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Abstract
One of the main challenges in machine vision relates to the problem of obtaining robust representation of visual features 
that remain unaffected by geometric transformations. This challenge arises naturally in many practical machine vision tasks. 
For example, in mobile robot applications like simultaneous localization and mapping (SLAM) and visual tracking, object 
shapes change depending on their orientation in the 3D world, camera proximity, viewpoint, or perspective. In addition, 
natural phenomena such as occlusion, deformation, and clutter can cause geometric appearance changes of the underlying 
objects, leading to geometric transformations of the resulting images. Recently, deep learning techniques have proven very 
successful in visual recognition tasks but they typically perform poorly with small data or when deployed in environments 
that deviate from training conditions. While convolutional neural networks (CNNs) have inherent representation power that 
provides a high degree of invariance to geometric image transformations, they are unable to satisfactorily handle nontrivial 
transformations. In view of this limitation, several techniques have been devised to extend CNNs to handle these situations. 
This article reviews some of the most promising approaches to extend CNN architectures to handle nontrivial geometric trans-
formations. Key strengths and weaknesses, as well as the application domains of the various approaches are also highlighted. 
The review shows that although an adequate model for generalized geometric transformations has not yet been formulated, 
several techniques exist for solving specific problems. Using these methods, it is possible to develop task-oriented solutions 
to deal with nontrivial transformations.

Keywords  Convolutional neural network · Robust computer vision · Invariant recognition · Transformation-equivariant 
network · Symmetry group transformation

Introduction

Background

Geometric transformation invariance is the ability of fea-
ture representation in a computer vision model to remain 
unchanged under geometric transformations of input images 
that result from visual appearance changes of the underly-
ing objects. The significance of geometric transformation 
invariance stems from the fact that the real world is inher-
ently three-dimensional (3D), and object appearances can 

change drastically depending on their orientation in the 3D 
world, proximity, camera viewpoint or perspective. In addi-
tion, phenomena such as occlusion, deformation and fore-
ground clutter can result in significant geometric appearance 
changes of objects. This ultimately leads to various geomet-
ric transformations of the resulting images that affect the 
performance of computer vision models (see Fig. 1). Under 
these conditions, it is desirable that the underlying feature 
representations remain invariant. In classification and object 
tracking applications, for example, the need for geometric 
transformation invariance is obvious, since the machine 
vision system is generally required to maintain a consistent 
interpretation of objects at different scales, orientations and 
shapes resulting from factors such as changing camera view 
angles, occlusions, deformations and spatial orientations. In 
a real-world setting the same object can be located at differ-
ent positions in an image (as in Fig. 2), resulting in different 
pixel representations of the semantically identical images. 
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In this case, for example, the fox in the images is the same 
irrespective of whether it is in the middle or at one corner 
of the image. Similarly, a zebra upside down is still a zebra 
and a machine vision model should still be able to recognize 
it as such. Unfortunately, these problems are currently chal-
lenging tasks for visual recognition approaches based on 
state-of-the-art deep learning models [1].

Another useful property of visual recognition systems is 
equivariance—the ability to change the representation of 

learned objects in a way that corresponds to the observed 
transformations of the underlying objects [2]. In convolu-
tional neural networks, this means performing feature extrac-
tion operations (e.g., convolution, activation and pooling) 
over a transformed image results in a corresponding trans-
formation of the generated output feature vectors. The equiv-
ariance of the neural network with respect to translation, 
rotation and scale is depicted in Fig. 2.

In contrast to invariant representation (Fig. 2c), where the 
goal is to ignore the effects of transformations, equivariant 
representation (Fig. 2d) reflects all visual changes associ-
ated with transformations of the input image. In Fig. 2d, 
for example, to ensure rotation equivariance, it is neces-
sary to replicate rotation of the input image at the output. 
Equivariance of convolutional neural networks to geometric 
transformations ensures that no geometric information such 
as object size (scale), pose, position or deformation is lost 
in the deep learning pipeline. This is important in visual 
recognition tasks like scene understanding, semantic visual 
SLAM, robot navigation, object manipulation and pose 
estimation.

Overview of Approaches to Geometric 
Transformation Invariance

The earliest approaches to geometric transformation-invar-
iant recognition relied on part-based representations [3] 

Fig. 1   Examples of geometric transformations that make seemingly 
easy recognition tasks challenging for computer vision algorithms. 
The above is a demonstration by Alcorn et al. [1] of prediction per-
formance of Inception—V3 under different viewing conditions of a 
a fire truck and b school bus. Images courtesy Ref. [1], © IEEE 2019
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Fig. 2   Invariance vs equivariance: the original image has been trans-
formed by a 90 degree rotation (a’) and a 1/3 scaling plus translation 
(b’). The two panels on the right depict transformation-invariant (c) 
and -equivariant (d) representations. The goal of an invariant model 

is to interpret each as a canonical image regardless of the transforma-
tion. On the other hand, an equivariant representation must show the 
corresponding changes in the output
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and explicit geometric models [4]. Later, machine learn-
ing approaches soon replaced hard-coded, analytical mod-
els as they provided a more general approach to dealing 
with a wide variety of tasks. Traditional machine learning 
approaches to tackling invariant visual recognition prob-
lems such as image classification, object detection and 
scene segmentation involve the use of hand-crafted feature 
descriptors—for example, SURF, RANSAC, HOG, SIFT, 
LBP or ORB—in conjunction with one or more machine 
learning techniques such as Support Vector Machines 
(SVM), Conditional Random Fields (CRFs), Hidden 
Markov Models (HMMs), Decision Trees, Random Forests 
and Principal Component Analysis (PCA) [5].

In recent years, however, deep learning approaches have 
become the most dominant means for solving these chal-
lenging machine vision problems, achieving much higher 
accuracies than traditional machine learning methods in 
many recognition tasks [6, 7]. Deep learning approaches 
are characterized by training with very large annotated 
data using a single multi-layer neural network model as 
an optimization algorithm. Low-level features are learned 
automatically from input data without the need for hand-
crafted feature engineering. Presently, convolutional 
neural networks (CNNs) outperform other deep learning 
methods in most machine vision applications [8].

The basic architecture of the CNN was originally pro-
posed in 1988 by Fukushima [9] but its application was 
limited by the complexity of existing training approaches. 
It was not until 1998, following the successful applica-
tion of gradient descent for training CNN (LeNet) by Yan 
LeCun [10] that CNNs started seeing widespread adop-
tion for solving practical machine vision problems. Inter-
est in CNNs again surged with the groundbreaking results 
of AlexNet by Krizhevsky et al. [7]. The approach made 
use of a combination of previously developed techniques 
such as dropout [11], stochastic gradient descent [12], 
rectified linear (ReLu) activation function [13], spatial 
pooling [14], and weight decay and momentum [15]. In 
addition, the use of GPUs for parallel processing allowed 
the practical training on very large ImageNet data set. A 
CNN architecture, to a large degree, corresponds to the 
basic functional structure of biological visual systems 
[16–19] and retains a number of its important properties. 
In particular, it employs spatially shared weights to learn 
invariant features. As a result, the CNN possesses high 
generalization ability in image domains and is able to han-
dle geometric transformations [20], especially translation 
[18] and small changes in viewpoint [19]. In addition, the 
architecture is highly modular and can be readily used with 
other machine learning models. Compared with fully con-
nected multilayer neural networks, CNNs are character-
ized by extremely fast learning and inference speed. These 
features make CNN architectures promising for further 

developments and exploitation as generic tools for solving 
geometric-transformation invariant recognition problems.

