bidoux L, Blazy O,
Deneuville JC, Gaborit P, Zémor G. Rank Quasi-Cyclic (RQC). 2017.
https://​pqc-​rqc.​org/​doc/​rqc-​speci​ficat​ion_​2017-​11-​30.​pdf.

	 4.	 Aguilar-Melchor C, Bellini E, Caullery F, Makarim RH, Manzano M,
Marcolla C, Mateu V. Constant-time algorithms for ROLLO. Avail-
able at: https://​csrc.​nist.​gov/​CSRC/​media/​Events/​Second-​PQC-​Stand​
ardiz​ation-​Confe​rence/​docum​ents/​accep​ted-​papers/​caull​ery-​const​ant-​
time-​rollo.​pdf.

	 5.	 Al Abdouli AS, Al Ali M, Bellini E, Caullery F, Hasikos A, Manzano
M, Mateu V. DRANKULA: A McEliece-like Rank Metric based
Cryptosystem Implementation.In: Proceedings of the 15th interna-
tionaljoint conference on e-business and telecommunications (ICETE
2018), 2018;vol. 2, pp. 230–41. https://​doi.​org/​10.​5220/​00068​38102​
300241.

	 6.	 Al Shehhi H, Bellini E, Borba F, Caullery F, Manzano M, Mateu V. An
IND-CCA-secure code-based encryption scheme using rank metric.
In: Progress in cryptology–AFRICACRYPT 2019: 11th international
conference on cryptology in Africa, Rabat, Morocco, July 9–11,
2019, Proceedings, 2019; vol. 11627, p. 79. Springer.

	 7.	 Alagic G, Alperin-Sheriff J, Apon D, Cooper D, Dang Q, Kelsey J, Liu
YK, Miller C, Moody D, Peralta R, et al. Status report on the sec-
ond round of the NIST post-quantum cryptography standardization
process. National Institute of Standards and Technology: Tech. rep;
2020.

	 8.	 Aragon N, Gaborit P, Hauteville A, Ruatta O, Zémor G. Low rank parity
check codes: New decoding algorithms and applications to cryptog-
raphy. arXiv:​1904.​00357 [Preprint]. 2019.

	 9.	 Aranha DF, López J, Hankerson D. Efficient software implementation of
binary field arithmetic using vector instruction sets. In: International
conference on cryptology and information security in Latin America,
2010;pp. 144–61. Springer.

	10.	 Bardet M, Bros M, Cabarcas D, Gaborit P, Perlner R, Smith-Tone D,
Tillich JP, Verbel J. Algebraic attacks for solving the Rank Decoding
and MinRank problems without Gröbner obner basis. arXiv:​2002.​
08322 [Preprint]. 2020.

	11.	 Bellini E, Caullery F, Gaborit P, Manzano M, Mateu V. Improved
veron identification and signature schemes in the rank metric. In:
Information theory (ISIT), 2019 IEEE international symposium on.
IEEE 2019. https://​doi.​org/​10.​1109/​ISIT.​2019.​88495​85.

	12.	 Bellini E, Caullery F, Hasikos A, Manzano M, Mateu V. Code-based
signature schemes from identification protocols in the rank metric.
In: International conference on cryptology and network security,
2018;pp. 277–98. Springer.

	13.	 Bellini E, Caullery F, Makarim R, Manzano M, Marcolla C,
Mateu V. Advances and challenges of rank metric cryptography

https://pqc-rollo.org/doc/rollo-specification_2020-04-21.pdf
https://pqc-rqc.org/doc/rqc-specification_2017-11-30.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/caullery-constant-time-rollo.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/caullery-constant-time-rollo.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/caullery-constant-time-rollo.pdf
https://doi.org/10.5220/0006838102300241
https://doi.org/10.5220/0006838102300241
http://arxiv.org/abs/1904.00357
http://arxiv.org/abs/2002.08322
http://arxiv.org/abs/2002.08322
https://doi.org/10.1109/ISIT.2019.8849585

SN Computer Science (2021) 2:382	 Page 19 of 19  382

SN Computer Science

implementations. In: 2019 IEEE 37th international conference on
computer design (ICCD), 2019;pp. 325–8. IEEE.

