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Abstract
Optimizing the training of a machine learning pipeline helps in reducing training costs and improving model performance. 
One such optimizing strategy is quantum annealing, which is an emerging computing paradigm that has shown potential in 
optimizing the training of a machine learning model. The implementation of a physical quantum annealer has been realized 
by D-wave systems and is available to the research community for experiments. Recent experimental results on a variety 
of machine learning applications using quantum annealing have shown interesting results where the performance of classi-
cal machine learning techniques is limited by limited training data and high dimensional features. This article explores the 
application of D-wave’s quantum annealer for optimizing machine learning pipelines for real-world classification problems. 
We review the application domains on which a physical quantum annealer has been used to train machine learning classi-
fiers. We discuss and analyze the experiments performed on the D-Wave quantum annealer for applications such as image 
recognition, remote sensing imagery, computational biology, and particle physics. We discuss the possible advantages and 
the problems for which quantum annealing is likely to be advantageous over classical computation.
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Introduction

Machine learning techniques to explore and harness 
the power of data have found application in health care, 
finance, autonomous driving, security, etc., and are con-
tinuing to make their impact deeper every single day [8, 
15, 16]. However, this technological boom is accompanied 
by unprecedented challenges. These challenges arise from 
several factors such as the scale of data being generated, 
hardware limitations, computational complexity, and cost 
[37]. Although recent advances in hardware technology 
have increased computational capability significantly, this 
is no match for the amount of data generated globally, which 

is rapidly increasing, as well as the amount of stored data, 
which is increasing at the rate of about 20% per year [20]. 
The current trend of technological advancement in terms of 
computational power will become saturated in dealing with 
the massive scale of data which will result in increased cost, 
and more importantly, the maximum utilization of data won’t 
be possible in the future [37]. To deal with this challenge, 
quantum computing is seen as a promising alternative that 
can boost the computational prowess in utilizing the power 
of data to the full extent [3].

Most of the real-world problems that machine learn-
ing seeks to solve are non-convex in nature. These types 
of problems are hard to converge to an optimal solution 
using classical algorithms because of the possibility of the 
presence of several local minima and saddle points [22]. 
This computational challenge limits the ability of machine 
learning models to train efficiently especially in the presence 
of a large number of variables. To deal with this problem, 
researchers have been exploring alternative computing tech-
niques such as quantum computing to augment the power 
of machine learning algorithms [1, 6, 28]. Quantum com-
puting is inherently suited to carry out complex computa-
tion which is not possible using classical computation [21]. 
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Quantum computing processes information in the form of 
qubits (quantum bits). This is different from a classical bit 
in the sense that a classical bit can take the value of either 
0 or 1. However, a qubit can be represented as a combina-
tion of two values at the same time. This principle is called 
superposition which allows quantum computation to achieve 
exponential speedup over its classical counterpart [17]. 
Another property of quantum computation that establishes 
superiority over classical computation is the phenomenon 
of quantum tunneling. Because of quantum tunneling, a 
quantum system can navigate through solution space more 
efficiently by overcoming long and thin energy barriers [38]. 
These characteristics of quantum computing have led to the 
hypothesis that QPU (quantum processing unit) can be used 
to discover more interesting and counter-intuitive patterns 
for machine learning classification task than that obtained 
using classical processing units such as CPU (central pro-
cessing unit) or GPU (general processing unit) [4] (Fig. 1).

The main contributions of this article are as follows:

–	 The integration of D-wave’s quantum annealer as an opti-
mization subroutine has been analyzed and discussed in 
the context of machine learning classification tasks.

–	 Application domain where quantum annealing is applied 
for real-world classification tasks has been identified and 
analyzed from existing literature.

–	 Finally, the possible advantages of using quantum 
annealer as an optimization subroutine for machine learn-
ing classification have been analyzed based on the find-
ings from recent research.

Developing a hybrid classical-quantum system for machine 
learning classification tasks is expected to perform bet-
ter than using a classical machine learning pipeline under 
data uncertainty conditions. Some of these conditions are 
limited availability of training data, modeling under high 

dimensional feature variables, better generalization to 
unknown data, and reduced training time and cost. This arti-
cle explores the effectiveness and usefulness of quantum 
annealing as an optimization routine in machine learning 
pipelines for classification tasks. We present a comprehen-
sive survey on quantum annealing for real-world machine 
learning classification tasks based on recent research works 
presented in the literature.