Basic Structure and Operation of Convolutional 
Neural Networks

Essentially, a CNN is made up of three main components: 
alternating arrangement of convolution and pooling layers, 
and a regular fully connected neural network. Convolution 
layers constitute the main functional elements of the CNN. 
The basic structure of CNN model is shown in Fig. 3b. Per-
ceptrons in Convolution layers are divided into small blocks 
that learn a common weight during training. In addition to 
weight sharing, synaptic transmission of information is 
restricted by local spatial connectivity [24] similar to bio-
logical visual cortex [16–19], i.e., individual neurons are 
connected to local input areas, called receptive fields. These 
receptive fields overlap, covering the entire input image. 
This organization contrasts with conventional multilayer 
neural networks, which have no such spatial constrain, and 
each neuron has its own weight and connects to all other 
neurons of the immediate neighboring layer (Fig. 3a). The 
division of neurons into smaller local blocks allows differ-
ent sets of neurons to specialize in learning specific image 
features.

Padding the borders of the input image with extra pix-
els is a common technique to prevent loss of information 
at locations close to the edges of the image. Padding also 
preserves the input dimension after applying convolution. 
The values of the extra (padded) pixels are usually set to 
zero so that they do not affect the result of the convolution 
operation. Another technique commonly used with convo-
lution is striding [25]. The stride controls the number of 
steps (i.e., the number of elements that are skipped) between 
successive convolutions. A stride value of 1 is the default 
convolution and results in the maximum overlap of recep-
tive fields. Bigger strides reduce redundant information in 
neighboring receptive fields and are usually employed to 
reduce computational cost but in some cases they may also 
help to generalize features better [26].

Convolutional layers use spatial filtering to learn mean-
ingful image features for high-level recognition. This is 
accomplished by sliding a window, often called a filter or 
kernel—which is basically a square matrix of weights—over 
the entire input image to produce intermediate pixel blocks 
called feature maps. This process, known as convolution, 
transforms the spatial frequency characteristics of the input 
image. Subsequent layers following the first convolution 
layer extract features from already generated feature maps.

The result of each convolution operation is further pro-
cessed by applying nonlinear activation. The activation is 
generally considered a se parate layer but it is logically part 
of the convolution layer. Neurons in each convolution layer 
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are connected to a subsampling layer, also called pooling 
layer, where so-called pooling is performed before feeding 
the feature maps to the next convolution layer. The most 
common pooling methods are max pooling [27] and aver-
age pooling [28]. Recently, many different pooling methods 
have been proposed to improve generalization in specific 
scenarios [29]. In addition to increasing generalization per-
formance, the pooling operation reduces the spatial dimen-
sion of feature maps, leading to a significant acceleration of 
the learning process and inference.

After going through several layers of convolution and 
pooling, the learned features are combined and fed to a regu-
lar fully connected neural network, which may itself consist 
of several layers. The fully connected layers map high-level 
features to semantic labels. They essentially convert the 
reduced 2D feature vectors into scalar values (i.e., 1D fea-
ture vectors). The fully connected layers usually contain the 
bulk of the tunable parameters of a CNN. CNNs are trained 
using gradient descent methods [30], usually the error-based 
backpropagation algorithms.

Scope and Outline of Survey

The focus of this paper is on monocular vision techniques 
(i.e., approaches based only on 2D images as input data). 
Although deep learning models based on 3D or RGB-D 
images are becoming popular in visual recognition tasks—
and in some cases they provide better recognition perfor-
mance than 2D approaches, especially in tasks such as depth 

perception, shape analysis and scene reconstruction [21]—
computational requirements and scarcity of training data 
limit their utility in applications such as robotics and visual 
SLAM. Moreover, the simplicity of 2D images make them 
more compelling for recognition tasks. This paper presents 
neural architectural design techniques that exploit spatial 
topology of 2D images and their correlation with CNN com-
ponents such as 2D convolution filters and feature maps. A 
discussion of common data sets and performance compari-
sons are out of scope of the current work. In addition, deep 
learning approaches that utilize representation priors in the 
form of compositional part models [22] and realistic com-
puter graphics models [23] are not covered in this survey. 
Instead, the main focus is on approaches that rely on internal 
representation schemes and special architectural configura-
tions of CNNs for learning geometric transformations.

The remainder of this paper is set out as follows. In 
“Geometric Transformation Invariance in Deep Convolu-
tional Neural Networks”, we present a general overview of 
invariant feature representation in deep CNNs. A compre-
hensive discussion of state-of-the-art techniques for encod-
ing geometric transformation in CNN models is presented in 
“Specialized CNN Architectures for Geometric Transform-
Invariant Representation”. The surveyed approaches have 
been grouped into three broad categories. The first group 
of approaches is primarily focused on architectures that 
embed special elements into CNN models to model affine 
and arbitrary geometric transformations. The second group 
of methods model single transformations: rotation, scale 

Fig. 3   Basic structure of a fully 
connected multi-layer network 
(a) and a convolutional neural 
network (b)
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and projective transformations. Lastly, the third family of 
approaches focuses mainly on techniques that exploit group 
theory to provide a compact, invariant representations for a 
specific set of geometric transformations. “Emerging Trends 
and Future Research Directions” briefly discusses current 
trends and future research directions. In “Summary and 
Conclusion”, we conclude by summarizing the main issues 
covered in the paper.

Geometric Transformation Invariance 
in Deep Convolutional Neural Networks

Transformation‑Invariant Feature Representation 
in CNN

The main mechanisms responsible for transformation invari-
ance in CNN are the convolution and subsampling opera-
tions. As already mentioned above, each filter has shared 
weights which essentially allows it to learn its own instance 
of a feature map. In general, filters containing different 
weights generate different features under convolution. Since 
there are usually thousands of filters in the convolution lay-
ers, several independent feature maps are generated for each 
layer. The CNN is fundamentally endowed with translation 
invariance, because the feature maps generated by convolu-
tion are shifted over the entire pixel space—allowing useful 
features to be detected irrespective of their location in the 
image.

In the pooling layers, local averaging of neighboring 
pixels is performed. The pooling operation is essentially 
equivalent to “summarizing” the most important image 
features learned in the preceding layers [14]. Since pool-
ing typically returns one representative value from a feature 
map (often the maximum of each feature vector), the result 
will practically be unchanged even when the position of this 
pixel changes, provided it is still within the receptive field 
under consideration. Thus, pooling provides additional gen-
eralization of various image transformations such as small 
changes in the position of image features in previous layers, 
and image distortions [29]. It increases the robustness of 
the output feature maps to minor deformations and small 
variations in image structure. Moreover, repeated convolu-
tion and pooling allows the network to progressively learn 
image features—from simple (low-level visual features such 
as lines, curves, corners, edges and basic textures) to more 
complex features like shapes, and finally to more abstract, 
high level concepts like whole objects such as faces and cars. 
Thus, higher up the CNN layers, the “visibility” of the recep-
tive fields expand, allowing the network to capture high-level 
structure from the input image. The alternating process of 
convolution and pooling also provide some degree of scale-
invariance as the kernel size is varied to capture features at 

different scales. In particular, the pooling operation expands 
the receptive field of the network (i.e., the size of the effec-
tive area in the input image that produces the feature maps) 
[31, 32] without correspondingly increasing computational 
load. This helps to ensure that sufficient receptive field sizes 
that encompass all relevant image regions are produced. 
Indeed, the expansion of the size of receptive field has been 
empirically shown [32] to improve invariant generalization 
performance of CNNs.

Common Approaches for Improving Generalization 
in CNNs

The main goal of a neural network model is to extract use-
ful, generic relationships from training data that allow it 
to generalize well to new, unseen data. In the context of 
visual recognition, this also means the ability to generalize 
well to geometric as well as photometric transformations 
of previously trained images. Despite their higher perfor-
mance over other deep learning methods in visual recogni-
tion tasks, conventional CNNs are not naturally invariant 
to image transformations that deviate significantly from 
training conditions [33]. A common approach to improve 
network generalization is to increase the network capacity 
by increasing its depth (that is, number of layers) and width 
(i.e., the number of nodes per layer). However, in practice, a 
particularly common problem that arises when training with 
large networks is overfitting, a situation, where the network 
accurately learns the input training data but shows a large 
error on unseen data. Many different techniques have been 
devised to tackle this problem (see Fig. 4).