	14.	 Bernstein DJ, Chou T, Schwabe P. McBits: fast constant-time code-
based cryptography. In: International workshop on cryptographic
hardware and embedded systems, 2013;pp. 250–72. Springer.

	15.	 Bernstein DJ, Lange T. eBACS: ECRYPT Benchmarking of Cryp-
tographic Systems: SUPERCOP (2010). https://​bench.​cr.​yp.​to/​super​
cop.​html. Accessed 15 July 2020.

	16.	 Bernstein DJ, Yang BY. Fast constant-time gcd computation and
modular inversion. In: IACR transactions on cryptographic hardware
and embedded systems 2019;pp. 340–98.

	17.	 Bos JW, Kleinjung T, Niederhagen R, Schwabe P. Ecc2k-130 on cell
cpus. In: International conference on cryptology in Africa, 2010;pp.
225–242. Springer.

	18.	 Bosma W, Cannon J, Playoust C. The Magma algebra system. I. The
user language. J Symbolic Comput. 1997;24(3–4):235–65. https://​
doi.​org/​10.​1006/​jsco.​1996.​0125.

	19.	 Drucker N, Gueron S, Kostic D. Constant-time implementations in
some proposed KEMs: the case of Rollo and RQC. http://​math.​haifa.​
ac.​il/​shay/​Side_​Chann​els_​2020_​06_​23_​V01.​pdf. 2020.

	20.	 Enhancing Code Based Zero-Knowledge Proofs Using Rank Metric.
	21.	 Eron Anderson S. Bit twiddling hacks. https://​graph​ics.​stanf​ord.​edu/​

~seand​er/​bitha​cks.​html. Accessed 03 May 2019.
	22.	 Faure C, Loidreau P. A new public-key cryptosystem based on the

problem of reconstructing p–polynomials. In: International workshop
on coding and cryptography, 2005;vol. 3969, pp. 304–15. Springer.
https://​doi.​org/​10.​1007/​11779​360_​24.

	23.	 Gabidulin EM, Paramonov A, Tretjakov O. Ideals over a non-com-
mutative ring and their application in cryptology. In: Workshop on
the theory and application of of cryptographic techniques, 1991;pp.
482–9. Springer.

	24.	 Gaborit P, Murat G, Ruatta O, Zémor G. Low rank parity check codes
and their application to cryptography. In: Proceedings of the work-
shop on coding and cryptography WCC-2013, Bergen. 2013.

	25.	 Gaborit P, Otmani A, Kalachi HT. Polynomial-time key recovery
attack on the Faure-Loidreau scheme based on Gabidulin codes. Des
Codes Crypt. 2018;86(7):1391–403.

	26.	 Guajardo J, Paar C. Fast inversion in composite galois fields GF
((2n)M) . In: IEEE international symposium on information theory,
1998;pp. 295–5. Citeseer.

	27.	 Gueron S, Kounavis ME. Intel® carry-less multiplication instruction
and its usage for computing the GCM mode. White Paper. 2010.

	28.	 Hoffstein J, Pipher J, Silverman JH. NTRU: A ring-based public
key cryptosystem. In: Lecture notes in computer science, 1998;pp.
267–88. Springer-Verlag.

	29.	 Intel® C++ Compiler 19.1 Developer guide and Reference. https://​
softw​are.​intel.​com/​en-​us/​cpp-​compi​ler-​devel​oper-​guide-​and-​refer​
ence-​overv​iew-​intri​nsics-​for-​intel-​advan​ced-​vector-​exten​sions-2-​
intel-​avx2-​instr​uctio​ns. Accessed 01 Jan 2020.