The paper is organized as follows: the next section dis-
cusses the theoretical background of quantum annealing and 
also the realization of the quantum annealing in D-Wave’s 
quantum computer. The following section discusses the 
hybrid classical-quantum computing system using D-Wave’s 
quantum computer. This section details the D-Wave’s imple-
mentation and translation of real-world problem instances 
into the quantum processing unit of D-Wave. The next sec-
tion will explore the existing literature in the area that has 
used quantum annealing for machine learning classification 
tasks. The following section discusses the possible advan-
tages of using quantum annealing over classical techniques. 
The last section concludes the article.

Background on Quantum Annealing

Quantum annealing is a heuristic search algorithm for find-
ing the lowest energy state by traversing over the solution 
landscape [19]. The lowest energy state is achieved through 
the evolution of a time-dependent Hamiltonian. Quantum 
annealing uses quantum tunneling to traverse through the 
solution space more efficiently than classical annealing to 
reach the optimal state [30, 33]. As visualized in Fig. 2, the 
time-dependent Hamiltonian can be represented as a land-
scape of the cost of the solution. The two components of the 
time-dependent Hamiltonian is the final Hamiltonian ( HF ), 
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Fig. 1   Processing in classical (top) and quantum systems (bottom). 
QPU can generate many-solutions and counter-intuitive solutions 
faster than classical processing units such as CPU/GPU
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that is the ground state or the optimal solution to the problem 
and the second component is a transverse field Hamiltonian 
( HD ) which is scaled by a time-dependent coefficient also 
called transverse field which is initialized at a high value 
and then decreased to zero. Large values of the transverse 
field allow the algorithm to avoid local minima and tunnel 
through large energy barriers to move towards the ground 
state. This same phenomenon is achieved in classical anneal-
ing by thermal jumps. It has been theoretically proven that 
quantum annealing is guaranteed to converge to the optimal 
solution and also the convergence rate of quantum annealing 
was faster than that of classical annealing [31].

Even though quantum annealing optimization algorithm 
has proven to be theoretically superior to classical anneal-
ing, a classical implementation of such an algorithm is both 
costly and inefficient [30]. Whereas some operations are 
more efficient and faster using quantum computing, there 
are also several operations for which classical systems are 
inherently better than quantum systems. A hybrid system 
that uses both classical and quantum computing is gain-
ing immense popularity in recent years. In the context of 
machine learning, training becomes extremely expensive and 
inefficient as the dimension of the feature vector increases 
which in turn makes it difficult to find meaningful patterns. 
These types of computationally challenging tasks could be 
offloaded to quantum processors for optimization [2]. Recent 
advances made in the design of physical quantum annealer 
have made it possible to explore the practical application of 
quantum algorithms. D-Wave system is currently leading 
the market of commercial quantum computers which uses 
quantum annealing for computation. We will now present a 
brief overview of the implementation of quantum annealing 
on D-Wave systems.

Quantum Annealing in D‑Wave Systems

In D-Wave’s implementation of quantum annealing, a qubit 
initially remains in a superposition state. At the end of 
annealing, the qubit goes from the superposition state to 
either 0 state or 1 state. Figure 3 shows the energy diagram 
depicting the physics associated with the process of quantum 
annealing and how the qubits attain the lowest energy state.

Figure 3 shows three configurations of the energy dia-
gram. The initial configuration (a) consists of only one 
valley, with the qubit in the superpositioned state. When 
quantum annealing is run, a barrier is raised which gives 
rise to the formation of a double-well potential (configu-
ration (b)). In this configuration, the qubits have an equal 
probability of ending up either in the 0 state (low point 
of the left valley) or in 1 state (low point of the right val-
ley). An interesting feature of the quantum annealing 
processor is that the probability with which a particular 
qubit will fall either in 0 state or 1 state can be controlled 

by applying an external magnetic field to the qubits also 
called the bias. In other words, the qubits can minimize 
their energy under the influence of the external magnetic 
field or bias.

Coupling is another important feature of the quantum 
annealing processor. Coupling is the method through 
which two coupled qubits can be made to be either in the 
same state or in a different state, that is both 0 or 1 or 
one 0 and the other 1 or vice versa. This phenomenon of 
coupling is known as entanglement in quantum comput-
ing. For example, when two qubits are entangled, they are 
considered as one object but with four possible states or 
combinations. Hence, a two-qubit system will have poten-
tial with four states where each state represents a different 
combination. This defines the energy landscape of the two 
qubits governed by the relative energy between the qubits. 
The relative energy between the qubits depends on the 
biases of each qubit and the coupling between them. The 
programmer chooses the bias and coupling to encode a 
specific problem instance.