One obvious way to overcome this limitation is to use 
smaller networks and incorporate additional context infor-
mation in the form of representation priors such as deform-
able part models [22, 34–36] or realistic physics engines 
[23, 37, 38] that model causality. However, this approach is 
tedious and impractical for complex problems.

Several strategies have been proposed to improve gen-
eralization and overcome overfitting without explicitly 
incorporating hard-coded context information. Geometric 
transformation invariance can be accomplished by some of 
these general strategies that have been developed for invari-
ant generalization in deep learning networks (Fig. 3). These 
include data augmentation, pre-training, transfer learning, 
meta-learning and few-shot learning techniques. In addi-
tion, regularization and parameter optimization strategies are 
essential for robust generalization. Special activation func-
tions [39–41] and pooling methods [42–45], as well as regu-
larization techniques [11, 46–48] are often used to improve 
generalization. Pooling methods, in particular, have been 
widely investigated as a means for achieving generalization 
with respect to geometric image transformations. Com-
mon pooling methods for this task include spatial pyramid 
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pooling (SPP) [42], transformation-invariant pooling [43], 
Polynomial Pooling [49], Lp pooling [50], def-pooling 
[51] and region-of-interest (RoI) pooling [52]. Because of 
the limitations of current approaches, data augmentation 
strategies [33, 53, 54]—where different transformed vari-
ations of the original images are produced to complement 
the training data—are usually employed in conjunction 
with the aforementioned techniques. CNN models using 
various combination of these techniques have led to rapid 
improvements in CNN models, driving accuracies from 83.6 
percent. (AlexNet [7]) to a massive 96.5 percent (ResNet 
[6]) in large-scale image classification tasks (in just about 
3 years). While these recent innovations in traing approaches 
have led to dramatic improvement of recognition accuracy 
in large-scale machine vision tasks, developing sufficiently 
robust CNN models to handle non-trivial transformations 
in challenging domains remains very problematic [55, 56]. 
Consequently, the search for techniques to handle geometric 
image transformations is still a very active research pursuit.

Recently, specialized CNN architectures that employ 
various internal representation techniques to explicitly 
model geometric transformations have been proposed. The 
approaches employ different strategies to achieve geometric 
transformation invariance: explicit transformation of input 

data and feature maps, special configurations of convolution 
layers, and flexible adaptation of receptive fields. Some of 
the most important approaches surveyed in this paper, and 
the main mechanisms underlying their functional principles 
of operation, are summarized in Table 1. In the following 
section (i.e., “Specialized CNN Architectures for Geometric 
Transform-Invariant Representation”), we provide a detailed 
review of the approaches that rely on internal representation 
of invariant features in convolutional neural networks. Key 
strengths and limitations, as well as common applications 
of the various approaches are also highlighted. We have cat-
egorized the surveyed methods into three broad classes. This 
categorization is based on the universality of the approaches 
in particular application domains.

Specialized CNN Architectures for Geometric 
Transform‑Invariant Representation

In general, approaches to geometric-transformation invari-
ance involve modifying the main functional elements (e.g., 
filters) in conventional CNNs or embedding special func-
tional modules (e.g., analytical operators) or employing 
special network configurations (e.g., multi-nested synaptic 

Fig. 4   Main strategies that have 
been proposed to solve invari-
ant generalization problems in 
machine vision domains can be 
divided into three broad catego-
ries: (1) general approaches that 
reduce overfttting, (2) methods 
that exploit additional context 
to enrich the network model 
and (3) internal representation 
techniques that specifically 
exploit the properties of CNN 
elements and their correlation 
with image data

Table 1   Approaches to tackling transformations in general settings

Feature representation mechanism Representative works Application setting

Adaptive control of receptive fields DCN [58], DFN [59], ACN [71] Arbitrary transformations
Explicit transformation of receptive fields or feature maps STN [89],

IC-STN [110]
Ref. [60] TICNN [104]

Affine transformations

Deeply learned transformations Refs. [112, 113] Arbitrary transformations
Parallel, multi-stream network organization MC-STCNN [118]

Refs. [114, 116, 119]
Arbitrary or affine transformations

Special network structure CapsNet [57, 75] Arbitrary transformations
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connections) to explicitly handle geometric transformations. 
These techniques endow CNNs with the ability to gener-
alize without the need for introducing transformed images 
into training data sets through data augmentation. In this 
section, we classify these approaches into three categories 
based on the universality of the methods (Fig. 5). The first 
group of approaches [57–60] attempt to tackle invariance in 
a holistic way; they model a broad range of generic trans-
formations. The goal of these approaches is to enable CNN 
models to formulate a general concept of a broad range of 
geometric image transformations when presented with only 
one image of an object. The second group of approaches 
(e.g., [64–68]) are designed to primarily tackle single trans-
formations. These approaches are generally simpler and 
more lightweight than the other two approaches discussed, 
and are, therefore, widely used in commonly available pre-
trained scene segmentation, object detection and classifica-
tion models. The third category of approaches for achieving 
transformation invariance is the so-called group-equivari-
ance methods [61–63]. They utilize prior knowledge about 
the transformation-invariance characteristics of symmetry 
groups to encode equivariant representations for a combina-
tion of different kinds of geometric transformations.

Generalized Geometric Transformations

As already mentioned, generalized transformation-invariant 
techniques are not restricted to single contexts. They can 
be further divided into two categories—those that han-
dle arbitrary transformations and those designed to tackle 
affine transformations. Table 1 summarizes the common 
techniques employed in handling image transformations in 
general settings.

Arbitrary Transformations

Many approaches for learning arbitrary geometric trans-
formations generally provide mechanisms for adaptation of 
receptive fields in such a way that enables filters to cap-
ture detailed object variations, including different scales 
and irregular shapes. These methods are generally highly 
efficient as no intermediate pre-processing of image data 
is required to encode invariant features. In [58], for exam-
ple, Dai, et al. proposed Deformable Convolutional Net-
work (DCN), a CNN-based model that incorporates special 
modules to learn and apply 2D offsets to the standard (i.e., 

Fig. 5   Taxonomy of geometric transformations as presented in this section

Fig. 6   Many approaches improve invariant generalization by control-
ling the receptive fteld. Deformable convolution network [89] employ 
arbitrary offsets learned from input data to adapt the receptive fteld to 
irregular shapes (a). Dilated convolutions [73] (b) involve exponen-
tially expanding the fteld of view to capture more visual information 
without corresponding increase in computational cost
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regular) convolutional sampling grids (see Fig. 6). In the 
approach, the authors introduced an additional layer each 
into the convolutional and region-of-interest (RoI) layers of 
standard CNN object detection models based on R-CNN 
architecture [69]. These new convolution layers were named 
deformable convolution and deformable RoI layers. As 
opposed to the fixed bins used in conventional R-CNNs, the 
deformable convolution and deformable RoI layers employ 
adaptive 2D offsets to model effects of geometric transfor-
mations. These offsets are learned automatically from input 
image data. The learned offsets, in turn, automatically adjust 
both the spatial locations and sizes of receptive fields in the 
deformable convolution and RoI layers according to image 
scale and shape changes. The weights and learning rate of 
these additional deformable and RoI connections are set 
independent of the standard ones. This decoupling has been 
done to ensure that the deformable connections can easily be 
incorporated into standard CNNs. Other notable approaches 
that exploit flexible filter configurations to model arbitrary 
transformation invariance include Active Convolution [71], 
Dynamic Filter Network (DFN) [59], Atrous Convolutions 
[72], also called Dilated Convolution Networks [73]. In [71], 
Jeon and Kim proposed a flexible convolution technique 
using what they called Active Convolution Unit (ACU), 
whose receptive fields are defined by synaptic position 
parameters and can assume variable shape through train-
ing. Dynamic Filter Network [59] employs a dynamic filter 
generator that automatically generates CNN filters based on 
input image characteristics. The dynamically generated fil-
ters are in turn applied on input images in a location-specific 
manner. The adaptability of filters allows different spatial 
configurations of input images to be learned. In [73], Yu and 
Koltun proposed a new mechanism that introduces spacing, 
defined by a so-called dilation rate (also known as atrous 
rate), between elements of convolution kernels. Performing 
convolution with dilated or atrous filters allows more cover-
age compared to conventional convolutions. More impor-
tantly, the approach allows the effective receptive field to be 
increased exponentially while maintaining a linear increase 
in the number of network parameters.