	30.	 Itoh T, Tsujii S. A fast algorithm for computing multiplicative inverses
in GF(2m ) using normal bases. Inf Comput. 1988;78(3):171–7.

	31.	 Karatsuba A, Ofman Y. Multiplication of many-digital numbers by
automatic computers. Doklady Akademii Nauk SSSR, Translation
in Physics-Doklady 7, 595-596, 1963. 1962;145(2), 293–94.

	32.	 Lablanche J, Mortajine L, Benchaalal O, Cayrel PL, El Mrabet N.
Optimized implementation of the NIST PQC submission ROLLO
on microcontroller. IACR Cryptol ePrint Arch. 2019;2019:787.

	33.	 Loidreau P. A new rank metric codes based encryption scheme. In:
International Workshop on Post-Quantum Cryptography, 2017; pp.
3–17. Springer.

	34.	 NIST: Post-Quantum Cryptography Call for Proposals. 2018. https://​
csrc.​nist.​gov/​Proje​cts/​Post-​Quant​um-​Crypt​ograp​hy/​Post-​Quant​um-​
Crypt​ograp​hy-​Stand​ardiz​ation/​Call-​for-​Propo​sals. Accessed 01 Jan
2020.

	35.	 Oliveira T, López J, Cervantes-Vázquez D, Rodríguez-Henríquez F.
Koblitz curves over quadratic fields. J Cryptol. 2019;32(3):867–94.

	36.	 Overbeck R. A new structural attack for GPT and variants. In: Inter-
national Conference on Cryptology in Malaysia, 2005;pp. 50–63.
Springer.

	37.	 Overbeck R. Structural attacks for public key cryptosystems based
on Gabidulin codes. J Cryptol. 2008;21(2):280–301.

	38.	 Picek S, Coello CAC, Jakobovic D, Mentens N. Finding short and
implementation-friendly addition chains with evolutionary algo-
rithms. J Heuristics. 2018;24(3):457–81.

	39.	 Shoup, Victor: NTL: A Library for doing Number Theory. 2019.
https://​shoup.​net/​ntl/. Accessed 01 Jan 2020.

	40.	 Stein W, et al. Sage mathematics software (Version 9.0). The sage
development team. 2020. http://​www.​sagem​ath.​org.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://bench.cr.yp.to/supercop.html
https://bench.cr.yp.to/supercop.html
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1996.0125
http://math.haifa.ac.il/shay/Side_Channels_2020_06_23_V01.pdf
http://math.haifa.ac.il/shay/Side_Channels_2020_06_23_V01.pdf
https://graphics.stanford.edu/%7eseander/bithacks.html
https://graphics.stanford.edu/%7eseander/bithacks.html
https://doi.org/10.1007/11779360_24
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-overview-intrinsics-for-intel-advanced-vector-extensions-2-intel-avx2-instructions
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-overview-intrinsics-for-intel-advanced-vector-extensions-2-intel-avx2-instructions
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-overview-intrinsics-for-intel-advanced-vector-extensions-2-intel-avx2-instructions
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-overview-intrinsics-for-intel-advanced-vector-extensions-2-intel-avx2-instructions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://shoup.net/ntl/
http://www.sagemath.org

	Constant Time Algorithms for ROLLO-I-128
	Abstract
	Introduction
	Our Contribution
	Structure of the Paper

	Preliminaries
	Structures and Representations
	Metric and Support
	Codes

	Description of the Scheme
	Proposed Algorithms
	Binary Field Arithmetic
	Binary Vector Space Arithmetic
	Gaussian Elimination Algorithm
	Zassenhaus Algorithm
	Generation of Vectors of Given Rank

	Composite Galois Field Arithmetic
	Matrix Multiplication with Lazy Reduction
	Polynomial Inversion

	Rank Syndrome Recovery Algorithm and Decapsulation

	Performance
	Conclusion
	References