Quantum Processing Unit of D‑Wave 
Systems

In the previous section, we discussed the basics of com-
putation using quantum annealing and discussed some 
key concepts such as qubits, bias, and coupler. These con-
cepts are necessary for understanding the architecture of 
the D-Wave’s Quantum Processing Unit (QPU) and the 
application of D-Wave’s QPU in solving real-world prob-
lem instances. Figure 4 shows an overview of the steps 
involved in performing computation using D-Wave’s 
QPU. The overall process can be viewed as a hybrid sys-
tem consisting of both classical computation and quantum 
computation.
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Fig. 3   Energy diagram of the quantum annealing process of a single 
qubit



	 SN Computer Science (2021) 2:365365  Page 4 of 11

SN Computer Science

Classical Computation

The classical computation consists of three main parts, 
(i) Problem initialization, (ii) Programming the problem 
instance into the quantum annealing hardware through a 
software interface, and (iii) Resampling. The first two steps 
take place before annealing and the last step takes place 
post-annealing.

Problem Instance

To solve a problem with QPU, the problem needs to be 
translated into either an Ising objective function or a QUBO 
objective function. Translation between these two types of 
functions is straightforward. Both these functions support 
only quadratic functions, the reason for which will be clear 
in “Programming into QPU”. For example, considering an 
Ising objective seeks to find real-valued weights hi and Jij to 
n-spin variables that will minimize the objective function. In 
the context of machine learning classification, hi and Jij can 
be thought of as biases and weights and the n-spin variables 
can be thought of as the features or variables that are used 
for classification. After the problem instance is defined, it is 
programmed into the quantum annealing hardware using a 
software interface.

Programming into QPU

Programming into the QPU mainly consisting of initializing 
and loading the bias and weight associated with qubits. The 
biases and weights of the spin variables are mapped into 
the physical qubits of the quantum processor. The qubits 
are physically arranged in the form of a unit cell, with each 
unit cell consisting of 8 qubits. Figure 5 shows a 3 × 3 layout 
of unit cells consisting of a total of 72 qubits. Out of the 8 
qubits, 4 qubits are placed horizontally and 4 are placed 
vertically. Each vertical qubit is fully connected to the four 
horizontal qubits and vice-versa. The qubits in a unit cell 

are connected using internal couplers (shown in green dots). 
External couplers can be used to connect qubits between two 
different unit cells and also between vertically placed qubits 
in the same unit cell. For example, the blue dots connected 
by a line shows the interconnection between two horizon-
tally placed qubits in two different unit cells and the dotted 
purple line represents the connection between two vertically 
placed qubits in the same unit cell. This type of layout is also 
called a Chimera graph.

The qubits of the D-Wave’s QPU can be represented 
as nodes and the edges connecting the nodes as couplers. 
Figure 6 shows a unit cell with 8 qubits. The four qubits 
shown in blue vertical lines represent nodes 1–4 and the 
four red horizontal lines represent qubits 5–8. A transfor-
mation of the layout to its equivalent graph structure resem-
bles a neural network with two fully connected layers, with 
four neurons at each layer. Such a structure can be used to 
represent an objective function in machine learning. For 
example, if we consider a two-variable objective function, 
H(a, b) = 5a + 7ab − 3b , can be mapped into a two-qubit 
system as shown in Fig. 6.

Fig. 4   Overview of the steps required for computation using 
D-Wave’s QPU [30]
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In the objective function, we have two variable and the 
constant terms associated with the two variables are the bias 
term that is 5 and 3 in this case. The constant term in the 
quadratic expression of the two variables, that is 7 in this 
case is the strength of the coupling between the two vari-
ables. The structure of the D-Wave system’s QPU supports 
objective functions with a maximum degree of 2, or in other 
words, quadratic expression. Alongside Ising, QPU also sup-
ports QUBO problems known as Quadratic Unconstrained 
Binary Optimization (QUBO). The objective function can 
be mathematically expressed as minx∈(0,1)nxTQx , where x 
is a binary vector and Q is an upper triangular matrix of 
real weights, and the objective is to minimize the above 
expression.