An increasingly popular approach to generalize invari-
ance to arbitrary settings is based on the concept of capsule 
network or CapsNet. Instead of modeling deformations and 
other transformations by adapting the receptive field, cap-
sule networks utilize nested multi-layered neural topologies 
consisting of independent groups of neurons called capsules. 
In this structure, capsules represent the essence of specific 
features. In addition, the approach uses activity vectors to 
encode so-called instantiation parameters which describe 
extrinsic object properties such as pose, orientation, skew, 
deformation and scale. In the network, the activity vectors 
define the probability of the existence of these features. The 
basic principle of the capsule network was first introduced 

in 2011 by Hinton et al. [74], and subsequently refined by 
Sabour et al. [57]. In addition, in [57], an efficient method 
for training capsule networks, known as routing by agree-
ment, was proposed as a replacement of the standard CNN 
methods used in previous capsule network implementa-
tions. In the approach, predictions about the existence of 
particular features in the deeper layers rely on consensus 
of predictions among the shallower (earlier) layers of the 
network. To further improve the performance of capsule 
networks, the EM routing algorithm [75], a more effective 
training technique based on expectation maximization was 
proposed. The effectiveness of the approach has been widely 
demonstrated in text classification tasks [76]. Over the past 
few years, many modifications and extensions of the origi-
nal ideas developed in [74] and [57] have been suggested 
[77–81] to further increase the robustness of capsule net-
works to image transformations and extend their application 
to more challenging domains, including image recognition 
under occlusion [81], geometric transformation occurring in 
visual SLAM and object detection in aerial surveillance [82, 
83], road sign recognition in autonomous driving systems 
[84], semantic scene segmentation [85] and action recogni-
tion [86]. The approaches have also been extended to 3D 
recognition tasks [87, 88].

The main advantage of capsule networks over traditional 
CNN models is that they are able to learn and preserve spa-
tial relationships that characterize real-world objects. That 
is, capsule networks actually achieve equivariance—a more 
useful concept for visual understanding [57]. Capsule net-
works are also more sample-efficient compared to conven-
tional CNNs. In this regard, the use of capsule networks 
can significantly reduce overfitting problems and improve 
recognition accuracy in data-scarce domains. However, as 
discussed in [57], capsule networks usually attempt to learn 
every available detail in the input space, resulting in poor 
performance in highly noisy or cluttered environments. 
Moreover, since the final outputs of capsules are fused at 
the deepest layers, their ability to encode local, low-level 
transformations is severely constrained [89].

Another common approach to learning arbitrary geo-
metric transformation invariance is to extract discrimi-
native mid-level features from lower convolutional lay-
ers that describe more basic visual elements in the input 
image and are invariant to its transformations (Fig. 7). 
CNN approaches to extracting mid-level features tend 
to learn visual concepts that resemble deformable part 
models [91–93]. Recent methods [94–98] employ deep 
neural networks to extract features and achieve impressive 
results. The overall goal of these networks is to obtain 
more diverse discriminative visual features that are robust 
to various forms of image transformations by combining 
both mid-level and high-level visual concepts from mul-
tiple layers of CNN. The approaches typically employ 
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so-called part filters that are optimized jointly with CNN 
classifiers to select robust mid-level visual features. In 
[96], Kortylewski et al. trained a conventional deep CNN 
whose predictions are augmented with deeply mined mid-
level features from the same network. Yang et al. [95] 
proposed a method for extracting invariant mid-level 
features based on the use of special feature extraction 
modules, known as P-CNN, that are embedded in desig-
nated layers of pre-trained CNN models to extract useful 
features. Similarly, Sun et al. [97] proposed an end-to-end 
deep CNN that incorporates part-level convolutional fil-
ter—part-based convolutional baseline (PCB)—to extract 
mid-level visual concepts directly from input images. 
The concept of mining features from CNN layers pro-
vides benefits in terms of reduced model complexity and 
increased computational efficiency. Deep learning models 
that extract mid-level representations directly from CNN 
feature maps have demonstrated effectiveness in challeng-
ing machine vision tasks such as object detection [100], 
pose estimation [99], human activity recognition [98], 
person re-identification [97] and semantic scene segmen-
tation [100].

Models that provide invariance to arbitrary geometric 
transformations are able to learn complex image patterns 
associated with various real-world phenomena, including 
non-regular shapes associated with occlusion and defor-
mations. These approaches are crucial for the realization 
of generic machine vision capabilities. While it is still 
not possible to fully encode invariance with respect to 
all geometric transformations using a single network, the 
approaches described in this subsection provide partial 
invariance for various kinds of transformations that can 
adequately solve narrower problems within a variety of 
acceptable limits. Nevertheless, there is an important 

argument [101–103] in favor of less general solutions 
that are designed to tackle more specific invariances in 
narrower application contexts. One major benefit of this 
approach is the ease of incorporating prior knowledge 
about the underlying task into the machine vision pipe-
line, resulting in guaranteed performance improvement.

Affine Transformation

A number of approaches [60, 89, 104, 105], instead of 
attempting to learn arbitrary geometric transformations, 
encode affine transformations. These approaches exploit 
domain knowledge and utilize approaches based on first 
principles to explicitly encode transformation invariance. 
In contrast to most of the techniques described earlier in 
“Arbitrary Transformations” (specifically, in [59, 71, 72], 
which rely on warping convolution filters, affine transforma-
tion-invariant approaches such as [60, 89, 104, 105] directly 
transform input features with the help of dedicated modules 
within CNN layers in such a way as to guide the CNN to 
learn transformations on the input images. Encoding affine 
transformations in this way has a number of advantages. 
First, the number of learnable parameters that are needed 
to encode invariance reduces significantly. In addition, the 
requirements for structural complexity to encode transfor-
mations also decreases. More importantly, the invariance 
of the resulting network model to known transformations is 
guaranteed. One major limitation of this approach, however, 
is that it requires prior knowledge of the specific transfor-
mation to be dealt with. This is not often possible in many 
situations.

Fig. 7   CNN architecture for deeply learning robust part representa-
tions. Geometric transformation-invariant features can be extracted by 
combining low-level visual concepts from shallower layers with high-
level features of deeper layers

Fig. 8   General structure of the Spatial Transformer Network (STN) 
[89]. At the heart of the STN are the Grid Generator, Sampler and 
Localization Network. It generates a sampling meshgrid correspond-
ing to the input image, which is warped by the transformation matrix 
and sampled. The Sampler interpolates the values of the resulting 
output feature vector to integer pixel values. The Localization Net-
work learns and generates the appropriate transformation parameters 
for input images based on the loss propagated from the meshgrid 
sampler
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Arguably, the most popular affine transform-invariant 
CNN architecture is spatial transformer network (STN) 
[89]. The basic structure of the spatial transformer network 
is depicted in Fig. 8. It provides an analytical mechanism 
to explicitly perform different geometric transformations 
on feature maps or input images in an intermediate pipe-
line before employing additional CNN layers for feature 
extraction and classification. The goal is to align feature 
maps or images to their canonical form. The essence of the 
approach is to learn the relationship between different image 
appearances and the underlying geometric transformations. 
Whereas affine-invariant approaches like the spatial trans-
former network are not as general as approaches using cap-
sule networks or deformable convolutions, they can provide 
better solutions in those applications, where more deter-
ministic performance guarantees are required. The original 
method proposed in [89] learns three types of transforma-
tions, namely, affine transformation (scale, rotation, shear 
and translation); projective transformation and Thin Plate 
Spline Transformation (TPST). In principle, additional 
transformations can be introduced to account for a variety 
of scenarios. Indeed, architectures incorporating additional 
transformations such as deformation [105] have been sug-
gested. A spatial transformer can be integrated seamlessly 
into conventional CNN models and trained end-to-end in the 
normal way through standard training methods like back-
propagation. Spatial Transformer Network architectures have 
shown promising prospects in challenging machine vision 
tasks, including generic object detection [106], action rec-
ognition [107], 2D to 3D scene reconstruction [108] and 
pose estimation [109]. A major advantage of the method 
lies in the fact that it is based on analytical techniques that 
are transparent and function by understandable principles 
of operation, making end applications easy to debug. How-
ever, this transparency is achieved at the expense of higher 
computational complexity. To overcome the computational 
burden involved in computing parameters for geometric 
transformations in approaches such as [89], Tarasiuk and 
Pryczek [60] proposed to replace complex exponential and 
trigonometric computations with linear matrix operations. 