An important aspect of programming into D-Wave’s 
QPU, is the identification of a representation of the cost 
function dependency graph within the constraints of the 
Chimera hardware. A number of techniques have been devel-
oped for this graph embedding procedure [5, 24]. Embed-
ding increases the number of resources required to repre-
sent the original problem but ensures that the correct logical 
relationships are encoded. Specialized embeddings can be 
developed for constrained input graph structures, such as the 
bipartite graph that is frequently used in machine learning 
[18]. After programming the biases and weights into the 
chimera graph structure for the given problem instance and 
initializing other hyperparameters, the problem is sent to the 
quantum hardware for computation.

Resample

The solution returned by the quantum annealing process may 
not end up in the ground state because of the influences of 
external energy sources [19]. Hence, in practice, the prob-
ability of the system staying in a low energy state might be 
low for certain problems. This can be mitigated by taking 
several such close-to-optimal solutions and generate a dis-
tribution of the possible solutions. The distribution of the 
possible solutions determines the frequency with which a 
specific solution is observed.

Quantum Computation

After the qubits are loaded with biases and weights, the 
system undergoes quantum annealing to find solutions to 
the problem instance. This process is distinguished into two 
parts: (i) quantum annealing and (ii) readout. After the pro-
cess of quantum annealing, the initial ground energy states 
evolve to their optimal ground energy states and the biases 
and weights change to their optimal configurations. After the 
transition ends, the qubits have classical spin values as gov-
erned by the objective function. After annealing, a readout is 

performed to retrieve the classical spin values and perform a 
scaling operation to convert the classical spin to real-valued 
weights. The total time for performing an anneal operation 
can be estimated by summing up the programming time, 
annealing time, and readout times. Hence, resampling the 
solution greatly reduces the total computation time as only 
the readout phase has to be executed instead of performing 
the annealing operation several times.

With the background on quantum annealing and the 
D-Wave’s quantum annealing processor, we will now explore 
the application of quantum annealing to machine learning 
classification tasks. These theoretical sections on quantum 
annealing background will help us analyze and understand 
the different ways in which quantum annealing can be used 
to improve the efficiency of classification algorithms.

Quantum Annealing for Machine Learning 
Classification

In recent years, researchers have been interested in applying 
quantum annealing to improve various aspects of training 
a machine learning classifier [1, 6, 32, 42]. These works 
vary from each other in the ways they have used quantum 
annealing for training, the physical D-Wave computer on 
which the QA algorithm is implemented, the dataset, and 
the application domain. Table 1 shows the different versions 
of D-Wave systems along with attributes like the number 
of qubits, couplers, and operating temperature [9, 23, 29, 
30, 40, 42]. Recently, a 5000 qubit system has been also 
launched by D-Wave systems called Advantage. However, 
because the latest version with 5000 qubits has been launch 
very recently, it is not in the scope of the discussion of this 
manuscript.

Machine learning tasks using quantum annealing are 
performed in a hybrid classical and quantum system. The 
various aspects of training which need to be optimized can 
be offloaded to the quantum processing unit for speed and 
accuracy. Researchers have utilized the power of quantum 
annealing in various aspects of training a machine learning 

Table 1   Attributes of four versions of the D-Wave systems (temp is 
the operating temperature T

p
 is the initialization/programming time, 

T
a
 is the anneal time and T

r
 is the read out time)

Attributes One Two 2X 2000Q Advantage

Qubits 128 512 1152 2048 5640
Couplers 352 1472 3360 6016 40,184
Temp (K) NA 0.02 0.015 0.015 0.015
T
p

270 ms 36 ms 10 ms NA NA
T
a

1 ms 20 μs 20 μs 20 μs 20 μs
T
r

1.5 ms 0.13 ms 120 μs NA NA



	 SN Computer Science (2021) 2:365365  Page 6 of 11

SN Computer Science

classifier and validated the results on a wide range of dataset 
suitable for various real-time applications. In this section, 
we will present and analyze existing works in this area by 
categorizing the works based on the applications for which 
quantum annealing was intended. Table 2 lists the articles 
that have reported results on performing machine learning 
classification tasks using D-Wave’s quantum annealer based 
on recent research works. The works are tabulated by cat-
egorizing them based on the intended application, the ver-
sion of the D-Wave on which the problem was solved, three 
aspects of training which include the aspect of the training 
in which quantum annealing was used for and its classical 
counterpart with which QA was compared. Finally, the table 
also consists of aspects of the dataset such as source, the 
size of training, and test data set. Listing these aspects in a 
tabular form will help us to properly organize our discussion 
of these works.

Apart from the works discussed here, there are several 
works that have used quantum annealing for machine learn-
ing tasks. For example, recently, quantum annealing was 
also applied for training a restricted Boltzmann machine for 
applications in cybersecurity [12]. Apart from the machine 

learning classification tasks performed on physical D-Wave’s 
quantum computer, several other works have also explored 
the idea of using quantum annealing for optimization by 
simulation of the quantum phenomenon instead of the actual 
hardware. Some of the examples of such works are in the 
area of lung cancer detection [41], multi-class classifica-
tion [10], training in presence of label noise [11], natural 
language processing, seizure prediction, and linear separa-
bility testing [14]. However, in this paper, our focus is to dis-
cuss and analyze the use of quantum annealing for training 
machine learning classifiers using domain-specific dataset. 
Hence, we will be focusing only on those works that have 
emphasized real-world applications using domain-specific 
dataset and have used a physical quantum annealer.

ML Applications Using D‑Wave’s Quantum 
Annealing

In the current research landscape, researchers have used 
quantum annealing for real-world application using domain-
specific dataset in four broad areas: (i) image recognition 
(ii) remote sensing imagery, (iii) particle physics, and (iv) 

Table 2   Related work on machine learning classification using quantum annealing for optimizing training

Application refers to the broader on which the use of quantum annealing was validated on. Quantum annealing application summarizes the 
primary use of quantum annealing in the training procedure and classical comparison refers to the alternative classical training approach that is 
used for comparison
DCNN deep convolutional neural network, DNN deep neural network, SA simulated annealing, QSA quantum simulated annealing, MLR multi-
variate linear regression, SVM support vector machine, CD contrastive divergence

Work Application D-Wave version Training Dataset

Quantum annealing 
application

Classical comparison Source Train size Test size

Adachi et al. [1] Image Recognition D-Wave 2 Estimation of model 
expectation

Contrastive Diver-
gence based training

MNIST 60,000 10,000

Nguyen et al. [35] Image Recognition D-Wave 2X Generating sparse 
Representation

Classical matching 
pursuit SVM, Alex 
Net like DCNN

MNIST 50,000 5000

Boyda et al. [6] Remote Sensing 
Imagery

D-Wave 2X Selecting optimal vot-
ing subset

Simulated Annealing NAIP 24,000 6,000

Mott et al. [32] Particle Physics D-Wave 2X Selecting optimal set 
of weak classifiers

DNN, XGBoost Simulated 20 × NA

Li et al. [28] Computational Biol-
ogy

D-Wave 2X Estimation of feature 
weights

SA, SQA, MLR, 
Lasso, XGBoost

gcPBM 1500 166

HT-SELEX 4500 500
Willsch et al. [42] Computational Biol-

ogy
2000Q Quantum SVM Classical SVM [27] 4352 484

Dixit et al. [13] Image Recognition 2000Q Estimation of model 
expectation

Contrastive Diver-
gence based training

BAS 300 200

Caldeira et al. [7] Image Recognition 2000Q Estimation of model 
expectation

CD, SA, Gradient 
Boosted DT

Galaxy Zoo NA NA

Liu et al. [29] Image Recognition D-Wave 2X Estimation of model 
expectation

High Performance 
Computing

MNIST NA NA

Particle Physics Neuromorphic Com-
puting

[39] NA NA
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computational biology (Fig. 7). The representative works 
on these domains will be discussed in detail in this section. 
The works discussed here have adopted a hybrid classical-
quantum system for optimizing machine learning classifiers. 
Based on the works discussed here, an overview of such a 
hybrid system can be illustrated with the help of Fig. 8.

Image Recognition

Work done in [1, 7, 13, 35] has investigated the effective-
ness of using quantum annealing in image recognition tasks. 
Qualitatively, [1, 13] have used QA in a similar way but the 
implementation varied with respect to the D-Wave version 
used and the dataset used for validation. For [1], the MNIST 
data set was used and the classifier’s task was to recognize 
handwritten digit (0–9), whereas in [13], a simple bar and 
strip dataset was used. Further, the training size used in [1] is 
about 60,000 samples and that of [13] had about 300 training 
samples. On the other spectrum, [1] and [35] used two differ-
ent approaches in using QA but the validation was done on 
the same dataset (MNIST) with 50,000 training samples. A 
similar idea of RBM training using QA to classify the shape 
of galaxies is used in [7].