In addition, they proposed to cache the computed matrix 
coefficients for subsequent use. However, the approach is 
restricted to situations, where the input and output param-
eters of the transformation matrix are fixed. For this reason, 
the approach has very limited scope of application. In [110], 
Lin and Lucey proposed a modified STN model, known as 
Compositional Spatial Transformer Networks (IC-STNs) 
that propagates transformed image parameters instead of 
image features as in the classical STN. The propagation of 
parameters reduces the amount of computations needed to 
encode features, thereby significantly improving efficiency. 
Freifeld et al. [111] encode transformation-invarance with 
the help of Continuous Piecewise-Affine (CPA) velocity 
fields.

Another interesting approach for affine transformation 
invariance is Transform-Invariant Convolutional Neural 
Network (TICNN) [104]. It introduces a module in which 
random scaling, rotations and translations are performed on 
feature maps. The idea is to discourage the network from 
tying input images to specific configurations by inducing 
diversity of feature map topologies through affine trans-
formations. The overall result is robust feature representa-
tion that is independent of specific image transformations. 
Approaches that automatically learn affine transformations 
have also been proposed [112, 113]. In [112], for example, 
Wei et al. proposed an end-to-end, deeply learned affine 
transformation-invariant representation approach using 
interpolation technique to expand and contract feature maps. 
They introduced two sub-modules—inflation and interpola-
tion layers—that can be embedded in a deep CNN to auto-
matically transform receptive fields. The transformation 
parameters are entirely learned from input data without any 
manual configuration.

In some cases, it is preferable to learn affine transforma-
tions using a so-called multi-column or multi-stream net-
work consisting of a set of independent models that learn 
single transformations instead of a large monolithic model 
(Fig. 9).

It is important to differentiate this approaches from the 
methods [60, 89, 104] discussed in the preceding paragraph, 

Fig. 9   Simplifted structure of 
a Multi-column Convolutional 
Neural Network (MC-CNN). 
With this conftguration, differ-
ent transformations are learned 
independently by each of the 
constituent branches of the 
network. Predictions are aggre-
gated using a fusion sub-module
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where spatial transformation elements are embedded in a 
linear cascading manner. With multi-column network archi-
tectures [114–116], multiple dedicated CNN sub-networks 
are organized in columns (i.e., parallel streams), where each 
column learns a unique transformation or sets of transfor-
mations. The basic idea is to use simple parallel models to 
synergistically learn complex transformations. The use of 
such architectures in solving transformation-invariant rec-
ognition problems is widespread, and new techniques [43, 
117–119] are actively being developed by a large number of 
researchers. The concept was used in the original work by 
Ciregan et al. [114]. In the approach, the authors proposed to 
use 35 distinct columns to classify Chinese characters. These 
columns are trained on input images pre-processed by apply-
ing different transformations such as scaling, rotations and 
translations images. The output activations of the various 
columns are then averaged to produce a common predic-
tion. Performance analysis by the authors confirmed that 
the proposed approach outperformed all previously reported 
methods by about 1.5–5%.

In the multi-column approach described above, image 
transformation is typically obtained by manual pre-pro-
cessing but this imposes many constraints in practical situa-
tions. In [118] Zhang et al. proposed a Multi-column Spatial 
Transformer Convolutional Neural Network (MC-STCNN) 
for traffic sign classification. The basic structure is similar 
to the above approach, except that instead of using preproc-
essed images they use a Spatial Transformer Network (STN) 
[89] to transform image shapes. The network also employs 
a special module—a so-called Distributer—that scales the 
input images to five different dimensions before transforma-
tion by the spatial transformers. In [43], the authors pro-
posed a different approach for obtaining image transforma-
tions without the use of data augmentation. In the approach, 
input images are transformed by predefined affine transfor-
mation functions before passing through designated network 
branches consisting of convolutional and subsampling lay-
ers. The output feature maps are then aggregated and sam-
pled with the help of a specially designed max-pooling tech-
nique, TI-Pooling, to encode transformation invariance. A 
similar approach based on the use of analytical transformer 
was proposed in [119]. The authors proposed a more general 
method of learning transformation invariance based on the 
concept of random image transformations and special feature 
aggregation module known as drop-transformation-out.

It is worth noting that a number of advanced fusion 
methods have been proposed to enhance feature aggre-
gation in multi-column networks. These include adaptive 
weight-learning [120], statistical [121] and probabilistic 
[122] techniques. Other notable examples are weighted 
voting [123], blending [124] and meta-combining [125]. 
Despite the high potential of multi-column architectures 
for achieving high degree of geometric transformation 

invariance, recognition approaches based on these tech-
niques have a number of serious drawbacks: (1) using 
multiple sub-networks can be computationally expensive 
and slow; (2) the constituent sub-models can be difficult to 
optimize jointly; and (3) the approach restricts sharing of 
learned knowledge within the network structure. In addi-
tion, in a lot of practical situations image transformations 
are combinatorial in nature, that is, several transforma-
tions occur simultaneously in different permutations—and 
simple combination of distinct transformations may not 
suffice.

Despite these limitations, multi-column approaches are 
in many ways superior to monolithic ones in terms of their 
modularity and reliability. The network topology is simple, 
and can be extended to a wide variety of contexts, includ-
ing arbitrary geometric as well as photometric transforma-
tions. Moreover, as machine vision techniques mature and 
research focus shifts from black box approaches towards 
the realization of explainable and causal visual recognition 
systems, developing compact models with well-defined 
principles of operation to encode different aspects of 
object interactions will likely become more important.

Single Geometric Transformations

As opposed to the approaches described earlier in “Gen-
eralized Geometric Transformations” that simultaneously 
tackle many kinds of affine and arbitrary transformations, 
a large number of techniques have been devised to address 
single geometric transformations separately. The main 
motivation for such approaches is based on the fact that 
only a few geometric transformations–translations, rota-
tions and scale variations—dominate in many practical 
scenarios [64]. Moreover, approaches that tackle these sin-
gle transformations are generally more efficient and sim-
pler than their generic counterparts. They are, therefore, 
widely used to improve recognition performance in pre-
trained CNN models. Single transformation methods are 
commonly used in domains, where specific image trans-
formations are expected. For instance, rotation invariance 
is generally very useful for machine vision tasks in appli-
cations like aerial surveillance because of the different 
orientations from which cameras would usually capture 
images. Projective transformations are common applica-
tion domains like autonomous driving and augmented 
reality, where wide field of view (FoV) image sensors are 
usually used to capture 360 degree or panoramic images.

It is largely accepted that deep CNNs are already invari-
ant to translations [30, 89]. Consequently, rotation and 
scale transformations are the predominant problems these 
class of approaches commonly tackle. Typically, the tech-
niques exploit various strategies, including analytical 
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preprocessing, transformation parameters, and topologi-
cal correlation between transformed image features and 
convolution filter configurations or feature maps to learn 
invariance or equivariance. In Fig.  10, we summarize 
some of the most important approaches for tackling single 
transformations.