In [1], authors used quantum annealing to determine the 
model expectation of a deep belief network (DBN) which 
is a deep neural network with stacked restricted Boltzmann 
machine [25]. The model expectation of a deep belief net-
work is typically performed using contrastive divergence. 
The experiment was conducted on the MNIST dataset which 
is a benchmark dataset for image recognition [26]. The 
dataset consists of handwritten digits between 0 and 9 with 
dimension 28 × 28 . To compare the quantum and the classi-
cal methods, two DNNs of the same size were implemented. 
Each DNN had 32 input nodes, two hidden layers followed 
by 10 output layers. The training was divided into generative 
(quantum annealing is used) and discriminative (completely 
classical). For the quantum model, quantum annealing was 
used to estimate model expectation in the generative phase 
and for the classical model, Contrastive Divergence was 
used. The generative phase calculates updates to the weights 
and biases and the discriminative phase uses backpropaga-
tion for fine-tuning the biases and weights. Results showed 
that the quantum model could achieve a specific level of 
accuracy with fewer iterations of generative and discrimi-
native training. A quantitative evaluation showed that the 
quantum model outperforms the classical model in terms of 

Fig. 7   Representative works 
in some of the domains where 
quantum annealing was applied 
in machine learning
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accuracy with only 20 and 100 generative and discrimina-
tive iterations respectively. The classical model took about 
50 generative and 800 discriminative iterations to reach the 
same level of accuracy.

A similar approach was used in [13], however, the idea 
was tested on BAS (bar and strip database) and on D-Wave 
2000Q. However, instead of a DBN, the authors used a sin-
gle RBM unit with a visible layer and hidden layer. The 
article focused on the comparison of the quantum imple-
mentation of RBM and classical implementation of RBM 
on the D-Wave computer. The implementation of the RBM 
in the quantum model had 64 visible units and 64 hidden 
units with all nodes of the visible layer fully connected to 
all nodes of the hidden layer. However, due to faulty qubits, 
some connections were non-functional as was the case in [1]. 
The structure of the RBM in the classical model was also the 
same. The only difference between the two models is that 
the quantum model estimated model expectation of the RBM 
using quantum annealing as opposed to CD-based training 
in the classical model. Both the models were validated on a 
BAS dataset containing 500 records consisting of 64 bit vari-
ables each. The first 62 bits represent the image and the last 
two bits represent its label (Bar or Strips). Results showed 
that both the approaches gave comparable classification per-
formance, however, higher fluctuations in the classification 
accuracy were observed with CD-based training.

In [35], the implementation of recognizing handwrit-
ten digits was implemented on D-Wave 2X. This work fol-
lowed a different approach to using quantum annealing for 
training. In this work, the authors used QA to generate a 
sparse representation of the images. First, the images were 
downsampled and were fed into a fully connected graph of 
47 logical qubits. The objective of the quantum annealing 
procedure, in this case, was to obtain an optimal sparse rep-
resentation of the image that can most accurately represent 
the original image. The method was compared with the 
classical approach in two ways: (i) First, the sparse repre-
sentation generated by QA was fed to a softmax classifier 
and an SVM classifier and the result was compared with the 
sparse representation generated by Alex Net like DCNN. 
(ii) An equivalent classical sparse representation algorithm 
known as the classical matching pursuit was used to find the 
optimal sparse representation of the images. The resulting 
sparse representation from QA based approach and classical 
approach were fed into a multi-layer perceptron (MLP) for 
classification. In both cases, superior performance of the 
quantum-based approach was observed. Another compari-
son was done with state-of-the-art RESNET (with a large 
number of neurons and parameters) which showed slightly 
better performance than the quantum approach. However, 
the authors found that the accuracy of RESNET decreased 
as the number of training samples was reduced.

In [7], the idea of using QA to estimate model expecta-
tion of an RBM machine in classifying the morphology of 
galaxies. The model was implemented on a D-Wave 2000Q 
computer with 2000 qubits. The quantum approach was 
compared to contrastive divergence based training, simu-
lated annealing and gradient boosted decision trees. Galaxy 
Zoo dataset was used for this experiment. The images of 
the galaxies were first compressed using principle compo-
nent analysis to represent the image in the physical hard-
ware. Experimental results showed that quantum annealing 
could perform better than classical algorithms if the dataset 
is small and with a limited number of training iterations. 
Overall, the authors did not find any algorithmic advantage 
of using QA over the classical approach for this particular 
dataset. In [29], quantum annealing was used to train a lim-
ited Boltzmann machine, which is a variation of restricted 
Boltzmann machine to recognize handwritten digits.

Remote Sensing Imagery

In [6], researchers have investigated the application of quan-
tum annealing in a remote sensing imagery problem. The 
problem objective was to classify image data as either cov-
ered with trees or not covered with trees. In this problem, 
quantum annealing was used to select an optimal set of vot-
ing classifiers that could most accurately classify a given 
segment as covered with trees or not. The idea was to build 
around a modified implementation of QBoost [34] which is 
a quantum version of boosting algorithm. 537 image tiles 
were taken from the National Agriculture Imagery Pro-
gram (NAIP). The selected image tiles contained 30,000 
8 × 8 labeled pixel squares. 24,000 samples were used for 
training and 6000 were used for validation and testing. 112 
features were extracted from the image tiles which resulted 
in 224 weak classifiers. After performing some initial pre-
processing, like discarding classifiers that did not perform 
better than random guessing, 108 weak classifiers remained. 
Quantum annealing was used to select the optimal set of 
weak classifiers. This method was compared with simulated 
annealing and results showed that both these methods per-
formed comparably in terms of optimal solution and rate of 
convergence.

Computational Biology

The application of quantum annealing in solving computa-
tional biology problems has been investigated in [28, 42]. In 
[42], the objective was to classify a particular protein on its 
ability to bind with a particular DNA sequence. Whereas in 
[28], the objective was to classify the strength of the binding 
of a protein and a DNA sequence based on a pre-determined 
threshold.
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In [42], the authors implemented a quantum version of 
support vector machine by representing the objective func-
tion of the SVM as QUBO formulation on D-Wave 2000Q 
machine. Subsequently, quantum annealing was used to esti-
mate the weights of the objective function. This method was 
compared with the classical implementation of SVM. The 
modeling was performed on an experimental dataset [27], 
with 4352 training samples and 454 test samples. Results 
showed that the combination of multiple solutions obtained 
from D-Wave quantum annealer proved to be superior to the 
single solution obtained from classical SVM. The authors 
also observed that the combination of the multiple solutions 
returned by quantum annealing could possibly generalize 
better to unseen data than the classical SVM. Based on the 
findings, the authors have concluded that the quantum ver-
sion of SVM could find useful practical applications for hard 
classification problems where sufficient training data is not 
available.

In [28], QA was used to estimate the weights of an objec-
tive function of the form F(�) = R(�) + Ω(�) , where R, 
Ω , and � are the loss, regularization and feature weights 
respectively. The quantum approach was compared with 
simulated annealing (SA), simulated quantum annealing 
(SQA), multiple linear regression (MLR), Lasso, XGBoost. 
The objective of the experiment was to compare the per-
formance of the quantum and classical methods in clas-
sifying TF-DNA (transcription factor-DNA) binding. The 
experiment was conducted on two types of dataset, one is 
the gcPBM (genomic-context protein binding microarray) 
with 1500 training and about 166 test samples. The second 
is the HT-SELEX (high-throughput systematic evolution of 
ligands by exponential enrichment) with 4500 train and 500 
test sizes. D-Wave 2X was used for this experiment with 
1000 qubits. Experimental results on the two dataset showed 
that the QA-based approach could outperform the classical 
technique by a slight margin if the training data is limited 
in size. Another interesting finding reported by the research 
is the ability of a quantum-based solution to learn relevant 
biological patterns.

Particle Physics

Quantum annealing has also been applied to a particle 
physics problem in [32]. The primary objective of the 
experiment was to evaluate the efficiency of quantum 
annealing in classifying Higgs signal from background 
noise. The quantum method was compared with the clas-
sical Deep Neural network and XGBoost framework. QA 
was used in the selection of the optimal number of weak 
classifiers from a total of 36 weak classifiers. The weak 
classifiers were constructed from the distribution of kine-
matic variables. The experiment was conducted in D-Wave 
2X with 1000 qubits. A simulated dataset was used for the 

experiment with a 20 × 20,000 training dataset. Experi-
mental results showed that the QA-based approach was not 
very efficient in finding the true minimum. The reason for 
this has been attributed to the noise in the physical system 
which is exacerbated by the sparse connectivity among 
qubits. Further investigation with dataset of varying sizes 
showed the clear advantage of using the quantum approach 
over the classical approach for optimization. However, the 
advantage diminishes as the dataset grows larger. Another 
work in [29] explored the application of quantum anneal-
ing in neutrino detection dataset.

Advantages of Using QA for Training ML 
Models

Analyzing the experimental results on the existing works on 
using quantum annealing for training, the following possible 
advantages of using QA for machine learning classification 
can be inferred.