Scale Invariance

In CNNs, filters of smaller dimensions generally learn finer 
image features while large-size filters capture larger, more 
global or higher level features. Consequently, the selection 
of filter dimensions invariably takes into account the gran-
ularity of features that needs to be learned. For instance, 
Simonyan and Zisserman [126] employs a network topol-
ogy that uses small-size (1 × 1) filters to enhance the net-
work’s ability to extract fine-grained features. However, 
since the kernel size is fixed, techniques based on these 
approaches only provide contextual details relevant for fine 
image features and do not capture course details or multi-
scale information inherent in real-world settings. Based 
on the correlation of filter dimension and the granularity 
of the generated features, approaches to scale invariance 
commonly utilize multi-scale filters, that is, combinations 
of different filter sizes, to handle different scales [18, 66, 
127, 128]. For instance, Szegedy et al. [127], employ small 
blocks of convolutional elements consisting of differently 
sized kernels—specifically, 5 × 5, 3 × 3 and 1 × 1 kernels—to 
enable feature extraction at different scales. In [129, 130], a 
new concept is proposed that employs competitive pooling 
strategy based on maxout activation to replace the conven-
tional feature aggregation pooling methods [127] used for 
multi-scale filters.

An alternative and highly popular approach, known as 
filter pyramid network, adopts a spatial filtering scheme that 
employ a pyramidal structure [42, 70, 131] of convolutional 
filters to extract varying sizes of features. Lin et al. [70] pro-
posed an approach that exploits CNN’s inherent pyramidal 

feature hierarchy to encode scale invariance without the need 
for creating extra multi-scale feature maps or images. From 
a single image, the method generates multiple size feature 
maps at different levels of the CNN pipeline. In [131], Chen 
et al. introduced Scale Pyramid Network (SPN) which uti-
lizes a specialized module to generate multi-scale pyramid of 
features using different dilated convolution rates in parallel 
within deeper CNN layers. Many standard object detection 
models [132–134] employ multi-scale images in pyramidal 
structure during training to ensure scale invariance. Image 
Pyramid networks typically scales input images into differ-
ent sizes and then train multiple independent sub-networks 
on each scale. In contrast to methods such as [18, 128] which 
employ large networks with multi-scale filters, approaches 
such as [64, 135] utilize multiple CNN sub-models, each 
with its own filters for extracting features of a particular 
scale. Van Noord and Postma [64], for example, proposed 
a scale-invariant model that combines four different sub-
models designed to handle different scales into a composite 
assembly. Individual predictions from the separate CNNs are 
averaged to produce a final prediction.

Rather than using different filter sizes or employing 
separate sub-models to handle different scales, some works 
[136–139] concatenate features from different layers of the 
network hierarchy. The idea is to leverage larger structural 
representations from higher layers together with finer geo-
metric details captured by lower layers for scale-invariant 
prediction. Other approaches [140–143] have been proposed 
based on multi-branch network architectures in which differ-
ent layers independently perform predictions appropriate to 
the object scale. Predictions across the different layers are 
then averaged to produce the overall prediction. Some of the 
common CNN architectures that encode scale invariance are 
shown in Fig. 11.

Fig. 10   Common approaches to 
tackling single transformations
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Rotation Invariance

A variety of approaches have been exploited to ensure rota-
tion invariance in deep CNNs. The simplest strategy is to 
encode pre-determined, multiple rotated positions. This can 
be done by performing successive rotation operations on 
input images [43, 144] or convolution filters [63, 67, 145]. 
In [63] Marcos et al. applied successive rotation opera-
tions to the convolution filters in discrete steps. They then 
extracted vector field feature maps by spatially convolving 
the rotated filters on input images. Oriented Response Net-
works [68] introduces Active Rotating Filters (ARFs) that 
are discretely rotated in the process of convolution to gener-
ate feature vectors with corresponding location and orienta-
tion information.

An alternative approach is to transform the image domain 
into a new domain in which angular translations or rotations 
become linear translations. For this purpose, various meth-
ods have been suggested, including polar canonical coordi-
nate transforms [146–149]. These techniques convert rota-
tion of an image in the original Cartesian coordinate system 
into translation in a polar coordinate system by interpolating 
pixel values of the image onto corresponding locations of a 
planer grid (Fig. 12a). Jiang and Mei [146] proposed a rota-
tion-invariant CNN with a dedicated polar transformation 
layer that can be inserted into to learn rotation invariance. 

Similarly, Polar Transformer Network (PTN) [149] incor-
porates a polar transformer unit to transform features to 
polar canonical coordinate representations. In [147], Chen 
et al. proposed two different polar transformation mod-
ules, Full Polar Convolution (FPolarConv) and Local Polar 

Fig. 11   Strategies for encoding scale invariance include using differ-
ent filter sizes in each convolution layer (a), employing independent 
sub-networks for learning different scales and then aggregating their 

output predictions (b), using multi-scale ftlters with competitive pool-
ing to select best option (c), and exploiting image and/or feature pyra-
mids (d)

Fig. 12   Polar (a) and log-polar (b) representations transform rotation 
in Cartesian coordinate system to linear translations. Scale changes is 
equivalent to translation in the vertical axis of the log-polar plane
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Convolution (LPolarConv), each of which can independently 
encode rotation-invariant representations.

Another type of domain conversion is based on log-radial 
harmonics or log-polar representation [65, 150–153], which 
renders the rotation of an image in the Cartesian coordinate 
system as a plane translation in one axis and scale change as 
a translation along the other main axes of the logarithmic-
polar plane. A key advantage of the polar-log transforma-
tions lies in the fact that both rotation and scale are encoded 
as opposed to rotation-only invariance in the case of the 
polar transform approach. However, the polar transform has 
the advantage of simplicity and lower computational cost. 
With the log-polar transformation, images are projected 
from Cartesian coordinate into logarithmic-polar coor-
dinate representation (Fig. 12b). As depicted in Fig. 12b, 
this approach converts the rotation of an image in Cartesian 
coordinate system into a linear translation along the hori-
zontal axis and at the same time encodes scale change as a 
corresponding translation along the vertical axis.

A major drawback of these coordinate transformation 
approaches, however, is that they invariably introduce 
unwanted noise and distortions as a result of image pixels at 
the central parts of the image being sampled more aggres-
sively than those at its ends. Another significant limitation 
of the techniques discussed is that they are limited to a finite 
set of discrete rotations. This problem can be eliminated 
using steerable filters [154, 155]—a special class of filters 
capable of encoding arbitrary rotations in continuous space 
using linear combinations of simple filters, known as basis 
filters. Because of their power in representing continuous 
rotation information, steerable filters are being widely used 
to tackle more challenging visual recognition problems 
involving rotation invariance [65, 156–158]. Worrall et al. 
[90], proposed Harmonic Networks to extend these discrete 
rotation-invariant techniques to continuous 360 degree rota-
tions using circular harmonics in place of standard convolu-
tional filters. Ghosh and Gupta [65], proposed scale-steer-
able filters—a type of filter design formulated on the basis 
of log-radial harmonics—that combines both rotation- and 
scale-steerable circular harmonics to extend these represen-
tations to broader domains involving continuous rotations.