Training Under Limited Data

Quantum annealing could be a better choice for training ML 
classifiers in the presence of limited training data. Results 
from [7, 28, 32, 35, 42] consistently reported higher per-
formance of quantum annealing based approach when the 
dataset is small. For smaller dataset, the performance of QA 
was reported to be better than that of classical approaches. 
However, classical approaches outperformed quantum-
based training when the size of the data is increased. The 
poor performance of the quantum approach was attributed 
to the hardware constraint of the quantum hardware. Fur-
ther research on different dataset is needed to validate the 
effectiveness of using quantum annealing for training models 
with limited data.

Dimension Reduction

Feature selection is an important subroutine for optimizing 
the training and performance of machine learning models 
and experimental results indicate the potential of QA over 
the classical approach for dimension reduction [35, 36]. 
Results reported in [35] confirmed the superior performance 
of the sparse representation generated by QA over the clas-
sical approach. Further, experimental results based on the 
application of QA to remote sensing imagery [6], reported 
that the QA-based approach of selecting an optimal vot-
ing subset from feature variables outperformed simulated 
annealing based approach.
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Generalization to Test Data

Machine learning classifiers based on quantum computation 
are hypothesized to be able to generalize better to unseen 
data than purely classical machine learning classifiers [6, 
42, 43]. Results reported in [42], showed that the solutions 
returned by the quantum version of SVM were able to better 
generalize to new data as opposed to the classical version 
of SVM. Also, the results reported in the remote sensing 
imagery problem [6], was also consistent with the strong 
generalization performance of the the QA-based classifica-
tion approach. However, further research needs to be done 
to validate the generalization performance on different data 
sets and also for larger dataset.

Multiple Solutions

Quantum annealing can also possibly yield many counter-
intuitive solutions to a given optimization problem. In the 
readout phase (Fig. 4), qubits stay in a superposition state. 
The real-valued weights and biases are obtained by scaling 
the classical spin values of the qubit. Hence, every time the 
readout operation is performed, the hardware returns slightly 
different solutions. This is validated in the experiment per-
formed in [42] showed that the quantum version of SVM was 
able to generate several solutions as compared to the single 
solution obtained by the classical SVM which are also close 
to optimal solutions. Further experiments performed in the 
application of quantum annealing for signal isolation [32] 
also highlight the superior performance of quantum anneal-
ing in generating diverse solutions.

Reduced Training Time

Quantum computing techniques owing to their superposi-
tion and entanglement phenomenon can evaluate 2N states 
at once along with speed up due to quantum tunneling. 
Because of this, it is hypothesized that quantum comput-
ing strategies can achieve significant speed-ups in machine 
learning applications. This reduction in training time will 
also make the model learning more effective in production 
when it has to update its weights in real-time in presence 
of new data. Initial experimental results concerning speed-
ups have shown promise of the theoretical results derived 
so far. In [1, 7], researchers noticed superior performance 
of the QA-based training when the training iteration was 
limited. This implies that given similar training conditions 
for quantum and classical approaches, it is expected that 
the quantum-based training approach will converge to the 
solution with fewer iterations than the classical approach. 
However, further investigations with rigorous experimental 
proof are required to experimentally validate the effect of 
quantum speed-up in reducing training time.

Conclusions and Discussions

In this article, we have explored a novel emerging computing 
paradigm known as quantum annealing and its application in 
the context of machine learning classification. We have pre-
sented a detailed survey of the existing efforts in the direc-
tion of applying quantum annealing for improving various 
aspects of training a machine learning classifier. Our survey 
has been limited to those demonstrations that emphasized 
real-world applications. We have discussed the background 
of quantum annealing and its implementation in D-Wave’s 
quantum computer. We have categorized and analyzed the 
existing works that have used D-Wave’s quantum computer 
for machine learning classification based on the application 
domain. Based on the experimental results and analysis, we 
have also listed several aspects of machine learning clas-
sification that can be better handled with a hybrid classical-
quantum system. Quantum annealing has immense potential 
in advancing state-of-the-art machine learning classifiers 
through improvement in speed and performance. However, 
several challenges need to be overcome before quantum 
annealing can be widely used as an alternative for classical 
computation for classification tasks. This includes but is not 
limited to an increase in the number of qubits, the connec-
tions among the qubits, etc. Despite the limitations faced 
currently, the current trend indicates a bright possibility of 
successfully incorporating quantum computation techniques 
in everyday real-world applications in the near future.
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