Projective Transformation

Many machine vision applications utilize wide field-of-view 
(FoV) or omnidirectional cameras so as to capture large 
amounts of visual information in the form of spherical 360 
degree and panorama views. Meanwhile, wide FoV data sets 
are currently scarce, leaving CNN models to increasingly 
rely on perspective images for training. To make predic-
tions in spherical image domains, some approaches first con-
vert the input spherical images into canonical views before 
extracting useful features. In [159], for examples, spherical 

image data is projected onto 2D planes, where standard con-
volution is applied on the converted planar images. The main 
limitation of this approach is the enormous computational 
cost in converting from spherical to 2D planar views. In 
addition, the conversion introduces errors, making stand-
ard convolutions less effective. To mitigate both problems, 
Monroy et al. [160] proposed to divide omnidirectional 
input images into equally sized patches and then map these 
patches onto planer surfaces (specifically, six faces of a vir-
tual cube). With this representation, a conventional CNN 
can then be used to extract features for inference. Some 
approaches (e.g., [161]) have proposed to treat spherical 
images as graph-structured data and use so-called graph 
convolutions to extract invariant image features. To further 
enhance invariance, Khasanova and Frossard [162] addition-
ally modeled into the graph structure prior knowledge about 
the camera lens geometry. While these works have proven 
effective in tackling invariant recognition in spherical image 
domains, due to the complexity of the representations, they 
are less general and much less powerful compared to stand-
ard CNNs.

A number of works [163–167] proposed special con-
volutions to directly extract transformation-invariant fea-
tures from omnidirectional images. In [163], Cohen et al. 
introduced a new type of convolution, known as Spheri-
cal convolution, where the sliding of the convolution filter 
translates to a rotation on sphere. This ultimately makes 
the approaches equivariant to rotation of objects on the 
sphere. Similarly, Boomsma et al. in [167] applied concen-
tric cubed-sphere convolution on spherical data represented 
in cubed-sphere form. Spherical CNNs [165-169] typically 
interpolate features in spherical images onto 2D plane by 
equirectangular projection using Fast Fourier Transform 
(FFT) technique to compute spherical cross-correlations 
of image features. However, the conversion of spherical 
images into planer projections inevitably introduces per-
spective distortions and decreases performance. To mitigate 
this problem, some researchers [163, 170] have proposed to 
first transform convolutional filters and feature maps into 
spectral representations before performing convolution. In 
[171], Su and Grauman proposed to directly transfer conven-
tional convolution filters to spherical 360 degree images by 
utilizing a dedicated learnable function to handle spherical 
to planer image transformations. Spherical networks have 
been applied to handle images produced by omnidirectional 
image sensor systems [168]. This is particularly relevant in 
machine vision applications such as autonomous driving, 
where the use of wide field-of-view image sensors enhances 
situational awareness. They are also useful in augmented 
reality applications [172] and in aerial imagery [166], where 
they are used to interpret rotated, non-canonical image views 
generated by wide field-of-view (FoV) cameras. Their appli-
cation has also been extended to non-Euclidean domains, 
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for example, for interpreting cosmological maps [173] and 
molecular data analysis [167].

Group Transformations

Basic Concepts of Symmetry Group Equivariance

A large part of the success of CNNs in visual recognition 
tasks is due to the equivariance of the convolution opera-
tion to translations. Recently, much research effort has been 
dedicated to extending this equivariance property to other 
geometric transformations. An increasingly popular class of 
geometric transformation-invariant recognition approaches 
[61, 62, 149, 174, 189, 190] exploit insights from group the-
ory [175] to make CNN models equivariant to group or sym-
metry transformations—that is, the set of geometric transfor-
mations that leave the semantic meaning of the underlying 
image unchanged with respect to a given context. Specifi-
cally, group transformation G has the property that features 
of an image transformed by G are the same as the original 
image under the action of the group transformation G . More 
formally, given a feature representation f  of image i under 
group transformation G, f (G(i)) = G(f (i)) . Group equivari-
ant networks make use of these principles to allow models 
to mathematically describe a wide class of image domains 
using systems of functions whose values are constant under 
the influence of group transformations. Obviously, such a 
definition of the invariant recognition problem limits the 
scope of these approaches. The main difficulty when apply-
ing the group-equivariant methods in practical situations is 
the fact that most real-world problems are usually very com-
plex; many of them cannot be formulated in precise terms. 
In many cases (e.g., [176, 177]), group-equivariant models 
incorporate diverse techniques for encoding invariants, with 
only one of which, in reality, exploiting group theory as the 
basis of its operation. However, it possible to apply CNNs 
built on the basis of symmetry group principles alone to 
invariant recognition visual recognition problems. In specific 
contexts, the approaches have demonstrated good results in 
practice [61]. Symmetry group equivariant networks can 
loosely be classified [178] into those that tackle specific 

(single) transformations (e.g., rotations) or a compact set of 
discrete transformations (e.g., a combination of rotations and 
reflections) and those that guarantee equivariance for general 
and arbitrary transformations. Some of the common methods 
describe below are captured in Table 2.

Single and Locally Compact Symmetry Transformations 
Over Discrete Space

Approaches that exploit symmetry constraints have been 
proposed to deal with specific transformations such as 
scale, rotations and projective transformations. Scale-
equivariant networks [181–184] generally exploit scale-
space theory and semigroup properties to achieve equiv-
ariance to scale transformations. In many of these works, 
the goal is to encode multi-scale features while preserving 
translation-equivariance. Rotation-equivariant approaches 
based on rotating convolutional filters or feature maps are 
proposed in [62, 63, 185, 186]. These approaches typically 
require explicit rotation operations to be performed while 
exploiting cyclic symmetry constraints. A large number 
of works have also been proposed to handle spherical to 
planer projective transformations [187, 188]. An impor-
tant property of symmetry groups is that an image that is 
equivariant under a composite symmetry transformation 
will remain equivariant under the sequential application 
of the constituent transformations [189]. In other words, 
complex image transformations can be encoded using a 
combination of elementary transformations. Consequently, 
complex geometric transformation-invariant recogni-
tion tasks can be reduced to finite sets of simple image 
transformations in a discrete space and can be encoded 
by predefined geometric transformations. This property 
allows group equivariant techniques to leverage prior 
knowledge of the properties of symmetry groups [61] to 
simultaneously provide a compact equivariant represen-
tation with respect to multiple transformations. In their 
original paper [61], Cohen and Welling introduced the 
concept of G-CNN, a CNN architectures that incorpo-
rates so-called group convolutions (or G-convolutions). 
The idea proposed in [61] was to model a combination of 

Table 2   Common approaches to tackling symmetry group transformations

Target transformations Key approaches References

Discrete symmetry group transformations Scale-space theory and semigroup techniques [181–184]
Manipulation (e.g., rotation) of feature maps or filters [63, 185, 186]
Projective transformations [187, 188]

General group transformations B-spline interpolation methods [195, 196]
Capsule network-based approaches [179]
PDE-based approaches [190]
Steerable filters [155]
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90° rotations and mirror reflections that can be learned by 
CNN filters through symmetry group action. The results 
of their study demonstrated a superior performance over 
conventional CNNs trained and tested on CIFAR10 and 
rotated MNIST data sets. Group equivariant networks such 
as [61, 62, 178] are limited to a small, fixed number of 
discrete transformations. For example, in [61], only a few 
transformations—specifically, 90° rotations and mirror 
reflections—are possible.

General Symmetry Transformations Over Continuous Space

Recently, a number of techniques have been proposed 
to generalize symmetry group equivariance to arbitrary 
transformations and over continuous space [150, 174, 175, 
190–193]. In [190], the authors proposed a partial differ-
ential equation (PDE) approach to extend equivariance to 
general settings. The technique employed was to treat con-
volutional network layers as partial differential equation 
solvers. The neural network provides generalized equiv-
ariant representation by means of linear and morphologi-
cal convolutions using these partial differential equations 
solvers. Henriques and Veldhadi [150] introduced a new 
convolution layer, called warp convolution layer, where 
input images are transformed by exponential maps before 
being convolved by standard convolution operations. In 
the implementation, they proposed to use bilinear resa-
mpling to generate efficient convolutions that are amena-
ble to continuous transformations. Another technique for 
constructing general equivariant convolutional networks 
over continuous rotations is based on the concept of filter 
steerability [155]. This approach utilizes steerable filters 
in place of conventional CNN filters to learn equivariant 
representations of input images. In [175], Weiler and Cesa 
proposed a general method for constructing invariants, and 
a concept to extend approaches dealing with specific sym-
metry transformations (e.g., [63, 90, 155, 194]) but whose 
representations lend themselves well to generalization.

Methods based on B-spline interpolation [195, 196] are 
also being used to achieve equivariance over continuous 
transformations. In [195], Bekkers proposed to general-
ize arbitrary symmetry patterns over continuous transfor-
mations using B-spline basis functions for representing 
group convolution kernels. Approaches that extend exist-
ing CNN representation concepts to group equivariant 
networks have been widely studied. In [62], the authors 
modeled rotation equivariant priors in the initial layers of 
CNN and propose a new training technique based on what 
they called Soft Rotation-Equivariant CNN that encour-
ages equivariance on training samples.

Romero et al. [180] proposed Attentive Group Convo-
lutions, an approach inspired by biological visual atten-
tion mechanism [197], which allows group equivariant 

networks to learn meaningful relationships among dif-
ferent symmetry transformations. Lenssen et  al. [179] 
extended the concept of group equivariance to capsule 
networks. The approach implements capsule networks’ 
routing by agreement algorithm on symmetry groups. 
Lately, CNN models based on the principles of symmetry 
group equivariance have also been extended to Generative 
Adversarial Networks [198].

Emerging Trends and Future Research 
Directions

Modern deep learning models are becoming more complex 
and often highly specialized for very narrow tasks. An 
emerging trend is to build large, heterogeneous deep learn-
ing models that employ elementary sub-models to handle 
specific sub-problems. In this regard, it is conceivable 
that many future approaches could utilize composite CNN 
architectures consisting of diverse models specialized 
in dealing with specific geometric transformations. For 
example, transformations such as rotation, scale, deforma-
tion and skew could be handled by separate models within 
a larger network such as the architecture depicted in Fig. 9. 
Models based on this concept would generally be more 
interpretable and offer better deterministic performance 
guarantees. In particular, they may capture more nuanced 
details of the underlying scenario, making them less sus-
ceptible to fooling and adversarial attacks as compared 
to large, homogeneous neural network models. Given all 
of these attractive characteristics of hybrid architectures 
as models for learning complex phenomena such as geo-
metric image transformations, one can reasonably expect 
the development in this direction to accelerate as these 
integrated models leverage rapidly expanding workload-
intensive technologies such as cloud computing and high-
performance computing (HPC) resources. Moreover, new 
machine learning concepts such as knowledge amalgama-
tion [199], domain generalization [200] and meta-learn-
ing techniques [201] can be leveraged to develop more 
general CNN architectures that are invariant to complex 
image transformations. An increasingly important aspect 
of future research work will, therefore, be the develop-
ment of sophisticated, multi-modal techniques that are not 
only robust but are also at the same time more general and 
provide various degrees of adaptation to different image 
transformation in diverse scenarios. At the moment such 
recognition techniques have very narrow scope, being 
trained for specific tasks each time; they are currently very 
rigid and do not scale well. As the approaches develop 
further, it will be possible to build multi-purpose models 
to tackle generic machine vision problems.
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Also interesting are research works associated with 
developing biologically inspired deep learning tech-
niques. Of particular importance are artificial neural net-
works using feedback connections [202]. These methods 
enable the realization in artificial networks important 
functional properties of biological visual systems—nota-
bly, memory and attention mechanism [197, 203]—that 
are pivotal in building neural network architectures for 
efficient and robust visual recognition. Just as in biologi-
cal vision, attention mechanism in deep learning models 
enables representation methods that capture only the most 
relevant visual cues while ignoring unnecessary informa-
tion, resulting in more efficient and robust representation. 
Models employing memory will allow artificial neural net-
works to retain previously learned features while incorpo-
rating new information about image transformations from 
subsequent training sets. Biologically inspired machine 
vision techniques are already playing an important role in 
the development of robust visual representations for chal-
lenging tasks such as few-shot learning [204]. As these 
approaches continue to evolve, an interesting prospect will 
be their integration into CNN models to facilitate general 
transformation-invariant visual understanding.

Perhaps, the most promising direction for future work 
is in the area of Automated Machine Learning (AutoML) 
[205, 206], the development of algorithms to automatically 
generate machine learning models for different tasks. A par-
ticularly interesting aspect of these works, Neural Architec-
ture Search (NAS) [207], a subset of AutoML, specifically 
focuses on automating neural network architecture design. 
This entails using machine learning algorithms to iteratively 
build and test several different architectures from a given 
data set and task, and then using various search strategies, 
to select the best performing model from the generated can-
didates. Techniques based on NAS have already produced 
results better than state-of-the-art hand-crafted neural net-
works in some machine vision domains [208–211]. How-
ever, a major limitation of NAS approaches is their heavy 
reliance on very large, “complete” training data set to pro-
duce “best-fit” neural architectures. Without the ability to 
model different nuances of real-world settings, it will be 
challenging to encode complex geometric transformations 
with NAS generated models—especially in real-world appli-
cations, where training data are scarce. In addition, the pro-
cesses of model generation and search are currently enor-
mously computationally expensive.

Currently, active research areas include the use of meta-
learning techniques to improve the sample efficiency of 
AutoML-based approaches [212, 213], development of 
better search strategies [142, 143] and computationally 
efficient techniques for model generation [214, 215]. In 
the foreseeable future, however, better NAS algorithms 
and improvements in hardware performance—especially 

cloud-based computational resources—will enable the 
development of NAS techniques that can be used in chal-
lenging domains to solve challenging machine vision prob-
lems. Indeed, big tech firms are already starting to deliver 
AutoML based platforms as a commercial services. Key 
among them include Google Cloud AutoML and Microsoft 
Custom Vision services. In addition to this commercial 
products, open source development tools, for example, 
Auto-keras [216] and Auto-sklearn [217], have also been 
introduced. With these new developments, the prospect for 
machines generating game-changing architectures funda-
mentally different from present hand-crafted approaches 
is very real.

Summary and Conclusion

In this paper, we reviewed recent methods for learning 
geometric transformation-invariant representations in 
deep learning models. Geometric transformation here is 
understood as 2D planer image geometry transformations 
that result from visual appearance changes of the underly-
ing objects in real-world 3D scenes. The main focus is on 
approaches that employ classical CNN architectures as base-
line for building more sophisticated models for transforma-
tion-invariant generalization.

First, we briefly described feature representation and 
generalization properties of convolutional neural networks, 
with special focus on robustness to minor image transfor-
mations. We then surveyed state-of-the-art techniques that 
extend the capabilities of classical CNN architectures to han-
dle more aggressive geometric transformations. Although 
the approaches as presented in this survey have been cat-
egorized into three groups based on their universality with 
respect to the range of geometric transformations they are 
designed to handle, the underlying principles and implemen-
tation details are extremely diverse. The common principles 
for encoding geometric transformation invariance include: 
appropriately transforming convolution filters or feature 
maps, analytically pre-processing input data in an interme-
diate pipeline, or transforming the image domain into a new 
domain, where invariance can be easily encoded. In addi-
tion, there are approaches in which the invariance of features 
is provided by the special structure of the neural network 
as a whole. The most well-known example of this class of 
approaches is the capsule network. Other notable examples 
include multi-stream or multi-column architectures and 
hybrid models that employ a combination of specialized 
neural network units for encoding specific invariances. The 
review shows that although an adequate model for general-
ized geometric transformations (i.e., universal method for all 
input images under arbitrary geometric transformations) has 
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not yet been formulated, several techniques exist for solving 
task-specific problems. Using these methods, it is possible 
to develop case-based, task-oriented, robust machine vision 
models to deal with nontrivial geometric image transforma-
tions in practical application settings. Despite the outstand-
ing results achieved in recent years, there is still room for 
significant advances in the near future. New developments 
in areas like automated machine learning and bio-inspired 
computer vision methods are expected to drive the next gen-
eration of geometric transformation-invariant deep learning 
architectures.
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